Carlo Nipoti, Dipartimento di Fisica e Astronomia, Università di Bologna

1. Fundamentals of mechanics

1.1 Lagrangian mechanics

[LL]

1.1.1 Generalized coordinates

\rightarrow Particle: point mass
\rightarrow Particle position vector \mathbf{r}. In Cartesian components $\mathbf{r}=(x, y, z)$.
\rightarrow Particle velocity $\mathbf{v}=\mathrm{d} \mathbf{r} / \mathrm{d} t=\dot{\mathbf{r}}$. In Cartesian coordinates $v_{x}=\mathrm{d} x / \mathrm{d} t$, etc...
\rightarrow Particle acceleration $\mathbf{a}=\mathrm{d}^{2} \mathbf{r} / \mathrm{d} t^{2}=\dot{\mathbf{v}}=\ddot{\mathbf{r}}$. In Cartesian coordinates $a_{x}=\mathrm{d}^{2} x / \mathrm{d} t^{2}$, etc...
$\rightarrow N$ particles $\Longrightarrow s=3 N$ degrees of freedom
\rightarrow Generalized coordinates: any s quantities q_{i} that define the positions of the N-body system $\left(\mathbf{q}=q_{1}, \ldots, q_{s}\right)$
\rightarrow Generalized velocities: $\dot{q}_{i}\left(\dot{\mathbf{q}}=\dot{q}_{1}, \ldots, \dot{q}_{s}\right)$
\rightarrow We know from experience that, given \mathbf{q} and $\dot{\mathbf{q}}$ for all particles in the system at a given time, we are able to predict $\mathbf{q}(t)$ at any later time t. In other words, if all \mathbf{q} and $\dot{\mathbf{q}}$ are specified $\Longrightarrow \ddot{\mathbf{q}}$ are known.
\rightarrow Equations of motion are ODE for $\mathbf{q}(t)$ that relate $\ddot{\mathbf{q}}$ with \mathbf{q} and $\dot{\mathbf{q}}$. The solution $\mathbf{q}(t)$ is the path (orbit).

1.1.2 Principle of least action \& Euler-Lagrange equations

\rightarrow Given a mechanical system, we define the Lagrangian function $\mathcal{L}(\mathbf{q}, \dot{\mathbf{q}}, t)$. \mathcal{L} does not depend on higher derivatives, consistent with the idea that motion is determined if \mathbf{q} and $\dot{\mathbf{q}}$ are given.
\rightarrow Given two instants t_{1} and t_{2}, we define the action $S=\int_{t_{1}}^{t_{2}} \mathcal{L}(\mathbf{q}, \dot{\mathbf{q}}, t) d t$
\rightarrow The system occupies positions \mathbf{q}_{1} and \mathbf{q}_{2} at time t_{1} and t_{2}, respectively. Note that in this formalism instead of fixing position and velocity at the initial time t_{1}, we fix positions at the initial and final times.
\rightarrow Principle of least action (or Hamilton's principle): from t_{1} to t_{2} the system moves in such a way that S is a minimum (extremum) over all paths, i.e. (for 1 degree of freedom)

$$
\delta S=\delta \int_{t_{1}}^{t_{2}} \mathcal{L}(q, \dot{q}, t) \mathrm{d} t=\int_{t_{1}}^{t_{2}}[\mathcal{L}(q+\delta q, \dot{q}+\delta \dot{q}, t)-\mathcal{L}(q, \dot{q}, t)] \mathrm{d} t=\int_{t_{1}}^{t_{2}}\left(\frac{\partial \mathcal{L}}{\partial q} \delta q+\frac{\partial \mathcal{L}}{\partial \dot{q}} \delta \dot{q}\right) \mathrm{d} t=0
$$

Now, we have

$$
\frac{\partial \mathcal{L}}{\partial q} \delta q+\frac{\partial \mathcal{L}}{\partial \dot{q}} \frac{\mathrm{~d}(\delta q)}{\mathrm{d} t}=\frac{\partial \mathcal{L}}{\partial q} \delta q+\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \delta q\right)-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}}\right) \delta q,
$$

so the above equation can be rewritten as

$$
\delta S=\left[\frac{\partial \mathcal{L}}{\partial \dot{q}} \delta q\right]_{t_{1}}^{t_{2}}+\int_{t_{1}}^{t_{2}}\left(\frac{\partial \mathcal{L}}{\partial q}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial \mathcal{L}}{\partial \dot{q}}\right) \delta q \mathrm{~d} t=0
$$

which is verified for all δq only when

$$
\frac{\partial \mathcal{L}}{\partial q}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial \mathcal{L}}{\partial \dot{q}}=0
$$

because $\delta q\left(t_{1}\right)=\delta q\left(t_{2}\right)=0$, as all possible paths are such that $q\left(t_{1}\right)=q_{1}$ and $q\left(t_{2}\right)=q_{2}$.
\rightarrow Generalizing to the case of s degrees of freedom we have the Euler-Lagrange (E-L) equations:

$$
\frac{\partial \mathcal{L}}{\partial q_{i}}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}=0, \quad i=1, \ldots, s
$$

\rightarrow Transformations like $\mathcal{L} \rightarrow A \mathcal{L}$, with A constant, or $\mathcal{L} \rightarrow \mathcal{L}+\mathrm{d} F / d t$, where $F=F(\mathbf{q}, t)$ do not affect the particles' motion, because

$$
\mathcal{L}^{\prime}=A \mathcal{L} \Longrightarrow \delta S^{\prime}=\delta A S=A \delta S=0 \Longleftrightarrow \delta S=0
$$

and

$$
\mathcal{L}^{\prime}=\mathcal{L}+\mathrm{d} F / d t \Longrightarrow S^{\prime}=S+\int_{t_{1}}^{t_{2}} \frac{\mathrm{~d} F}{\mathrm{~d} t} \mathrm{~d} t=S+F\left(\mathbf{q}_{2}, t_{2}\right)-F\left(\mathbf{q}_{1}, t_{1}\right)=S+C,
$$

where C is a constant (independent of $\mathbf{q}, \dot{\mathbf{q}}$).

