Carlo Nipoti, Dipartimento di Fisica e Astronomia, Università di Bologna

13/3/2013

1. Fundamentals of mechanics

1.1 Lagrangian mechanics

[LL]

1.1.1 Generalized coordinates

- \rightarrow Particle: point mass
- \rightarrow Particle position vector **r**. In Cartesian components **r** = (x, y, z).
- \rightarrow Particle velocity $\mathbf{v} = d\mathbf{r}/dt = \dot{\mathbf{r}}$. In Cartesian coordinates $v_x = dx/dt$, etc...
- \rightarrow Particle acceleration $\mathbf{a} = \mathrm{d}^2 \mathbf{r}/\mathrm{d}t^2 = \dot{\mathbf{v}} = \ddot{\mathbf{r}}$. In Cartesian coordinates $a_x = \mathrm{d}^2 x/\mathrm{d}t^2$, etc...
- $\rightarrow N$ particles $\implies s = 3N$ degrees of freedom
- \rightarrow Generalized coordinates: any s quantities q_i that define the positions of the N-body system ($\mathbf{q} = q_1, ..., q_s$)
- \rightarrow Generalized velocities: $\dot{q}_i \ (\dot{\mathbf{q}} = \dot{q}_1, ..., \dot{q}_s)$
- \rightarrow We know from experience that, given **q** and $\dot{\mathbf{q}}$ for all particles in the system at a given time, we are able to predict $\mathbf{q}(t)$ at any later time t. In other words, if all **q** and $\dot{\mathbf{q}}$ are specified $\Longrightarrow \ddot{\mathbf{q}}$ are known.
- \rightarrow Equations of motion are ODE for $\mathbf{q}(t)$ that relate $\ddot{\mathbf{q}}$ with \mathbf{q} and $\dot{\mathbf{q}}$. The solution $\mathbf{q}(t)$ is the path (orbit).

1.1.2 Principle of least action & Euler-Lagrange equations

 \rightarrow Given a mechanical system, we define the *Lagrangian* function $\mathcal{L}(\mathbf{q}, \dot{\mathbf{q}}, t)$. \mathcal{L} does not depend on higher derivatives, consistent with the idea that motion is determined if \mathbf{q} and $\dot{\mathbf{q}}$ are given.

 \rightarrow Given two instants t_1 and t_2 , we define the action $S = \int_{t_1}^{t_2} \mathcal{L}(\mathbf{q}, \dot{\mathbf{q}}, t) dt$

 \rightarrow The system occupies positions \mathbf{q}_1 and \mathbf{q}_2 at time t_1 and t_2 , respectively. Note that in this formalism instead of fixing position and velocity at the initial time t_1 , we fix positions at the initial and final times.

 \rightarrow Principle of least action (or Hamilton's principle): from t_1 to t_2 the system moves in such a way that S is a minimum (extremum) over all paths, i.e. (for 1 degree of freedom)

$$\delta S = \delta \int_{t_1}^{t_2} \mathcal{L}(q, \dot{q}, t) \mathrm{d}t = \int_{t_1}^{t_2} \left[\mathcal{L}(q + \delta q, \dot{q} + \delta \dot{q}, t) - \mathcal{L}(q, \dot{q}, t) \right] \mathrm{d}t = \int_{t_1}^{t_2} \left(\frac{\partial \mathcal{L}}{\partial q} \delta q + \frac{\partial \mathcal{L}}{\partial \dot{q}} \delta \dot{q} \right) \mathrm{d}t = 0,$$

Now, we have

$$\frac{\partial \mathcal{L}}{\partial q} \delta q + \frac{\partial \mathcal{L}}{\partial \dot{q}} \frac{\mathrm{d}(\delta q)}{\mathrm{d}t} = \frac{\partial \mathcal{L}}{\partial q} \delta q + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \delta q \right) - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right) \delta q,$$

so the above equation can be rewritten as

$$\delta S = \left[\frac{\partial \mathcal{L}}{\partial \dot{q}} \delta q\right]_{t_1}^{t_2} + \int_{t_1}^{t_2} \left(\frac{\partial \mathcal{L}}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{q}}\right) \delta q \mathrm{d}t = 0,$$

which is verified for all δq only when

$$\frac{\partial \mathcal{L}}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{q}} = 0$$

because $\delta q(t_1) = \delta q(t_2) = 0$, as all possible paths are such that $q(t_1) = q_1$ and $q(t_2) = q_2$.

 \rightarrow Generalizing to the case of s degrees of freedom we have the Euler-Lagrange (E-L) equations:

$$\frac{\partial \mathcal{L}}{\partial q_i} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} = 0, \qquad i = 1, ..., s$$

 \rightarrow Transformations like $\mathcal{L} \rightarrow A\mathcal{L}$, with A constant, or $\mathcal{L} \rightarrow \mathcal{L} + dF/dt$, where $F = F(\mathbf{q}, t)$ do not affect the particles' motion, because

$$\mathcal{L}' = A\mathcal{L} \implies \delta S' = \delta AS = A\delta S = 0 \iff \delta S = 0$$

and

$$\mathcal{L}' = \mathcal{L} + \mathrm{d}F/\mathrm{d}t \implies S' = S + \int_{t_1}^{t_2} \frac{\mathrm{d}F}{\mathrm{d}t} \mathrm{d}t = S + F(\mathbf{q}_2, t_2) - F(\mathbf{q}_1, t_1) = S + C,$$

where C is a constant (independent of $\mathbf{q}, \dot{\mathbf{q}}$).

1.1.3 Inertial frames

- \rightarrow Inertial reference frame: such that space is homogeneous and isotropic and time is homogeneous. For instance, in any inertial reference frame a particle that is at rest at a given time will remain at rest at all later times.
- \rightarrow Galileo's relativity principle: laws of motion are the same in all inertial reference frames (moving at constant velocity w.r.t. one another)
- \rightarrow Free particle: particle subject to no force.
- \rightarrow Lagrangian of a free particle cannot contain explicitly the position vector **r** (space is homogeneous) or the time t (time is homogeneous) and cannot depend on the direction of **v** (space is isotropic) $\Longrightarrow \mathcal{L} = \mathcal{L}(v^2)$

 \rightarrow More specifically, it can be shown (see LL) that for a free particle

$$\mathcal{L} = \frac{1}{2}mv^2,$$

where m is particle mass. $T = (1/2)mv^2$ is the particle kinetic energy.

