
Real-Time Operating
Systems M

2. Operating-System Structures Processes

2.2! Torroni, Real-Time Operating Systems M ©2013!

Notice

The course material includes slides downloaded from:!
http://codex.cs.yale.edu/avi/os-book/!

(slides by Silberschatz, Galvin, and Gagne, associated with
Operating System Concepts, 9th Edition, Wiley, 2013)!

and!
http://retis.sssup.it/~giorgio/rts-MECS.html!

(slides by Buttazzo, associated with Hard Real-Time Computing
Systems, 3rd Edition, Springer, 2011)!

which has been edited to suit the needs of this course. !
The slides are authorized for personal use only. !
Any other use, redistribution, and any for profit sale of the slides (in any
form) requires the consent of the copyright owners.!

2.3! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Chapter 2: Operating-System Structures

1.  Operating System Services!
2.  User and Operating System Interface!
3.  System Calls!
4.  Types of System Calls!
5.  System Programs!
6.  Operating-System Design and Implementation!
7.  Operating-System Structure!
8.  Operating-System Debugging!
9.  Operating-System Generation!
10. System Boot!

2.4! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Objectives

  To describe the services an operating system provides to users,
processes, and other systems!

  To discuss the various ways of structuring an operating system!

  To explain how operating systems boot!

2.5! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Operating System Services

  Operating systems provide an environment for execution of programs and
services to programs and users!

  One set of operating-system services provides functions that are helpful to the
user:!
  User interface - Almost all operating systems have a user interface (UI).!

  Varies between Command-Line (CLI), Graphics User Interface (GUI),
Batch!

  Program execution - The system must be able to load a program into
memory and to run that program, and end its execution, either normally or
abnormally (indicating error)!

  I/O operations - A running program may require I/O, which may involve a
file or an I/O device!

  File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and delete
them, search them, list file Information, permission management.!

2.6! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Operating System Services

  Communications – Processes may exchange information, on the
same computer or between computers over a network!
 Communications may be via shared memory or through

message passing (packets moved by the OS)!
  Error detection – OS needs to be constantly aware of possible

errors!
 May occur in the CPU and memory hardware, in I/O devices, in

user program!
 For each type of error, OS should take the appropriate action to

ensure correct and consistent computing!
 Debugging facilities can greatly enhance the user’s and

programmer’s abilities to efficiently use the system!

2.7! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Operating System Services

  Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing!
  Resource allocation - When multiple users or multiple jobs running

concurrently, resources must be allocated to each of them!
  Many types of resources - Some (such as CPU cycles, main memory,

and file storage) may have special allocation code, others (such as I/O
devices) may have general request and release code!

  Accounting - To keep track of which users use how much and what kinds
of computer resources!

  Protection and security - The owners of information stored in a multiuser
or networked computer system may want to control use of that information,
concurrent processes should not interfere with each other!
  Protection involves ensuring that all access to system resources is

controlled!
  Security of the system from outsiders requires user authentication,

extends to defending external I/O devices from invalid access attempts!
  If a system is to be protected and secure, precautions must be

instituted throughout it. A chain is only as strong as its weakest link.!

2.8! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

A View of Operating System Services

2.9! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

User Operating System Interface - CLI

  CLI or command interpreter allows direct command entry!
 Sometimes implemented in kernel, sometimes by systems

program!
 Sometimes multiple flavors implemented – shells!
 Primarily fetches a command from user and executes it!

–  Sometimes commands built-in, sometimes just names of
programs!

»  If the latter, adding new features doesn’t require shell
modification!

2.10! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Bourne Shell Command Interpreter

2.11! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

User Operating System Interface - GUI

  User-friendly desktop metaphor interface!
  Usually mouse, keyboard, and monitor!
  Icons represent files, programs, actions, etc!
  Various mouse buttons over objects in the interface cause various

actions (provide information, options, execute function, open directory
(known as a folder)!