1.1.3 Inertial frames

\rightarrow Inertial reference frame: such that space is homogeneous and isotropic and time is homogeneous. For instance, in any inertial reference frame a particle that is at rest at a given time will remain at rest at all later times.
\rightarrow Galileo's relativity principle: laws of motion are the same in all inertial reference frames (moving at constant velocity w.r.t. one another)
\rightarrow Free particle: particle subject to no force.
\rightarrow Lagrangian of a free particle cannot contain explicitly the position vector \mathbf{r} (space is homogeneous) or the time t (time is homogeneous) and cannot depend on the direction of \mathbf{v} (space is isotropic) $\Longrightarrow \mathcal{L}=\mathcal{L}\left(v^{2}\right)$
\rightarrow More specifically, it can be shown (see LL) that for a free particle

$$
\mathcal{L}=\frac{1}{2} m v^{2}
$$

where m is particle mass. $T=(1 / 2) m v^{2}$ is the particle kinetic energy.
\rightarrow In Cartesian coordinates $\mathbf{q}=\mathbf{r}=(x, y, z)$ and $\dot{\mathbf{q}}=\mathbf{v}=\left(v_{x}, v_{y}, v_{z}\right)$, so for a free particle the Lagrangian is $\mathcal{L}=\frac{1}{2} m\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)$. The E-L equations for a free particle are

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial \mathcal{L}}{\partial \mathbf{v}}=0
$$

so for the x component

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial \mathcal{L}}{\partial v_{x}}=m \frac{\mathrm{~d} v_{x}}{\mathrm{~d} t}=0 \quad \Longrightarrow \quad v_{x}=\text { const }
$$

and similarly for y and z components. $\Longrightarrow \mathrm{d} \mathbf{v} / \mathrm{d} t=0$, which is the law of inertia (Newton's first law of motion).

1.1.4 Lagrangian of a free particle in different systems of coordinates

\rightarrow Let's write the Lagrangian of a free particle in different systems of coordinates. Note that, if $\mathrm{d} l$ is the infinitesimal displacement, $v^{2}=(\mathrm{d} l / \mathrm{d} t)^{2}=\mathrm{d} l^{2} / \mathrm{d} t^{2}$.
\rightarrow In Cartesian coordinates $\mathrm{d} l^{2}=\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}$, so

$$
\mathcal{L}=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)
$$

\rightarrow In cylindrical coordinates $\mathrm{d} l^{2}=\mathrm{d} R^{2}+R^{2} \mathrm{~d} \phi^{2}+\mathrm{d} z^{2}$, so

$$
\mathcal{L}=\frac{1}{2} m\left(\dot{R}^{2}+R^{2} \dot{\phi}^{2}+\dot{z}^{2}\right)
$$

\rightarrow In spherical coordinates $\mathrm{d} l^{2}=\mathrm{d} r^{2}+r^{2} \mathrm{~d} \theta^{2}+r^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}$, so

$$
\mathcal{L}=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right)
$$

\rightarrow The above can be derived also by taking the expression of the position vector \mathbf{r}, differentiating and squaring (see e.g. BT08 app. B). For instance, in cylindrical coordinates

$$
\begin{gathered}
\mathbf{r}=R \mathbf{e}_{R}+z \mathbf{e}_{z} \\
\frac{\mathrm{~d} \mathbf{r}}{\mathrm{~d} t}=\dot{R} \mathbf{e}_{R}+R \dot{\mathbf{e}}_{R}+\dot{z} \mathbf{e}_{z}
\end{gathered}
$$

because $\dot{\mathbf{e}}_{z}=0$. Now,

$$
\mathbf{e}_{R}=\cos \phi \mathbf{e}_{x}+\sin \phi \mathbf{e}_{y}
$$

and

$$
\mathbf{e}_{\phi}=-\sin \phi \mathbf{e}_{x}+\cos \phi \mathbf{e}_{y}
$$

So

$$
\begin{gathered}
\mathrm{d} \mathbf{e}_{R}=\left(-\sin \phi \mathbf{e}_{x}+\cos \phi \mathbf{e}_{y}\right) \mathrm{d} \phi \\
\mathrm{~d} \mathbf{e}_{R}=\mathbf{e}_{\phi} \mathrm{d} \phi \\
\dot{\mathbf{e}}_{R}=\dot{\phi} \mathbf{e}_{\phi}
\end{gathered}
$$

so

$$
\begin{gathered}
\frac{\mathrm{d} \mathbf{r}}{\mathrm{~d} t}=\dot{R} \mathbf{e}_{R}+R \dot{\phi} \mathbf{e}_{\phi}+\dot{z} \mathbf{e}_{z}, \\
v^{2}=\left|\frac{\mathrm{d} \mathbf{r}}{\mathrm{~d} t}\right|^{2}=\dot{R}^{2}+R^{2} \dot{\phi}^{2}+\dot{z}^{2}
\end{gathered}
$$

\rightarrow Alternatively, we can derive the same expressions for the cylindrical and spherical coordinates, starting from the Cartesian coordinates. For instance, in spherical coordinates r, θ, ϕ we have

$$
x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta
$$

so

$$
\begin{gathered}
\dot{x}=\dot{r} \sin \theta \cos \phi+r \cos \theta \cos \phi \dot{\theta}-r \sin \theta \sin \phi \dot{\phi}, \\
\dot{y}=\dot{r} \sin \theta \sin \phi+r \cos \theta \sin \phi \dot{\theta}+r \sin \theta \cos \phi \dot{\phi}, \\
\dot{z}=\dot{r} \cos \theta-r \sin \theta \dot{\theta},
\end{gathered}
$$

then

$$
v^{2}=\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}=\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2} .
$$

\rightarrow The Lagrangian of a free particle in spherical coordinates is

$$
\mathcal{L}=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right) .
$$

1.1.5 Lagrangian of a system of particles

\rightarrow Additivity of the Lagrangian: take two dynamical systems A and B. If each of them were an isolated system, they would have, respectively, Lagrangians \mathcal{L}_{A} and \mathcal{L}_{B}. If they are two parts of the same system (but so distant that the interaction is negligible) the total Lagrangian must be $\mathcal{L}=\mathcal{L}_{A}+\mathcal{L}_{B}$.
\rightarrow So, for a system of non-interacting particles

$$
\mathcal{L}=\sum_{a} \frac{1}{2} m_{a} v_{a}^{2}
$$

were the subscript a identifies the a-th the particle.
\rightarrow Closed system: system of particles that interact, but are not affected by external forces.
\rightarrow Lagrangian for a closed system of interacting particles:

$$
\mathcal{L}=T-V
$$

where T is the kinetic energy and V is potential energy.
\rightarrow The potential energy V depends only on the position of the particles: $V=V(\mathbf{q})$. This is a consequence of the assumption that the interaction is instantaneously propagated: a change in position of one of the particles instantaneously affects the force experienced by the other particles.
\rightarrow We have seen that in general $T=T(\mathbf{q}, \dot{\mathbf{q}})$: see, for instance, the expression of T in cylindrical or spherical coordinates. In other words, in generalized coordinates the kinetic energy can depend also on the \mathbf{q}, not only on $\dot{\mathbf{q}}$:

$$
\mathcal{L}=\frac{1}{2} \sum_{i, k} A_{i k}(\mathbf{q}) \dot{q}_{i} \dot{q}_{k}-V(\mathbf{q}),
$$

where $i=1, \ldots, s$ and $k=1, \ldots, s$, where s is the number of degrees of freedom ($s=3 N$ for a system of N particles).
\rightarrow In Cartesian coordinates we have $\mathbf{q}=\mathbf{r}_{a}=\left(x_{a}, y_{a}, z_{a}\right)$ positions and $\dot{\mathbf{q}}=\mathbf{v}_{a}=\left(v_{x, a}, v_{y, a}, v_{z, a}\right)$ (velocities), so the Lagrangian for a closed system of N particles is

$$
\mathcal{L}=\frac{1}{2} \sum_{a=1, .,, N} m_{a} v_{a}^{2}-V\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots \mathbf{r}_{N}\right)
$$

