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Example of computation of an integral with methods
of complex variables

Compute [ (?e_wdsc.
Solution We begin by observing that the function we want to integrate is summable, as

its abolsute value equals (in 2 € R) 15, which has a behaviour like 274, as & — 4o0. The

@Z+1)2°
function f(z) = ﬁ is holomorphic in {z € C: 22 +1 # 0} = C\ {i,—i}. Given n € N,
n > 2, we indicate with a, a piecewise C! path, describing once, in clockwise sense, first the
interval [—n,n], then the semicircle {z € C : |z| = n,Im(z) < 0}. By the residue theorem, we
have

f(2)dz = —2miRes(f; —1).
Qn
f has in —i a pole of order 2, because e~ # 0 Vz € C and, if we set g(z) = (22 + 1),
g(~i) = ¢/ (~) = 0, (i) = —8 . So,

Res(f; —i) = lim, . 2 [(2 +1)2f(2)] = lim. . &[]

= lim, , ; =t aeod) i (S8 o 20W) _

Hence,

Moreover,

/a f(z)dz = /n —(3326_1_ 1)2da: — /C_(O) (Z29+ 1—)2dz, (1)

The first integral converges, as n — 400, to what we want to compute. Moreover,

e~z ‘e—izl
|/ ———=dz| < nm- sup —_—.
cr (o) (22 +1)2 \z|=n,Im(z)<0 |22 + 1|2
We have |e~*%| = e/™(2) < 1. Next, if |2| = n, |22 + 1|? = n#|1 + 2722 > n*/2, if n > ng. So, if
n > mng, and [z| = n, .
e 2
|Z2 + 1|2 - ni

)

so that

2
dz| <mn— —0 .
z| < g = (n — 400)

|/ e—iz
cr(0) (22 +1)2

Then, passing o the limit as n — 400 in (1), we obtain

2w / e~ d
— = ——dx.
e R (2% +1)?
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