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1. Fundamentals of mechanics

1.1

[LL]

Lagrangian mechanics

1.1.1 Generalized coordinates

—

—

—

—

Particle: point mass

Particle position vector r. In Cartesian components r = (z,y, 2).

Particle velocity v = dr/dt = ¥. In Cartesian coordinates v, = dz/dt, etc...

Particle acceleration a = d?r/dt? = v = . In Cartesian coordinates a, = d?x/dt?, etc...

N particles = s = 3N degrees of freedom

Generalized coordinates: any s quantities ¢; that define the positions of the N-body system (q = q1, ..., ¢s)
Generalized velocities: ¢; (q = ¢1, ..., 4s)

We know from experience that, given q and q for all particles in the system at a given time, we are able to

predict q(t) at any later time ¢. In other words, if all q and q are specified = ¢ are known.

Equations of motion are ODE for q(t) that relate @ with q and . The solution q(t) is the path (orbit).

1.1.2 Principle of least action & Euler-Lagrange equations

_>

—

—

Given a mechanical system, we define the Lagrangian function £(q,q,t). £ does not depend on higher

derivatives, consistent with the idea that motion is determined if q and ¢ are given.
Given two instants 1 and to, we define the action S = j;tf L(q,q,t)dt

The system occupies positions q; and qo at time t; and ts, respectively. Note that in this formalism instead

of fixing position and velocity at the initial time ¢;, we fix positions at the initial and final times.
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Principle of least action (or Hamilton’s principle): from ¢; to ¢2 the system moves in such a way that S is a

minimum (extremum) over all paths, i.e. (for 1 degree of freedom)

to

t2 /oL oL
6S=46 [ L(g.q¢t)dt= / [L(q +0q,q +0¢,t) — L(q,q,t)]dt = / <5q + .5d> dt =0,
t1 t1 t1 aq 8q

Now, we have

Ve

9" T 9t 9t @
so the above equation can be rewritten as

oL 1t t2 /9L d oL
05 = {aq-éq}tﬁ/h (aq‘dtaq> Padt =0,

oL,  OLd(q) 9L d (a£6> d<8£) 50

At \ 8¢

which is verified for all d¢g only when
oL doL 0

0q dtog
because d¢q(t1) = dq(t2) = 0, as all possible paths are such that ¢(¢;) = ¢1 and ¢(t2) = ¢a.

Generalizing to the case of s degrees of freedom we have the Euler-Lagrange (E-L) equations:

9L 4oL _
qu dta(ji_ ’

1=1,...,s

Transformations like £ — AL, with A constant, or £ — £ + dF'/dt, where F' = F(q,t) do not affect the

particles’ motion, because
L =AL = 68’ =0AS = A6S =0 < 6S =0,

d
o t2 qF
L =L+dF/dt = S’:S+/ Edtzs—f—F(QQ,tg)—F(ql,tl):S+C,
t1

where C' is a constant (independent of q, q).

1.1.3 Inertial frames

%

Inertial reference frame: such that space is homogeneous and isotropic and time is homogeneous. For
instance, in any inertial reference frame a particle that is at rest at a given time will remain at rest at all

later times.

Galileo’s relativity principle: laws of motion are the same in all inertial reference frames (moving at constant

velocity w.r.t. one another)
Free particle: particle subject to no force.

Lagrangian of a free particle cannot contain explicitly the position vector r (space is homogeneous) or the

time ¢ (time is homogeneous) and cannot depend on the direction of v (space is isotropic) == £ = L(v?)
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— More specifically, it can be shown (see LL) that for a free particle

where m is particle mass. T = (1/2)muv? is the particle kinetic energy.

— In Cartesian coordinates q = r = (z,y, 2) and q = v = (vg, vy, v;), so for a free particle the Lagrangian is

L= %m(vg + vz + v2). The E-L equations for a free particle are

aoc
dtov
so for the x component
dor dw
T =mo- = vy = const,

and similarly for y and z components. = dv/dt = 0, which is the law of inertia (Newton’s first law of

motion).