 \rightarrow In Cartesian coordinates $\mathbf{q} = \mathbf{r} = (x, y, z)$ and $\dot{\mathbf{q}} = \mathbf{v} = (v_x, v_y, v_z)$, so for a free particle the Lagrangian is $\mathcal{L} = \frac{1}{2}m(v_x^2 + v_y^2 + v_z^2)$. The E-L equations for a free particle are

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial\mathcal{L}}{\partial\mathbf{v}} = 0$$

so for the x component

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial\mathcal{L}}{\partial v_x} = m\frac{\mathrm{d}v_x}{\mathrm{d}t} = 0 \qquad \Longrightarrow \qquad v_x = const,$$

and similarly for y and z components. $\implies d\mathbf{v}/dt = 0$, which is the law of inertia (*Newton's first law of motion*).

1.1.4 Lagrangian of a free particle in different systems of coordinates

- \rightarrow Let's write the Lagrangian of a free particle in different systems of coordinates. Note that, if dl is the infinitesimal displacement, $v^2 = (dl/dt)^2 = dl^2/dt^2$.
- \rightarrow In Cartesian coordinates $dl^2 = dx^2 + dy^2 + dz^2$, so

$$\mathcal{L} = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2)$$

 \rightarrow In cylindrical coordinates $\mathrm{d}l^2=\mathrm{d}R^2+R^2\mathrm{d}\phi^2+\mathrm{d}z^2,$ so

$$\mathcal{L} = \frac{1}{2}m(\dot{R}^2 + R^2\dot{\phi}^2 + \dot{z}^2)$$

 \rightarrow In spherical coordinates $dl^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2$, so

$$\mathcal{L} = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2 + r^2\sin^2\theta\dot{\phi}^2)$$

 \rightarrow The above can be derived also by taking the expression of the position vector **r**, differentiating and squaring (see e.g. BT08 app. B). For instance, in cylindrical coordinates

$$\mathbf{r} = R\mathbf{e}_R + z\mathbf{e}_z$$
$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \dot{R}\mathbf{e}_R + R\dot{\mathbf{e}}_R + \dot{z}\mathbf{e}_z,$$

because $\dot{\mathbf{e}}_z = 0$. Now,

 $\mathbf{e}_R = \cos\phi \mathbf{e}_x + \sin\phi \mathbf{e}_y$

and

$$\mathbf{e}_{\phi} = -\sin\phi\mathbf{e}_x + \cos\phi\mathbf{e}_y$$

 So

$$d\mathbf{e}_{R} = (-\sin\phi\mathbf{e}_{x} + \cos\phi\mathbf{e}_{y})d\phi$$
$$d\mathbf{e}_{R} = \mathbf{e}_{\phi}d\phi$$
$$\dot{\mathbf{e}}_{R} = \dot{\phi}\mathbf{e}_{\phi}$$

 \mathbf{SO}

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \dot{R}\mathbf{e}_R + R\dot{\phi}\mathbf{e}_\phi + \dot{z}\mathbf{e}_z,$$
$$v^2 = \left|\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}\right|^2 = \dot{R}^2 + R^2\dot{\phi}^2 + \dot{z}^2$$

 \rightarrow Alternatively, we can derive the same expressions for the cylindrical and spherical coordinates, starting from the Cartesian coordinates. For instance, in spherical coordinates r, θ, ϕ we have

$$x = r \sin \theta \cos \phi, \qquad y = r \sin \theta \sin \phi, \qquad z = r \cos \theta,$$

 \mathbf{SO}

$$\dot{x} = \dot{r}\sin\theta\cos\phi + r\cos\theta\cos\phi\dot{\theta} - r\sin\theta\sin\phi\dot{\phi},$$
$$\dot{y} = \dot{r}\sin\theta\sin\phi + r\cos\theta\sin\phi\dot{\theta} + r\sin\theta\cos\phi\dot{\phi},$$
$$\dot{z} = \dot{r}\cos\theta - r\sin\theta\dot{\theta},$$

then

$$v^2 = \dot{x}^2 + \dot{y}^2 + \dot{z}^2 = \dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin^2 \theta \dot{\phi}^2$$

 $\rightarrow\,$ The Lagrangian of a free particle in spherical coordinates is

$$\mathcal{L} = \frac{1}{2}m\left(\dot{r}^2 + r^2\dot{\theta}^2 + r^2\sin^2\theta\dot{\phi}^2\right).$$

1.1.5 Lagrangian of a system of particles

- \rightarrow Additivity of the Lagrangian: take two dynamical systems A and B. If each of them were an isolated system, they would have, respectively, Lagrangians \mathcal{L}_A and \mathcal{L}_B . If they are two parts of the same system (but so distant that the interaction is negligible) the total Lagrangian must be $\mathcal{L} = \mathcal{L}_A + \mathcal{L}_B$.
- \rightarrow So, for a system of non-interacting particles

$$\mathcal{L} = \sum_{a} \frac{1}{2} m_a v_a^2,$$

were the subscript a identifies the a-th the particle.

 \rightarrow Closed system: system of particles that interact, but are not affected by external forces.

 \rightarrow Lagrangian for a closed system of interacting particles:

$$\mathcal{L} = T - V$$

where T is the kinetic energy and V is potential energy.

- \rightarrow The potential energy V depends only on the position of the particles: $V = V(\mathbf{q})$. This is a consequence of the assumption that the interaction is instantaneously propagated: a change in position of one of the particles instantaneously affects the force experienced by the other particles.
- \rightarrow We have seen that in general $T = T(\mathbf{q}, \dot{\mathbf{q}})$: see, for instance, the expression of T in cylindrical or spherical coordinates. In other words, in generalized coordinates the kinetic energy can depend also on the \mathbf{q} , not only on $\dot{\mathbf{q}}$:

$$\mathcal{L} = \frac{1}{2} \sum_{i,k} A_{ik}(\mathbf{q}) \dot{q}_i \dot{q}_k - V(\mathbf{q}),$$

where i = 1, ..., s and k = 1, ..., s, where s is the number of degrees of freedom (s = 3N for a system of N particles).

