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Abstract

These are the lecture notes for the course of Optimization Models and Algorithms
M, academic year 2012-2013. In particular, the notes cover the part of the course de-
voted to modeling basic problems by means of (Mixed-)Integer Linear Programming
and discussing what a good model is.
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1 Uncapacitated Facility Location

We are given

• m clients to be served,

• n facilities (o service centers) that can be opened or not,

• for each facility j, fj is the cost of opening facility j, and

• for each client i and each facility j, cij is the cost of serving client i by facility j

The so-called Uncapacitated Facility Location Problem (UFLP) calls for determining (i)
which facilities need to be opened, and (ii) which among the open facility serves each
client, in such a way that the overall cost, i.e., the sum of opening and service costs, is a
minimum

It is easy to see that once the decision on which facilities must be opened, then each client
i will be assigned to the open facility j such that the cost cij is a minimum. Thus, deciding
on the open facilities is the key decision and is taken by using binary variables

yj :=

{
1, if facility j is opened
0, otherwise

Nevertheless, without specific variables that define the assignment of clients to facilities it
is not possible to have a complete ILP model for UFLP, thus the following binary variables
need to be introduced

xij :=

{
1, if client i is assigned to facility j
0, otherwise

By using the two sets of variables above one can write the following model

min
n∑
j=1

fjyj +
m∑
i=1

n∑
j=1

cijxij (1)

n∑
j=1

xij = 1, i = 1, . . . ,m (2)

xij = 1 ⇒ yj = 1, i = 1, . . . ,m, j = 1, . . . , n (3)

yj, xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n (4)

Of course, the model above is not an ILP model because logic constraints (3) must be
expressed with linear equations or inequalities like
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xij ≤ yj, i = 1, . . . ,m, j = 1, . . . , n (5)

or

m∑
i=1

xij ≤ myj, j = 1, . . . , n (6)

Both constraints (5) and (6) alone suffice to define valid ILP models for the UFLP. Thus,
one would be tempted to use constraints (6) because they are way less (n versus nm).

However, constraints (5) and (6) are not equivalent in terms of LP relaxation. Indeed,
constraints (6) are obtained by summing constraints (5) for i = 1, . . . ,m, thus any feasible
LP solution of the model using constraints (5) is actually feasible for the model using
constraints (6) but vice versa does not hold as shown by the following example

Example 1 Consider the special case with n = m, fj = 1 and cjj = 0 for j = 1, . . . , n,
cij = +∞ for i 6= j

The optimal solution of UFLP coincides with the optimal solution of its LP relaxation
with constraints (5), is given by yj = xjj = 1 for j = 1, . . . , n, and has value n

The optimal solution of the LP (continuous) relaxation of the ILP model using constraints
(6) is instead yj = 1/n, xjj = 1 for j = 1, . . . , n, and has value 1 �

Example 1 shows that the UFLP formulation using constraints (5) dominates that using
constraints (6)

Finally, observe that, for both formulations, the constraints forcing the x variables being
binary are redundant because for each integer y, it is always convenient to set xij = 1 for
j such that cij = min{cik : yk = 1}
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2 Set Covering, Partitioning and Packing

One of the most famous and important problems in combinatorial optimization, the so-
called Set Covering Problem (SCP), can be seen as a special case of UFLP in which all
entries of matrix c are either 0 or +∞. In other words, that is the special case in which
either client i can be served by facility j at null cost, or it cannot be served at all

The corresponding ILP formulation is significantly simpler because SCP “simply” calls for
determining the subset of facilities to be opened in such a way that (i) the overall opening
cost is a minimum, and (ii) all clients can be served

For each client i, let

Ji := {j : cij = 0}, i = 1, . . . ,m

be the the set of facilities that can serve client i. Then, the following ILP model with only
y suffices

min
n∑
j=1

fjyj (7)∑
j∈Ji

yj ≥ 1, i = 1, . . . ,m (8)

yj ∈ {0, 1}, j = 1, . . . , n (9)

The ILP model (7)–(9) defines a generic ILP in which

• all variables are binary,

• all constraints are inequalities in the form “≥”,

• all right hand sides are equal to 1, and

• the entries of the constraint matrix A are binary

Thus, the compact formulation of SCP is

min cTx
Ax ≥ 1
x ∈ {0, 1}n

(10)

where A ∈ {0, 1}m×n, and 1 is the all-1 vector of m elements
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There are two variants of SCP extremely important both in theory and in practice. The
first, the so-called Set Partitioning Problem, is obtained by replacing inequalities with
equations

min cTx
Ax = 1
x ∈ {0, 1}n

(11)

The second, the so-called Set Packing Problem, is obtained when the inequalities in the
form “≥” are replaced by inequalities in the form “≤”, thus naturally leading to express
the objective function in maximization form

max cTx
Ax ≤ 1
x ∈ {0, 1}n

(12)

