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1. Fundamentals of mechanics

1.1 Lagrangian mechanics

[LL]

1.1.1 Generalized coordinates

→ Particle: point mass

→ Particle position vector r. In Cartesian components r = (x, y, z).

→ Particle velocity v = dr/dt = ṙ. In Cartesian coordinates vx = dx/dt, etc...

→ Particle acceleration a = d2r/dt2 = v̇ = r̈. In Cartesian coordinates ax = d2x/dt2, etc...

→ N particles =⇒ s = 3N degrees of freedom

→ Generalized coordinates: any s quantities qi that define the positions of the N -body system (q = q1, ..., qs)

→ Generalized velocities: q̇i (q̇ = q̇1, ..., q̇s)

→ We know from experience that, given q and q̇ for all particles in the system at a given time, we are able to

predict q(t) at any later time t. In other words, if all q and q̇ are specified =⇒ q̈ are known.

→ Equations of motion are ODE for q(t) that relate q̈ with q and q̇. The solution q(t) is the path (orbit).

1.1.2 Principle of least action & Euler-Lagrange equations

→ Given a mechanical system, we define the Lagrangian function L(q, q̇, t). L does not depend on higher

derivatives, consistent with the idea that motion is determined if q and q̇ are given.

→ Given two instants t1 and t2, we define the action S =
∫ t2
t1
L(q, q̇, t)dt

→ The system occupies positions q1 and q2 at time t1 and t2, respectively. Note that in this formalism instead

of fixing position and velocity at the initial time t1, we fix positions at the initial and final times.



2 Laurea in Astronomia - Università di Bologna

→ Principle of least action (or Hamilton’s principle): from t1 to t2 the system moves in such a way that S is a

minimum (extremum) over all paths, i.e. (for 1 degree of freedom)

δS = δ

∫ t2

t1

L(q, q̇, t)dt =

∫ t2

t1

[L(q + δq, q̇ + δq̇, t)− L(q, q̇, t)] dt =

∫ t2

t1

(
∂L
∂q
δq +

∂L
∂q̇
δq̇

)
dt = 0,

Now, we have
∂L
∂q
δq +

∂L
∂q̇

d(δq)

dt
=
∂L
∂q
δq +

d

dt

(
∂L
∂q̇
δq

)
− d

dt

(
∂L
∂q̇

)
δq,

so the above equation can be rewritten as

δS =

[
∂L
∂q̇
δq

]t2
t1

+

∫ t2

t1

(
∂L
∂q
− d

dt

∂L
∂q̇

)
δqdt = 0,

which is verified for all δq only when
∂L
∂q
− d

dt

∂L
∂q̇

= 0,

because δq(t1) = δq(t2) = 0, as all possible paths are such that q(t1) = q1 and q(t2) = q2.

→ Generalizing to the case of s degrees of freedom we have the Euler-Lagrange (E-L) equations:

∂L
∂qi
− d

dt

∂L
∂q̇i

= 0, i = 1, ..., s

→ Transformations like L → AL, with A constant, or L → L + dF/dt, where F = F (q, t) do not affect the

particles’ motion, because

L′ = AL =⇒ δS′ = δAS = AδS = 0 ⇐⇒ δS = 0,

and

L′ = L+ dF/dt =⇒ S′ = S +

∫ t2

t1

dF

dt
dt = S + F (q2, t2)− F (q1, t1) = S + C,

where C is a constant (independent of q, q̇).

1.1.3 Inertial frames

→ Inertial reference frame: such that space is homogeneous and isotropic and time is homogeneous. For

instance, in any inertial reference frame a particle that is at rest at a given time will remain at rest at all

later times.

→ Galileo’s relativity principle: laws of motion are the same in all inertial reference frames (moving at constant

velocity w.r.t. one another)

→ Free particle: particle subject to no force.

→ Lagrangian of a free particle cannot contain explicitly the position vector r (space is homogeneous) or the

time t (time is homogeneous) and cannot depend on the direction of v (space is isotropic) =⇒ L = L(v2)
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→ More specifically, it can be shown (see LL) that for a free particle

L =
1

2
mv2,

where m is particle mass. T = (1/2)mv2 is the particle kinetic energy.