1.1.4 Lagrangian of a free particle in different systems of coordinates

— Let’s write the Lagrangian of a free particle in different systems of coordinates. Note that, if dl is the

infinitesimal displacement, v? = (di/dt)? = dI?/dt2.
— In Cartesian coordinates di? = dz? + dy? + dz?, so

1
L= 5m(jcQ + 9?2 + £?)

— In cylindrical coordinates dI? = dR? + R?d¢? + dz?, so
L= %m(RQ + R2$% + %)
— In spherical coordinates dI? = dr? 4 2d6? 4 72 sin? #d¢?, so
L= %m(?'“2 + 126? + 2 sin? 9&)2)

— The above can be derived also by taking the expression of the position vector r, differentiating and squaring

(see e.g. BT08 app. B). For instance, in cylindrical coordinates
r = Regr + ze,

d )
d—z — Rep + Rég + ze.,

because €, = 0. Now,

eR = Cos ¢e, + sin ge,

and

ey = — sin ge, + cos e,
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So

der = (—sin ¢e, + cos pe, )d¢

deR = e¢dd>
ér = dey
SO
d . .
d—z = Rep + Roey + ze.,
2 dr |? 52 272 | :2

— Alternatively, we can derive the same expressions for the cylindrical and spherical coordinates, starting from

the Cartesian coordinates. For instance, in spherical coordinates r, 6, ¢ we have

x = rsinf cos ¢, y = rsinfsin ¢, z=rcosb,

SO
T = fsin@cos¢+rcos@cos¢9 - rsin@sin@ﬁ,
7 :fsin&singf)—i—rcos&singf)é—H“sin@cosqbqga
z= fcos@—rsin@é,
then

02 =i + % + 22 =72+ 1r20% + 2 sin? 042
— The Lagrangian of a free particle in spherical coordinates is

_ 1 2202 2 2002
E—Qm(r + 7r90° + r° sin 0(;5).

1.1.5 Lagrangian of a system of particles

— Additivity of the Lagrangian: take two dynamical systems A and B. If each of them were an isolated system,
they would have, respectively, Lagrangians £4 and Lp. If they are two parts of the same system (but so

distant that the interaction is negligible) the total Lagrangian must be £ = L4 + Lp.
— So, for a system of non-interacting particles
1 2
L= Z 3Mava;
a
were the subscript a identifies the a-th the particle.

— Closed system: system of particles that interact, but are not affected by external forces.
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— Lagrangian for a closed system of interacting particles:

1.2

L=T-V
where T is the kinetic energy and V is potential energy.

The potential energy V' depends only on the position of the particles: V' = V(q). This is a consequence
of the assumption that the interaction is instantaneously propagated: a change in position of one of the

particles instantaneously affects the force experienced by the other particles.

We have seen that in general T = T'(q,q): see, for instance, the expression of T" in cylindrical or spherical

coordinates. In other words, in generalized coordinates the kinetic energy can depend also on the q, not

only on q:
£=5 > Aul@is — V(a),
ik
where i =1,...,sand k =1,...,s, where s is the number of degrees of freedom (s = 3N for a system of N
particles).

In Cartesian coordinates we have q = r, = (24, Ya, 2¢) positions and q = vq = (Vgq,Vya, Vz,a) (velocities),

so the Lagrangian for a closed system of IV particles is

1 2
525 Z mava—V(rl,rg,...rN)

Applying Euler-Lagrange equations

oL _doc _ .

or, dtov,
we get the equations of motion:
. ov , .. ov
MgVe = —a—ra, 1.€. MagLq = _(%va’ etc.
i.e. mgt = F, (Newton’s second law of motion), where F, = —0V/0r,, is the force acting on the a-th particle.
For a particle moving in an external field
L o
L= Sm” — V(r,t)

If the external field is uniform =V = —F(¢) - r (F dependent of time, but independent of position)

Conservation laws

Constant of motion: quantity that remains constant during the evolution of a mechanical system C =

Cla(t),q(t), t] = const (i.e. dC/dt =0).
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— Integral of motion: a constant of motion that depends only on q and q (in other words, it does not depend
explicitly on time) I = I[q(t),q(t)] = const (i.e. dI/dt = 0). The value of the integral for a system equals

the sum of the values for sub-systems that interact negligibly with one another.