\rightarrow Applying Euler-Lagrange equations

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{r}_{a}}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial \mathcal{L}}{\partial \mathbf{v}_{a}}=0
$$

we get the equations of motion:

$$
m_{a} \dot{\mathbf{v}}_{a}=-\frac{\partial V}{\partial \mathbf{r}_{a}}, \quad \text { i.e. } \quad m_{a} \ddot{x}_{a}=-\frac{\partial V}{\partial x_{a}}, \quad \text { etc. }
$$

i.e. $m_{a} \ddot{\mathbf{r}}=\mathbf{F}_{a}$ (Newton's second law of motion), where $\mathbf{F}_{a}=-\partial V / \partial \mathbf{r}_{a}$ is the force acting on the a-th particle.
\rightarrow For a particle moving in an external field

$$
\mathcal{L}=\frac{1}{2} m v^{2}-V(\mathbf{r}, t) .
$$

If the external field is uniform $\Longrightarrow V=-\mathbf{F}(t) \cdot \mathbf{r}(\mathbf{F}$ dependent of time, but independent of position)

1.2 Conservation laws

\rightarrow Constant of motion: quantity that remains constant during the evolution of a mechanical system $C=$ $C[\mathbf{q}(t), \dot{\mathbf{q}}(t), t]=$ const (i.e. $\mathrm{d} C / \mathrm{d} t=0$).
\rightarrow Integral of motion: a constant of motion that depends only on \mathbf{q} and $\dot{\mathbf{q}}$ (in other words, it does not depend explicitly on time) $I=I[\mathbf{q}(t), \dot{\mathbf{q}}(t)]=$ const (i.e. $\mathrm{d} I / \mathrm{d} t=0$). The value of the integral for a system equals the sum of the values for sub-systems that interact negligibly with one another.
\rightarrow Integrals of motion derive from fundamental properties (symmetries): isotropy/homogeneity of time and space. Among constants of motions, only integrals of motions are important in mechanics. Example of a constant of motion that is not an integral of motion: for a 1-D free particle $x(t)=x_{0}+\dot{x}_{0} t$ (where x_{0} and \dot{x}_{0} are the initial conditions and $\dot{x}=\dot{x}_{0}=$ const), so $x_{0}(x, t)=x(t)-\dot{x}_{0} t$ is a constant of motion, but not an integral of motion (it depends explicitly on t).
\rightarrow There are seven integrals of motions: total energy E, momentum \mathbf{P} (3 components), angular momentum \mathbf{L} (3 components).

1.2.1 Energy

\rightarrow Homogeneity of time \Longrightarrow Lagrangian of a closed system does not depend explicitly on time $\partial \mathcal{L} / \partial t=0 \Longrightarrow$

$$
\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} t}=\sum_{i}\left[\frac{\partial \mathcal{L}}{\partial q_{i}} \dot{q}_{i}+\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \ddot{q}_{i}\right],
$$

where $i=1, \ldots, s$, with s number of degrees of freedom. Using E-L equations:

$$
\begin{gathered}
\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} t}=\sum_{i}\left[\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}\right) \dot{q}_{i}+\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \ddot{q}_{i}\right]=\sum_{i} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \dot{q}_{i}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\sum_{i} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \dot{q}_{i}-\mathcal{L}\right)=0
\end{gathered}
$$

\rightarrow Energy

$$
E \equiv \sum_{i} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \dot{q}_{i}-\mathcal{L}
$$

$\Longrightarrow \mathrm{d} E / \mathrm{d} t=0$
\rightarrow

$$
\mathcal{L}=T-V \Longrightarrow E=\sum_{i} \frac{\partial T}{\partial \dot{q}_{i}} \dot{q}_{i}-T+V
$$

\rightarrow We have seen that T is a quadratic function of \dot{q}_{i}, so by Euler theorem on homogeneous functions $\dot{q}_{i} \partial T / \partial \dot{q}_{i}=2 T$, so

$$
E=2 T-\mathcal{L}=T(\mathbf{q}, \dot{\mathbf{q}})+V(\mathbf{q}),
$$

i.e. total energy E is the sum of kinetic and potential energy.
\rightarrow Euler theorem on homogeneous functions: if $f(t x)=t^{n} f(x)$ then $x f^{\prime}(x)=n f(x)$.

1.2.2 Momentum

Homogeneity of space \Longrightarrow conservation of momentum. Lagrangian must be invariant if the system is shifted in space by $\boldsymbol{\epsilon}$.

Cartesian coordinates

\rightarrow Lagrangian must be invariant if the system is shifted in space by $\delta \mathbf{r}_{a}=\boldsymbol{\epsilon}$:

$$
\begin{gathered}
\delta \mathcal{L}=\mathcal{L}(\mathbf{q}+\mathrm{d} \mathbf{q}, \dot{\mathbf{q}})-\mathcal{L}(\mathbf{q}, \dot{\mathbf{q}})=\sum_{a} \frac{\partial \mathcal{L}}{\partial \mathbf{r}_{a}} \cdot \delta \mathbf{r}_{a}=\boldsymbol{\epsilon} \cdot \sum \frac{\partial \mathcal{L}}{\partial \mathbf{r}_{a}} \\
\sum \frac{\partial \mathcal{L}}{\partial \mathbf{r}_{a}}=0 \Longrightarrow \frac{\mathrm{~d}}{\mathrm{~d} t} \sum \frac{\partial \mathcal{L}}{\partial \mathbf{v}_{a}}=0
\end{gathered}
$$

\Longrightarrow
or

$$
\frac{\mathrm{d} \mathbf{P}}{\mathrm{~d} t}=0
$$

where

$$
\mathbf{P} \equiv \sum \frac{\partial \mathcal{L}}{\partial \mathbf{v}_{a}}=\sum m_{a} \mathbf{v}_{a}
$$

is momentum
\rightarrow Momentum is additive $\mathbf{P}=\sum_{a} \mathbf{p}_{a}$, where $\mathbf{p}_{a}=\partial \mathcal{L} / \partial \mathbf{v}_{a}=m_{a} \mathbf{v}_{a}$ is the momentum of the individual particles.
\rightarrow We also have

$$
\sum \frac{\partial \mathcal{L}}{\partial \mathbf{r}_{a}}=0 \Longrightarrow \sum \frac{\partial V}{\partial \mathbf{r}_{a}}=\sum \mathbf{F}_{a}=0
$$

where \mathbf{F}_{a} is the force acting on the a-th particle. When the bodies are two, is $\mathbf{F}_{1}+\mathbf{F}_{2}=0$ or $\mathbf{F}_{1}=-\mathbf{F}_{2}$ i.e. Newton's third law of motion.