→ In Cartesian coordinates q = r = (x, y, z) and q̇ = v = (vx, vy, vz), so for a free particle the Lagrangian is

L = 1
2m(v2

x + v2
y + v2

z). The E-L equations for a free particle are

d

dt

∂L
∂v

= 0,

so for the x component
d

dt

∂L
∂vx

= m
dvx
dt

= 0 =⇒ vx = const,

and similarly for y and z components. =⇒ dv/dt = 0, which is the law of inertia (Newton’s first law of

motion).

1.1.4 Lagrangian of a free particle in different systems of coordinates

→ Let’s write the Lagrangian of a free particle in different systems of coordinates. Note that, if dl is the

infinitesimal displacement, v2 = (dl/dt)2 = dl2/dt2.

→ In Cartesian coordinates dl2 = dx2 + dy2 + dz2, so

L =
1

2
m(ẋ2 + ẏ2 + ż2)

→ In cylindrical coordinates dl2 = dR2 +R2dφ2 + dz2, so

L =
1

2
m(Ṙ2 +R2φ̇2 + ż2)

→ In spherical coordinates dl2 = dr2 + r2dθ2 + r2 sin2 θdφ2, so

L =
1

2
m(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2)

→ The above can be derived also by taking the expression of the position vector r, differentiating and squaring

(see e.g. BT08 app. B). For instance, in cylindrical coordinates

r = ReR + zez

dr

dt
= ṘeR +RėR + żez,

because ėz = 0. Now,

eR = cosφex + sinφey

and

eφ = − sinφex + cosφey
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So

deR = (− sinφex + cosφey)dφ

deR = eφdφ

ėR = φ̇eφ

so
dr

dt
= ṘeR +Rφ̇eφ + żez,

v2 =

∣∣∣∣drdt

∣∣∣∣2 = Ṙ2 +R2φ̇2 + ż2.

→ Alternatively, we can derive the same expressions for the cylindrical and spherical coordinates, starting from

the Cartesian coordinates. For instance, in spherical coordinates r, θ, φ we have

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ,

so

ẋ = ṙ sin θ cosφ+ r cos θ cosφθ̇ − r sin θ sinφφ̇,

ẏ = ṙ sin θ sinφ+ r cos θ sinφθ̇ + r sin θ cosφφ̇,

ż = ṙ cos θ − r sin θθ̇,

then

v2 = ẋ2 + ẏ2 + ż2 = ṙ2 + r2θ̇2 + r2 sin2 θφ̇2.

→ The Lagrangian of a free particle in spherical coordinates is

L =
1

2
m
(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
.

1.1.5 Lagrangian of a system of particles

→ Additivity of the Lagrangian: take two dynamical systems A and B. If each of them were an isolated system,

they would have, respectively, Lagrangians LA and LB. If they are two parts of the same system (but so

distant that the interaction is negligible) the total Lagrangian must be L = LA + LB.

→ So, for a system of non-interacting particles

L =
∑
a

1

2
mav

2
a,

were the subscript a identifies the a-th the particle.

→ Closed system: system of particles that interact, but are not affected by external forces.
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→ Lagrangian for a closed system of interacting particles:

L = T − V

where T is the kinetic energy and V is potential energy.

→ The potential energy V depends only on the position of the particles: V = V (q). This is a consequence

of the assumption that the interaction is instantaneously propagated: a change in position of one of the

particles instantaneously affects the force experienced by the other particles.

→ We have seen that in general T = T (q, q̇): see, for instance, the expression of T in cylindrical or spherical

coordinates. In other words, in generalized coordinates the kinetic energy can depend also on the q, not

only on q̇:

L =
1

2

∑
i,k

Aik(q)q̇iq̇k − V (q),

where i = 1, . . . , s and k = 1, . . . , s, where s is the number of degrees of freedom (s = 3N for a system of N

particles).

→ In Cartesian coordinates we have q = ra = (xa, ya, za) positions and q̇ = va = (vx,a, vy,a, vz,a) (velocities),

so the Lagrangian for a closed system of N particles is

L =
1

2

∑
a=1,..,N

mav
2
a − V (r1, r2, ...rN )

→ Applying Euler-Lagrange equations
∂L
∂ra
− d

dt

∂L
∂va

= 0,

we get the equations of motion:

mav̇a = − ∂V
∂ra

, i.e. maẍa = − ∂V
∂xa

, etc.

i.e. mar̈ = Fa (Newton’s second law of motion), where Fa = −∂V/∂ra is the force acting on the a-th particle.