It is easy to observe that the Set Packing problem always admits a feasible solution x =
(0, . . . , 0), that the Set Covering problem admits a feasible solution if and only if x =
(1, . . . , 1) is feasible, while one can prove that deciding if a feasible solution of the Set
Partitioning problem exists is NP-complete

Although very similar in terms of formulation, the three problems are actually very different

• On the practical side, the Set Covering is less “difficult” and, generally, its LP relax-
ation is “strong” (although not easy to strengthen further)

• Set Packing has a direct interpretation as a graph problem (as discussed in the fol-
lowing) that indicates a clear way of strengthening its LP relaxation that, otherwise,
is generally weak

Finally, it is easy to see that requiring xj ∈ {0, 1} or “xj ≥ 0, integer” is equivalent for all
problems. In other words, the upper bound xj ≤ 1 in the LP relaxation is redundant
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3 Capacitated Facility Location

The Capacitated Facility Location problem (CFLP) is the variant of UFLP in which

• each client i has an associated demand di, and

• each facility j has a capacity bj, corresponding to the overall quantity of demand that
can satisfy

The associated ILP model obtained by using constraints (5) of the UFLP is

min
n∑
j=1

fjyj +
m∑
i=1

n∑
j=1

cijxij (13)

n∑
j=1

xij = 1, i = 1, . . . ,m (14)

xij ≤ yj, i = 1, . . . ,m, j = 1, . . . , n (15)
m∑
i=1

dixij ≤ bjyj, j = 1, . . . , n (16)

yj, xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n (17)

Observe that, differently from UFLP, the integer requirements for variables x are now
necessary (unless serving the demand of a client by using multiple facilities makes sense
from a practical perspective)

Finally, constraints (15) are not necessary for stating the validity of the model but they
generally strengthen its LP relaxation
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4 Bin Packing and Knapsack

Another very important problem in combinatorial optimization is the so-called Bin Packing
Problem (BPP) that can be stated as the special case of CFLP in which

• service costs are all null: cij = 0, i = 1, . . . ,m, j = 1, . . . , n, and

• opening costs and capacities are equal for all facilities: fj = 1, bj = b, j = 1, . . . , n

Thus, all facilities are identical and BPP calls for opening the minimum number of facilities
so as to serve all clients

A trivial modification of model (13)–(17) is as follows

min
n∑
j=1

yj (18)

n∑
j=1

xij = 1, i = 1, . . . ,m (19)

xij ≤ yj, i = 1, . . . ,m, j = 1, . . . , n (20)
m∑
i=1

dixij ≤ byj, j = 1, . . . , n (21)

yj, xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n (22)

A natural way of describing BPP is however different from the client/facility context.
Namely, given m items with weight d1, . . . , dm and n (identical) containers (or bins) with
capacity b, BPP calls for packing each item in a bin such that

• for each bin, the overall weight of the packed items does not exceed the capacity, and

• the number of used bins is a minimum

Without loss of generality we assume
∑m

i=1 di > b. Otherwise, the problem is trivial

BPP is one of the most basic and well-studied problems in the very large area of Cutting &
Packing. An even more basic problem in that class is the so-called (0-1) Knapsack Problem
(KP).

Formally, in KP each item i is characterized by a profit pi (i = 1, . . . ,m) in addition to
the weight wi, a unique bin of capacity b is given, and we are asked to select a subset of
the items that fit into the bin and whose overall profit is a maximum. The corresponding
ILP model is as follows
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max
m∑
i=1

pixi (23)

m∑
i=1

dixi ≤ b (24)

xi ∈ {0, 1}, i = 1, . . . ,m (25)

Although one can clearly use the Simplex algorithm to solve the LP relaxation of model
(23)–(25) above, there is a much easier and faster algorithm to solve it combinatorially.
The method due to Dantzig is reported in Algorithm 1

Algorithm 1 Solving the LP relaxation of Knapsack

1: sort the items according to p1
w1
≥ p1

w1
≥ · · · ≥ pm

wm
;

2: b̄ := b; // residual capacity
3: xi = 0, i = 1, . . . ,m; // initialization
4: for i = 1, . . . ,m do
5: if wi ≤ b̄ then
6: xi := 1;
7: b̄ := b̄− wi
8: else
9: xi := b̄

wi
// critical item

10: return x
11: end if
12: end for

Coming back to the BPP, a trivial lower bound on the number of bins required to pack all
items is given by

` :=

∑m
i=1 di
b

Unfortunately, ` is also the value of the following (feasible) solution of the LP relaxation
of model (18)–(22)

yj = `/n, j = 1, . . . , n; xij = 1/n, i = 1, . . . ,m, j = 1, . . . , n

that in turn indicates that model (18)–(22) is weak because its optimal solution value is
not better than a trivial solution like `