Generalized coordinates

\rightarrow We define

$$
p_{i} \equiv \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}
$$

as generalized momenta. Note that $p_{i}=m v_{i}$ in Cartesian coordinates, but in general p_{i} depend on both q_{i} and \dot{q}_{i}.
\rightarrow The E-L equation can be written as

$$
\frac{\mathrm{d} p_{i}}{\mathrm{~d} t}=F_{i},
$$

where $F_{i}=\partial \mathcal{L} / \partial q_{i}$ is the generalized force.
\rightarrow Then

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{i} p_{i}=\sum_{i} F_{i}=0
$$

Centre of mass

\rightarrow For a system of particles there is a special inertial reference frame in which $\mathbf{P}=0$: this is the reference frame in which the centre of mass is at rest.

$$
\mathbf{P}=\sum m_{a} \mathbf{v}_{a}=\frac{\mathrm{d}}{\mathrm{~d} t} \sum m_{a} \mathbf{r}_{a}=\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{r}_{\mathrm{cm}} \sum m_{a}=\sum m_{a} \frac{\mathrm{~d} \mathbf{r}_{\mathrm{cm}}}{\mathrm{~d} t}=0
$$

where

$$
\mathbf{r}_{\mathrm{cm}} \equiv \frac{\sum m_{a} \mathbf{r}_{a}}{\sum m_{a}}
$$

is the position of the centre of mass.
\rightarrow In a general inertial frame the centre of mass moves with a velocity

$$
\mathbf{v}_{\mathrm{cm}}=\frac{\mathrm{d} \mathbf{r}_{\mathrm{cm}}}{\mathrm{~d} t}=\frac{\sum m_{a} \mathbf{v}_{a}}{\sum m_{a}}=\frac{\mathbf{P}}{\sum m_{a}}=\text { const }
$$

\rightarrow If the total energy of the system in the centre-of-mass reference frame is $E_{i n t}$, in a general inertial frame the total energy is

$$
E=\frac{1}{2} \sum_{a} m_{a} v_{\mathrm{cm}}^{2}+E_{i n t}
$$

\rightarrow Note: the components of the centre of mass \mathbf{r}_{cm} are not constants of motion. The components of $\mathbf{r}_{\mathrm{cm}}(0)=\mathbf{r}_{\mathrm{cm}}(t)-t \mathbf{v}_{\mathrm{cm}}$ are constants of motion, but they are not integrals of motion (they depend explicitly on time).

1.2.3 Angular momentum

\rightarrow Isotropy of space \Longrightarrow conservation of angular momentum
\rightarrow The Lagrangian is invariant under rotation. Apply a rotation represented by a vector $\delta \boldsymbol{\phi}$ (with magnitude $\delta \phi$, which is the angle of rotation, and direction along the rotation axis) $\Longrightarrow \delta \mathbf{r}=\delta \boldsymbol{\phi} \times \mathbf{r}$ and $\delta \mathbf{v}=\delta \boldsymbol{\phi} \times \mathbf{v}$

$$
\begin{gathered}
\delta \mathcal{L}=\sum_{a}\left(\frac{\partial \mathcal{L}}{\partial \mathbf{r}_{a}} \cdot \delta \mathbf{r}_{a}+\frac{\partial \mathcal{L}}{\partial \mathbf{v}_{a}} \cdot \delta \mathbf{v}_{a}\right)=0 \\
\delta \mathcal{L}=\sum_{a}\left[\dot{\mathbf{p}}_{a} \cdot\left(\delta \boldsymbol{\phi} \times \mathbf{r}_{a}\right)+\mathbf{p}_{a} \cdot\left(\delta \boldsymbol{\phi} \times \mathbf{v}_{a}\right)\right]=0 .
\end{gathered}
$$

Using the vector identity $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})=\mathbf{B} \cdot(\mathbf{C} \times \mathbf{A})$ we get

$$
\delta \mathcal{L}=\delta \boldsymbol{\phi} \cdot \sum\left(\mathbf{r}_{a} \times \dot{\mathbf{p}}_{a}+\mathbf{v}_{a} \times \mathbf{p}_{a}\right)=\delta \boldsymbol{\phi} \cdot \frac{\mathrm{d}}{\mathrm{~d} t} \sum \mathbf{r}_{a} \times \mathbf{p}_{a}=0,
$$

because

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathbf{r}_{a} \times \mathbf{p}_{a}\right)=\mathbf{r}_{a} \times \dot{\mathbf{p}}_{a}+\mathbf{v}_{a} \times \mathbf{p}_{a}
$$

\rightarrow As this must be satisfied for all $\delta \phi$, we must have

$$
\frac{\mathrm{d} \mathbf{L}}{\mathrm{~d} t}=0
$$

where

$$
\mathbf{L} \equiv \sum \mathbf{r}_{a} \times \mathbf{p}_{a}
$$

is the angular momentum, which (as well as linear momentum) is additive.
\rightarrow The angular momentum in a reference frame in which the system is at rest $(\mathbf{P}=0)$ is $\mathbf{L}_{\text {int }}$ (intrinsic angular momentum)
\rightarrow In a general inertial frame the angular momentum is

$$
\mathbf{L}=\mathbf{L}_{i n t}+\mathbf{r}_{\mathrm{cm}} \times\left(\sum m_{a}\right) \mathbf{v}_{\mathrm{cm}}=\mathbf{L}_{i n t}+\mathbf{r}_{\mathrm{cm}} \times \sum m_{a} \mathbf{v}_{a}=\mathbf{L}_{i n t}+\mathbf{r}_{\mathrm{cm}} \times \mathbf{P}
$$

1.3 Integration of the equations of motion

1.3.1 Motion in one dimension

\rightarrow One dimension $=$ one degree of freedom $=$ one coordinate q
\rightarrow Lagrangian:

$$
\mathcal{L}=\frac{1}{2} a(q) \dot{q}^{2}-V(q) .
$$

If $q=x$ is a Cartesian coordinate

$$
\mathcal{L}=\frac{1}{2} m \dot{x}^{2}-V(x) .
$$

\rightarrow Energy is integral of motion:

$$
E=\frac{1}{2} m \dot{x}^{2}+V(x)
$$

then (taking $\dot{x} \geq 0$)

$$
\begin{gathered}
\frac{\mathrm{d} x}{\mathrm{~d} t}=\sqrt{\frac{2}{m}[E-V(x)]}, \\
\mathrm{d} t=\frac{\sqrt{m}}{\sqrt{2[E-V(x)]} \mathrm{d} x} \\
t=t_{0}+\sqrt{\frac{m}{2}} \int_{x_{0}}^{x} \frac{1}{\sqrt{[E-V(x)]}} \mathrm{d} x .
\end{gathered}
$$

\rightarrow Motion in region of space such that $V(x)<E$. If this interval is bounded, motion is finite. From the above equations and the E-L equations (equations of motion) it is clear that motion is oscillatory (\dot{x} changes sign only at turning points x such that $V(x)=E) \Longrightarrow$ motion is periodic with period

$$
T=\sqrt{2 m} \int_{x_{1}}^{x_{2}} \frac{1}{\sqrt{[E-V(x)]}} \mathrm{d} x
$$

where x_{1} and x_{2} are the turning points at which $E=V\left(x_{1}\right)=V\left(x_{2}\right) . T$ is twice the time to go from x_{1} to x_{2} (see Fig. 6 LL. FIG CM1.1).