→ For a particle moving in an external field

L =
1

2
mv2 − V (r, t).

If the external field is uniform =⇒ V = −F(t) · r (F dependent of time, but independent of position)

1.2 Conservation laws

→ Constant of motion: quantity that remains constant during the evolution of a mechanical system C =

C[q(t), q̇(t), t] = const (i.e. dC/dt = 0).
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→ Integral of motion: a constant of motion that depends only on q and q̇ (in other words, it does not depend

explicitly on time) I = I[q(t), q̇(t)] = const (i.e. dI/dt = 0). The value of the integral for a system equals

the sum of the values for sub-systems that interact negligibly with one another.

→ Integrals of motion derive from fundamental properties (symmetries): isotropy/homogeneity of time and

space. Among constants of motions, only integrals of motions are important in mechanics. Example of a

constant of motion that is not an integral of motion: for a 1-D free particle x(t) = x0 + ẋ0t (where x0 and

ẋ0 are the initial conditions and ẋ = ẋ0 = const), so x0(x, t) = x(t) − ẋ0t is a constant of motion, but not

an integral of motion (it depends explicitly on t).

→ There are seven integrals of motions: total energy E, momentum P (3 components), angular momentum L

(3 components).

1.2.1 Energy

→ Homogeneity of time =⇒ Lagrangian of a closed system does not depend explicitly on time ∂L/∂t = 0 =⇒

dL
dt

=
∑
i

[
∂L
∂qi

q̇i +
∂L
∂q̇i

q̈i

]
,

where i = 1, . . . , s, with s number of degrees of freedom. Using E-L equations:

dL
dt

=
∑
i

[
d

dt

(
∂L
∂q̇i

)
q̇i +

∂L
∂q̇i

q̈i

]
=
∑
i

d

dt

(
∂L
∂q̇i

q̇i

)

d

dt

(∑
i

∂L
∂q̇i

q̇i − L

)
= 0

→ Energy

E ≡
∑
i

∂L
∂q̇i

q̇i − L

=⇒ dE/dt = 0

→

L = T − V =⇒ E =
∑
i

∂T

∂q̇i
q̇i − T + V

→ We have seen that T is a quadratic function of q̇i, so by Euler theorem on homogeneous functions

q̇i∂T/∂q̇i = 2T , so

E = 2T − L = T (q, q̇) + V (q),

i.e. total energy E is the sum of kinetic and potential energy.

→ Euler theorem on homogeneous functions: if f(tx) = tnf(x) then xf ′(x) = nf(x).
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1.2.2 Momentum

Homogeneity of space =⇒ conservation of momentum. Lagrangian must be invariant if the system is shifted in

space by ε.

Cartesian coordinates

→ Lagrangian must be invariant if the system is shifted in space by δra = ε:

δL = L(q + dq, q̇)− L(q, q̇) =
∑
a

∂L
∂ra
· δra = ε ·

∑ ∂L
∂ra

=⇒ ∑ ∂L
∂ra

= 0 =⇒ d

dt

∑ ∂L
∂va

= 0

or
dP

dt
= 0,

where

P ≡
∑ ∂L

∂va
=
∑

mava

is momentum

→ Momentum is additive P =
∑

a pa, where pa = ∂L/∂va = mava is the momentum of the individual particles.

→ We also have ∑ ∂L
∂ra

= 0 =⇒
∑ ∂V

∂ra
=
∑

Fa = 0,

where Fa is the force acting on the a-th particle. When the bodies are two, is F1 +F2 = 0 or F1 = −F2 i.e.

Newton’s third law of motion.

Generalized coordinates

→ We define

pi ≡
∂L
∂q̇i

as generalized momenta. Note that pi = mvi in Cartesian coordinates, but in general pi depend on both qi

and q̇i.

→ The E-L equation can be written as
dpi
dt

= Fi,

where Fi = ∂L/∂qi is the generalized force.

→ Then
d

dt

∑
i

pi =
∑
i

Fi = 0.
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Centre of mass

→ For a system of particles there is a special inertial reference frame in which P = 0: this is the reference

frame in which the centre of mass is at rest.

