
Experiments in TuCSoN
Distributed Systems

Sistemi Distribuiti

Andrea Omicini Stefano Mariani
{andrea.omicini, s.mariani}@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2011/2012

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 1 / 76

Outline Part I: Basic TuCSoN

Outline of Part I: Basic TuCSoN

1 Basic Model & Language

2 Basic Architecture

3 Basic Technology

4 Basic Experiments
Examples

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 2 / 76

Outline Part II: Advanced TuCSoN

Outline of Part II: Advanced TuCSoN

5 Advanced Model

6 Advanced Architecture

7 Programming Tuple Centres

8 Experiments in ReSpecT

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 3 / 76

Outline Part III: Conclusion

Outline of Part III: Conclusion

9 Conclusion & Perspectives

10 Bibliography

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 4 / 76

Part I

Basic TuCSoN

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 5 / 76

Outline

Outline

1 Basic Model & Language

2 Basic Architecture

3 Basic Technology

4 Basic Experiments

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 6 / 76

The TuCSoN Basic Model & Language

Part 1: Basic TuCSoN

1 Basic Model & Language

2 Basic Architecture

3 Basic Technology

4 Basic Experiments
Examples

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 7 / 76

The TuCSoN Basic Model & Language

TuCSoN Coordination Model I

TuCSoN

TuCSoN(Tuple Centres Spread over the Network) is a model for the
coordination of distributed processes, as well as of autonomous,
intelligent & mobile agents [Omicini and Zambonelli, 1999]

URL http://tucson.apice.unibo.it/

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 8 / 76

http://tucson.apice.unibo.it/

The TuCSoN Basic Model & Language

TuCSoN Coordination Model II

Basic Entities

TuCSoN agents are the coordinables

ReSpecT tuple centres are the coordination media
[Omicini and Denti, 2001]

TuCSoN nodes represent the basic topological abstraction, which
host the tuple centres

agents, tuple centres, and nodes have unique identities within a
TuCSoN system

roughly speaking, a TuCSoN system is a collection of agents and
tuple centres working together in a possibly-distributed set of nodes

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 9 / 76

The TuCSoN Basic Model & Language

TuCSoN Coordination Model III

Basic Interaction

since agents are pro-active entities, and tuple centres are reactive
entities, coordinables need coordination operations in order to act
over coordination media: such operations are built out of the
TuCSoN coordination language

agents interact by exchanging tuples through tuple centres using
TuCSoN coordination primitives, altogether defining the coordination
language

tuple centres provide the shared space for tuple-based communication
(tuple space), along with the programmable behaviour space for
tuple-based coordination (specification space)

roughly speaking, a TuCSoN system is a collection of agents and
tuple centres interacting in a possibly-distributed set of nodes

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 10 / 76

The TuCSoN Basic Model & Language

TuCSoN Coordination Model IV

Basic Topology

agents and tuple centres are spread over the network

tuple centres belong to nodes

agents live anywhere on the network, and can interact with the tuple
centres hosted by any reachable TuCSoN node

agents could in principle move independently of the device where they
run, tuple centres are permanently associated to one device

roughly speaking, a TuCSoN system is a collection of
possibly-distributed nodes and agents interacting with the nodes’
tuple centres

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 11 / 76

The TuCSoN Basic Model & Language

TuCSoN Naming I

Nodes

each node within a TuCSoN system is univocally identified by the pair
< NetworkId ,PortNo >, where

NetworkId is either the IP number or the DNS entry of the device
hosting the node
PortNo is the port number where the TuCSoN coordination service
listens to the invocations for the execution of coordination operations

correspondingly, the abstract syntax for the identifier of a TuCSoN
node hosted by a networked device netid on port portno is

netid : portno

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 12 / 76

The TuCSoN Basic Model & Language

TuCSoN Naming II

Tuple Centres

an admissible name for a tuple centre is any first-order ground logic
term

since each node contain at most one tuple centre for each admissible
name, each tuple centre is uniquely identified by its admissible name
associated to the node identifier

the TuCSoN full name of a tuple centre tname on a node
netid : portno is

tname @ netid : portno

the full name of a tuple centre works as a tuple centre identifier in a
TuCSoN system