1.3.2 Motion in a central field

\rightarrow Motion in a central field: motion of a single particle in an external field such that its potential energy depends only on the distance r from a fixed point: $V=V(r) \Longrightarrow$

$$
\mathbf{F}=-\frac{\partial V}{\partial \mathbf{r}}=-\frac{\mathrm{d} V}{\mathrm{~d} r} \frac{\mathbf{r}}{r}
$$

\rightarrow For instance, in Cartesian coordinates:

$$
F_{x}=-\frac{\partial V}{\partial x}=-\frac{d V}{d r} \frac{\partial r}{\partial x}=-\frac{d V}{d r} \frac{x}{r}
$$

etc., because

$$
\frac{\partial r}{\partial x}=\frac{\partial \sqrt{x^{2}+y^{2}+z^{2}}}{\partial x}=\frac{2 x}{2 \sqrt{x^{2}+y^{2}+z^{2}}}=\frac{x}{r}
$$

\rightarrow Take center of the field as origin: angular momentum \mathbf{L} is conserved (even in the presence of the field), because the field does not have component orthogonal to position vector.

$$
\frac{\mathrm{d} \mathbf{L}}{\mathrm{~d} t}=\dot{\mathbf{r}} \times \mathbf{p}+\mathbf{r} \times \dot{\mathbf{p}}=0
$$

$\rightarrow \mathbf{L}=\mathbf{r} \times \mathbf{p}$ is conserved and is orthogonal to \mathbf{r}, so \mathbf{r} stays always in the same plane \Longrightarrow motion is planar.
\rightarrow Using polar coordinates (r, ϕ) in the plane of the motion, the Lagrangian reads (see kinetic energy in cylindrical coordinates: Section 1.1.4)

$$
\mathcal{L}=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)-V(r)
$$

\rightarrow Motion in ϕ. E-L equations for coordinate $\phi \Longrightarrow$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial \mathcal{L}}{\partial \dot{\phi}}=\frac{\mathrm{d}\left(m r^{2} \dot{\phi}\right)}{\mathrm{d} t}=0
$$

where

$$
L_{z}=L=m r^{2} \dot{\phi}=\text { const }
$$

is the modulus of the angular momentum. ϕ is ciclic coordinate: it does not appear in \mathcal{L}. Associated generalized momentum is constant.
\rightarrow Kepler's second law: let's define an infinitesimal sector bounded by the path as

$$
\mathrm{d} A=\frac{1}{2} r^{2} \mathrm{~d} \phi
$$

(show Fig. 8 LL FIG CM1.2). $\mathrm{d} A / \mathrm{d} t=r^{2}(\mathrm{~d} \phi / \mathrm{d} t) / 2=L /(2 m)=$ const is the sectorial velocity \Longrightarrow the particle's position vector sweeps equal areas in equal times (Kepler's second law).
\rightarrow Motion in r.

$$
\Longrightarrow
$$

$$
\begin{gathered}
E=2 T-\mathcal{L}=\text { const }, \\
E=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)+V(r)=\frac{1}{2} m \dot{r}^{2}+\frac{L^{2}}{2 m r^{2}}+V(r), \\
\frac{\mathrm{d} r}{\mathrm{~d} t}=\sqrt{\frac{2}{m}\left[E-V_{\text {eff }}(r)\right]} \\
\mathrm{d} t=\frac{\mathrm{d} r}{\sqrt{\frac{2}{m}\left[E-V_{\text {eff }}(r)\right]}}
\end{gathered}
$$

(time t as a function of r), where

$$
V_{\mathrm{eff}}(r)=V(r)+\frac{L^{2}}{2 m r^{2}} .
$$

\rightarrow The radial part of the motion behaves like a motion in one-dimension with effective potential energy $V_{\text {eff }}(r)$, defined above, where $L^{2} / 2 m r^{2}$ is called the centrifugal energy.
\rightarrow The radii r such that $E=V_{\text {eff }}(r)$ are the radial turning points, corresponding to $\dot{r}=0$: if motion is finite, pericentre ($r_{\text {peri }}$) and apocentre ($r_{\text {apo }}$). If motion is infinite $r_{\text {apo }}=\infty$
\rightarrow Substituting $m r^{2} \mathrm{~d} \phi / L=\mathrm{d} t$

$$
\mathrm{d} \phi=\frac{L \mathrm{~d} r}{r^{2} \sqrt{2 m\left[E-V_{\text {eff }}(r)\right]}}
$$

(angle ϕ as a function of r, i.e. path or trajectory).
\rightarrow Consider variation of ϕ for finite motion in one radial period:

$$
\Delta \phi=2 \int_{r_{\text {peri }}}^{r_{\text {apo }}} \frac{L \mathrm{~d} r}{r^{2} \sqrt{2 m\left[E-V_{\text {eff }}(r)\right]}}
$$

\rightarrow Closed orbit only if $\Delta \phi=2 \pi m / n$ with m, n integers. In general orbit is not closed (rosette). All orbits are closed only when $V \propto 1 / r$ (Kepler's potential) or $V \propto r^{2}$ (harmonic potential).

1.4 Hamiltonian mechanics

[LL; VK]

1.4.1 Hamilton's equations

\rightarrow In Lagrangian mechanics generalized coordinates $\left(q_{i}\right)$ and generalized velocities $\left(\dot{q}_{i}\right), i=1, \ldots, s$, where s is the number of degrees of freedom.
\rightarrow In Hamiltonian mechanics generalized coordinates $\left(q_{i}\right)$ and generalized momenta $\left(p_{i}\right), i=1, \ldots, s$.
\rightarrow The idea is to transform $\mathcal{L}(\mathbf{q}, \dot{\mathbf{q}}, t)$ into a function of $(\mathbf{q}, \mathbf{p}, t)$, where $p_{i}=\partial \mathcal{L} / \partial \dot{q}_{i}$ are the generalized momenta. This can be accomplished through a Legendre transform.
\rightarrow Example: Legendre transform for functions of two variables. Start from $f=f(x, y), u \equiv \partial f / \partial x$ and $v \equiv \partial f / \partial y$. The total differential of f is

$$
\mathrm{d} f=u \mathrm{~d} x+v \mathrm{~d} y
$$

We want to replace y with v, so we use

$$
\mathrm{d}(v y)=v \mathrm{~d} y+y \mathrm{~d} v
$$

so

$$
\begin{aligned}
& \mathrm{d} f=u \mathrm{~d} x+\mathrm{d}(v y)-y \mathrm{~d} v, \\
& \mathrm{~d}(v y-f)=-u \mathrm{~d} x+y \mathrm{~d} v,
\end{aligned}
$$