P =
∑

mava =
d

dt

∑
mara =

d

dt
rcm

∑
ma =

∑
ma

drcm

dt
= 0,

where

rcm ≡
∑
mara∑
ma

is the position of the centre of mass.

→ In a general inertial frame the centre of mass moves with a velocity

vcm =
drcm

dt
=

∑
mava∑
ma

=
P∑
ma

= const

→ If the total energy of the system in the centre-of-mass reference frame is Eint, in a general inertial frame the

total energy is

E =
1

2

∑
a

mav
2
cm + Eint

→ Note: the components of the centre of mass rcm are not constants of motion. The components of

rcm(0) = rcm(t)− tvcm are constants of motion, but they are not integrals of motion (they depend explicitly

on time).

1.2.3 Angular momentum

→ Isotropy of space =⇒ conservation of angular momentum

→ The Lagrangian is invariant under rotation. Apply a rotation represented by a vector δφ (with magnitude

δφ, which is the angle of rotation, and direction along the rotation axis) =⇒ δr = δφ× r and δv = δφ× v

δL =
∑
a

(
∂L
∂ra
· δra +

∂L
∂va
· δva

)
= 0

δL =
∑
a

[ṗa · (δφ× ra) + pa · (δφ× va)] = 0.

Using the vector identity A · (B×C) = B · (C×A) we get

δL = δφ ·
∑

(ra × ṗa + va × pa) = δφ · d

dt

∑
ra × pa = 0,

because
d

dt
(ra × pa) = ra × ṗa + va × pa
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→ As this must be satisfied for all δφ, we must have

dL

dt
= 0,

where

L ≡
∑

ra × pa

is the angular momentum, which (as well as linear momentum) is additive.

→ The angular momentum in a reference frame in which the system is at rest (P = 0) is Lint (intrinsic angular

momentum)

→ In a general inertial frame the angular momentum is

L = Lint + rcm ×
(∑

ma

)
vcm = Lint + rcm ×

∑
mava = Lint + rcm ×P

1.3 Integration of the equations of motion

1.3.1 Motion in one dimension

→ One dimension = one degree of freedom = one coordinate q

→ Lagrangian:

L =
1

2
a(q)q̇2 − V (q).

If q = x is a Cartesian coordinate

L =
1

2
mẋ2 − V (x).

→ Energy is integral of motion:

E =
1

2
mẋ2 + V (x),

then (taking ẋ ≥ 0)

dx

dt
=

√
2

m
[E − V (x)],

dt =

√
m√

2[E − V (x)]
dx,

t = t0 +

√
m

2

∫ x

x0

1√
[E − V (x)]

dx.

→ Motion in region of space such that V (x) < E. If this interval is bounded, motion is finite. From the above

equations and the E-L equations (equations of motion) it is clear that motion is oscillatory (ẋ changes sign

only at turning points x such that V (x) = E) =⇒ motion is periodic with period

T =
√

2m

∫ x2

x1

1√
[E − V (x)]

dx,

where x1 and x2 are the turning points at which E = V (x1) = V (x2). T is twice the time to go from x1 to

x2 (see Fig. 6 LL. FIG CM1.1).
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1.3.2 Motion in a central field

→ Motion in a central field: motion of a single particle in an external field such that its potential energy

depends only on the distance r from a fixed point: V = V (r) =⇒

F = −∂V
∂r

= −dV

dr

r

r

→ For instance, in Cartesian coordinates:

Fx = −∂V
∂x

= −dV
dr

∂r

∂x
= −dV

dr

x

r
,

etc., because

∂r

∂x
=
∂
√
x2 + y2 + z2

∂x
=

2x

2
√
x2 + y2 + z2

=
x

r

→ Take center of the field as origin: angular momentum L is conserved (even in the presence of the field),

because the field does not have component orthogonal to position vector.

dL

dt
= ṙ× p + r× ṗ = 0.

→ L = r× p is conserved and is orthogonal to r, so r stays always in the same plane =⇒ motion is planar.

→ Using polar coordinates (r, φ) in the plane of the motion, the Lagrangian reads (see kinetic energy in

cylindrical coordinates: Section 1.1.4)

L =
1

2
m(ṙ2 + r2φ̇2)− V (r)

→ Motion in φ. E-L equations for coordinate φ =⇒

d

dt

∂L
∂φ̇

=
d(mr2φ̇)

dt
= 0,

where

Lz = L = mr2φ̇ = const

is the modulus of the angular momentum. φ is ciclic coordinate: it does not appear in L. Associated

generalized momentum is constant.

