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Notice 

The course material includes slides downloaded from:!
http://codex.cs.yale.edu/avi/os-book/!

(slides by Silberschatz, Galvin, and Gagne, associated with 
Operating System Concepts, 9th Edition, Wiley, 2013)!

and!
http://retis.sssup.it/~giorgio/rts-MECS.html!

(slides by Buttazzo, associated with Hard Real-Time Computing 
Systems, 3rd Edition, Springer, 2011)!

which has been edited to suit the needs of this course. !
The slides are authorized for personal use only. !
Any other use, redistribution, and any for profit sale of the slides (in any 
form) requires the consent of the copyright owners.!
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Chapter 2:  Operating-System Structures 

1.  Operating System Services!
2.  User and Operating System Interface!
3.  System Calls!
4.  Types of System Calls!
5.  System Programs!
6.  Operating-System Design and Implementation!
7.  Operating-System Structure!
8.  Operating-System Debugging!
9.  Operating-System Generation!
10. System Boot!
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Objectives 

  To describe the services an operating system provides to users, 
processes, and other systems!

  To discuss the various ways of structuring an operating system!

  To explain how operating systems boot!
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Operating System Services 

  Operating systems provide an environment for execution of programs and 
services to programs and users!

  One set of operating-system services provides functions that are helpful to the 
user:!
  User interface - Almost all operating systems have a user interface (UI).!

  Varies between Command-Line (CLI), Graphics User Interface (GUI), 
Batch!

  Program execution - The system must be able to load a program into 
memory and to run that program, and end its execution, either normally or 
abnormally (indicating error)!

  I/O operations -  A running program may require I/O, which may involve a 
file or an I/O device!

  File-system manipulation -  The file system is of particular interest. 
Programs need to read and write files and directories, create and delete 
them, search them, list file Information, permission management.!
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Operating System Services 

  Communications – Processes may exchange information, on the 
same computer or between computers over a network!
 Communications may be via shared memory or through 

message passing (packets moved by the OS)!
  Error detection – OS needs to be constantly aware of possible 

errors!
 May occur in the CPU and memory hardware, in I/O devices, in 

user program!
 For each type of error, OS should take the appropriate action to 

ensure correct and consistent computing!
 Debugging facilities can greatly enhance the user’s and 

programmer’s abilities to efficiently use the system!



2.7! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Operating System Services 

  Another set of OS functions exists for ensuring the efficient operation of the 
system itself via resource sharing!
  Resource allocation - When  multiple users or multiple jobs running 

concurrently, resources must be allocated to each of them!
  Many types of resources -  Some (such as CPU cycles, main memory, 

and file storage) may have special allocation code, others (such as I/O 
devices) may have general request and release code!

  Accounting - To keep track of which users use how much and what kinds 
of computer resources!

  Protection and security - The owners of information stored in a multiuser 
or networked computer system may want to control use of that information, 
concurrent processes should not interfere with each other!
  Protection involves ensuring that all access to system resources is 

controlled!
  Security of the system from outsiders requires user authentication, 

extends to defending external I/O devices from invalid access attempts!
  If a system is to be protected and secure, precautions must be 

instituted throughout it. A chain is only as strong as its weakest link.!
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A View of Operating System Services 
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User Operating System Interface - CLI 

  CLI or command interpreter allows direct command entry!
 Sometimes implemented in kernel, sometimes by systems 

program!
 Sometimes multiple flavors implemented – shells!
 Primarily fetches a command from user and executes it!

–  Sometimes commands built-in, sometimes just names of 
programs!

»  If the latter, adding new features doesn’t require shell 
modification!
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Bourne Shell Command Interpreter 
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User Operating System Interface - GUI 

  User-friendly desktop metaphor interface!
  Usually mouse, keyboard, and monitor!
  Icons represent files, programs, actions, etc!
  Various mouse buttons over objects in the interface cause various 

actions (provide information, options, execute function, open directory 
(known as a folder)!

  Invented at Xerox PARC!