Another severe drawback of using model (18)–(22) for solving BPP is its heavy symmetry :
for each integer solution of value k, there exist

(
n
k

)
k! equivalent solutions, with the practical
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effect that the branching constraints of a branch-and-bound algorithm are largely ineffective
in solving the problem by enumeration

The two outlined drawbacks limit heavily the use of model (18)–(22) for solving BPP in
practice. Although it is conceivable trying to strengthen it, it turns out to be more effective
to define a completely new model for BPP

The alternative model contains an exponential (in m) number of variables because each
variable corresponds to a feasible packing of items into a bin

Formally, let S ′ be the collection of all subsets of items that can be packed together in a
bin without exceeding its capacity

S ′ :=

{
S ⊆ {1, . . . ,m} :

∑
i∈S

di ≤ b

}

The new model has a binary variable for each of these subsets S ∈ S ′

xS :=

{
1, if in a solution there is bin containing the items in S
0, otherwise

The resulting ILP model is a Set Partitioning one

min
∑
S∈S′

xS∑
S∈S′:i∈S

xS = 1, i = 1, . . . ,m (26)

xS ∈ {0, 1}, S ∈ S ′

Note that the number of variables is bounded by O(2m), i.e., huge for practical values of
m

Example 2 Let us consider the case m = 5, b = 10, d = (7, 5, 4, 4, 2), for which

S ′ = {{1}, {2}, {3}, {4}, {5}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}, {3, 4, 5}}

The resulting Set Partitioning model reads as
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min
∑

S∈S′ xS
x{1} + x{1,5} = 1

x{2} + x{2,3} + x{2,4} + x{2,5} = 1
x{3} + x{2,3} + x{3,4} + x{3,5} + x{3,4,5} = 1
x{4} + x{2,4} + x{3,4} + x{4,5} + x{3,4,5} = 1

x{5} + x{1,5} + x{2,5} + x{3,5} + x{4,5} + x{3,4,5} = 1
xS ∈ {0, 1}, S ∈ S ′

�

It is possible to significantly reduce the number of variables of the above model by restrict-
ing the subset of items to maximal subsets, where a subset of items is maximal if and only
if no other item can be added to the bin without exceeding the capacity. Then, collection
S ′ is replaced by the following collection S

S :=

S ⊆ {1, . . . ,m} :
∑
i∈S

di ≤ b,
∑

i∈S∪{j}

di > b ∀j 6∈ S


Although in general |S| << |S ′|, the new model having a variable xS for each S ∈ S is still
of exponential size. However, it is easy to observe that model (26) is not valid anymore if
S ′ is replaced by S
On the other hand, a valid Set Covering-type model is obtained by replacing equations by
inequalities as follows

min
∑
S∈S

xS∑
S∈S:i∈S

xS ≥ 1, i = 1, . . . ,m (27)

xS ∈ {0, 1}, S ∈ S

Models (26) and (27) are clearly both valid and actually equivalent as proved by the
following two propositions

Proposition 1 Any solution of model (26) corresponds to a solution of model (27) with
the same value

Proof Given a solution x∗ of model (26), a solution x of model (27) with the same value
is obtained by considering each variable x∗S = 1, determining a maximal subset S ∈ S such
that S ⊆ S and setting xS = 1 �
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To prove the reverse statement of Proposition 1 we need a slightly stricter condition, i.e., the
minimality of the solutions of model (27): we say that a solution of model (27) is minimal
if no bin is entirely composed by items that are packed in other bins of the solution as well.
In other words, the value of a minimal solution cannot be reduced removing bins without
repacking the remaining items. Then,

Proposition 2 Any minimal solution of model (27) corresponds to a solution of model
(26) with the same value

Proof Given a solution x of model (27), a solution x∗ of model (26) with the same value
is obtained by Algorithm 2

Algorithm 2 Converting a minimal solution of model (27) into a solution of model (26)

1: I := ∅;
2: S̄ := {S ∈ S : xS = 1};
3: while S̄ 6= ∅ do
4: x∗S∗ = 1 for S∗ := S \ I;
5: I := I ∪ S∗

6: end while
7: return x∗

�

The results above hold also for the solutions of the LP relaxations of models (26) and (27)
(essentially the same proofs)

On the practical side, model (27) is better than model (26) because

• the number of variables is smaller (although still exponential),

• the value of the LP relaxations coincide, and

• LPs with inequalities are generally easier to solve than LPs with equations

Example 3 Let us consider again the case m = 5, b = 10, d = (7, 5, 4, 4, 2)

S = {{1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4, 5}}

The resulting Set Covering model reads as
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min
∑