→ Kepler’s second law: let’s define an infinitesimal sector bounded by the path as

dA =
1

2
r2dφ

(show Fig. 8 LL FIG CM1.2). dA/dt = r2(dφ/dt)/2 = L/(2m) = const is the sectorial velocity =⇒ the

particle’s position vector sweeps equal areas in equal times (Kepler’s second law).
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→ Motion in r.

E = 2T − L = const,

E =
1

2
m(ṙ2 + r2φ̇2) + V (r) =

1

2
mṙ2 +

L2

2mr2
+ V (r),

=⇒
dr

dt
=

√
2

m
[E − Veff(r)]

dt =
dr√

2
m [E − Veff(r)]

(time t as a function of r), where

Veff(r) = V (r) +
L2

2mr2
.

→ The radial part of the motion behaves like a motion in one-dimension with effective potential energy Veff(r),

defined above, where L2/2mr2 is called the centrifugal energy.

→ The radii r such that E = Veff(r) are the radial turning points, corresponding to ṙ = 0: if motion is finite,

pericentre (rperi) and apocentre (rapo). If motion is infinite rapo =∞

→ Substituting mr2dφ/L = dt

dφ =
Ldr

r2
√

2m[E − Veff(r)]

(angle φ as a function of r, i.e. path or trajectory).

→ Consider variation of φ for finite motion in one radial period:

∆φ = 2

∫ rapo

rperi

Ldr

r2
√

2m[E − Veff(r)]

→ Closed orbit only if ∆φ = 2πm/n with m,n integers. In general orbit is not closed (rosette). All orbits are

closed only when V ∝ 1/r (Kepler’s potential) or V ∝ r2 (harmonic potential).

1.4 Hamiltonian mechanics

[LL; VK]

1.4.1 Hamilton’s equations

→ In Lagrangian mechanics generalized coordinates (qi) and generalized velocities (q̇i), i = 1, ..., s, where s is

the number of degrees of freedom.

→ In Hamiltonian mechanics generalized coordinates (qi) and generalized momenta (pi), i = 1, ..., s.

→ The idea is to transform L(q, q̇, t) into a function of (q,p, t), where pi = ∂L/∂q̇i are the generalized momenta.

This can be accomplished through a Legendre transform.
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→ Example: Legendre transform for functions of two variables. Start from f = f(x, y), u ≡ ∂f/∂x and

v ≡ ∂f/∂y. The total differential of f is

df = udx+ vdy.

We want to replace y with v, so we use

d(vy) = vdy + ydv

so

df = udx+ d(vy)− ydv,

d(vy − f) = −udx+ ydv,

so g(x, v) ≡ vy − f(x, v) with ∂g/∂x = −u and ∂g/∂v = y.

→ We can do the same starting from L:

dL =
∑
i

∂L
∂qi

dqi +
∑
i

∂L
∂q̇i

dq̇i +
∂L
∂t

dt =
∑
i

ṗidqi +
∑
i

pidq̇i +
∂L
∂t

dt

dL =
∑
i

ṗidqi +
∑
i

d(piq̇i)−
∑
i

q̇idpi +
∂L
∂t

dt

d

(∑
i

piq̇i − L

)
=
∑
i

q̇idpi −
∑
i

ṗidqi −
∂L
∂t

dt

→ So the Legendre transform of L is the Hamiltonian:

H(p, q, t) ≡
∑
i

piq̇i − L

→ The differential of H is:

dH =
∑
i

q̇idpi −
∑
i

ṗidqi −
∂L
∂t

dt

→ It follows

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

,

which are called Hamilton’s equations or canonical equations. We have replaced s 2nd-order equations with

2s first-order equations. We also have
∂H
∂t

= −∂L
∂t

→ p and q are called canonical coordinates.