  Invented at Xerox PARC!

  Many systems now include both CLI and GUI interfaces!
  Microsoft Windows is GUI with CLI “command” shell!
  Apple Mac OS X is “Aqua” GUI interface with UNIX kernel underneath

and shells available!
  Unix and Linux have CLI with optional GUI interfaces (CDE, KDE,

GNOME)!

2.12! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Touchscreen Interfaces

  Touchscreen devices require new
interfaces!
  Mouse not possible or not desired!
  Actions and selection based on

gestures!
  Virtual keyboard for text entry!

!

2.13! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

The Mac OS X GUI

2.14! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

System Calls

  Programming interface to the services provided by the OS!
  Example: copy the contents of one file to another file!

2.15! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of System Calls

  System call sequence to copy the contents of one file to another file!

2.16! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Examples of Windows and
Unix System Calls

2.17! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

System Calls

  Programming interface to the services provided by the OS!

  Typically written in a high-level language (C or C++)!

  Mostly accessed by programs via a high-level Application Program
Interface (API) rather than direct system call use!

  Three most common APIs are Win32 API for Windows, POSIX API
for POSIX-based systems (including virtually all versions of UNIX,
Linux, and Mac OS X), and Java API for the Java virtual machine
(JVM)!

  Why use APIs rather than system calls?  
!
!(Note that the system-call names used throughout are generic)!

2.18! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of Standard API

2.19! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

System Call Implementation

  Typically, a number associated with each system call!
  System-call interface maintains a table indexed according to

these numbers!

  The system call interface invokes intended system call in OS kernel
and returns status of the system call and any return values!

  The caller need know nothing about how the system call is
implemented!
  Just needs to obey API and understand what OS will do as a

result call!
  Most details of OS interface hidden from programmer by API !

 Managed by run-time support library (set of functions built into
libraries included with compiler)!

2.20! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

API – System Call – OS Relationship

2.21! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Standard C Library Example
  C program invoking printf() library call, which calls write() system call!

2.22! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

System Call Parameter Passing

  Often, more information is required than simply identity of desired
system call!
  Exact type and amount of information vary according to OS and

call!

  Three general methods used to pass parameters to the OS!
  Simplest: pass the parameters in registers!

  In some cases, may be more parameters than registers!
  Parameters stored in a block, or table, in memory, and address of

block passed as a parameter in a register !
 This approach taken by Linux and Solaris!

  Parameters placed, or pushed, onto the stack by the program
and popped off the stack by the operating system!

  Block and stack methods do not limit the number or length of
parameters being passed!

2.23! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Parameter Passing via Table

2.24! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Types of System Calls

  Process control!
  end, abort!
  load, execute!
  create process, terminate process!
  get process attributes, set process attributes!
  wait for time, wait event, signal event!
  allocate and free memory!

  Issues:!
  Dump memory if error!
  Debugger for determining bugs, single step execution!
  Background/foreground execution!
  Locks for managing access to shared data between processes!

2.25! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example: MS-DOS

  Single-tasking!
  Shell invoked when system

booted!
  Simple method to run

program!
  No process created!

  Single memory space!
  Loads program into memory,

overwriting all but the kernel!
  Program exit -> shell

reloaded!

(a) At system startup (b) running a program!
!

2.26! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example: FreeBSD

  Unix variant!
  Multitasking!
  User login -> invoke user’s choice of

shell!
  Shell executes fork() system call to create

process!
  Executes exec() to load program into

process!
  Shell waits for process to terminate or

continues with user commands!
  Process exits with !

  code of 0 – no error, or !
  > 0 – error code!

2.27! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Types of System Calls

  File management!
  create file, delete file!
  open, close file!
  read, write, reposition!
  get and set file attributes!

  Device management!
  request device, release device!
  read, write, reposition!
  get device attributes, set device attributes!
  logically attach or detach devices!