  Many systems now include both CLI and GUI interfaces!
  Microsoft Windows is GUI with CLI “command” shell!
  Apple Mac OS X is “Aqua” GUI interface with UNIX kernel underneath 

and shells available!
  Unix and Linux have CLI with optional GUI interfaces (CDE, KDE, 

GNOME)!
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Touchscreen Interfaces 

  Touchscreen devices require new 
interfaces!
  Mouse not possible or not desired!
  Actions and selection based on 

gestures!
  Virtual keyboard for text entry!

!
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The Mac OS X GUI 
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System Calls 

  Programming interface to the services provided by the OS!
  Example: copy the contents of one file to another file!
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Example of System Calls 

  System call sequence to copy the contents of one file to another file!
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Examples of Windows and  
Unix System Calls 
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System Calls 

  Programming interface to the services provided by the OS!

  Typically written in a high-level language (C or C++)!

  Mostly accessed by programs via a high-level Application Program 
Interface (API) rather than direct system call use!

  Three most common APIs are Win32 API for Windows, POSIX API 
for POSIX-based systems (including virtually all versions of UNIX, 
Linux, and Mac OS X), and Java API for the Java virtual machine 
(JVM)!

  Why use APIs rather than system calls?  
!
!(Note that the system-call names used throughout are generic)!
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Example of Standard API 
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System Call Implementation 

  Typically, a number associated with each system call!
  System-call interface maintains a table indexed according to 

these numbers!

  The system call interface invokes intended system call in OS kernel 
and returns status of the system call and any return values!

  The caller need know nothing about how the system call is 
implemented!
  Just needs to obey API and understand what OS will do as a 

result call!
  Most details of  OS interface hidden from programmer by API  !

 Managed by run-time support library (set of functions built into 
libraries included with compiler)!
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API – System Call – OS Relationship 



2.21! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Standard C Library Example 
  C program invoking printf() library call, which calls write() system call!
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System Call Parameter Passing 

  Often, more information is required than simply identity of desired 
system call!
  Exact type and amount of information vary according to OS and 

call!

  Three general methods used to pass parameters to the OS!
  Simplest:  pass the parameters in registers!

   In some cases, may be more parameters than registers!
  Parameters stored in a block, or table, in memory, and address of 

block passed as a parameter in a register !
 This approach taken by Linux and Solaris!

  Parameters placed, or pushed, onto the stack by the program 
and popped off the stack by the operating system!

  Block and stack methods do not limit the number or length of 
parameters being passed!
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Parameter Passing via Table 
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Types of System Calls 

  Process control!
  end, abort!
  load, execute!
  create process, terminate process!
  get process attributes, set process attributes!
  wait for time, wait event, signal event!
  allocate and free memory!

  Issues:!
  Dump memory if error!
  Debugger for determining bugs, single step execution!
  Background/foreground execution!
  Locks for managing access to shared data between processes!
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Example: MS-DOS 

  Single-tasking!
  Shell invoked when system 

booted!
  Simple method to run 

program!
  No process created!

  Single memory space!
  Loads program into memory, 

overwriting all but the kernel!
  Program exit -> shell 

reloaded!

(a) At system startup (b) running a program!
!
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Example: FreeBSD 

  Unix variant!
  Multitasking!
  User login -> invoke user’s choice of 

shell!
  Shell executes fork() system call to create 

process!
  Executes exec() to load program into 

process!
  Shell waits for process to terminate or 

continues with user commands!
  Process exits with !

  code of 0 – no error, or !
  > 0 – error code!
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Types of System Calls 

  File management!
  create file, delete file!
  open, close file!
  read, write, reposition!
  get and set file attributes!

  Device management!
  request device, release device!
  read, write, reposition!
  get device attributes, set device attributes!
  logically attach or detach devices!

  Note!
  Physical vs. abstract devices. Similarity between files and devices!
  Exclusive use. Deadlock!
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Types of System Calls 

  Information maintenance!
  get time or date, set time or date!
  get system data, set system data!
  get and set process, file, or device attributes!