S∈S xS
x{1,5} ≥ 1

x{2,3} + x{2,4} + x{2,5} ≥ 1
x{2,3} + x{3,4,5} ≥ 1
x{2,4} + x{3,4,5} ≥ 1

x{1,5} + x{2,5} + x{3,4,5} ≥ 1
xS ∈ {0, 1}, S ∈ S

Given the solution x∗{1,5} = x∗{2,3} = x∗{4} = 1 of model (26), the corresponding solution of

model (27) is x{1,5} = x{2,3} = x{3,4,5} = 1 �

In summary, for BPP the “natural” model, although much simpler, presents several serious
drawbacks

In case one needs to solve the BPP by branch and bound, and the “natural” model out-of-
the-shelf is not enough, then one needs to use model (27), which, because of its size, has
to be managed with care (see later on in the course)
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5 Fixed Charge

The so-called Fixed Charge Problem arises in production planning when one has to select
the mix of n products that needs to be realized so as to satisfy a demand and some other
production constraints that we will generically indicate as Ax ≥ b

Each product j is characterized by a fixed cost fj to be payed (only once) if any quantity
of product j is produced, and a cost cj linearly depending on the quantity produced

Similarly to the UFLP, the natural nonnegative production variables

xj := quantity of product j realized

are not enough to model the above logical implication and the binary variables

yj :=

{
1, if xj > 0
0, otherwise

have to be introduced

With the variables above the contribution to the objective function of product j is very
simple to state as fjyj + cjxj

However, the logical implication xj > 0 ⇒ yj = 1 is still not obvious to express in linear
terms because the x and y variables are not “comparable”, i.e., any production value xj is
possible if yj = 1

An elegant modeling trick that is enough to overcome this issue is writing the logical
implication as

xj ≤Myj

where M > 0 is a sufficiently-large positive constant that deactivates the constraint in case
yj = 1 by imposing a loose upper bound on the production variable xj

In this way, the overall model of the Fixed Charge Problem reads as

min
n∑
j=1

fjyj + cjxj (28)

xj ≤ Myj, j = 1, . . . , n (29)

Ax ≥ b (30)

xj ≥ 0, yj ∈ {0, 1}, j = 1, . . . , n (31)

Constraints (29) are generally referred to as bigM constraints, and are largely used in
Mixed-Integer Linear Programming to express logical implications
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However, bigM constraints need to be managed with extreme care

Example 4 Consider the case in which the production of 100 units of product j needs to
be realized, and that the value of M has been set to a very large value, say M = 1, 000, 000,
to stay on the safe side

In order to satisfy the j-th constraint (29) in the LP relaxation of model (28)–(31) a value
yj = 0.0001 suffices �

Example 4 shows that in case the value of M has been selected only to be safe on the ILP
side, i.e., to deactivate the constraints, that can result in very weak LP relaxations, thus
significantly affecting the chances of solving the problem by branch and bound

Another serious risk of using bigM’s is associated with precision of floating-point compu-
tation, especially in applications where the x variables can take very high values. The
consequence is that M values must be very high as well, thus potentially resulting in very
tiny values of the y variables in the LP relaxations. Thus, a MIP solver can erroneously
conclude that a very tiny value of a yj variable, say yj < 10−6, is actually integral because
it is smaller than the integrality tolerance

Finally, note that constraints (6) for the UCFP are essentially bigM-type constraints.
Indeed, the value m is, in general, a loose upper bound on the number of clients that can
be simultaneously served by a facility, and it is used to deactivate the constraint when the
associated facility has been opened. This is also the reason of the weakness of the UFLP
model using constraints (6)
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6 Stable Set and Clique

Let us consider the non-oriented graph G = (V,E) with weight pj for each vertex j ∈ V ,
and indicate with n := |V | the number of vertices and with m := |E| the numbers of edges

A Stable Set (or Indpendent Set) of G is a subset of vertices S ⊆ V such that E(S) = ∅,
i.e., no edge in E connects two vertices in S directly

The (maximum-weight) Stable Set (or Independent Set, or Vertex/Node Packing) problem
calls for determining the Stable Set of G of maximum weight

A simple ILP model with m linear constraints for the Sable Set problem is obtained by
using the following (natural) binary variables

xj :=

{
1, if vertex j belongs to the stable set
0, otherwise

and reads as

max
∑
j∈V

pjxj (32)

xi + xj ≤ 1, (i, j) ∈ E (33)

xj ∈ {0, 1}, j ∈ V (34)

The “weakness” of the associated LP relaxation is obvious by considering the trivial special
case of a complete graph G and, for example, pj = 1 for each j ∈ V . For such a family of
instances

• the optimal solution of the ILP is equal to 1 (only one vertex in the stable set), while

• the optimal solution of the LP relaxation is xj = 1/2 per j ∈ V , and has value n/2