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 13 / 76

The TuCSoN Basic Model & Language

TuCSoN Naming III

Agents

an admissible name for an agent is any first-order ground logic term

when it enters a TuCSoN system, an agent assigned a universally
unique identifier (UUID)a

if an agent aname is assigned UUID uuid, its full name is

aname : uuid

ahttp://docs.oracle.com/javase/7/docs/api/java/util/UUID.html

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 14 / 76

http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html

The TuCSoN Basic Model & Language

TuCSoN Coordination Language I

Coordination Language

the TuCSoN coordination language allows agents to interact with
tuple centres by executing coordination operations

TuCSoN provides coordinables with coordination primitives, allowing
agents to read, write, consume tuples in tuple spaces, and to
synchronise on them

coordination operations are built out of coordination primitives and of
the communication languages:

the tuple language
the tuple template language

coordination operations are invoked by agents upon tuple centres,
which are then to be univocally referred in the operation

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 15 / 76

The TuCSoN Basic Model & Language

TuCSoN Coordination Language II

Coordination Operations

a TuCSoN coordination operation is invoked by a source agent on a
target tuple centre, which is in charge of its execution

the abstract syntax of a coordination operation op invoked on a
target tuple centre whose full name is tcid is

tcid ? op

given the structure of the full name of a tuple centre, the general
abstract syntax of a TuCSoN coordination operation is

tname @ netid : portno ? op

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 16 / 76

The TuCSoN Basic Model & Language

TuCSoN Coordination Language III

Coordination Primitives

The TuCSoN coordination language provides 8 coordination primitives to
build coordination operations:

out, rd, in

rdp, inp

no

get, set

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 17 / 76

The TuCSoN Basic Model & Language

TuCSoN Coordination Operations I

Basic Operations

out(Tuple) writes Tuple in the target tuple space—where Tuple belongs to the
tuple language

rd(TupleTemplate) reads a Tuple matching TupleTemplate in the target tuple
space—where TupleTemplate belongs to the tuple template language;
if such a tuple is not found when the operation is first served, the
execution is suspended, to be resumed and completed when a matching
Tuple is finally found on the target tuple space, and returned

in(TupleTemplate) consumes a Tuple matching TupleTemplate from the target
tuple space—where TupleTemplate belongs to the tuple template
language; if such a tuple is not found when the operation is first served,
the execution is suspended, to be resumed and completed when a
matching Tuple is finally found on the target tuple space, and returned

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 18 / 76

The TuCSoN Basic Model & Language

TuCSoN Coordination Operations II

Predicative Operations

rdp(TupleTemplate) reads a Tuple matching TupleTemplate in the target tuple
space—where TupleTemplate belongs to the tuple template language;
if such a tuple is not found when the operation is served, the execution
fails, and the operation results in a failure; otherwise the operation
succeeds, and Tuple is returned

inp(TupleTemplate) consumes a Tuple matching TupleTemplate from the target
tuple space—where TupleTemplate belongs to the tuple template
language; if such a tuple is not found when the operation is served, the
execution fails, and the operation results in a failure; otherwise the
operation succeeds, and Tuple is returned

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 19 / 76

The TuCSoN Basic Model & Language

TuCSoN Coordination Operations III

Test-for-Absence Operation

no(TupleTemplate) reads a Tuple matching TupleTemplate in the target tuple
space—where TupleTemplate belongs to the tuple template language;
if a matching Tuple is found when the operation is served, the
execution fails, and Tuple is returned; otherwise the operation succeeds

Space Operations

get() reads all the tuples in the target tuple space, and returns them as a list

set(Tuples) rewrites the target tuple spaces with the list of Tuples

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 20 / 76

The TuCSoN Basic Architecture

Part 1: Basic TuCSoN

1 Basic Model & Language

2 Basic Architecture

3 Basic Technology

4 Basic Experiments
Examples

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 21 / 76

The TuCSoN Basic Architecture

TuCSoN Nodes & Tuple Centres I

Node

a TuCSoN system is first of all a characterised by the (possibly
distributed) collection of TuCSoN nodes hosting a TuCSoN service

a node is characterised by the networked device hosting the service,
and by the network port where the TuCSoN service listens to
incoming requests