  Communications!
  create, delete communication connection!
  send, receive messages if message passing model to host name or 

process name!
 From client to server!

  Shared-memory model create and gain access to memory regions!
  transfer status information!
  attach and detach remote devices!
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Types of System Calls 

  Protection (control access to resources)!
  Get and set permissions!
  Allow and deny user access!
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System Programs (aka Utilities) 

  System programs provide a convenient environment for program 
development and execution.  They can be divided into:!
  File manipulation !
  Status information!
  File editing & content search!
  Programming-language support!
  Program loading and execution!
  Communications!
  Background services!
  Application programs!

  Most users’ view of the operation system is defined by system 
programs, not the actual system calls!
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System Programs (aka Utilities) 

  Provide a convenient environment for program development and 
execution!
  Some of them are simply user interfaces to system calls; others 

are considerably more complex!

  File management - Create, delete, copy, rename, print, dump, list, 
and generally manipulate files and directories!

  Status information!
  Some ask the system for info - date, time, amount of available 

memory, disk space, number of users!
  Others provide detailed performance, logging, and debugging 

information!
  Typically, these programs format and print the output to the 

terminal or other output devices!
  Some systems implement  a registry - used to store and retrieve 

configuration information!
!
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System Programs (aka Utilities) 

  File modification!
  Text editors to create and modify files!
  Special commands to search contents of files or perform 

transformations of the text!

  Programming-language support - Compilers, assemblers, 
debuggers and interpreters sometimes provided!

  Program loading and execution- Absolute loaders, relocatable 
loaders, linkage editors, and overlay-loaders, debugging systems for 
higher-level and machine language!

  Communications - Provide the mechanism for creating virtual 
connections among processes, users, and computer systems!
  Allow users to send messages to one another’s screens, browse 

web pages, send electronic-mail messages, log in remotely, 
transfer files from one machine to another!
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System Programs (aka Utilities) 

  Background Services!
  Launch at boot time!

 Some for system startup, then terminate!
 Some from system boot to shutdown!

  Provide facilities like disk checking, process scheduling, error 
logging, printing!

  Run in user context not kernel context!
  Known as services, subsystems, daemons !
!

  Application programs!
  Web browsers, productivity, IDE, statistical analysis, games, …!
  Don’t pertain to system!
  Run by users!
  Not typically considered part of OS!
  Launched by command line, mouse click, finger poke!
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Operating System Structure 

  General-purpose OS is very large program!
  Various ways to structure one as follows!



2.35! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Simple Structure  

  I.e. MS-DOS – written to provide 
the most functionality in the least 
space!
  Not divided into modules!
  Although MS-DOS has some 

structure, its interfaces and 
levels of functionality are not 
well separated!
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UNIX 

  UNIX – limited by hardware functionality, the original UNIX operating 
system had limited structuring.  The UNIX OS consists of two 
separable parts!
  Systems programs!
  The kernel!

 Consists of everything below the system-call interface and 
above the physical hardware!

 Provides the file system, CPU scheduling, memory 
management, and other operating-system functions; a large 
number of functions for one level!
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Traditional UNIX System Structure 

Beyond simple but not fully layered!
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Layered Approach 

  The operating system is divided into 
a number of layers (levels),!
  each built on top of lower layers.!
  Bottom layer (0):  the hardware. !
  Highest (layer N): user interface.!

  With modularity, layers are selected 
such that each uses functions 
(operations) and services of only 
lower-level layers!
  Hiding, encapsulation, 

verifiability!
  Requires careful planning!
  Efficiency!
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Microkernel System Structure  

  Moves as much as possible from the kernel into user space!
  Mach example of microkernel!

  Mac OS X kernel (Darwin) partly based on Mach!
  What are “essential” components/services?!

  Minimal process management!
  Minimal memory management!
  Communication facility!