A much “stronger” model is obtained by exploiting the notion of Clique of G, which
corresponds to a subset of vertices K ⊆ V such that E(K) = {(i, j) : i, j ∈ K}, i.e., all
pairs of vertices in S are directly connected by an edge in E

A clique K is said to be maximal if and only if it does not exist a clique K ′ such that
K ⊂ K ′, i.e., it does not exist another vertex in V \K directly connected to every vertex
of K by an edge in E

By letting K indicate the collection of all maximal cliques of G, and by observing that each
stable set can contain at most one vertex in each clique, a strong model (at the price of an
exponential number |K| = O(2n) of linear constraints) is obtained by replacing constraints
(33) by
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∑
j∈K

xj ≤ 1, K ∈ K (35)

Of course, like in the case of model (27) for BPP involving an exponential number of
variables, also this model has to be managed with care

A sort of “intermediate” model between the two above, with not more than m constraints
like the “weak” model, but all of type (35), like the “strong” model, is obtained, starting
from the “weak” model, by

• replacing each constraint xi + xj ≤ 1 with a constraint
∑

j∈K xj ≤ 1 for some clique
K ∈ K such that i, j ∈ K (where it is easy to see that a similar clique is easy to
obtain), and

• removing possibly duplicated constraints

The resulting ILP model is defined by (32), (34) and

∑
j∈K

xj ≤ 1, for each (i, j) ∈ E and for some K ∈ K such that i, j ∈ K (36)

Example 5 For graph G = (V,E) with V = {1, 2, 3, 4, 5, 6} and E = {(1, 2), (1, 3), (1, 4),
(1, 5), (1, 6), (2, 5), (2, 6), (5, 6)} constraints (33) are

x1 + x2 ≤ 1
x1 + x3 ≤ 1
x1 + x4 ≤ 1
x1 + x5 ≤ 1
x1 + x6 ≤ 1
x2 + x5 ≤ 1
x2 + x6 ≤ 1
x5 + x6 ≤ 1

while K = {{1, 2, 5, 6}, {1, 3}, {1, 4}}, thus constraints (35) are

x1 + x2 + x5 + x6 ≤ 1
x1 + x3 ≤ 1
x1 + x4 ≤ 1

Finally, for such a simple example constraints (36) coincide with constraints (35) �
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6.1 Stable Set and Set Packing

It is easy to show that the Stable Set problem and the Set Packing problem as defined by
(12) are actually the same problem

First, all ILP models introduced in the previous section for the Stable Set problem are of
Set Packing type

Vice versa

Proposition 3 The Set Packing problem (12) associated with the constraint matrix A ∈
{0, 1}m×n and the cost vector c is equivalent to the Stable Set problem associated with the
undirected graph G(A) = (V,E) with vertex set V := {1, . . . , n}, weights pj := cj for j ∈ V ,
and edge set

E := {(i, j) : ahi = ahj = 1 for some h ∈ {1, . . . ,m}}

Proof Two variables xi and xj can take both value 1 in a Set Packing solution if and
only if it does not exist a constraint h such that ahi = ahj = 1, i.e., if and only if vertices
i, j ∈ G(A) are not (directly) connected by an edge

That implies that any solution of Set Packing corresponds to a Stable Set in G(A) and
vice versa �

Visualizing a Set Packing problem on a graph is of fundamental importance for verifying
that the corresponding inequalities are “strong”, and to strengthen them otherwise

Example 6 Consider the following Set Packing problem

max
∑6

j=1 cjxj
x1 + x4 + x6 ≤ 1
x2 + x4 + x5 ≤ 1

x3 + x4 ≤ 1
x2 + x3 + x5 ≤ 1

xj ∈ {0, 1}, j = 1, . . . , 6

It is possible to define an associated undirected graph G(A) = (V,E) with V = {1, 2, 3, 4, 5,
6} and E = {(1, 4), (1, 6), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5), (4, 6)}
The first constraint of the ILP model above corresponds to the maximal clique {1, 4, 6} of
G(A). In other words, that constraint is already “strong”. However, the remaining three
constraints can be replaced by the following inequality that corresponds to the maximal
clique {2, 3, 4, 5} of G(A), with the result of strengthening the model

x2 + x3 + x4 + x5 ≤ 1

�

17



6.2 Clique Inequalities and (M)ILP

Generally speaking, Algorithm 3 is fundamental for strengthening a set of inequalities that
appear in a generic (M)ILP model in the so-called clique form

∑
j∈S

xj ≤ 1 (37)

where xj is a binary variable for all j ∈ S

Algorithm 3 Strengthening Set Packing constraints in a general MILP

1: define the undirected graph G = (V,E) according to Proposition 3;
2: let I be the set of linear inequalities (37) to be strengthened;
3: for all i ∈ I do
4: let Si be the set of binary variables involved in the clique inequality i;
5: if Si is not a maximal clique of G then
6: find a maximal clique S ′i such that Si ⊂ S ′i;
7: replace inequality i with