→ The time derivative of H is
dH
dt

=
∂H
∂t

+
∑
i

∂H
∂qi

q̇i +
∑
i

∂H
∂pi

ṗi =
∂H
∂t

→ Hamiltonian is constant if H does not depend explicitly on time. This is the case for closed system, for which

L does not depend explicitly on time. This is a reformulation of energy conservation, because we recall that

E ≡
∑
i

∂L
∂q̇i

q̇i − L =
∑
i

piq̇i − L = H
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1.4.2 Canonical transformations

[VK 4.7-4.8]

→ Given a set of canonical coordinates (p,q), we might want to change to another set of coordinates (P,Q)

to simplify our problem.

→ We can consider general transformations of the form Q = Q(p,q, t) and P = P(p,q, t): it is not guaranteed

that Hamilton’s equations are unchanged.

→ A transformation Q = Q(p,q, t) and P = P(p,q, t) is called canonical if in the new coordinates

Q̇i =
∂H′

∂Pi
, Ṗi = −∂H

′

∂Qi
,

with some Hamiltonian H′ = H′(P,Q, t).

→ In any canonical coordinate system the variation of the action is null

δS = δ

∫ t2

t1

Ldt = δ

∫ t2

t1

(∑
i

piq̇i −H

)
dt = 0

δS′ = δ

∫ t2

t1

L′dt = δ

∫ t2

t1

(∑
i

PiQ̇i −H′
)

dt = 0

This means that the difference between the two Lagrangians L−L′ = dF/dt must be a total time derivative,

because

δ

∫ t2

t1

dF

dt
dt = δ[F ]t1t2 = 0.

→ Let us impose the above condition, i.e.,

L = L′ + dF

dt
,

Ldt = L′dt+ dF,(∑
i

pi
dqi
dt
−H

)
dt =

∑
i

PidQi −H′dt+ dF

∑
i

pidqi −Hdt =
∑
i

PidQi −H′dt+ dF,

where F = F (q,Q, t).

→ F is called the generating function of the transformation.

→ Taking F in the form F = F (q,Q, t), the above equation can be written as∑
i

pidqi −Hdt =
∑
i

PidQi −H′dt+
∂F

∂t
dt+

∑
i

∂F

∂qi
dqi +

∑
i

∂F

∂Qi
dQi,

∂F

∂t
dt+

∑
i

∂F

∂qi
dqi +

∑
i

∂F

∂Qi
dQi =

∑
i

pidqi + (H′ −H)dt−
∑
i

PidQi
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Clearly the above is verified when

pi =
∂F

∂qi

Pi = − ∂F
∂Qi

H ′ = H +
∂F

∂t
.

The above relations can be combined (and when necessary inverted) to give Q = Q(q,p, t) and P =

P(q,p, t), i.e. the canonical transformation in terms of the generating function F .

→ Sometimes is it convenient to have a generating function that is not in the form F = F (q,Q, t), but depends

on other combinations of new and old canonical coordinates: other possible choices are (q,P, t), (p,Q, t),

(p,P, t).

→ We distinguish four classes of generating functions F , differing by the variables on which F depends:

F = F1(q,Q, t), F = F2(q,P, t), F = F3(p,Q, t), F = F4(p,P, t).

→ We derive here the canonical transformation for a generating function F2, depending on (q,P, t). In order

to do so we use the Legendre transform. Start from

dF1 =
∑
i

pidqi −
∑
i

PidQi + (H′ −H)dt

where F1(q,Q, t) is the generating function considered above.

dF1 =
∑
i

pidqi −
∑
i

d(PiQi) +
∑
i

QidPi + (H′ −H)dt

d(F1 +
∑
i

PiQi) =
∑
i

pidqi +
∑
i

QidPi + (H′ −H)dt

so the generating function is now

F2 = F2(q,P, t) ≡ F1(q,Q, t) +
∑
i

PiQi

and the change of variables is as follows

pi =
∂F2

∂qi

Qi =
∂F2

∂Pi

H′ = H+
∂F2

∂t
,

where F2 = F2(q,P, t)
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→ Similarly (exploiting Legendre transform) we can obtain transformation equations for F = F3(p,Q, t) =

F1 −
∑

i qipi and F = F4(p,P, t) = F1 +
∑

iQiPi −
∑

i qipi. In summary the canonical transformations are

F = F1(q,Q, t), pi =
∂F1

∂qi
Pi = −∂F1

∂Qi

F = F2(q,P, t), pi =
∂F2

∂qi
Qi =

∂F2

∂Pi

F = F3(p,Q, t), qi = −∂F3

∂pi
Pi = −∂F3

∂Qi

F = F4(p,P, t), qi = −∂F4

∂pi
Qi =

∂F4

∂Pi
.