— Integrals of motion derive from fundamental properties (symmetries): isotropy/homogeneity of time and
space. Among constants of motions, only integrals of motions are important in mechanics. Example of a
constant of motion that is not an integral of motion: for a 1-D free particle z(t) = xo + ©ot (where z¢ and
&0 are the initial conditions and & = #¢ = const), so xo(z,t) = x(t) — @ot is a constant of motion, but not

an integral of motion (it depends explicitly on t).

— There are seven integrals of motions: total energy E, momentum P (3 components), angular momentum L

(3 components).

1.2.1 Energy

— Homogeneity of time = Lagrangian of a closed system does not depend explicitly on time 0L/0t =0 —>

dL oL . oL,
P Z [8%% + 3(]1%] )

i

where ¢ = 1,...,s, with s number of degrees of freedom. Using E-L equations:

dL d /oL . OL. d /oL .
T —; [dt (8%) Qz‘f‘aq.i%] _;dt (aqi(h)
d oL .

Ezzgéq'i—ﬁ

— Energy
= dE/dt =0

or
L=T-V = E:Za—dqi—T—l—V

— We have seen that T is a quadratic function of ¢;, so by Euler theorem on homogeneous functions
qlaT/aql = 2T, SO
E=2T—-L=T(q,9)+V(q),

i.e. total energy F is the sum of kinetic and potential energy.

— Euler theorem on homogeneous functions: if f(tz) = t" f(z) then zf'(z) = nf(x).
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1.2.2 Momentum

Homogeneity of space = conservation of momentum. Lagrangian must be invariant if the system is shifted in

space by €.

Cartesian coordinates

— Lagrangian must be invariant if the system is shifted in space by dr, = €:

. . a,a
6£=£<q+dq,q>—£<q,q>= a=€ Zar
—
Z 8ra dt Z ava

or

dP

a =Y
where

P= Z 8va Zmava

is momentum
— Momentum is additive P = ) p,, where p, = 0L/0v, = myV, is the momentum of the individual particles.

— We also have
oL oV
or, or, Z @
where F, is the force acting on the a-th particle. When the bodies are two, is F1 + Fo =0 or F; = —F5 i.e.

Newton’s third law of motion.

Generalized coordinates

— We define
oL

04
as generalized momenta. Note that p; = mw; in Cartesian coordinates, but in general p; depend on both ¢;
and ¢;.
— The E-L equation can be written as

dpi

= F,
dt (2]

where F; = 0L/0q; is the generalized force.

— Then

d
azpizzf—‘izo-
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Centre of mass

— For a system of particles there is a special inertial reference frame in which P = 0: this is the reference

frame in which the centre of mass is at rest.

d d de
P:Zmava = aZmara = arcmZma:Zma% =0,

where
_ D Malyg

r =
cm Z ma

is the position of the centre of mass.

— In a general inertial frame the centre of mass moves with a velocity

Cdrem Y mgve P

p— pu— pr— pu— t
Vem T e S cons

— If the total energy of the system in the centre-of-mass reference frame is Ej,;, in a general inertial frame the

total energy is

1
E = 3 Za: mavgm + Eint

— Note: the components of the centre of mass r., are not constants of motion. The components of
rem(0) = rem(t) — tven are constants of motion, but they are not integrals of motion (they depend explicitly

on time).
1.2.3 Angular momentum
— Isotropy of space = conservation of angular momentum

— The Lagrangian is invariant under rotation. Apply a rotation represented by a vector d¢ (with magnitude

0¢, which is the angle of rotation, and direction along the rotation axis) = dr = d¢p x r and ov = d¢p X v
oL oL
(Sﬁ—za:<ara'5ra+ava'(sva> =0
55:Z[pa'(5¢xra)+pa'(6¢xva)] =0.
Using the vector identity A - (B x C) =B - (C x A) we get

d
5£=5¢-Z(raX}f)a—i-VaXpa):(Sq')'aZraXpa:O,

because

a(raxpa):raxpaTLvaxpa
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— As this must be satisfied for all d¢p, we must have
dL
dt

LEZraXpa

is the angular momentum, which (as well as linear momentum) is additive.