! many TuCSoN nodes can in principle run on the same networked
device, each one listening on a different port

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 22 / 76

The TuCSoN Basic Architecture

TuCSoN Nodes & Tuple Centres II

Default Node

! the default port number of TuCSoN is 20504

so, an agent can invoke operations of the form

tname @ netid ? op

without specifying the node port number portno, meaning that the
agent intends to invoke operation op on the tuple centre tname of the
default node netid : 20504 hosted by the networked device netid

any other port could in principle be used for a TuCSoN node

the fact that a TuCSoN node is available on a networked device does
not imply that a node is also available on the same unit on the default
port—so the default node is not ensured to exist, generally speaking

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 23 / 76

The TuCSoN Basic Architecture

TuCSoN Nodes & Tuple Centres III

Tuple Centres

given an admissible tuple centre name tname, tuple centre tname is
an admissibile tuple centre

the coordination space of a TuCSoN node is defined as the collection
of all the admissible tuple centres

any TuCSoN node provides agents with a complete coordination
space, so that in principle any coordination operation can be invoked
on any admissible tuple centre belonging to any TuCSoN node

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 24 / 76

The TuCSoN Basic Architecture

TuCSoN Nodes & Tuple Centres IV

Default Tuple Centre

every TuCSoN node defines a default tuple centre, which responds to
any operation invocation received by the node that do not specify the
target tuple centre

! the default tuple centre of any TuCSoN node is named default

as a result, agents can invoke operations of the form

@ netid : portno ? op

without specifying the tuple centre name tname, meaning that they
intend to invoke operation op on the default tuple centre of the
node netid : portno hosted by the networked device netid

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 25 / 76

The TuCSoN Basic Architecture

TuCSoN Nodes & Tuple Centres V

Default Tuple Centre & Port

combining the notions of default tuple centre and default port, agents
can also invoke operations of the form

@ netid ? op

meaning that they intend to invoke operation op on the default

tuple centre of the default node netid : 20504 hosted by the
networked device netid

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 26 / 76

The TuCSoN Basic Architecture

TuCSoN Coordination Spaces I

Global coordination space

the TuCSoN global coordination space is defined at any time by the
collection of all the tuple centres available on the network, hosted by
a node, and identified by their full name

a TuCSoN agent running on any networked device has at any time
the whole TuCSoN global coordination space available for its
coordination operations through invocations of the form

tname @ netid : portno ? op

which invokes operation op on the tuple centre tname provided by
node netid : portno

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 27 / 76

The TuCSoN Basic Architecture

TuCSoN Coordination Spaces II

Local Coordination Space

given a networked device netid hosting one or more TuCSoN nodes,
the TuCSoN local coordination space is defined at any time by the
collection of all the tuple centres made available by all the TuCSoN
nodes hosted by netid

an agent running on the same device netid that hosts a TuCSoN
node can exploit the local coordination space to invoke operations of
the form

tname : portno ? op

which invokes operation op on the tuple centre tname locally provided
by node netid : portno

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 28 / 76

The TuCSoN Basic Architecture

TuCSoN Coordination Spaces III

Defaults & Local Coordination Space

by exploiting the notions of default node and default tuple centre, the
following invocations are also admissible for any TuCSoN agent
running on a device netid:

: portno ? op

invoking operation op on the default tuple centre of node
netid : portno

tname ? op

invoking operation op on the tname tuple centre of default node
netid : 20504

op

invoking operation op on the default tuple centre of default node
netid : 20504

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 29 / 76

The TuCSoN Basic Technology

Part 1: Basic TuCSoN

1 Basic Model & Language

2 Basic Architecture

3 Basic Technology

4 Basic Experiments
Examples

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 30 / 76

The TuCSoN Basic Technology

TuCSoN Middleware I

Technology requirements

TuCSoN is a Java-based middleware

TuCSoN is also Prolog-based: it is based on the tuProlog Java-based
technology for

first-order logic tuples
primitive & identifier parsing
ReSpecT specification language & virtual machine

Java & Prolog agents

TuCSoN middleware provides

Java API for extending Java programs with TuCSoN coordination
primitives
Prolog libraries for extending Prolog programs with TuCSoN
coordination primitives—in particular, tuProlog programs
Java classes for programming TuCSoN agents in Java