  Communication takes place between user modules using message 
passing!
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Microkernel System Structure  

Application
Program

File
System

Device
Driver

Interprocess
Communication

memory
managment

CPU
scheduling

messagesmessages

microkernel

hardware

user
mode

kernel
mode
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Microkernel System Structure  

  Benefits:!
  Easier to maintain/extend a microkernel!
  Easier to port the operating system to new architectures!
  More reliable (less code is running in kernel mode)!
  More secure!

  Detriments:!
  Performance overhead of user space to kernel space 

communication!
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Modules 

  Most modern operating systems implement loadable kernel modules!
  Uses object-oriented approach!
  Each core component is separate!
  Each talks to the others over known interfaces!
  Each is loadable as needed within the kernel!

  Overall, similar to layers but with more flexible!
  Linux, Solaris, etc!
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Solaris Modular Approach 
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Hybrid Systems 

  Most modern operating systems actually not one pure model!
  Hybrid combines multiple approaches to address performance, 

security, usability needs!
  Linux and Solaris kernels in kernel address space, so monolithic, 

plus modular for dynamic loading of functionality!
  Windows mostly monolithic, plus microkernel for different 

subsystem personalities!
  Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa programming 

environment!
  Below is kernel consisting of Mach microkernel and BSD Unix 

parts, plus I/O kit and dynamically loadable modules (called kernel 
extensions)!
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Mac OS X Structure 

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD
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System Boot 

  When system powers up, execution starts at a fixed memory location!
  Firmware ROM used to hold initial boot code!
  Tasks of bootstrap program: diagnostics, initialization, locate & 

load kernel, start OS execution!
  Operating system must be made available to hardware so hardware 

can start it!
  Small piece of code – bootstrap loader, stored in ROM or 

EEPROM locates the kernel, loads it into memory, and starts it!
  Sometimes two-step process where boot block at fixed location 

loaded by ROM code, which loads bootstrap loader from disk!
  Sometimes entire OS in ROM !

 simple HW, small OS, rough operation!
  Common bootstrap loader, GRUB, allows selection of kernel from 

multiple disks, versions, kernel options!
  Kernel loads and system is then running!
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Quizzes 

  What are the major classes of activities of an operating 
system with regard to process management?!

  What system calls have to be executed by a shell in 
order to start a new process?!

  [T] [F] In the layered approach to system design, every 
layer can directly access all and only the layers below 
itself!

  [T] [F] The operating system is always stored in the hard 
disk!

  [T] [F] In the microkernel approach to system design, a 
client and server module outside of the microkernel can 
communicate directly with each other!

  [T] [F] Diagnostics are performed by the kernel once 
bootstrap is complete!
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Chapter 3:  Processes 

1.  Process Concept!
2.  Process Scheduling!
3.  Operations on Processes!
4.  Interprocess Communication (IPC)!
5.  Examples of IPC Systems!
6.  Communication in Client-Server Systems!
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Objectives 

  To introduce the notion of a process—a program in execution, 
which forms the basis of all computation!

  To describe the various features of processes, including 
scheduling, creation and termination, and communication!

  To explore interprocess communication using shared memory 
and message passing!

  To describe communication in client-server systems!
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Process Concept 

  An operating system executes a variety of programs:!
  Batch system – jobs!
  Time-shared systems – user programs or tasks!

  Textbook uses the terms job and process almost interchangeably!
  Process – a program in execution; process execution must 

progress in sequential fashion!
  Multiple parts!

  The program code, also called text section!
  Current activity including program counter, processor 

registers!
  Stack containing temporary data!

 Function parameters, return addresses, local variables!
  Data section containing global variables!
  Heap containing memory dynamically allocated during run time!
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Process in Memory 
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Process Concept 

  Program is passive entity stored on disk (executable file), process 
is active !
  Program becomes process when executable file loaded into 

memory!
  Execution of program started via GUI mouse clicks, command line 

entry of its name, etc.!
  One program can be several processes!

  Consider multiple users executing the same program!