0,

where

— The angular momentum in a reference frame in which the system is at rest (P = 0) is Ly (intrinsic angular

momentum )

— In a general inertial frame the angular momentum is

L =Ly +rem X (Z ma) Vem = Lint + Tem X Zmava = Lipt +Tem X P

1.3 Integration of the equations of motion
1.3.1 Motion in one dimension
— One dimension = one degree of freedom = one coordinate ¢

— Lagrangian:
If ¢ = x is a Cartesian coordinate

— Energy is integral of motion:

E = §mj:2 + V(x),
then (taking & > 0)
dx 2
& JEE-vV
v

dt = de,
2[E - V(z)]

t:t0+\/f/zjmdx.

— Motion in region of space such that V(x) < E. If this interval is bounded, motion is finite. From the above
equations and the E-L equations (equations of motion) it is clear that motion is oscillatory (& changes sign

only at turning points z such that V(z) = F) = motion is periodic with period

) 1
T—\/%/I1 mdx,

where x1 and x9 are the turning points at which E = V(x1) = V(z2). T is twice the time to go from z; to

x2 (see Fig. 6 LL. FIG CM1.1).
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1.3.2 Motion in a central field

— Motion in a central field: motion of a single particle in an external field such that its potential energy

depends only on the distance r from a fixed point: V =V (r) =

v dAVr

F=_—— —
or dr r

— For instance, in Cartesian coordinates:

oV dvar  dVa

F, =

Oz dr Ox  drr’

etc., because

or _oVat+yr+2? 2x oz
ox _2‘/x2+y2+z2_74

ox
— Take center of the field as origin: angular momentum L is conserved (even in the presence of the field),

because the field does not have component orthogonal to position vector.

dL X pP+rXT 0
— =7 r =0.
q p p

— L =r x p is conserved and is orthogonal to r, so r stays always in the same plane = motion is planar.

— Using polar coordinates (r,¢) in the plane of the motion, the Lagrangian reads (see kinetic energy in

cylindrical coordinates: Section 1.1.4)

L= om(® +rF) V()

— Motion in ¢. E-L equations for coordinate ¢ —

d oL  d(mr?g)

dt 9¢ dt ’

where

L,=L= mr2g'b = const

is the modulus of the angular momentum. ¢ is ciclic coordinate: it does not appear in L. Associated

generalized momentum is constant.
— Kepler’s second law: let’s define an infinitesimal sector bounded by the path as
1
dA = 5r2d<z>

(show Fig. 8 LL FIG CM1.2). dA/dt = r?(d¢/dt)/2 = L/(2m) = const is the sectorial velocity == the

particle’s position vector sweeps equal areas in equal times (Kepler’s second law).
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— Motion in r.

E =2T — L = const,

1 . 1 L?
B = Sm(i? 4+ 1242 _ L2
2m(7" +r29%) + V(r) 2m7“ + 5 + V(r),
—
dr 2
— =/ ZIE-V,
V2B~ Vi (r)
d
dt = 4
B = Vear (7))
(time ¢ as a function of r), where
L2
V;ff(r) = V(T) + SISO

— The radial part of the motion behaves like a motion in one-dimension with effective potential energy Veg(r),

defined above, where L?/2mr? is called the centrifugal energy.

— The radii r such that £ = Veg(r) are the radial turning points, corresponding to 7 = 0: if motion is finite,

pericentre (rperi) and apocentre (rapo). If motion is infinite 7,5, = 00

— Substituting mr2d¢/L = dt
Ldr

do = 2\ /2m[E — Vet ()]

(angle ¢ as a function of r, i.e. path or trajectory).

— Consider variation of ¢ for finite motion in one radial period:

Ldr
Ad = 2/ r2\/2m[E — Vege ()]

Tperi

— Closed orbit only if A¢ = 27m/n with m,n integers. In general orbit is not closed (rosette). All orbits are

closed only when V o 1/r (Kepler’s potential) or V o r? (harmonic potential).

1.4 Hamiltonian mechanics
[LL; VK]

1.4.1 Hamilton’s equations

— In Lagrangian mechanics generalized coordinates (g;) and generalized velocities (¢;), i = 1, ..., s, where s is

the number of degrees of freedom.
— In Hamiltonian mechanics generalized coordinates (¢;) and generalized momenta (p;), i = 1, ..., s.