so $g(x, v) \equiv v y-f(x, v)$ with $\partial g / \partial x=-u$ and $\partial g / \partial v=y$.
\rightarrow We can do the same starting from \mathcal{L} :

$$
\begin{gathered}
\mathrm{d} \mathcal{L}=\sum_{i} \frac{\partial \mathcal{L}}{\partial q_{i}} \mathrm{~d} q_{i}+\sum_{i} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \mathrm{~d} \dot{q}_{i}+\frac{\partial \mathcal{L}}{\partial t} \mathrm{~d} t=\sum_{i} \dot{p}_{i} \mathrm{~d} q_{i}+\sum_{i} p_{i} \mathrm{~d} \dot{q}_{i}+\frac{\partial \mathcal{L}}{\partial t} \mathrm{~d} t \\
\mathrm{~d} \mathcal{L}=\sum_{i} \dot{p}_{i} \mathrm{~d} q_{i}+\sum_{i} \mathrm{~d}\left(p_{i} \dot{q}_{i}\right)-\sum_{i} \dot{q}_{i} \mathrm{~d} p_{i}+\frac{\partial \mathcal{L}}{\partial t} \mathrm{~d} t \\
\mathrm{~d}\left(\sum_{i} p_{i} \dot{q}_{i}-\mathcal{L}\right)=\sum_{i} \dot{q}_{i} \mathrm{~d} p_{i}-\sum_{i} \dot{p}_{i} \mathrm{~d} q_{i}-\frac{\partial \mathcal{L}}{\partial t} \mathrm{~d} t
\end{gathered}
$$

\rightarrow So the Legendre transform of \mathcal{L} is the Hamiltonian:

$$
\mathcal{H}(p, q, t) \equiv \sum_{i} p_{i} \dot{q}_{i}-\mathcal{L}
$$

\rightarrow The differential of \mathcal{H} is:

$$
d \mathcal{H}=\sum_{i} \dot{q}_{i} \mathrm{~d} p_{i}-\sum_{i} \dot{p}_{i} \mathrm{~d} q_{i}-\frac{\partial \mathcal{L}}{\partial t} \mathrm{~d} t
$$

\rightarrow It follows

$$
\dot{q}_{i}=\frac{\partial \mathcal{H}}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial \mathcal{H}}{\partial q_{i}},
$$

which are called Hamilton's equations or canonical equations. We have replaced s 2nd-order equations with $2 s$ first-order equations. We also have

$$
\frac{\partial \mathcal{H}}{\partial t}=-\frac{\partial \mathcal{L}}{\partial t}
$$

$\rightarrow \mathbf{p}$ and \mathbf{q} are called canonical coordinates.
\rightarrow The time derivative of \mathcal{H} is

$$
\frac{\mathrm{d} \mathcal{H}}{\mathrm{~d} t}=\frac{\partial \mathcal{H}}{\partial t}+\sum_{i} \frac{\partial \mathcal{H}}{\partial q_{i}} \dot{q}_{i}+\sum_{i} \frac{\partial \mathcal{H}}{\partial p_{i}} \dot{p}_{i}=\frac{\partial \mathcal{H}}{\partial t}
$$

\rightarrow Hamiltonian is constant if \mathcal{H} does not depend explicitly on time. This is the case for closed system, for which \mathcal{L} does not depend explicitly on time. This is a reformulation of energy conservation, because we recall that

$$
E \equiv \sum_{i} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \dot{q}_{i}-\mathcal{L}=\sum_{i} p_{i} \dot{q}_{i}-\mathcal{L}=\mathcal{H}
$$

1.4.2 Canonical transformations

[VK 4.7-4.8]
\rightarrow Given a set of canonical coordinates (\mathbf{p}, \mathbf{q}), we might want to change to another set of coordinates (\mathbf{P}, \mathbf{Q}) to simplify our problem.
\rightarrow We can consider general transformations of the form $\mathbf{Q}=\mathbf{Q}(\mathbf{p}, \mathbf{q}, t)$ and $\mathbf{P}=\mathbf{P}(\mathbf{p}, \mathbf{q}, t)$: it is not guaranteed that Hamilton's equations are unchanged.
\rightarrow A transformation $\mathbf{Q}=\mathbf{Q}(\mathbf{p}, \mathbf{q}, t)$ and $\mathbf{P}=\mathbf{P}(\mathbf{p}, \mathbf{q}, t)$ is called canonical if in the new coordinates

$$
\dot{Q}_{i}=\frac{\partial \mathcal{H}^{\prime}}{\partial P_{i}}, \quad \dot{P}_{i}=-\frac{\partial \mathcal{H}^{\prime}}{\partial Q_{i}},
$$

with some Hamiltonian $\mathcal{H}^{\prime}=\mathcal{H}^{\prime}(\mathbf{P}, \mathbf{Q}, t)$.
\rightarrow In any canonical coordinate system the variation of the action is null

$$
\begin{gathered}
\delta S=\delta \int_{t_{1}}^{t_{2}} \mathcal{L} \mathrm{~d} t=\delta \int_{t_{1}}^{t_{2}}\left(\sum_{i} p_{i} \dot{q}_{i}-\mathcal{H}\right) \mathrm{d} t=0 \\
\delta S^{\prime}=\delta \int_{t_{1}}^{t_{2}} \mathcal{L}^{\prime} \mathrm{d} t=\delta \int_{t_{1}}^{t_{2}}\left(\sum_{i} P_{i} \dot{Q}_{i}-\mathcal{H}^{\prime}\right) \mathrm{d} t=0
\end{gathered}
$$

This means that the difference between the two Lagrangians $\mathcal{L}-\mathcal{L}^{\prime}=\mathrm{d} F / \mathrm{d} t$ must be a total time derivative, because

$$
\delta \int_{t_{1}}^{t_{2}} \frac{\mathrm{~d} F}{\mathrm{~d} t} \mathrm{~d} t=\delta[F]_{t_{2}}^{t_{1}}=0
$$