!
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Process State 

  As a process executes, it changes state!
  new:  The process is being created!
  running:  Instructions are being executed!
  waiting:  The process is waiting for some event to occur!
  ready:  The process is waiting to be assigned to a processor!
  terminated:  The process has finished execution!
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Diagram of Process State 
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Process Control Block (PCB) 

Each process is represented in the OS by a 
PCB (also called task control block)!

  Process state (running, waiting, etc.)!
  CPU registers !

  contents of all process-centric registers!
  including program counter: location of 

instruction to next execute!
  CPU scheduling information !

  priorities, scheduling queue pointers!
  Memory-management information 

(memory allocated to the process)!
  Accounting information (CPU used, clock 

time elapsed since start, time limits, etc.)!
  I/O status information (list of I/O devices 

allocated to process, and open files)!
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Process Representation in Linux 

  Represented by the C structure task_struct (see linux/sched.h)  
pid_t pid; /* process identifier */  
long state; /* state of the process */  
unsigned int time_slice /* scheduling information */  
struct task_struct *parent; /* this process’s parent */  
struct list_head children; /* this process’s children */  
struct files_struct *files; /* list of open files */  
struct mm_struct *mm; /* address space of this process */  
... 
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CPU Switch From Process to Process 
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Quizzes 

  A PCB can represent only one process in the system!
  The list of open files is part of the information contained in the PCB!
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Threads 

  So far, process has a single thread of execution!
  How to simultaneously type in characters and spell check?!

  Consider having multiple program counters per process!
  Multiple locations can execute at once!

 Multiple threads of control -> threads!
  Must then have storage for thread details, multiple program 

counters in PCB!
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Process Scheduling 

  Maximize CPU use, quickly switch processes onto CPU for time 
sharing!

  Process scheduler selects among available processes for 
next execution on CPU!

  Maintains scheduling queues of processes!
  Job queue – set of all processes in the system!
  Ready queue – set of all processes residing in main 

memory, ready and waiting to execute!
  Device queues – set of processes waiting for an I/O device!
  Processes migrate among the various queues!
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Ready Queue And Various  
I/O Device Queues 
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Representation of Process Scheduling 

  Queuing diagram represents queues, resources, flows!
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Schedulers 

  Long-term scheduler  (or job scheduler) – selects which processes should be 
brought into the ready queue!

  Short-term scheduler  (or CPU scheduler) – selects which process should be 
executed next and allocates CPU!
  Sometimes the only scheduler in a system!

  Short-term scheduler is invoked very frequently (milliseconds) ⇒ (must be fast)!

  Long-term scheduler is invoked very infrequently (seconds, minutes) ⇒ (may be 
slow)!

  The long-term scheduler controls the degree of multiprogramming!

  Processes can be described as either:!
  I/O-bound process – spends more time doing I/O than computations, many 

short CPU bursts!
  CPU-bound process – spends more time doing computations; few very long 

CPU bursts!
  Long-term scheduler strives for good process mix!
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Addition of Medium Term Scheduling 

  Medium-term scheduler  can be added if degree of multiple 
programming needs to decrease!
  Remove process from memory, store on disk, bring back in 

from disk to continue execution: swapping!
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Multitasking in Mobile Systems 

  Some systems / early systems allow only one process to run, others 
suspended!

  Due to screen real estate, user interface limits iOS provides for a !
  Single foreground process- controlled via user interface!
  Multiple background processes– in memory, running, but not on 

the display, and with limits!
  Limits include single, short task, receiving notification of events, 

specific long-running tasks like audio playback!
  Android runs foreground and background, with fewer limits!

  Background process uses a service to perform tasks!
  Service can keep running even if background process is 

suspended!
  Service has no user interface, small memory use!
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Context Switch 

  When CPU switches to another process, the system must save the 
state of the old process and load the saved state for the new 
process via a context switch!

  Context of a process represented in the PCB!

  Context-switch time is overhead; the system does no useful work 
while switching!
  The more complex the OS and the PCB à longer the context 

switch!