— The idea is to transform £(q, g, t) into a function of (q, p, t), where p; = 9L/9q; are the generalized momenta.

This can be accomplished through a Legendre transform.
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— Example: Legendre transform for functions of two variables. Start from f = f(z,y), v = Jf/0x and

v = 0f/0y. The total differential of f is
df = udz + vdy.

We want to replace y with v, so we use

d(vy) = vdy + ydv

SO

df = udx + d(vy) — ydo,
d(vy — f) = —udz + ydv,
so g(x,v) = vy — f(x,v) with dg/0x = —u and dg/0v = y.

We can do the same starting from L:

ac - Z o+ Z i+ e = S s + X i +
AL =Y pidg+ Yy d(pids) Z ¢idp; + fdt
d (Z pii — ) Z ¢idpi — szd% - fdt

So the Legendre transform of £ is the Hamiltonian:

p, q,t sz(h -

The differential of H is:
) . oL
dH = gidpi — > pidg; — 5 &

It follows
oOH ) OH

which are called Hamilton’s equations or canonical equations. We have replaced s 2nd-order equations with

2s first-order equations. We also have

on _ oL
ot ot

p and q are called canonical coordinates.
The time derivative of H is

dH 37‘[
at ot Za QZ+Z(9 pl_

Hamiltonian is constant if H does not depend explicitly on time. This is the case for closed system, for which

L does not depend explicitly on time. This is a reformulation of energy conservation, because we recall that

E= Z 9d; QZ L= Z pigi —L="H
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1.4.2 Canonical transformations
[VK 4.7-4.8]

— Given a set of canonical coordinates (p,q), we might want to change to another set of coordinates (P, Q)

to simplify our problem.

— We can consider general transformations of the form Q = Q(p, q,t) and P = P(p, q,t): it is not guaranteed
that Hamilton’s equations are unchanged.

— A transformation Q = Q(p,q,t) and P = P(p, q,t) is called canonical if in the new coordinates

. oM’ . OH’

OP;’
with some Hamiltonian H' = H'(P, Q, t).

— In any canonical coordinate system the variation of the action is null

to to
§S =6 [ Ldt=26 (Zpiqi—%>dt20
t1 i

t1

t1

t2 t2 .
858" =6 CLdt=6 (Z P.Q; — H’) dt =0
t1 i

This means that the difference between the two Lagrangians £ — £’ = dF/dt must be a total time derivative,

because .
2dF
§ | ——dt=¢[F];. =0.
” dt [ ]tg
— Let us impose the above condition, i.e.,

dF

L=L+—

+ dt’

Ldt = L'dt + dF,
dQZ /
sz M| dt=> PdQ;—Hdt+dF
D pidg — Hdt = P,dQ; — H'dt + dF,
where F' = F(q,Q,1).

— Fis called the generating function of the transformation.

— Taking F' in the form F = F(q, Q,t), the above equation can be written as

> pidg; — Hdt = ZPsz Hdt+—dt+z dql—l—z dQl,

dt+Z dqz +Z 50, O aq, = szdqz + (M —H)dt - Y PdQ;
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Clearly the above is verified when

_oF
pz—aqi
oF
P = —
00Q;
oF
I -
H =H+ ETR

The above relations can be combined (and when necessary inverted) to give Q = Q(q,p,t) and P =

P(q,p,t), i.e. the canonical transformation in terms of the generating function F.

— Sometimes is it convenient to have a generating function that is not in the form F' = F(q, Q,t), but depends

on other combinations of new and old canonical coordinates: other possible choices are (q,P,t), (p, Q,1),

(p,P,t).

— We distinguish four classes of generating functions F', differing by the variables on which F' depends:

F:Fl(anat)a F:FZ(quat)a F:F3(p>Q7t)7 F:F4(paP7t)

— We derive here the canonical transformation for a generating function F, depending on (q,P,t). In order

to do so we use the Legendre transform. Start from
dFy = sz'd%‘ — ZPisz' + (H —H)dt
i i
where F1(q,Q,t) is the generating function considered above.