  Note!
  Physical vs. abstract devices. Similarity between files and devices!
  Exclusive use. Deadlock!

2.28! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Types of System Calls

  Information maintenance!
  get time or date, set time or date!
  get system data, set system data!
  get and set process, file, or device attributes!

  Communications!
  create, delete communication connection!
  send, receive messages if message passing model to host name or

process name!
 From client to server!

  Shared-memory model create and gain access to memory regions!
  transfer status information!
  attach and detach remote devices!

2.29! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Types of System Calls

  Protection (control access to resources)!
  Get and set permissions!
  Allow and deny user access!

2.30! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

System Programs (aka Utilities)

  System programs provide a convenient environment for program
development and execution. They can be divided into:!
  File manipulation !
  Status information!
  File editing & content search!
  Programming-language support!
  Program loading and execution!
  Communications!
  Background services!
  Application programs!

  Most users’ view of the operation system is defined by system
programs, not the actual system calls!

2.31! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

System Programs (aka Utilities)

  Provide a convenient environment for program development and
execution!
  Some of them are simply user interfaces to system calls; others

are considerably more complex!

  File management - Create, delete, copy, rename, print, dump, list,
and generally manipulate files and directories!

  Status information!
  Some ask the system for info - date, time, amount of available

memory, disk space, number of users!
  Others provide detailed performance, logging, and debugging

information!
  Typically, these programs format and print the output to the

terminal or other output devices!
  Some systems implement a registry - used to store and retrieve

configuration information!
!

2.32! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

System Programs (aka Utilities)

  File modification!
  Text editors to create and modify files!
  Special commands to search contents of files or perform

transformations of the text!

  Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided!

  Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems for
higher-level and machine language!

  Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems!
  Allow users to send messages to one another’s screens, browse

web pages, send electronic-mail messages, log in remotely,
transfer files from one machine to another!

2.33! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

System Programs (aka Utilities)

  Background Services!
  Launch at boot time!

 Some for system startup, then terminate!
 Some from system boot to shutdown!

  Provide facilities like disk checking, process scheduling, error
logging, printing!

  Run in user context not kernel context!
  Known as services, subsystems, daemons !
!

  Application programs!
  Web browsers, productivity, IDE, statistical analysis, games, …!
  Don’t pertain to system!
  Run by users!
  Not typically considered part of OS!
  Launched by command line, mouse click, finger poke!

2.34! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Operating System Structure

  General-purpose OS is very large program!
  Various ways to structure one as follows!

2.35! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Simple Structure

  I.e. MS-DOS – written to provide
the most functionality in the least
space!
  Not divided into modules!
  Although MS-DOS has some

structure, its interfaces and
levels of functionality are not
well separated!

2.36! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

UNIX

  UNIX – limited by hardware functionality, the original UNIX operating
system had limited structuring. The UNIX OS consists of two
separable parts!
  Systems programs!
  The kernel!

 Consists of everything below the system-call interface and
above the physical hardware!

 Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level!

2.37! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Traditional UNIX System Structure

Beyond simple but not fully layered!

2.38! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Layered Approach

  The operating system is divided into
a number of layers (levels),!
  each built on top of lower layers.!
  Bottom layer (0): the hardware. !
  Highest (layer N): user interface.!

  With modularity, layers are selected
such that each uses functions
(operations) and services of only
lower-level layers!
  Hiding, encapsulation,

verifiability!
  Requires careful planning!
  Efficiency!

2.39! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Microkernel System Structure

  Moves as much as possible from the kernel into user space!
  Mach example of microkernel!

  Mac OS X kernel (Darwin) partly based on Mach!
  What are “essential” components/services?!

  Minimal process management!
  Minimal memory management!
  Communication facility!

  Communication takes place between user modules using message
passing!