  Time dependent on hardware support!
  Some hardware provides multiple sets of registers per CPU à 

multiple contexts loaded at once!
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Quizzes 

  Consider a system with 1 CPU, running 10 100% CPU-
bound jobs. Assume the following times:!
  Total CPU time needed by each job: 10s!
  Job scheduling: 100ms !
  CPU scheduling: 5ms!
  Context switch: 5ms!

A.  If jobs are executed batch (no multitasking), how long 
does it take…!
  For all jobs to complete?!
  For the first job to complete?!
  For the average job to complete?!
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Quizzes 

  Consider a system with 1 CPU, running 10 100% CPU-
bound jobs. Assume the following times:!
  Total CPU time needed by each job: 10s!
  Maximum CPU burst before context switch: 100ms !
  CPU scheduling: 5ms!
  Context switch: 5ms!

B.  If jobs are executed interactively (multitasking, no job 
scheduling), how long does it take…!
  For all jobs to complete?!
  For the first job to complete?!
  For the average job to complete?!

  What is the operating-system overhead?!
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Operations on Processes 

  System must provide mechanisms for process creation, termination, 
and so on as detailed next!
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Process Creation 

  Parent process create children processes, which, in turn create 
other processes, forming a tree of processes!

  Generally, process identified and managed via a process identifier 
(pid)!

  Resource sharing options!
  Parent and children share all resources!
  Children share subset of parent’s resources!
  Parent and child share no resources!

  Execution options!
  Parent and children execute concurrently!
  Parent waits until children terminate!

!
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A Tree of Processes in Linux 

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298
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Process Creation (Cont.) 

  Address space!
  Child duplicate of parent!
  Child has a program loaded into it!

  UNIX examples!
  fork() system call creates new process!
  exec() system call used after a fork() to replace the process’ 

memory space with a new program!
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C Program Forking Separate Process 
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Creating a Separate Process via Windows API 
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Quizzes 

  [T] [F] A child process, right after creation, has the same list of open files as 
its parent!

  [T] [F] The instructions after execlp(…) are never executed!
  Including the initial parent process, how many processes are created by the 

following program?!
 

#include <stdio.h>  
#include <unistd.h> 

 
int main() {  

 fork();  
 fork();  
 fork();  
 return 0;  

} 
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Process Termination 

  Process executes last statement and asks the operating system to delete it (exit())!
  Output data from child to parent (via wait())!
  Process’ resources are deallocated by operating system!

  Parent may terminate execution of children processes!
  Child has exceeded allocated resources!
  Task assigned to child is no longer required!
  If parent is exiting!

  Some operating systems do not allow child to continue if its parent terminates!
–  All children terminated - cascading termination!

  Wait for termination, returning the pid:!
pid_t pid; int status;  

pid = wait(&status);  

  If no parent waiting, then terminated process is a zombie!
  If parent terminated, processes are orphans!
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Multiprocess Architecture – Chrome 
Browser 

  Many web browsers ran as single process (some still do)!
  If one web site causes trouble, entire browser can hang or crash!

  Google Chrome Browser is multiprocess with 3 categories!
  Browser process manages user interface, disk and network I/O!
  Renderer process renders web pages, deals with HTML, 

Javascript, new one for each website opened!
 Runs in sandbox restricting disk and network I/O, minimizing 

effect of security exploits!
  Plug-in process for each type of plug-in!
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Programming assignment 

  Install VirtualBox (or VMware)!
  Create a virtual machine and install Ubuntu (minimal resources are OK)!
  Read the online manual (man) of the following system calls:!

  fork(), getpid(), getppid(), 

  exec(), execlp(), 

  wait(), pause(), sleep(), alarm(), 

  exit(), abort(). 

  Install Code::Blocks!
  Implement the exercise seen before!
  Implement a “shell”!

  reads from input a command and list of arguments!
  executes the command and outputs child’s pid, return value and state!
  exits with command halt, aborts when last command gave error state!