 \rightarrow In Cartesian coordinates we have $\mathbf{q} = \mathbf{r}_a = (x_a, y_a, z_a)$ positions and $\dot{\mathbf{q}} = \mathbf{v}_a = (v_{x,a}, v_{y,a}, v_{z,a})$ (velocities), so the Lagrangian for a closed system of N particles is

$$\mathcal{L} = \frac{1}{2} \sum_{a=1,..,N} m_a v_a^2 - V(\mathbf{r}_1, \mathbf{r}_2, ... \mathbf{r}_N)$$

 \rightarrow Applying Euler-Lagrange equations

$$\frac{\partial \mathcal{L}}{\partial \mathbf{r}_a} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \mathbf{v}_a} = 0$$

we get the equations of motion:

$$m_a \dot{\mathbf{v}}_a = -\frac{\partial V}{\partial \mathbf{r}_a}, \qquad i.e. \qquad m_a \ddot{x}_a = -\frac{\partial V}{\partial x_a}, \qquad etc$$

i.e. $m_a \ddot{\mathbf{r}} = \mathbf{F}_a$ (Newton's second law of motion), where $\mathbf{F}_a = -\partial V / \partial \mathbf{r}_a$ is the force acting on the *a*-th particle.

 \rightarrow For a particle moving in an external field

$$\mathcal{L} = \frac{1}{2}mv^2 - V(\mathbf{r}, t).$$

If the external field is uniform $\implies V = -\mathbf{F}(t) \cdot \mathbf{r}$ (F dependent of time, but independent of position)

1.2 Conservation laws

 \rightarrow Constant of motion: quantity that remains constant during the evolution of a mechanical system $C = C[\mathbf{q}(t), \dot{\mathbf{q}}(t), t] = const$ (i.e. dC/dt = 0).

- \rightarrow Integral of motion: a constant of motion that depends only on **q** and $\dot{\mathbf{q}}$ (in other words, it does not depend explicitly on time) $I = I[\mathbf{q}(t), \dot{\mathbf{q}}(t)] = const$ (i.e. dI/dt = 0). The value of the integral for a system equals the sum of the values for sub-systems that interact negligibly with one another.
- \rightarrow Integrals of motion derive from fundamental properties (symmetries): isotropy/homogeneity of time and space. Among constants of motions, only integrals of motions are important in mechanics. Example of a constant of motion that is not an integral of motion: for a 1-D free particle $x(t) = x_0 + \dot{x}_0 t$ (where x_0 and \dot{x}_0 are the initial conditions and $\dot{x} = \dot{x}_0 = const$), so $x_0(x,t) = x(t) - \dot{x}_0 t$ is a constant of motion, but not an integral of motion (it depends explicitly on t).
- \rightarrow There are seven integrals of motions: total energy *E*, momentum **P** (3 components), angular momentum **L** (3 components).

1.2.1 Energy

 \rightarrow Homogeneity of time \implies Lagrangian of a closed system does not depend explicitly on time $\partial \mathcal{L}/\partial t = 0 \implies$

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}t} = \sum_{i} \left[\frac{\partial \mathcal{L}}{\partial q_{i}} \dot{q}_{i} + \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \ddot{q}_{i} \right],$$

where i = 1, ..., s, with s number of degrees of freedom. Using E-L equations:

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}t} = \sum_{i} \left[\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) \dot{q}_{i} + \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \ddot{q}_{i} \right] = \sum_{i} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \dot{q}_{i} \right)$$
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{i} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \dot{q}_{i} - \mathcal{L} \right) = 0$$

 \rightarrow Energy

$$E \equiv \sum_{i} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \dot{q}_{i} - \mathcal{L}$$

 $\implies \mathrm{d}E/\mathrm{d}t = 0$

 \rightarrow

$$\mathcal{L} = T - V \implies E = \sum_{i} \frac{\partial T}{\partial \dot{q}_{i}} \dot{q}_{i} - T + V$$

 \rightarrow We have seen that T is a quadratic function of \dot{q}_i , so by Euler theorem on homogeneous functions $\dot{q}_i \partial T / \partial \dot{q}_i = 2T$, so

$$E = 2T - \mathcal{L} = T(\mathbf{q}, \dot{\mathbf{q}}) + V(\mathbf{q}),$$

i.e. total energy E is the sum of kinetic and potential energy.

 \rightarrow Euler theorem on homogeneous functions: if $f(tx) = t^n f(x)$ then xf'(x) = nf(x).

1.2.2 Momentum

Homogeneity of space \implies conservation of momentum. Lagrangian must be invariant if the system is shifted in space by ϵ .

Cartesian coordinates

 \rightarrow Lagrangian must be invariant if the system is shifted in space by $\delta \mathbf{r}_a = \boldsymbol{\epsilon}$:

$$\delta \mathcal{L} = \mathcal{L}(\mathbf{q} + \mathrm{d}\mathbf{q}, \dot{\mathbf{q}}) - \mathcal{L}(\mathbf{q}, \dot{\mathbf{q}}) = \sum_{a} \frac{\partial \mathcal{L}}{\partial \mathbf{r}_{a}} \cdot \delta \mathbf{r}_{a} = \boldsymbol{\epsilon} \cdot \sum \frac{\partial \mathcal{L}}{\partial \mathbf{r}_{a}}$$

 \implies

$$\sum \frac{\partial \mathcal{L}}{\partial \mathbf{r}_a} = 0 \implies \frac{\mathrm{d}}{\mathrm{d}t} \sum \frac{\partial \mathcal{L}}{\partial \mathbf{v}_a} = 0$$

or

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} = 0,$$

where

$$\mathbf{P} \equiv \sum \frac{\partial \mathcal{L}}{\partial \mathbf{v}_a} = \sum m_a \mathbf{v}_a$$

is momentum

 \rightarrow Momentum is additive $\mathbf{P} = \sum_{a} \mathbf{p}_{a}$, where $\mathbf{p}_{a} = \partial \mathcal{L} / \partial \mathbf{v}_{a} = m_{a} \mathbf{v}_{a}$ is the momentum of the individual particles.