2.40! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Microkernel System Structure

Application
Program

File
System

Device
Driver

Interprocess
Communication

memory
managment

CPU
scheduling

messagesmessages

microkernel

hardware

user
mode

kernel
mode

2.41! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Microkernel System Structure

  Benefits:!
  Easier to maintain/extend a microkernel!
  Easier to port the operating system to new architectures!
  More reliable (less code is running in kernel mode)!
  More secure!

  Detriments:!
  Performance overhead of user space to kernel space

communication!

2.42! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Modules

  Most modern operating systems implement loadable kernel modules!
  Uses object-oriented approach!
  Each core component is separate!
  Each talks to the others over known interfaces!
  Each is loadable as needed within the kernel!

  Overall, similar to layers but with more flexible!
  Linux, Solaris, etc!

2.43! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Solaris Modular Approach

2.44! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Hybrid Systems

  Most modern operating systems actually not one pure model!
  Hybrid combines multiple approaches to address performance,

security, usability needs!
  Linux and Solaris kernels in kernel address space, so monolithic,

plus modular for dynamic loading of functionality!
  Windows mostly monolithic, plus microkernel for different

subsystem personalities!
  Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa programming

environment!
  Below is kernel consisting of Mach microkernel and BSD Unix

parts, plus I/O kit and dynamically loadable modules (called kernel
extensions)!

2.45! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Mac OS X Structure

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

2.46! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

System Boot

  When system powers up, execution starts at a fixed memory location!
  Firmware ROM used to hold initial boot code!
  Tasks of bootstrap program: diagnostics, initialization, locate &

load kernel, start OS execution!
  Operating system must be made available to hardware so hardware

can start it!
  Small piece of code – bootstrap loader, stored in ROM or

EEPROM locates the kernel, loads it into memory, and starts it!
  Sometimes two-step process where boot block at fixed location

loaded by ROM code, which loads bootstrap loader from disk!
  Sometimes entire OS in ROM !

 simple HW, small OS, rough operation!
  Common bootstrap loader, GRUB, allows selection of kernel from

multiple disks, versions, kernel options!
  Kernel loads and system is then running!

2.47! Torroni, Real-Time Operating Systems M ©2013!

Quizzes

  What are the major classes of activities of an operating
system with regard to process management?!

  What system calls have to be executed by a shell in
order to start a new process?!

  [T] [F] In the layered approach to system design, every
layer can directly access all and only the layers below
itself!

  [T] [F] The operating system is always stored in the hard
disk!

  [T] [F] In the microkernel approach to system design, a
client and server module outside of the microkernel can
communicate directly with each other!

  [T] [F] Diagnostics are performed by the kernel once
bootstrap is complete!

2.48! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Chapter 3: Processes

1.  Process Concept!
2.  Process Scheduling!
3.  Operations on Processes!
4.  Interprocess Communication (IPC)!
5.  Examples of IPC Systems!
6.  Communication in Client-Server Systems!

2.49! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Objectives

  To introduce the notion of a process—a program in execution,
which forms the basis of all computation!

  To describe the various features of processes, including
scheduling, creation and termination, and communication!

  To explore interprocess communication using shared memory
and message passing!

  To describe communication in client-server systems!

2.50! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process Concept

  An operating system executes a variety of programs:!
  Batch system – jobs!
  Time-shared systems – user programs or tasks!

  Textbook uses the terms job and process almost interchangeably!
  Process – a program in execution; process execution must

progress in sequential fashion!
  Multiple parts!

  The program code, also called text section!
  Current activity including program counter, processor

registers!
  Stack containing temporary data!

 Function parameters, return addresses, local variables!
  Data section containing global variables!
  Heap containing memory dynamically allocated during run time!

2.51! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process in Memory

2.52! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process Concept

  Program is passive entity stored on disk (executable file), process
is active !
  Program becomes process when executable file loaded into

memory!
  Execution of program started via GUI mouse clicks, command line

entry of its name, etc.!
  One program can be several processes!

  Consider multiple users executing the same program!

!