In addition we have H′ = H+ ∂Fi/∂t, for i = 1, . . . , 4.

→ Example of canonical transformations: extended point transformations. This is of the kind F = F2(q,P):

Q = G(q), F (q,P) =
∑
k

PkGk(q),

where G = (G1, ..., Gs), and the Gi are given functions. Then

pi =
∂F

∂qi
=
∑
k

Pk
∂Gk
∂qi

(q),

Qi =
∂F

∂Pi
= Gi(q).

For instance, for a system with 1 degree of freedom, we have

Q = G(q), F (q, P ) = PG(q),

so

p =
∂F

∂q
= P

∂G

∂q
(q) =⇒ P = p

(
∂G

∂q

)−1

,

Q =
∂F

∂P
= G(q).

→ Special classes of Canonical Coordinates. Among canonical coordinates there are two special classes that

are particularly important:

- Sets of canonical coordinates in which both q and p are integrals of motion (they remain constant during

the evolution of the system): these are the coordinates obtained by solving the Hamilton-Jacobi equation.

- Sets of canonical coordinates in which the q are not constant, but they are cyclic coordinates (they can

be interpreted as angles, so they are called angles), while the p are integrals of motion (they are constants;

they are called actions). These are called angle-action coordinates.
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1.4.3 Hamilton-Jacobi equation

[VK 4.9]

→ The action S =
∫
Ldt can be seen as a generating function. The corresponding canonical transformations

are very useful because they are such that H′ = 0. We have

dS = Ldt =
∑
i

pi
dqi
dt

dt−Hdt =
∑
i

pidqi −Hdt.

→ It follows that

pi =
∂S

∂qi
,

H = −∂S
∂t
.

→ So S = S(q, t), but S can be seen also as a generating function S = S(q,P, t), with Pi constants (i.e.

dPi = 0 for all i). So, we have

Qi =
∂S

∂Pi

→ The new Hamiltonian is null:

H′ = H+
∂S

∂t
= 0,

consistent with the fact that the new canonical coordinates are constant:

Ṗi = −∂H
′

∂Qi
= 0 =⇒ Pi = αi = const

Q̇i =
∂H′

∂Pi
= 0 =⇒ Qi = βi = const.

→ So the action can be seen as a generating function in the form S = S(q,α, t) where α = (α1, ..., αs) = P

are constants.

→ Exploiting the fact that pi = ∂S/∂qi, the above equation H′ = 0 can be written as

H
(
qi,

∂S

∂qi
, t

)
+
∂S

∂t
= 0.

This is known as the Hamilton-Jacobi equation.

→ If the solution S to the H-J equation is obtained, the solution of the equations of motions can be written

explicitly as follows. The variables (p,q) are related to (α,β) by

pi =
∂S

∂qi
(q,α, t), βi =

∂S

∂αi
(q,α, t),

which can be combined and inverted to give qi = qi(α,β, t) and pi = pi(α,β, t).
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→ If H does not depend explicitly on time then H = E = const and the H-J equation can be written

H
(
qi,

∂S

∂qi

)
= E,

and we also have
∂S

∂t
= −E.

→ Example: free particle. Take Cartesian coordinates x, y, z as generalized coordinates qi and px, py, pz as

generalized momenta pi. The Hamiltonian of a free particle of mass m is

H =
1

2m

(
p2
x + p2

y + p2
z

)
.

The H-J equation is

1

2m

[(
∂S

∂x

)2

+

(
∂S

∂y

)2

+

(
∂S

∂z

)2
]

+
∂S

∂t
= 0.

Separation of variables S(x, y, z, t) = X(x) + Y (y) + Z(z) + T (t) then

1

2m

[(
∂X

∂x

)2

+

(
∂Y

∂y

)2

+

(
∂Z

∂z

)2
]

+
∂T

∂t
= 0,

so X = αxx, Y = αyy, Z = αzz and T = −(α2
x + α2

y + α2
z)t/2m, therefore px = αx, py = αy, pz = αz,

βx = x−αxt/m, βy = y−αyt/m, βz = z−αzt/m, which is the solution (the values of the constants depend

on the initial conditions at t = 0).
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