 \rightarrow We also have

$$\sum \frac{\partial \mathcal{L}}{\partial \mathbf{r}_a} = 0 \implies \sum \frac{\partial V}{\partial \mathbf{r}_a} = \sum \mathbf{F}_a = 0,$$

where \mathbf{F}_a is the force acting on the *a*-th particle. When the bodies are two, is $\mathbf{F}_1 + \mathbf{F}_2 = 0$ or $\mathbf{F}_1 = -\mathbf{F}_2$ i.e. Newton's third law of motion.

Generalized coordinates

 \rightarrow We define

$$p_i \equiv \frac{\partial \mathcal{L}}{\partial \dot{q}_i}$$

as generalized momenta. Note that $p_i = mv_i$ in Cartesian coordinates, but in general p_i depend on both q_i and \dot{q}_i .

 \rightarrow The E-L equation can be written as

$$\frac{\mathrm{d}p_i}{\mathrm{d}t} = F_i$$

where $F_i = \partial \mathcal{L} / \partial q_i$ is the generalized force.

 \rightarrow Then

$$\frac{\mathrm{d}}{\mathrm{d}t}\sum_{i}p_{i}=\sum_{i}F_{i}=0$$

Centre of mass

 \rightarrow For a system of particles there is a special inertial reference frame in which $\mathbf{P} = 0$: this is the reference frame in which the centre of mass is at rest.

$$\mathbf{P} = \sum m_a \mathbf{v}_a = \frac{\mathrm{d}}{\mathrm{d}t} \sum m_a \mathbf{r}_a = \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{r}_{\mathrm{cm}} \sum m_a = \sum m_a \frac{\mathrm{d}\mathbf{r}_{\mathrm{cm}}}{\mathrm{d}t} = 0,$$

where

$$\mathbf{r}_{\rm cm} \equiv \frac{\sum m_a \mathbf{r}_a}{\sum m_a}$$

is the position of the centre of mass.

 \rightarrow In a general inertial frame the centre of mass moves with a velocity

$$\mathbf{v}_{cm} = \frac{\mathrm{d}\mathbf{r}_{cm}}{\mathrm{d}t} = \frac{\sum m_a \mathbf{v}_a}{\sum m_a} = \frac{\mathbf{P}}{\sum m_a} = const$$

 \rightarrow If the total energy of the system in the centre-of-mass reference frame is E_{int} , in a general inertial frame the total energy is

$$E = \frac{1}{2} \sum_{a} m_a v_{\rm cm}^2 + E_{int}$$

 \rightarrow Note: the components of the centre of mass \mathbf{r}_{cm} are not constants of motion. The components of $\mathbf{r}_{cm}(0) = \mathbf{r}_{cm}(t) - t\mathbf{v}_{cm}$ are constants of motion, but they are not integrals of motion (they depend explicitly on time).

1.2.3 Angular momentum

- \rightarrow Isotropy of space \implies conservation of angular momentum
- \rightarrow The Lagrangian is invariant under rotation. Apply a rotation represented by a vector $\delta \phi$ (with magnitude $\delta \phi$, which is the angle of rotation, and direction along the rotation axis) $\Longrightarrow \delta \mathbf{r} = \delta \phi \times \mathbf{r}$ and $\delta \mathbf{v} = \delta \phi \times \mathbf{v}$

$$\delta \mathcal{L} = \sum_{a} \left(\frac{\partial \mathcal{L}}{\partial \mathbf{r}_{a}} \cdot \delta \mathbf{r}_{a} + \frac{\partial \mathcal{L}}{\partial \mathbf{v}_{a}} \cdot \delta \mathbf{v}_{a} \right) = 0$$
$$\delta \mathcal{L} = \sum_{a} \left[\dot{\mathbf{p}}_{a} \cdot (\delta \boldsymbol{\phi} \times \mathbf{r}_{a}) + \mathbf{p}_{a} \cdot (\delta \boldsymbol{\phi} \times \mathbf{v}_{a}) \right] = 0.$$

Using the vector identity $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A})$ we get

$$\delta \mathcal{L} = \delta \boldsymbol{\phi} \cdot \sum \left(\mathbf{r}_a \times \dot{\mathbf{p}}_a + \mathbf{v}_a \times \mathbf{p}_a \right) = \delta \boldsymbol{\phi} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \sum \mathbf{r}_a \times \mathbf{p}_a = 0,$$

because

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{r}_a \times \mathbf{p}_a) = \mathbf{r}_a \times \dot{\mathbf{p}}_a + \mathbf{v}_a \times \mathbf{p}_a$$

 \rightarrow As this must be satisfied for all $\delta \phi$, we must have

$$\frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} = 0,$$

where

$$\mathbf{L}\equiv\sum\mathbf{r}_{a} imes\mathbf{p}_{a}$$

is the angular momentum, which (as well as linear momentum) is additive.

- \rightarrow The angular momentum in a reference frame in which the system is at rest ($\mathbf{P} = 0$) is \mathbf{L}_{int} (intrinsic angular momentum)
- \rightarrow In a general inertial frame the angular momentum is

$$\mathbf{L} = \mathbf{L}_{int} + \mathbf{r}_{cm} \times \left(\sum m_a\right) \mathbf{v}_{cm} = \mathbf{L}_{int} + \mathbf{r}_{cm} \times \sum m_a \mathbf{v}_a = \mathbf{L}_{int} + \mathbf{r}_{cm} \times \mathbf{P}$$

1.3 Integration of the equations of motion

1.3.1 Motion in one dimension

- \rightarrow One dimension = one degree of freedom = one coordinate q
- \rightarrow Lagrangian:

$$\mathcal{L} = \frac{1}{2}a(q)\dot{q}^2 - V(q).$$

If q = x is a Cartesian coordinate

$$\mathcal{L} = \frac{1}{2}m\dot{x}^2 - V(x)$$

 \rightarrow Energy is integral of motion:

$$E = \frac{1}{2}m\dot{x}^2 + V(x),$$

then (taking $\dot{x} \ge 0$)