2.53! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process State

  As a process executes, it changes state!
  new: The process is being created!
  running: Instructions are being executed!
  waiting: The process is waiting for some event to occur!
  ready: The process is waiting to be assigned to a processor!
  terminated: The process has finished execution!

2.54! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Diagram of Process State

2.55! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process Control Block (PCB)

Each process is represented in the OS by a
PCB (also called task control block)!

  Process state (running, waiting, etc.)!
  CPU registers !

  contents of all process-centric registers!
  including program counter: location of

instruction to next execute!
  CPU scheduling information !

  priorities, scheduling queue pointers!
  Memory-management information

(memory allocated to the process)!
  Accounting information (CPU used, clock

time elapsed since start, time limits, etc.)!
  I/O status information (list of I/O devices

allocated to process, and open files)!

2.56! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process Representation in Linux

  Represented by the C structure task_struct (see linux/sched.h)
pid_t pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */
struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process */
...

2.57! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

CPU Switch From Process to Process

2.58! Torroni, Real-Time Operating Systems M ©2013!

Quizzes

  A PCB can represent only one process in the system!
  The list of open files is part of the information contained in the PCB!

2.59! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Threads

  So far, process has a single thread of execution!
  How to simultaneously type in characters and spell check?!

  Consider having multiple program counters per process!
  Multiple locations can execute at once!

 Multiple threads of control -> threads!
  Must then have storage for thread details, multiple program

counters in PCB!

2.60! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process Scheduling

  Maximize CPU use, quickly switch processes onto CPU for time
sharing!

  Process scheduler selects among available processes for
next execution on CPU!

  Maintains scheduling queues of processes!
  Job queue – set of all processes in the system!
  Ready queue – set of all processes residing in main

memory, ready and waiting to execute!
  Device queues – set of processes waiting for an I/O device!
  Processes migrate among the various queues!

2.61! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Ready Queue And Various
I/O Device Queues

2.62! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Representation of Process Scheduling

  Queuing diagram represents queues, resources, flows!

2.63! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Schedulers

  Long-term scheduler (or job scheduler) – selects which processes should be
brought into the ready queue!

  Short-term scheduler (or CPU scheduler) – selects which process should be
executed next and allocates CPU!
  Sometimes the only scheduler in a system!

  Short-term scheduler is invoked very frequently (milliseconds) ⇒ (must be fast)!

  Long-term scheduler is invoked very infrequently (seconds, minutes) ⇒ (may be
slow)!

  The long-term scheduler controls the degree of multiprogramming!

  Processes can be described as either:!
  I/O-bound process – spends more time doing I/O than computations, many

short CPU bursts!
  CPU-bound process – spends more time doing computations; few very long

CPU bursts!
  Long-term scheduler strives for good process mix!

2.64! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Addition of Medium Term Scheduling

  Medium-term scheduler can be added if degree of multiple
programming needs to decrease!
  Remove process from memory, store on disk, bring back in

from disk to continue execution: swapping!

2.65! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Multitasking in Mobile Systems

  Some systems / early systems allow only one process to run, others
suspended!

  Due to screen real estate, user interface limits iOS provides for a !
  Single foreground process- controlled via user interface!
  Multiple background processes– in memory, running, but not on

the display, and with limits!
  Limits include single, short task, receiving notification of events,

specific long-running tasks like audio playback!
  Android runs foreground and background, with fewer limits!

  Background process uses a service to perform tasks!
  Service can keep running even if background process is

suspended!
  Service has no user interface, small memory use!

2.66! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Context Switch

  When CPU switches to another process, the system must save the
state of the old process and load the saved state for the new
process via a context switch!

  Context of a process represented in the PCB!

  Context-switch time is overhead; the system does no useful work
while switching!
  The more complex the OS and the PCB à longer the context

switch!

  Time dependent on hardware support!
  Some hardware provides multiple sets of registers per CPU à

multiple contexts loaded at once!