∑
j∈S′i

xj ≤ 1
8: end if
9: end for
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7 Vertex Coloring

Given an undirected graph G = (V,E) with n := |V | vertices and m := |E| edges, the
so-called Vertex Coloring Problem calls for assigning colors to the vertices of G such that

• vertices directly connected by an edge in E receive different colors, and

• the number of used colors is a minimum

Seemingly to the natural model for the BPP, and observing that n colors are always enough
(and necessary if and only if the graph is complete), one can introduce binary variables

yj :=

{
1, if color j is used
0, otherwise

xij :=

{
1, if vertex i is colored by color j
0, otherwise

Then, the simplest model for the Vertex Coloring Problem reads as

min
n∑
j=1

yj (38)

n∑
j=1

xij = 1, i ∈ V (39)

xij + xhj ≤ yj, (i, h) ∈ E, j = 1, . . . , n (40)

yj, xij ∈ {0, 1}, i ∈ V, j = 1, . . . , n (41)

The above model combines the drawbacks of the natural model of BPP, and those of the
“weak” model of the Stable Set Problem, as shown, for example, by the special case where
G is complete where

• the optimal solution value of the ILP is n (a different color for each vertex), while

• the optimal solution of the LP relaxation is y1 = y2 = 1; xi1 = xi2 = 1/2,∀i ∈ V ,
and has value 2

As for the Stable Set, the model can be strengthened by replacing constraints (40) by
constraints

∑
i∈K

xij ≤ yj, K ∈ K, j = 1, . . . , n (42)
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where again K denotes the collection of all maximal cliques of G

However, the drawbacks associated with the natural model of BPP remain, together with
the fact that there are O(n2n) inequalities

For example, the optimal solution value of the LP relaxation of the strengthened model is
equal to the size of the clique of G with largest cardinality, which is a trivial lower bound
on the minimum number of required colors

Seemingly to BPP, an alternative ILP model is obtained by observing that the set of vertices
that receive the same color in any solution of the Vertex Coloring Problem corresponds to
a Stable Set of G

By considering the collection S of all maximal Stable Sets of G, and by introducing a
binary variable for each of them

xS :=

{
1, if all and only the vertices in S receive the same color in a solution
0, otherwise

a Set Covering-type ILP model, similar to model (27) for BPP, is the following

min
∑
S∈S

xS∑
S∈S:i∈S

xS ≥ 1, i ∈ V (43)

xS ∈ {0, 1}, S ∈ S

It is easy to devise the corresponding Set Partitioning-type model, with a variable for each
(not necessarily maximal) Stable Set of G by applying the same reasoning done for BPP

Example 7 Given the graph G = (V,E) with V = {1, 2, 3, 4, 5, 6} and E = {(1, 2), (1, 3),
(1, 4), (1, 5), (1, 6), (2, 5), (2, 6), (5, 6)}, then S = {{1}, {2, 3, 4}, {3, 4, 5}, {3, 4, 6}}, and the
associated ILP model (43) is

min
∑

S∈S xS
x{1} ≥ 1

x{2,3,4} ≥ 1
x{2,3,4} + x{3,4,5} + x{3,4,6} ≥ 1
x{2,3,4} + x{3,4,5} + x{3,4,6} ≥ 1

x{3,4,5} ≥ 1
x{3,4,6} ≥ 1

xS ∈ {0, 1}, S ∈ S
�
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8 Traveling Salesman

The so-called Traveling Salesman Problem (TSP) is the most celebrated problem in combi-
natorial optimization. It is usually defined on an undirected graph, but because the version
on a directed graph, called Asymmetric TSP (ATSP), admits an ILP model that is more
general we will consider the ATSP first

Given a directed graph G = (V,A), complete and with cost ca = c(i,j) for each arc a =
(i, j) ∈ A, the ATSP calls for determining a tour of G

• visiting each vertex i ∈ V exactly once, and

• at a minimum cost, where the cost of a tour is the sum of the costs of its arcs

Observe that the requirement of visiting each vertex exactly once, i.e., once but not more,
which seems to be unrealistic for routing problems (in case it is convenient to go through a
vertex more than once it should be possible) is actually redundant in case the costs satisfy
the triangular inequality

c(i,j) + c(j,k) ≥ c(i,k), i, j, k ∈ V, i 6= j, i 6= k, j 6= k (44)

as it is often the case in practice. Indeed, in many applications the cost matrix c is actually
obtained by computing the shortest path between each pair of vertices