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \sqrt{\frac{2}{m}[E - V(x)]}$$

$$\mathrm{d}t = \frac{\sqrt{m}}{\sqrt{2[E - V(x)]}} \mathrm{d}x,$$

$$t = t_0 + \sqrt{\frac{m}{2}} \int_{x_0}^x \frac{1}{\sqrt{[E - V(x)]}} \mathrm{d}x.$$

 \rightarrow Motion in region of space such that V(x) < E. If this interval is bounded, motion is finite. From the above equations and the E-L equations (equations of motion) it is clear that motion is oscillatory (\dot{x} changes sign only at turning points x such that V(x) = E) \implies motion is periodic with period

$$T = \sqrt{2m} \int_{x_1}^{x_2} \frac{1}{\sqrt{[E - V(x)]}} \mathrm{d}x,$$

where x_1 and x_2 are the turning points at which $E = V(x_1) = V(x_2)$. T is twice the time to go from x_1 to x_2 (see Fig. 6 LL. FIG CM1.1).

1.3.2 Motion in a central field

 \rightarrow Motion in a central field: motion of a single particle in an external field such that its potential energy depends only on the distance r from a fixed point: $V = V(r) \implies$

$$\mathbf{F} = -\frac{\partial V}{\partial \mathbf{r}} = -\frac{\mathrm{d}V}{\mathrm{d}r}\frac{\mathbf{r}}{r}$$

 \rightarrow For instance, in Cartesian coordinates:

$$F_x = -\frac{\partial V}{\partial x} = -\frac{dV}{dr}\frac{\partial r}{\partial x} = -\frac{dV}{dr}\frac{x}{r}$$

etc., because

$$\frac{\partial r}{\partial x} = \frac{\partial \sqrt{x^2 + y^2 + z^2}}{\partial x} = \frac{2x}{2\sqrt{x^2 + y^2 + z^2}} = \frac{x}{r}$$

 \rightarrow Take center of the field as origin: angular momentum **L** is conserved (even in the presence of the field), because the field does not have component orthogonal to position vector.

$$\frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} = \dot{\mathbf{r}} \times \mathbf{p} + \mathbf{r} \times \dot{\mathbf{p}} = 0.$$

- \rightarrow L = r × p is conserved and is orthogonal to r, so r stays always in the same plane \implies motion is planar.
- \rightarrow Using polar coordinates (r, ϕ) in the plane of the motion, the Lagrangian reads (see kinetic energy in cylindrical coordinates: Section 1.1.4)

$$\mathcal{L} = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2) - V(r)$$

 \rightarrow Motion in ϕ . E-L equations for coordinate $\phi \implies$

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial\mathcal{L}}{\partial\dot{\phi}} = \frac{\mathrm{d}(mr^2\dot{\phi})}{\mathrm{d}t} = 0,$$

where

$$L_z = L = mr^2 \dot{\phi} = const$$

is the modulus of the angular momentum. ϕ is ciclic coordinate: it does not appear in \mathcal{L} . Associated generalized momentum is constant.

 \rightarrow Kepler's second law: let's define an infinitesimal sector bounded by the path as

$$\mathrm{d}A = \frac{1}{2}r^2\mathrm{d}\phi$$

(show Fig. 8 LL FIG CM1.2). $dA/dt = r^2 (d\phi/dt)/2 = L/(2m) = const$ is the sectorial velocity \implies the particle's position vector sweeps equal areas in equal times (Kepler's second law).

 \rightarrow Motion in r.

$$E = 2T - \mathcal{L} = const,$$

$$E = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2) + V(r) = \frac{1}{2}m\dot{r}^2 + \frac{L^2}{2mr^2} + V(r),$$

$$\frac{\mathrm{d}r}{\mathrm{d}t} = \sqrt{\frac{2}{m}[E - V_{\mathrm{eff}}(r)]}$$

$$\mathrm{d}t = \frac{\mathrm{d}r}{\sqrt{\frac{2}{m}[E - V_{\mathrm{eff}}(r)]}}$$

(time t as a function of r), where

$$V_{\rm eff}(r) = V(r) + \frac{L^2}{2mr^2}.$$

- \rightarrow The radial part of the motion behaves like a motion in one-dimension with effective potential energy $V_{\text{eff}}(r)$, defined above, where $L^2/2mr^2$ is called the centrifugal energy.
- \rightarrow The radii r such that $E = V_{\text{eff}}(r)$ are the radial turning points, corresponding to $\dot{r} = 0$: if motion is finite, pericentre (r_{peri}) and apocentre (r_{apo}) . If motion is infinite $r_{\text{apo}} = \infty$
- \rightarrow Substituting $mr^2 d\phi/L = dt$

$$\mathrm{d}\phi = \frac{L\mathrm{d}r}{r^2\sqrt{2m[E - V_{\mathrm{eff}}(r)]}}$$

(angle ϕ as a function of r, i.e. path or trajectory).

 \rightarrow Consider variation of ϕ for finite motion in one radial period:

$$\Delta \phi = 2 \int_{r_{\text{peri}}}^{r_{\text{apo}}} \frac{L \mathrm{d}r}{r^2 \sqrt{2m[E - V_{\text{eff}}(r)]}}$$

 \rightarrow Closed orbit only if $\Delta \phi = 2\pi m/n$ with m, n integers. In general orbit is not closed (rosette). All orbits are closed only when $V \propto 1/r$ (Kepler's potential) or $V \propto r^2$ (harmonic potential).

1.4 Hamiltonian mechanics

[LL; VK]

1.4.1 Hamilton's equations

- \rightarrow In Lagrangian mechanics generalized coordinates (q_i) and generalized velocities (\dot{q}_i) , i = 1, ..., s, where s is the number of degrees of freedom.
- \rightarrow In Hamiltonian mechanics generalized coordinates (q_i) and generalized momenta $(p_i), i = 1, ..., s$.
- \rightarrow The idea is to transform $\mathcal{L}(\mathbf{q}, \dot{\mathbf{q}}, t)$ into a function of $(\mathbf{q}, \mathbf{p}, t)$, where $p_i = \partial \mathcal{L} / \partial \dot{q}_i$ are the generalized momenta. This can be accomplished through a *Legendre transform*.