2.67! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Quizzes

  Consider a system with 1 CPU, running 10 100% CPU-
bound jobs. Assume the following times:!
  Total CPU time needed by each job: 10s!
  Job scheduling: 100ms !
  CPU scheduling: 5ms!
  Context switch: 5ms!

A.  If jobs are executed batch (no multitasking), how long
does it take…!
  For all jobs to complete?!
  For the first job to complete?!
  For the average job to complete?!

2.68! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Quizzes

  Consider a system with 1 CPU, running 10 100% CPU-
bound jobs. Assume the following times:!
  Total CPU time needed by each job: 10s!
  Maximum CPU burst before context switch: 100ms !
  CPU scheduling: 5ms!
  Context switch: 5ms!

B.  If jobs are executed interactively (multitasking, no job
scheduling), how long does it take…!
  For all jobs to complete?!
  For the first job to complete?!
  For the average job to complete?!

  What is the operating-system overhead?!

2.69! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Operations on Processes

  System must provide mechanisms for process creation, termination,
and so on as detailed next!

2.70! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process Creation

  Parent process create children processes, which, in turn create
other processes, forming a tree of processes!

  Generally, process identified and managed via a process identifier
(pid)!

  Resource sharing options!
  Parent and children share all resources!
  Children share subset of parent’s resources!
  Parent and child share no resources!

  Execution options!
  Parent and children execute concurrently!
  Parent waits until children terminate!

!

2.71! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

A Tree of Processes in Linux

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298

2.72! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process Creation (Cont.)

  Address space!
  Child duplicate of parent!
  Child has a program loaded into it!

  UNIX examples!
  fork() system call creates new process!
  exec() system call used after a fork() to replace the process’

memory space with a new program!

2.73! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

C Program Forking Separate Process

2.74! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Creating a Separate Process via Windows API

2.75! Torroni, Real-Time Operating Systems M ©2013!

Quizzes

  [T] [F] A child process, right after creation, has the same list of open files as
its parent!

  [T] [F] The instructions after execlp(…) are never executed!
  Including the initial parent process, how many processes are created by the

following program?!

#include <stdio.h>
#include <unistd.h>

int main() {

 fork();
 fork();
 fork();
 return 0;

}

2.76! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process Termination

  Process executes last statement and asks the operating system to delete it (exit())!
  Output data from child to parent (via wait())!
  Process’ resources are deallocated by operating system!

  Parent may terminate execution of children processes!
  Child has exceeded allocated resources!
  Task assigned to child is no longer required!
  If parent is exiting!

  Some operating systems do not allow child to continue if its parent terminates!
–  All children terminated - cascading termination!

  Wait for termination, returning the pid:!
pid_t pid; int status;

pid = wait(&status);

  If no parent waiting, then terminated process is a zombie!
  If parent terminated, processes are orphans!

2.77! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Multiprocess Architecture – Chrome
Browser

  Many web browsers ran as single process (some still do)!
  If one web site causes trouble, entire browser can hang or crash!

  Google Chrome Browser is multiprocess with 3 categories!
  Browser process manages user interface, disk and network I/O!
  Renderer process renders web pages, deals with HTML,

Javascript, new one for each website opened!
 Runs in sandbox restricting disk and network I/O, minimizing

effect of security exploits!
  Plug-in process for each type of plug-in!

2.78! Torroni, Real-Time Operating Systems M ©2013!

Programming assignment

  Install VirtualBox (or VMware)!
  Create a virtual machine and install Ubuntu (minimal resources are OK)!
  Read the online manual (man) of the following system calls:!

  fork(), getpid(), getppid(),

  exec(), execlp(),

  wait(), pause(), sleep(), alarm(),

  exit(), abort().

  Install Code::Blocks!
  Implement the exercise seen before!
  Implement a “shell”!

  reads from input a command and list of arguments!
  executes the command and outputs child’s pid, return value and state!
  exits with command halt, aborts when last command gave error state!