For the ATSP (as well as for the TSP) it exists a unique ILP model that is successfully
used in practice and has the following binary variables

xa :=

{
1, if arc a belongs to the tour
0, otherwise

It is easy to observe that a tour visiting all vertices exactly once has precisely one incoming
and one outgoing arc for each vertex of G. Thus, one could think that the ILP model

min
∑
a∈A

caxa (45)∑
a∈δ−(i)

xa = 1, i ∈ V (46)

∑
a∈δ+(i)

xa = 1, i ∈ V (47)

xa ∈ {0, 1}, a ∈ A (48)

is enough to express the ATSP
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Example 8 For a graph of 6 vertices, constraints (46) and (47), the so-called degree con-
straints, take the form

x(2,1) + x(3,1) + x(4,1) + x(5,1) + x(6,1) = 1
. . .

x(1,6) + x(2,6) + x(3,6) + x(4,6) + x(5,6) = 1
x(1,2) + x(1,3) + x(1,4) + x(1,5) + x(1,6) = 1

. . .
x(6,1) + x(6,2) + x(6,3) + x(6,4) + x(6,5) = 1

�

However, it is easy to see that a solution of model (45)–(48) might have more than one
tour

In other words, the model above is not valid for the ATSP, while it precisely models
another very well-known problem in combinatorial optimization, the so-called Assignment
Problem (AP). The quite peculiar characteristic of the AP is that the LP relaxation of
model (45)–(48) defines the convex hull of its integer solutions (thus, in turn, showing that
AP is polynomially solvable)

In order to obtain a valid ILP model for the ATSP we need to add constraints forbidding
the existence of subtours, i.e., tours visiting only a subset of the vertices

Let C be the collection of all subtours of G, then a set of constraints that added to model
(45)–(48) define a valid ILP model for the ATSP is

∑
a∈C

xa ≤ |C| − 1, C ∈ C (49)

It is easy to observe that the number of subtours of k arcs, i.e., visiting k vertices, of a
graph with n vertices is equal to

(
n
k

)
(k − 1)!, because there are

(
n
k

)
ways of selecting the k

visited vertices and, for each of those choices, (k − 1)! ways of defining a subtour visiting
them

Example 9 For a graph of 6 vertices, constraints (49) have the form
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x(1,2) + x(2,1) ≤ 1
x(1,3) + x(3,1) ≤ 1

. . .
x(1,2) + x(2,3) + x(3,1) ≤ 2
x(1,3) + x(3,2) + x(2,1) ≤ 2

. . .
x(1,2) + x(2,3) + x(3,4) + x(4,1) ≤ 3
x(1,2) + x(2,4) + x(4,3) + x(3,1) ≤ 3
x(1,3) + x(3,2) + x(2,4) + x(4,1) ≤ 3
x(1,3) + x(3,4) + x(4,2) + x(2,1) ≤ 3
x(1,4) + x(4,2) + x(2,3) + x(3,1) ≤ 3
x(1,4) + x(4,3) + x(3,2) + x(2,1) ≤ 3

. . .

�

It exists a much better version of constraints (49), which is the one used in practice because
the set contains less constraints that are actually stronger

Given a subset of vertices S ⊆ V and a subtour visiting the vertices in S, constraints (49)
require that at most |S| − 1 arcs of the subtour can be selected in a solution. However, is
is easy to see that a stronger condition holds: at most |S|− 1 arcs between pairs of vertices
in S can be selected in a solution (otherwise, subtours would appear)

The above observation leads to stronger constraints forbidding subtours, the so-called
Subtour Elimination Constraints

∑
a∈A(S)

xa ≤ |S| − 1, S ⊆ V, 2 ≤ |S| ≤ |V | − 2 (50)

Observe that it is not necessary to introduce constraints (50) if |S| = 1 and |S| = |V | − 1
because no solution of model (45)–(48) can contain a subtour that visits only one vertex

For each subset S ⊆ V such that 2 ≤ |S| ≤ |V | − 2, the unique constraint (50) associated
with S dominates the (|S| − 1)! constraints (49) associated with S

Then, the (final) ILP model for the ATSP is given by the degree constraints (45)–(48)
together with the 2n − 2(n + 1) constraints (50)

Example 10 For a graph of 6 vertices, the constraints (50) that replace constraints (49)
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of Example 9 have the form

x(1,2) + x(2,1) ≤ 1
x(1,3) + x(3,1) ≤ 1

. . .
x(1,2) + x(1,3) + x(2,1) + x(2,3) + x(3,1) + x(3,2) ≤ 2

. . .
x(1,2) + x(1,3) + x(1,4) + x(2,1) + x(2,3) + x(2,4) + x(3,1) + x(3,2) + x(3,4) + x(4,1) + x(4,2) + x(4,3) ≤ 3

. . .