 \rightarrow Example: Legendre transform for functions of two variables. Start from f = f(x, y), $u \equiv \partial f / \partial x$ and $v \equiv \partial f / \partial y$. The total differential of f is

$$\mathrm{d}f = u\mathrm{d}x + v\mathrm{d}y.$$

We want to replace y with v, so we use

$$d(vy) = vdy + ydv$$

 \mathbf{SO}

$$df = udx + d(vy) - ydv,$$

$$d(vy - f) = -udx + ydv,$$

so $g(x,v) \equiv vy - f(x,v)$ with $\partial g/\partial x = -u$ and $\partial g/\partial v = y$.

 \rightarrow We can do the same starting from \mathcal{L} :

$$d\mathcal{L} = \sum_{i} \frac{\partial \mathcal{L}}{\partial q_{i}} dq_{i} + \sum_{i} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} d\dot{q}_{i} + \frac{\partial \mathcal{L}}{\partial t} dt = \sum_{i} \dot{p}_{i} dq_{i} + \sum_{i} p_{i} d\dot{q}_{i} + \frac{\partial \mathcal{L}}{\partial t} dt$$
$$d\mathcal{L} = \sum_{i} \dot{p}_{i} dq_{i} + \sum_{i} d(p_{i}\dot{q}_{i}) - \sum_{i} \dot{q}_{i} dp_{i} + \frac{\partial \mathcal{L}}{\partial t} dt$$
$$d\left(\sum_{i} p_{i}\dot{q}_{i} - \mathcal{L}\right) = \sum_{i} \dot{q}_{i} dp_{i} - \sum_{i} \dot{p}_{i} dq_{i} - \frac{\partial \mathcal{L}}{\partial t} dt$$

 \rightarrow So the Legendre transform of \mathcal{L} is the Hamiltonian:

$$\mathcal{H}(p,q,t) \equiv \sum_{i} p_{i} \dot{q}_{i} - \mathcal{L}$$

 \rightarrow The differential of \mathcal{H} is:

$$d\mathcal{H} = \sum_{i} \dot{q}_{i} \mathrm{d}p_{i} - \sum_{i} \dot{p}_{i} \mathrm{d}q_{i} - \frac{\partial \mathcal{L}}{\partial t} \mathrm{d}t$$

 \rightarrow It follows

$$\dot{q}_i = rac{\partial \mathcal{H}}{\partial p_i}, \qquad \dot{p}_i = -rac{\partial \mathcal{H}}{\partial q_i}$$

which are called *Hamilton's equations* or canonical equations. We have replaced s 2nd-order equations with 2s first-order equations. We also have

$$\frac{\partial \mathcal{H}}{\partial t} = -\frac{\partial \mathcal{L}}{\partial t}$$

- $\rightarrow~{\bf p}$ and ${\bf q}$ are called canonical coordinates.
- \rightarrow The time derivative of \mathcal{H} is

$$\frac{\mathrm{d}\mathcal{H}}{\mathrm{d}t} = \frac{\partial\mathcal{H}}{\partial t} + \sum_{i} \frac{\partial\mathcal{H}}{\partial q_{i}} \dot{q}_{i} + \sum_{i} \frac{\partial\mathcal{H}}{\partial p_{i}} \dot{p}_{i} = \frac{\partial\mathcal{H}}{\partial t}$$

 \rightarrow Hamiltonian is constant if \mathcal{H} does not depend explicitly on time. This is the case for closed system, for which \mathcal{L} does not depend explicitly on time. This is a reformulation of energy conservation, because we recall that

$$E \equiv \sum_{i} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \dot{q}_{i} - \mathcal{L} = \sum_{i} p_{i} \dot{q}_{i} - \mathcal{L} = \mathcal{H}$$

1.4.2 Canonical transformations

[VK 4.7-4.8]

- \rightarrow Given a set of canonical coordinates (**p**, **q**), we might want to change to another set of coordinates (**P**, **Q**) to simplify our problem.
- \rightarrow We can consider general transformations of the form $\mathbf{Q} = \mathbf{Q}(\mathbf{p}, \mathbf{q}, t)$ and $\mathbf{P} = \mathbf{P}(\mathbf{p}, \mathbf{q}, t)$: it is not guaranteed that Hamilton's equations are unchanged.
- \rightarrow A transformation $\mathbf{Q} = \mathbf{Q}(\mathbf{p}, \mathbf{q}, t)$ and $\mathbf{P} = \mathbf{P}(\mathbf{p}, \mathbf{q}, t)$ is called *canonical* if in the new coordinates

$$\dot{Q}_i = \frac{\partial \mathcal{H}'}{\partial P_i}, \qquad \dot{P}_i = -\frac{\partial \mathcal{H}'}{\partial Q_i},$$

with some Hamiltonian $\mathcal{H}' = \mathcal{H}'(\mathbf{P}, \mathbf{Q}, t)$.

 \rightarrow In any canonical coordinate system the variation of the action is null

$$\delta S = \delta \int_{t_1}^{t_2} \mathcal{L} dt = \delta \int_{t_1}^{t_2} \left(\sum_i p_i \dot{q}_i - \mathcal{H} \right) dt = 0$$
$$\delta S' = \delta \int_{t_1}^{t_2} \mathcal{L}' dt = \delta \int_{t_1}^{t_2} \left(\sum_i P_i \dot{Q}_i - \mathcal{H}' \right) dt = 0$$

This means that the difference between the two Lagrangians $\mathcal{L} - \mathcal{L}' = dF/dt$ must be a total time derivative, because

$$\delta \int_{t_1}^{t_2} \frac{\mathrm{d}F}{\mathrm{d}t} \mathrm{d}t = \delta[F]_{t_2}^{t_1} = 0.$$

 $d \Gamma$

 \rightarrow Let us impose the above condition, i.e.,

$$\mathcal{L} = \mathcal{L}' + \frac{\mathrm{d}I'}{\mathrm{d}t},$$
$$\mathcal{L}\mathrm{d}t = \mathcal{L}'\mathrm{d}t + \mathrm{d}F,$$
$$\left(\sum_{i} p_{i} \frac{\mathrm{d}q_{i}}{\mathrm{d}t} - \mathcal{H}\right)\mathrm{d}t = \sum_{i} P_{i}\mathrm{d}Q_{i} - \mathcal{H}'\mathrm{d}t + \mathrm{d}F$$
$$\sum_{i} p_{i}\mathrm{d}q_{i} - \mathcal{H}\mathrm{d}t = \sum_{i} P_{i}\mathrm{d}Q_{i} - \mathcal{H}'\mathrm{d}t + \mathrm{d}F,$$

where $F = F(\mathbf{q}, \mathbf{Q}, t)$.