\rightarrow Let us impose the above condition, i.e.,

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}^{\prime}+\frac{\mathrm{d} F}{\mathrm{~d} t} \\
\mathcal{L} \mathrm{~d} t=\mathcal{L}^{\prime} \mathrm{d} t+\mathrm{d} F \\
\left(\sum_{i} p_{i} \frac{\mathrm{~d} q_{i}}{\mathrm{~d} t}-\mathcal{H}\right) \mathrm{d} t=\sum_{i} P_{i} \mathrm{~d} Q_{i}-\mathcal{H}^{\prime} \mathrm{d} t+\mathrm{d} F \\
\sum_{i} p_{i} \mathrm{~d} q_{i}-\mathcal{H} \mathrm{d} t=\sum_{i} P_{i} \mathrm{~d} Q_{i}-\mathcal{H}^{\prime} \mathrm{d} t+\mathrm{d} F
\end{gathered}
$$

where $F=F(\mathbf{q}, \mathbf{Q}, t)$.
$\rightarrow F$ is called the generating function of the transformation.
\rightarrow Taking F in the form $F=F(\mathbf{q}, \mathbf{Q}, t)$, the above equation can be written as

$$
\begin{aligned}
& \sum_{i} p_{i} \mathrm{~d} q_{i}-\mathcal{H} \mathrm{d} t=\sum_{i} P_{i} \mathrm{~d} Q_{i}-\mathcal{H}^{\prime} \mathrm{d} t+\frac{\partial F}{\partial t} \mathrm{~d} t+\sum_{i} \frac{\partial F}{\partial q_{i}} \mathrm{~d} q_{i}+\sum_{i} \frac{\partial F}{\partial Q_{i}} \mathrm{~d} Q_{i} \\
& \frac{\partial F}{\partial t} \mathrm{~d} t+\sum_{i} \frac{\partial F}{\partial q_{i}} \mathrm{~d} q_{i}+\sum_{i} \frac{\partial F}{\partial Q_{i}} \mathrm{~d} Q_{i}=\sum_{i} p_{i} \mathrm{~d} q_{i}+\left(\mathcal{H}^{\prime}-\mathcal{H}\right) \mathrm{d} t-\sum_{i} P_{i} \mathrm{~d} Q_{i}
\end{aligned}
$$

Clearly the above is verified when

$$
\begin{gathered}
p_{i}=\frac{\partial F}{\partial q_{i}} \\
P_{i}=-\frac{\partial F}{\partial Q_{i}} \\
H^{\prime}=H+\frac{\partial F}{\partial t} .
\end{gathered}
$$

The above relations can be combined (and when necessary inverted) to give $\mathbf{Q}=\mathbf{Q}(\mathbf{q}, \mathbf{p}, t)$ and $\mathbf{P}=$ $\mathbf{P}(\mathbf{q}, \mathbf{p}, t)$, i.e. the canonical transformation in terms of the generating function F.
\rightarrow Sometimes is it convenient to have a generating function that is not in the form $F=F(\mathbf{q}, \mathbf{Q}, t)$, but depends on other combinations of new and old canonical coordinates: other possible choices are $(\mathbf{q}, \mathbf{P}, t),(\mathbf{p}, \mathbf{Q}, t)$, $(\mathbf{p}, \mathbf{P}, t)$.
\rightarrow We distinguish four classes of generating functions F, differing by the variables on which F depends:

$$
F=F_{1}(\mathbf{q}, \mathbf{Q}, t), \quad F=F_{2}(\mathbf{q}, \mathbf{P}, t), \quad F=F_{3}(\mathbf{p}, \mathbf{Q}, t), \quad F=F_{4}(\mathbf{p}, \mathbf{P}, t)
$$

\rightarrow We derive here the canonical transformation for a generating function F_{2}, depending on $(\mathbf{q}, \mathbf{P}, t)$. In order to do so we use the Legendre transform. Start from

$$
\mathrm{d} F_{1}=\sum_{i} p_{i} \mathrm{~d} q_{i}-\sum_{i} P_{i} \mathrm{~d} Q_{i}+\left(\mathcal{H}^{\prime}-\mathcal{H}\right) \mathrm{d} t
$$

where $F_{1}(\mathbf{q}, \mathbf{Q}, t)$ is the generating function considered above.

$$
\begin{aligned}
& \mathrm{d} F_{1}=\sum_{i} p_{i} \mathrm{~d} q_{i}-\sum_{i} \mathrm{~d}\left(P_{i} Q_{i}\right)+\sum_{i} Q_{i} \mathrm{~d} P_{i}+\left(\mathcal{H}^{\prime}-\mathcal{H}\right) \mathrm{d} t \\
& \mathrm{~d}\left(F_{1}+\sum_{i} P_{i} Q_{i}\right)=\sum_{i} p_{i} \mathrm{~d} q_{i}+\sum_{i} Q_{i} \mathrm{~d} P_{i}+\left(\mathcal{H}^{\prime}-\mathcal{H}\right) \mathrm{d} t
\end{aligned}
$$

so the generating function is now

$$
F_{2}=F_{2}(\mathbf{q}, \mathbf{P}, t) \equiv F_{1}(\mathbf{q}, \mathbf{Q}, t)+\sum_{i} P_{i} Q_{i}
$$

and the change of variables is as follows

$$
\begin{gathered}
p_{i}=\frac{\partial F_{2}}{\partial q_{i}} \\
Q_{i}=\frac{\partial F_{2}}{\partial P_{i}} \\
\mathcal{H}^{\prime}=\mathcal{H}+\frac{\partial F_{2}}{\partial t},
\end{gathered}
$$

where $F_{2}=F_{2}(\mathbf{q}, \mathbf{P}, t)$
\rightarrow Similarly (exploiting Legendre transform) we can obtain transformation equations for $F=F_{3}(\mathbf{p}, \mathbf{Q}, t)=$ $F_{1}-\sum_{i} q_{i} p_{i}$ and $F=F_{4}(\mathbf{p}, \mathbf{P}, t)=F_{1}+\sum_{i} Q_{i} P_{i}-\sum_{i} q_{i} p_{i}$. In summary the canonical transformations are

$$
\begin{array}{rrr}
F=F_{1}(\mathbf{q}, \mathbf{Q}, t), & p_{i}=\frac{\partial F_{1}}{\partial q_{i}} & P_{i}=-\frac{\partial F_{1}}{\partial Q_{i}} \\
F=F_{2}(\mathbf{q}, \mathbf{P}, t), & p_{i}=\frac{\partial F_{2}}{\partial q_{i}} & Q_{i}=\frac{\partial F_{2}}{\partial P_{i}} \\
F=F_{3}(\mathbf{p}, \mathbf{Q}, t), & q_{i}=-\frac{\partial F_{3}}{\partial p_{i}} & P_{i}=-\frac{\partial F_{3}}{\partial Q_{i}} \\
F=F_{4}(\mathbf{p}, \mathbf{P}, t), & q_{i}=-\frac{\partial F_{4}}{\partial p_{i}} & Q_{i}=\frac{\partial F_{4}}{\partial P_{i}}
\end{array}
$$

In addition we have $\mathcal{H}^{\prime}=\mathcal{H}+\partial F_{i} / \partial t$, for $i=1, \ldots, 4$.
\rightarrow Example of canonical transformations: extended point transformations. This is of the kind $F=F_{2}(\mathbf{q}, \mathbf{P})$:

$$
\mathbf{Q}=\mathbf{G}(\mathbf{q}), \quad F(\mathbf{q}, \mathbf{P})=\sum_{k} P_{k} G_{k}(\mathbf{q}),
$$

where $\mathbf{G}=\left(G_{1}, \ldots, G_{s}\right)$, and the G_{i} are given functions. Then

$$
\begin{gathered}
p_{i}=\frac{\partial F}{\partial q_{i}}=\sum_{k} P_{k} \frac{\partial G_{k}}{\partial q_{i}}(\mathbf{q}), \\
Q_{i}=\frac{\partial F}{\partial P_{i}}=G_{i}(\mathbf{q}) .
\end{gathered}
$$