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 31 / 76

The TuCSoN Basic Technology

TuCSoN Middleware II

TuCSoN Service

given any networked device running a Java VM, a TuCSoN node
service can be booted through the alice.tucson.service Java API
e.g. java -cp TuCSoN-1.9.10.jar alice.tucson.service.TucsonNodeService

-port 20506

the node service is in charge of

listening to incoming operation invocations on the associated port of
the device
dispatching them to the target tuple centres
returning the operation completions

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 32 / 76

The TuCSoN Basic Technology

TuCSoN Middleware III

TuCSoN Coordination Space

a TuCSoN node service provides the complete coordination space

tuple centres in a node are either actual or potential: at any time in a
given node

actual tuple centres are admissible tuple centres that already do have
a reification as a run-time abstraction

potential tuple centres are admissible tuple centres that do not have
a reification as a run-time abstraction, yet

the node service is in charge of making potential tuple centres actual
as soon as the first operation on them is received and served

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 33 / 76

The TuCSoN Basic Technology

TuCSoN Tools I

Command Line Interface (CLI)

shell interface for human agents / programmers

e.g.
java -cp TuCSoN-1.9.10.jar

alice.tucson.service.tools.CommandLineInterpreter

-netid localhost -port 20506 -aid myCLI

Inspector

a GUI tool to monitor the TuCSoN coordination space

e.g.
java -cp TuCSoN-1.9.10.jar alice.tucson.introspection.tools.Inspector

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 34 / 76

The TuCSoN Basic Technology

TuCSoN Tools II

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 35 / 76

The TuCSoN Basic Technology

TuCSoN Tools III

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 36 / 76

The TuCSoN Basic Technology

TuCSoN Tools IV

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 37 / 76

The TuCSoN Basic Technology

TuCSoN Tools V

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 38 / 76

The TuCSoN Basic Technology

TuCSoN Tools VI

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 39 / 76

The TuCSoN Basic Technology

TuCSoN Tools VII

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 40 / 76

Basic Experiments in TuCSoN

Part 1: Basic TuCSoN

1 Basic Model & Language

2 Basic Architecture

3 Basic Technology

4 Basic Experiments
Examples

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 41 / 76

Basic Experiments in TuCSoN Examples

Experiments Page

Where to Get the Examples

all the files used in the next slides can be found at
http://apice.unibo.it/xwiki/bin/view/Courses/Sd1112Lab-Class5

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 42 / 76

http://apice.unibo.it/xwiki/bin/view/Courses/Sd1112Lab-Class5

Basic Experiments in TuCSoN Examples

Example 1: CLI Operations I

CLI Experiments

get bash file launch.sh

launch a node, e.g. bash launch.sh Node, or
java -cp TuCSoN-1.9.10.jar alice.tucson.service.TucsonNodeService

launch the CLI tool, e.g. bash launch.sh CLI, or
java -cp TuCSoN-1.9.10.jar

alice.tucson.service.tools.CommandLineInterpreter

then, experiment with the TuCSoN primitives via CLI, which provides
a TuCSoN interface to human agents

its syntax is then the standard TuCSoN syntax for coordination
primitives

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 43 / 76

Basic Experiments in TuCSoN Examples

Example 1: CLI Operations II

CLI Syntax

out(T) --> success [/ failure]

in(TT), rd(TT) --> success: Tuple [/ failure]

inp(TT), rdp(TT) --> success: Tuple / failure

no(TT) --> success / failure: Tuple

get() --> tuple space: [Tuple1, ..., TupleN]

set([T1, ..., TN]) --> success [/ failure]

out s(E,G,R) --> success [/ failure]

in s(ET,GT,RT), rd s(ET,GT,RT) --> success: reaction(E,G,R) [/ failure]

inp s(ET,GT,RT), rdp s(ET,GT,RT) --> success: reaction(E,G,R) / failure

no s(ET,GT,RT) --> success / failure: reaction(E,G,R)

get s() --> specification space: [reaction(E1,G1,R1), ...,

reaction(En,Gn,Rn)]

set s([(E1,G1,B1), ..., (En,Gn,Bn)]) --> success [/ failure]

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 44 / 76

Basic Experiments in TuCSoN Examples

Example 1: CLI Operations III

CLI Example
1 out(msg("Hello World!"))