ARy =) pidg — > d(PQi) + > QidPi + (H' — H)dt

d(Fy + Z P,Q;) = Zpid%' + Z QidP; + (H' — H)dt
so the generating function is now

F2 :FQ(anat) EFl(anat)+Z-lD’LQZ

and the change of variables is as follows

R
pi = D4,
OF)
Qi = P,
OF)
I —
Ho=H+ 2

where Fy = F5(q, P, t)
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— Similarly (exploiting Legendre transform) we can obtain transformation equations for F' = F3(p, Q,t) =

Fy =5, ¢pi and F = Fy(p,P,t) = F1 + >, QiP; — >, ¢;ip;- In summary the canonical transformations are

OF oF
OF: OF:
F = Fy(q,P, 1), m::a; Qi:éﬂf

OF: OF:
F=F(p,Qt), ¢g=——2 P=-22

- Opi - 0Qi
oF, oF,

F = Fy(p,P,1 = — p=
4(pa ) )7 q 8pz Q 8PZ

In addition we have H' = H + 0F;/dt, for i =1,... 4.
Ezample of canonical transformations: extended point transformations. This is of the kind F' = F»(q, P):
Q=G FaP)=Y PGia),
k

where G = (G, ...,Gs), and the G; are given functions. Then

L OF G,

oF
Qi = op, = Gi(Q)-

For instance, for a system with 1 degree of freedom, we have

Q=0G(q), F(q,P)=PG(q),

SO

OF oG oG\ !

OF _ Gq).

@=3p

Special classes of Canonical Coordinates. Among canonical coordinates there are two special classes that

are particularly important:

- Sets of canonical coordinates in which both q and p are integrals of motion (they remain constant during

the evolution of the system): these are the coordinates obtained by solving the Hamilton-Jacobi equation.

- Sets of canonical coordinates in which the q are not constant, but they are cyclic coordinates (they can
be interpreted as angles, so they are called angles), while the p are integrals of motion (they are constants;

they are called actions). These are called angle-action coordinates.
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1.4.3 Hamilton-Jacobi equation

[VK 4.9]

— The action S = [ L£dt can be seen as a generating function. The corresponding canonical transformations

are very useful because they are such that H' = 0. We have

dg; . o
dS = £dt = Z pig, At — Hdt = Z pidg; — Hdt.

— It follows that

o oS
Pi = aqiv
oS
==

— So S = S(q,t), but S can be seen also as a generating function S = S(q,P,t), with P; constants (i.e.

dP; = 0 for all 7). So, we have

oS
Qi = P
— The new Hamiltonian is null:
oS
- _— =
H =H+ B 0,

consistent with the fact that the new canonical coordinates are constant:

/
R:—ggi =0 = P,=qa; =const
. oH'
Qi = op; =0 = Q;= 0 =const.

— So the action can be seen as a generating function in the form S = S(q, o, t) where a = (aq,...,a5) = P

are constants.

— Exploiting the fact that p; = 95/9¢;, the above equation H' = 0 can be written as

oS oS

This is known as the Hamilton-Jacobi equation.

— If the solution S to the H-J equation is obtained, the solution of the equations of motions can be written

explicitly as follows. The variables (p, q) are related to («, 3) by

0S oS
pi_%(quaﬂf)a ﬁl_ai(q7a)t)7

)

7

which can be combined and inverted to give ¢; = ¢;(ex, 8,t) and p; = p;(a, 3, 1).
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— If H does not depend explicitly on time then H = E = const and the H-J equation can be written
oS
Hlg,—)=EF,
(s50)

95 _
ot

and we also have

-

— Ezample: free particle. Take Cartesian coordinates x,y, z as generalized coordinates ¢; and p;, py, p. as

generalized momenta p;. The Hamiltonian of a free particle of mass m is

1
H= o (v + 0, +02).

L§2+8752+8752+875—0
2m |\ Ox Y 0z ot

Separation of variables S(z,y, z,t) = X(x) + Y (y) + Z(z) + T(t) then

The H-J equation is

1 |[0X 2+ oY 2+ 8Z2+8T_0
2m |\ Ox oy 0z o
o0 X = a2, Y =y, Z = az and T = —(a? + ozz + a?)t/2m, therefore p, = oy, py = ay, p: = az,

Bz = x —azt/m, By =y —ayt/m, B, = z— a,t/m, which is the solution (the values of the constants depend

on the initial conditions at ¢t = 0).
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