 \rightarrow F is called the generating function of the transformation.

 \rightarrow Taking F in the form $F = F(\mathbf{q}, \mathbf{Q}, t)$, the above equation can be written as

$$\sum_{i} p_{i} dq_{i} - \mathcal{H} dt = \sum_{i} P_{i} dQ_{i} - \mathcal{H}' dt + \frac{\partial F}{\partial t} dt + \sum_{i} \frac{\partial F}{\partial q_{i}} dq_{i} + \sum_{i} \frac{\partial F}{\partial Q_{i}} dQ_{i},$$
$$\frac{\partial F}{\partial t} dt + \sum_{i} \frac{\partial F}{\partial q_{i}} dq_{i} + \sum_{i} \frac{\partial F}{\partial Q_{i}} dQ_{i} = \sum_{i} p_{i} dq_{i} + (\mathcal{H}' - \mathcal{H}) dt - \sum_{i} P_{i} dQ_{i}$$

Clearly the above is verified when

$$p_i = \frac{\partial F}{\partial q_i}$$
$$P_i = -\frac{\partial F}{\partial Q_i}$$
$$H' = H + \frac{\partial F}{\partial t}.$$

The above relations can be combined (and when necessary inverted) to give $\mathbf{Q} = \mathbf{Q}(\mathbf{q}, \mathbf{p}, t)$ and $\mathbf{P} = \mathbf{P}(\mathbf{q}, \mathbf{p}, t)$, i.e. the canonical transformation in terms of the generating function F.

- \rightarrow Sometimes is it convenient to have a generating function that is not in the form $F = F(\mathbf{q}, \mathbf{Q}, t)$, but depends on other combinations of new and old canonical coordinates: other possible choices are $(\mathbf{q}, \mathbf{P}, t)$, $(\mathbf{p}, \mathbf{Q}, t)$, $(\mathbf{p}, \mathbf{P}, t)$.
- \rightarrow We distinguish four classes of generating functions F, differing by the variables on which F depends:

$$F = F_1(\mathbf{q}, \mathbf{Q}, t), \quad F = F_2(\mathbf{q}, \mathbf{P}, t), \quad F = F_3(\mathbf{p}, \mathbf{Q}, t), \quad F = F_4(\mathbf{p}, \mathbf{P}, t).$$

 \rightarrow We derive here the canonical transformation for a generating function F_2 , depending on $(\mathbf{q}, \mathbf{P}, t)$. In order to do so we use the Legendre transform. Start from

$$dF_1 = \sum_i p_i dq_i - \sum_i P_i dQ_i + (\mathcal{H}' - \mathcal{H}) dt$$

where $F_1(\mathbf{q}, \mathbf{Q}, t)$ is the generating function considered above.

$$dF_1 = \sum_i p_i dq_i - \sum_i d(P_i Q_i) + \sum_i Q_i dP_i + (\mathcal{H}' - \mathcal{H}) dt$$
$$d(F_1 + \sum_i P_i Q_i) = \sum_i p_i dq_i + \sum_i Q_i dP_i + (\mathcal{H}' - \mathcal{H}) dt$$

so the generating function is now

$$F_2 = F_2(\mathbf{q}, \mathbf{P}, t) \equiv F_1(\mathbf{q}, \mathbf{Q}, t) + \sum_i P_i Q_i$$

and the change of variables is as follows

$$p_i = \frac{\partial F_2}{\partial q_i}$$
$$Q_i = \frac{\partial F_2}{\partial P_i}$$
$$\mathcal{H}' = \mathcal{H} + \frac{\partial F_2}{\partial t},$$

where $F_2 = F_2(\mathbf{q}, \mathbf{P}, t)$

 \rightarrow Similarly (exploiting Legendre transform) we can obtain transformation equations for $F = F_3(\mathbf{p}, \mathbf{Q}, t) = F_1 - \sum_i q_i p_i$ and $F = F_4(\mathbf{p}, \mathbf{P}, t) = F_1 + \sum_i Q_i P_i - \sum_i q_i p_i$. In summary the canonical transformations are

$$\begin{split} F &= F_1(\mathbf{q}, \mathbf{Q}, t), \qquad p_i = \frac{\partial F_1}{\partial q_i} \qquad P_i = -\frac{\partial F_1}{\partial Q_i} \\ F &= F_2(\mathbf{q}, \mathbf{P}, t), \qquad p_i = \frac{\partial F_2}{\partial q_i} \qquad Q_i = \frac{\partial F_2}{\partial P_i} \\ F &= F_3(\mathbf{p}, \mathbf{Q}, t), \qquad q_i = -\frac{\partial F_3}{\partial p_i} \qquad P_i = -\frac{\partial F_3}{\partial Q_i} \\ F &= F_4(\mathbf{p}, \mathbf{P}, t), \qquad q_i = -\frac{\partial F_4}{\partial p_i} \qquad Q_i = \frac{\partial F_4}{\partial P_i}. \end{split}$$

In addition we have $\mathcal{H}' = \mathcal{H} + \partial F_i / \partial t$, for $i = 1, \dots, 4$.