2 rd(msg(Message))

3 get()

4 in(msg(Message))

5 get()

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 45 / 76

Basic Experiments in TuCSoN Examples

Example 2: Hello World from Java

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 46 / 76

Basic Experiments in TuCSoN Examples

Example 3: Hello World from Java with TucsonAgent I

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 47 / 76

Basic Experiments in TuCSoN Examples

Example 3: Hello World from Java with TucsonAgent II

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 48 / 76

Basic Experiments in TuCSoN Examples

Running Examples 2 & 3

check whether your TuCSoN node is still alive

get examples.zip

open Eclipse, and create a new Java project

there, import unzipped example.zip

run tucson.examples.hello.HelloWorld

check your TuCSoN node

run tucson.examples.hello agent.HelloAgentTest

check your TuCSoN node

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 49 / 76

Part II

Advanced TuCSoN

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 50 / 76

The TuCSoN Advanced Model

Part 2: Advanced TuCSoN

5 Advanced Model

6 Advanced Architecture

7 Programming Tuple Centres

8 Experiments in ReSpecT

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 51 / 76

The TuCSoN Advanced Model

TuCSoN Organisation I

RBAC

Role-Based Access Control (RBAC) models integrate organisation and
security

RBAC is a NIST standarda

roles are assigned to processes, and rule the distributed access to
resources

ahttp://csrc.nist.gov/groups/SNS/rbac/

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 52 / 76

http://csrc.nist.gov/groups/SNS/rbac/

The TuCSoN Advanced Model

TuCSoN Organisation II

RBAC in TuCSoN

TuCSoN tuple centres are structured and ruled in organisations

TuCSoN implements a version of RBAC [Omicini et al., 2005b],
where organisation and security issues are handled in a uniform way
as coordination issues

a special tuple centre ($ORG) contains the dynamic rules of RBAC in
TuCSoN

! the current TuCSoN implementation provides an unstable and
unreliable implementation of RBAC

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 53 / 76

The TuCSoN Advanced Model

TuCSoN Agent Coordination Contexts I

ACC

An Agent Coordination Context (ACC) [Omicini, 2002] is

a runtime and stateful interface released to an agent to execute
operations on the tuple centres of a specific organisation

a sort of interface provided to an agent by the infrastructure to make
it interact within a given organisation

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 54 / 76

The TuCSoN Advanced Model

TuCSoN Agent Coordination Contexts II

ACC in TuCSoN

the ACC is an organisation abstraction to model RBAC in TuCSoN
[Omicini et al., 2005a]

along with tuple centres, ACC are the run-time abstractions that
allows TuCSoN to uniformly handle coordination, organisation, and
security issues

! the current TuCSoN implementation provide a limited yet useful
implementation of the ACC notion

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 55 / 76

The TuCSoN Advanced Model

TuCSoN Agent Coordination Contexts III

Currently Available ACC

OrdinarySynchACC enables interaction with the tuple space, and enacts a blocking behaviour
from the agent’s perspective: whichever the coordination operation invoked
(either suspensive or predicative), the agent stub blocks waiting for its
completion

SpecificationSynchACC enables interaction with the specification space and enacts a blocking
behaviour from the agent’s perspective: whichever the meta-coordination
operation invoked (either suspensive or predicative), the agent stub blocks
waiting for its completion

OrdinaryAsynchACC enables interaction with the tuple space, and enacts a non-blocking
behaviour from the agent’s perspective: whichever the coordination operation
invoked (either suspensive or predicative), the agent stub does not block, but
is instead asynchronously notified of its completion

SpecificationAsynchACC enables interaction with the specification space and enacts a
non-blocking behaviour from the agent’s perspective: whichever the
meta-coordination operation invoked (either suspensive or predicative), the
agent stub does not block, but is instead asynchronously notified of its
completion