�

It exists an alternative and equivalent way of expressing constraints (50) as

∑
a∈δ+(S)

xa ≥ 1, S ⊆ V, 2 ≤ |S| ≤ |V | − 2 (51)

The equivalence is stated in the following Proposition

Proposition 4 For a vector x = (xa) satisfying (46) and (47), x satisfies (50) if and only
if it satisfies (51) as well

Proof Consider x that satisfies (46) and (47) and a generic subset S ⊆ V such that
2 ≤ |S| ≤ |V | − 2

First, identity

∑
i∈S

∑
a∈δ+(i)

xa =
∑

a∈A(S)

xa +
∑

a∈δ+(S)

xa

holds. Moreover, because x satisfies (47), then

∑
i∈S

∑
a∈δ+(i)

xa = |S|

By combining the two equations above, then

∑
a∈A(S)

xa +
∑

a∈δ+(S)

xa = |S|

that, in turn, implies

∑
a∈A(S)

xa ≤ |S| − 1⇔
∑

a∈δ+(S)

xa ≥ 1

that is, x satisfies constraint (50) for S if and only if satisfies (51) for S as well �
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Example 11 For a graph of 6 vertices, constraints (51) corresponding to constraints (50)
in Example 10 have the form

x(1,3) + x(1,4) + x(1,5) + x(1,6) + x(2,3) + x(2,4) + x(2,5) + x(2,6) ≥ 1
x(1,2) + x(1,4) + x(1,5) + x(1,6) + x(3,2) + x(3,4) + x(3,5) + x(3,6) ≥ 1

. . .
x(1,4) + x(1,5) + x(1,6) + x(2,4) + x(2,5) + x(2,6) + x(3,4) + x(3,5) + x(3,6) ≥ 1

. . .
x(1,5) + x(1,6) + x(2,5) + x(2,6) + x(3,5) + x(3,6) + x(4,5) + x(4,6) ≥ 1

. . .

�

Observe that the equivalence between (50) and (51) is true because of the degree con-
straints, while there are TSP variants in which one is looking for a circuit not necessarily
visiting all vertices, where only either (50) or (51) are satisfied

The TSP is the ATSP variant defined on an undirected graph, i.e., on G = (V,E), complete
and with cost ce = c(i,j) for each edge e = (i, j) ∈ E

Clearly, the TSP is the special case of the ATSP where c(i,j) = c(j,i) for i, j ∈ V, i 6= j, thus
the ATSP model above is valid for the TSP as well

However, the TSP is generally solved through an ILP model where variables are associated
with edges of G (instead of arcs)

xe :=

{
1, if edge e belongs to the tour
0, otherwise

and reads as follows

min
∑
e∈E

cexe (52)∑
e∈δ(i)

xe = 2, i ∈ V (53)

∑
e∈E(S)

xe ≤ |S| − 1, S ⊆ V, 2 ≤ |S| ≤ |V | − 2 (54)

xe ∈ {0, 1}, e ∈ E (55)

Note that, for |S| = 2, the constraint (54) associated with S = {i, j} is x(i,j) ≤ 1. These
are redundant constraints for the integer case but necessary for the LP relaxation

The alternative to constraints (54), equivalent as for the ATSP, is writing constraints

∑
e∈δ(S)

xe ≥ 2, S ⊆ V, 2 ≤ |S| ≤ |V | − 2 (56)
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9 Summary of Problems and ILP Models

The following table summarizes the problems introduced and their discussed ILP models

Problem ILP model (#variables, #constraints) The associated LP relaxation is

UFLP
(1), (2), (6), (4) (n+mn, m+ n) “weak”
(1), (2), (5), (4) (n+mn, m+mn) “strong”

Set Covering (10) (n, m) “strong”

Set Partitioning (11) (n, m) “strong”

Set Packing (12) (n, m)
“intermediate” if all constraints are
associated with maximal cliques

of G(A) (see Stable Set)

CFLP (13)-(17) (n+mn, m+mn+ n)
generally “strong”, even if tends to

become “weak” if facilities are
equal (see Bin Packing)

Bin Packing
(18)-(22) (n+mn, m+mn+ n) “weak”

(27) (O(2n), n) “strong”

Fixed Charge (29) (2n, n) plus Ax ≥ b “weak” depending on M values

Stable Set
(32)-(34) (n, m) “weak”

(32), (35), (34) (n, O(2n)) “strong”
(32), (36), (34) (n, O(m)) “intermediate”

Vertex Coloring
(38)-(41) (n+ n2, n+ nm) “weak”

(38), (39), (42), (41) (n+ n2, n+O(n2n)) “intermediate”
(43) (O(2n), n) “strong”

ATSP (45)-(48), (50) (n(n− 1), 2n+O(2n)) “strong”

TSP (52)-(55) (n(n− 1)/2, n+O(2n)) “strong”
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