For instance, for a system with 1 degree of freedom, we have

$$
Q=G(q), \quad F(q, P)=P G(q)
$$

so

$$
\begin{gathered}
p=\frac{\partial F}{\partial q}=P \frac{\partial G}{\partial q}(q) \Longrightarrow P=p\left(\frac{\partial G}{\partial q}\right)^{-1} \\
Q=\frac{\partial F}{\partial P}=G(q)
\end{gathered}
$$

\rightarrow Special classes of Canonical Coordinates. Among canonical coordinates there are two special classes that are particularly important:

- Sets of canonical coordinates in which both \mathbf{q} and \mathbf{p} are integrals of motion (they remain constant during the evolution of the system): these are the coordinates obtained by solving the Hamilton-Jacobi equation.
- Sets of canonical coordinates in which the \mathbf{q} are not constant, but they are cyclic coordinates (they can be interpreted as angles, so they are called angles), while the \mathbf{p} are integrals of motion (they are constants; they are called actions). These are called angle-action coordinates.

1.4.3 Hamilton-Jacobi equation

[VK 4.9]
\rightarrow The action $S=\int \mathcal{L} \mathrm{d} t$ can be seen as a generating function. The corresponding canonical transformations are very useful because they are such that $\mathcal{H}^{\prime}=0$. We have

$$
\mathrm{d} S=\mathcal{L} \mathrm{d} t=\sum_{i} p_{i} \frac{\mathrm{~d} q_{i}}{\mathrm{~d} t} \mathrm{~d} t-\mathcal{H} \mathrm{d} t=\sum_{i} p_{i} \mathrm{~d} q_{i}-\mathcal{H} \mathrm{d} t .
$$

\rightarrow It follows that

$$
\begin{aligned}
p_{i} & =\frac{\partial S}{\partial q_{i}} \\
\mathcal{H} & =-\frac{\partial S}{\partial t} .
\end{aligned}
$$

\rightarrow So $S=S(\mathbf{q}, t)$, but S can be seen also as a generating function $S=S(\mathbf{q}, \mathbf{P}, t)$, with P_{i} constants (i.e. $\mathrm{d} P_{i}=0$ for all i). So, we have

$$
Q_{i}=\frac{\partial S}{\partial P_{i}}
$$

\rightarrow The new Hamiltonian is null:

$$
\mathcal{H}^{\prime}=\mathcal{H}+\frac{\partial S}{\partial t}=0,
$$

consistent with the fact that the new canonical coordinates are constant:

$$
\begin{gathered}
\dot{P}_{i}=-\frac{\partial \mathcal{H}^{\prime}}{\partial Q_{i}}=0 \quad \Longrightarrow \quad P_{i}=\alpha_{i}=\text { const } \\
\dot{Q}_{i}=\frac{\partial \mathcal{H}^{\prime}}{\partial P_{i}}=0 \quad \Longrightarrow \quad Q_{i}=\beta_{i}=\text { const } .
\end{gathered}
$$

\rightarrow So the action can be seen as a generating function in the form $S=S(\mathbf{q}, \boldsymbol{\alpha}, t)$ where $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{s}\right)=\mathbf{P}$ are constants.
\rightarrow Exploiting the fact that $p_{i}=\partial S / \partial q_{i}$, the above equation $\mathcal{H}^{\prime}=0$ can be written as

$$
\mathcal{H}\left(q_{i}, \frac{\partial S}{\partial q_{i}}, t\right)+\frac{\partial S}{\partial t}=0 .
$$

This is known as the Hamilton-Jacobi equation.
\rightarrow If the solution S to the H-J equation is obtained, the solution of the equations of motions can be written explicitly as follows. The variables (\mathbf{p}, \mathbf{q}) are related to $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ by

$$
p_{i}=\frac{\partial S}{\partial q_{i}}(\mathbf{q}, \boldsymbol{\alpha}, t), \quad \beta_{i}=\frac{\partial S}{\partial \alpha_{i}}(\mathbf{q}, \boldsymbol{\alpha}, t),
$$

which can be combined and inverted to give $q_{i}=q_{i}(\boldsymbol{\alpha}, \boldsymbol{\beta}, t)$ and $p_{i}=p_{i}(\boldsymbol{\alpha}, \boldsymbol{\beta}, t)$.
\rightarrow If \mathcal{H} does not depend explicitly on time then $\mathcal{H}=E=$ const and the H-J equation can be written

$$
\mathcal{H}\left(q_{i}, \frac{\partial S}{\partial q_{i}}\right)=E,
$$

and we also have

$$
\frac{\partial S}{\partial t}=-E
$$

\rightarrow Example: free particle. Take Cartesian coordinates x, y, z as generalized coordinates q_{i} and p_{x}, p_{y}, p_{z} as generalized momenta p_{i}. The Hamiltonian of a free particle of mass m is

$$
\mathcal{H}=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right) .
$$

The H-J equation is

$$
\frac{1}{2 m}\left[\left(\frac{\partial S}{\partial x}\right)^{2}+\left(\frac{\partial S}{\partial y}\right)^{2}+\left(\frac{\partial S}{\partial z}\right)^{2}\right]+\frac{\partial S}{\partial t}=0
$$

Separation of variables $S(x, y, z, t)=X(x)+Y(y)+Z(z)+T(t)$ then

$$
\frac{1}{2 m}\left[\left(\frac{\partial X}{\partial x}\right)^{2}+\left(\frac{\partial Y}{\partial y}\right)^{2}+\left(\frac{\partial Z}{\partial z}\right)^{2}\right]+\frac{\partial T}{\partial t}=0
$$

so $X=\alpha_{x} x, Y=\alpha_{y} y, Z=\alpha_{z} z$ and $T=-\left(\alpha_{x}^{2}+\alpha_{y}^{2}+\alpha_{z}^{2}\right) t / 2 m$, therefore $p_{x}=\alpha_{x}, p_{y}=\alpha_{y}, p_{z}=\alpha_{z}$, $\beta_{x}=x-\alpha_{x} t / m, \beta_{y}=y-\alpha_{y} t / m, \beta_{z}=z-\alpha_{z} t / m$, which is the solution (the values of the constants depend on the initial conditions at $t=0$).

Bibliography

\rightarrow Binney J., Tremaine S. 2008, "Galactic dynamics", Princeton University Press, Princeton (BT08)
\rightarrow Landau L.D., Lifshitz E.M., 1982, "Mechanics", Butterworth-Heinemann (LL)
\rightarrow Valtonen M., Karttunen H., 2006 "The three body problem", Cambridge University Press, Cambridge (VK)

