Example of computation of an integral with methods of complex variables

Compute $\int_{\mathbb{R}} \frac{e^{-i x}}{\left(x^{2}+1\right)^{2}} d x$.
Solution We begin by observing that the function we want to integrate is summable, as its abolsute value equals (in $x \in \mathbb{R}$) $\frac{1}{\left(x^{2}+1\right)^{2}}$, which has a behaviour like x^{-4}, as $x \rightarrow \pm \infty$. The function $f(z)=\frac{e^{-i z}}{\left(z^{2}+1\right)^{2}}$ is holomorphic in $\left\{z \in \mathbb{C}: z^{2}+1 \neq 0\right\}=\mathbb{C} \backslash\{i,-i\}$. Given $n \in \mathbb{N}$, $n \geq 2$, we indicate with α_{n} a piecewise C^{1} path, describing once, in clockwise sense, first the interval $[-n, n]$, then the semicircle $\{z \in \mathbb{C}:|z|=n, \operatorname{Im}(z) \leq 0\}$. By the residue theorem, we have

$$
\int_{\alpha_{n}} f(z) d z=-2 \pi i \operatorname{Res}(f ;-i) .
$$

f has in $-i$ a pole of order 2 , because $e^{-i z} \neq 0 \forall z \in \mathbb{C}$ and, if we set $g(z)=\left(z^{2}+1\right)^{2}$, $g(-i)=g^{\prime}(-i)=0, g^{\prime \prime}(-i)=-8$. So,

$$
\begin{aligned}
& \operatorname{Res}(f ;-i)=\lim _{z \rightarrow-i} \frac{d}{d z}\left[(z+i)^{2} f(z)\right]=\lim _{z \rightarrow-i} \frac{d}{d z}\left[\frac{e^{-i z}}{(z-i)^{2}}\right] \\
& =\lim _{z \rightarrow-i} \frac{-i e^{-i z}(z-i)^{2}-e^{-i z} 2(z-i)}{(z-i)^{4}}=\frac{-i e^{-1}(-2 i)^{2}-e^{-1} 2(-2 i)}{(-2 i)^{4}}=\frac{i}{e} .
\end{aligned}
$$

Hence,

$$
\int_{\alpha_{n}} f(z) d z=\frac{2 \pi}{e} .
$$

Moreover,

$$
\begin{equation*}
\int_{\alpha_{n}} f(z) d z=\int_{-n}^{n} \frac{e^{-i x}}{\left(x^{2}+1\right)^{2}} d x-\int_{C_{n}^{-}(0)} \frac{e^{-i z}}{\left(z^{2}+1\right)^{2}} d z . \tag{1}
\end{equation*}
$$

The first integral converges, as $n \rightarrow+\infty$, to what we want to compute. Moreover,

$$
\left|\int_{C_{n}^{-}(0)} \frac{e^{-i z}}{\left(z^{2}+1\right)^{2}} d z\right| \leq n \pi \cdot \sup _{|z|=n, \operatorname{Im}(z) \leq 0} \frac{\left|e^{-i z}\right|}{\left|z^{2}+1\right|^{2}}
$$

We have $\left|e^{-i z}\right|=e^{\operatorname{Im}(z)} \leq 1$. Next, if $|z|=n,\left|z^{2}+1\right|^{2}=n^{4}\left|1+z^{-2}\right|^{2} \geq n^{4} / 2$, if $n \geq n_{0}$. So, if $n \geq n_{0}$, and $|z|=n$,

$$
\frac{\left|e^{-i z}\right|}{\left|z^{2}+1\right|^{2}} \leq \frac{2}{n^{4}},
$$

so that

$$
\left|\int_{C_{n}^{-}(0)} \frac{e^{-i z}}{\left(z^{2}+1\right)^{2}} d z\right| \leq \pi n \frac{2}{n^{4}} \rightarrow 0 \quad(n \rightarrow+\infty) .
$$

Then, passing o the limit as $n \rightarrow+\infty$ in (1), we obtain

$$
\frac{2 \pi}{e}=\int_{\mathbb{R}} \frac{e^{-i x}}{\left(x^{2}+1\right)^{2}} d x
$$