 \rightarrow Example of canonical transformations: extended point transformations. This is of the kind $F = F_2(\mathbf{q}, \mathbf{P})$:

$$\mathbf{Q} = \mathbf{G}(\mathbf{q}), \qquad F(\mathbf{q}, \mathbf{P}) = \sum_{k} P_k G_k(\mathbf{q}),$$

where $\mathbf{G} = (G_1, ..., G_s)$, and the G_i are given functions. Then

$$p_i = \frac{\partial F}{\partial q_i} = \sum_k P_k \frac{\partial G_k}{\partial q_i}(\mathbf{q}),$$
$$Q_i = \frac{\partial F}{\partial P_i} = G_i(\mathbf{q}).$$

For instance, for a system with 1 degree of freedom, we have

$$Q = G(q), \qquad F(q, P) = PG(q),$$

 \mathbf{SO}

$$p = \frac{\partial F}{\partial q} = P \frac{\partial G}{\partial q}(q) \implies P = p \left(\frac{\partial G}{\partial q}\right)^{-1},$$
$$Q = \frac{\partial F}{\partial P} = G(q).$$

 \rightarrow Special classes of Canonical Coordinates. Among canonical coordinates there are two special classes that are particularly important:

- Sets of canonical coordinates in which both \mathbf{q} and \mathbf{p} are integrals of motion (they remain constant during the evolution of the system): these are the coordinates obtained by solving the *Hamilton-Jacobi equation*.

- Sets of canonical coordinates in which the \mathbf{q} are not constant, but they are cyclic coordinates (they can be interpreted as angles, so they are called *angles*), while the \mathbf{p} are integrals of motion (they are constants; they are called *actions*). These are called *angle-action coordinates*.

1.4.3 Hamilton-Jacobi equation

[VK 4.9]

 \rightarrow The action $S = \int \mathcal{L} dt$ can be seen as a generating function. The corresponding canonical transformations are very useful because they are such that $\mathcal{H}' = 0$. We have

$$dS = \mathcal{L}dt = \sum_{i} p_{i} \frac{dq_{i}}{dt} dt - \mathcal{H}dt = \sum_{i} p_{i} dq_{i} - \mathcal{H}dt$$

 \rightarrow It follows that

$$p_i = \frac{\partial S}{\partial q_i},$$
$$\mathcal{H} = -\frac{\partial S}{\partial t}$$

 \rightarrow So $S = S(\mathbf{q}, t)$, but S can be seen also as a generating function $S = S(\mathbf{q}, \mathbf{P}, t)$, with P_i constants (i.e. $dP_i = 0$ for all i). So, we have

$$Q_i = \frac{\partial S}{\partial P_i}$$

 \rightarrow The new Hamiltonian is null:

$$\mathcal{H}' = \mathcal{H} + \frac{\partial S}{\partial t} = 0$$

consistent with the fact that the new canonical coordinates are constant:

$$\dot{P}_i = -\frac{\partial \mathcal{H}'}{\partial Q_i} = 0 \implies P_i = \alpha_i = const$$

 $\dot{Q}_i = \frac{\partial \mathcal{H}'}{\partial P_i} = 0 \implies Q_i = \beta_i = const.$

- \rightarrow So the action can be seen as a generating function in the form $S = S(\mathbf{q}, \boldsymbol{\alpha}, t)$ where $\boldsymbol{\alpha} = (\alpha_1, ..., \alpha_s) = \mathbf{P}$ are constants.
- \rightarrow Exploiting the fact that $p_i = \partial S / \partial q_i$, the above equation $\mathcal{H}' = 0$ can be written as

$$\mathcal{H}\left(q_i, \frac{\partial S}{\partial q_i}, t\right) + \frac{\partial S}{\partial t} = 0.$$

This is known as the Hamilton-Jacobi equation.

 \rightarrow If the solution S to the H-J equation is obtained, the solution of the equations of motions can be written explicitly as follows. The variables (**p**, **q**) are related to (α, β) by

$$p_i = \frac{\partial S}{\partial q_i}(\mathbf{q}, \boldsymbol{\alpha}, t), \qquad \beta_i = \frac{\partial S}{\partial \alpha_i}(\mathbf{q}, \boldsymbol{\alpha}, t),$$

which can be combined and inverted to give $q_i = q_i(\boldsymbol{\alpha}, \boldsymbol{\beta}, t)$ and $p_i = p_i(\boldsymbol{\alpha}, \boldsymbol{\beta}, t)$.

 \rightarrow If \mathcal{H} does not depend explicitly on time then $\mathcal{H} = E = const$ and the H-J equation can be written

$$\mathcal{H}\left(q_i, \frac{\partial S}{\partial q_i}\right) = E,$$

and we also have

$$\frac{\partial S}{\partial t} = -E.$$

 \rightarrow Example: free particle. Take Cartesian coordinates x, y, z as generalized coordinates q_i and p_x, p_y, p_z as generalized momenta p_i . The Hamiltonian of a free particle of mass m is

$$\mathcal{H} = \frac{1}{2m} \left(p_x^2 + p_y^2 + p_z^2 \right)$$

The H-J equation is

$$\frac{1}{2m}\left[\left(\frac{\partial S}{\partial x}\right)^2 + \left(\frac{\partial S}{\partial y}\right)^2 + \left(\frac{\partial S}{\partial z}\right)^2\right] + \frac{\partial S}{\partial t} = 0.$$

Separation of variables S(x, y, z, t) = X(x) + Y(y) + Z(z) + T(t) then

$$\frac{1}{2m}\left[\left(\frac{\partial X}{\partial x}\right)^2 + \left(\frac{\partial Y}{\partial y}\right)^2 + \left(\frac{\partial Z}{\partial z}\right)^2\right] + \frac{\partial T}{\partial t} = 0,$$

so $X = \alpha_x x$, $Y = \alpha_y y$, $Z = \alpha_z z$ and $T = -(\alpha_x^2 + \alpha_y^2 + \alpha_z^2)t/2m$, therefore $p_x = \alpha_x$, $p_y = \alpha_y$, $p_z = \alpha_z$, $\beta_x = x - \alpha_x t/m$, $\beta_y = y - \alpha_y t/m$, $\beta_z = z - \alpha_z t/m$, which is the solution (the values of the constants depend on the initial conditions at t = 0).

Bibliography

- \rightarrow Binney J., Tremaine S. 2008, "Galactic dynamics", Princeton University Press, Princeton (BT08)
- \rightarrow Landau L.D., Lifshitz E.M., 1982, "Mechanics", Butterworth-Heinemann (LL)
- \rightarrow Valtonen M., Karttunen H., 2006 "The three body problem", Cambridge University Press, Cambridge (VK)