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 56 / 76

The TuCSoN Advanced Architecture

Part 2: Advanced TuCSoN

5 Advanced Model

6 Advanced Architecture

7 Programming Tuple Centres

8 Experiments in ReSpecT

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 57 / 76

The TuCSoN Advanced Architecture

TuCSoN System

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 58 / 76

Programming ReSpecT Tuple Centres

Part 2: Advanced TuCSoN

5 Advanced Model

6 Advanced Architecture

7 Programming Tuple Centres

8 Experiments in ReSpecT

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 59 / 76

Programming ReSpecT Tuple Centres

TuCSoN Coordination Language I

Meta-Coordination Language

the TuCSoN meta-coordination language allows agents to program
ReSpecT tuple centres by executing meta-coordination operations

TuCSoN provides coordinables with meta-coordination primitives,
allowing agents to read, write, consume ReSpecT specification tuples
in tuple centres, and also to synchronise on them

meta-coordination operations are built out of meta-coordination
primitives and of the ReSpecT specification languages:

the specification language
the specification template language

meta-coordination operations are invoked by agents upon tuple
centres, which are then to be univocally referred in the operation

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 60 / 76

Programming ReSpecT Tuple Centres

TuCSoN Coordination Language II

Meta-Coordination Operations

a TuCSoN meta-coordination operation is invoked by a source agent
on a target tuple centre, which is in charge of its execution

the abstract syntax of a coordination operation op s invoked on a
target tuple centre whose full name is tcid is

tcid ? op s

given the structure of the full name of a tuple centre, the general
abstract syntax of a TuCSoN coordination operation is

tname @ netid : portno ? op s

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 61 / 76

Programming ReSpecT Tuple Centres

TuCSoN Coordination Language III

Coordination Primitives

TuCSoN defines 8 meta-coordination primitives, allowing agents to
read, write, consume ReSpecT specification tuples in tuple spaces,
and to synchronise on them

out s

rd s, in s

rdp s, inp s

no s

get s, set s

meta-primitives perfectly match coordination primitives, allowing a
uniform access to both the tuple space and the specification space in
a TuCSoN tuple centre

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 62 / 76

Programming ReSpecT Tuple Centres

TuCSoN Meta-Coordination Operations I

Basic Meta-Operations

out s(E,G,R) writes a specification tuple reaction(E,G,R) in the target tuple
centre—where reaction(E,G,R) belongs to the specification language

rd s(ET,GT,RT) reads a specification tuple reaction(E,G,R) matching
reaction(ET,GT,RT) in the target tuple centre—where
reaction(ET,GT,RT) belongs to the specification template language; if
such a specification tuple is not found when the operation is first served,
the execution is suspended, to be resumed and completed when a
matching reaction(E,G,R) specification tuple is finally found on the
target tuple centre, and returned

in s(ET,GT,RT) consumes a specification tuple reaction(E,G,R) matching
reaction(ET,GT,RT) in the target tuple centre—where
reaction(ET,GT,RT) belongs to the specification template language; if
such a specification tuple is not found when the operation is first served,
the execution is suspended, to be resumed and completed when a
matching reaction(E,G,R) specification tuple is finally found on the
target tuple centre, and returned

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 63 / 76

Programming ReSpecT Tuple Centres

TuCSoN Meta-Coordination Operations II

Predicative Meta-Operations

rdp s(ET,GT,RT)) reads a specification tuple reaction(E,G,R) matching
reaction(ET,GT,RT) in the target tuple centre—where
reaction(ET,GT,RT) belongs to the specification template language; if
such a specification tuple is not found when the operation is served, the
execution fails, and the operation results in a failure; otherwise the
operation succeeds, and reaction(E,G,R) is returned

inp s(ET,GT,RT) consumes a specification tuple reaction(E,G,R) matching
reaction(ET,GT,RT) in the target tuple centre—where
reaction(ET,GT,RT) belongs to the specification template language; if
such a specification tuple is not found when the operation is served, the
execution fails, and the operation results in a failure; otherwise the
operation succeeds, and reaction(E,G,R) is returned

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 64 / 76

Programming ReSpecT Tuple Centres

TuCSoN Meta-Coordination Operations III

Test-for-Absence Meta-Operation

no s(ET,GT,RT) reads a specification tuple reaction(E,G,R) matching
reaction(ET,GT,RT) in the target tuple centre—where
reaction(ET,GT,RT) belongs to the specification template language; if
a matching reaction(E,G,R) specification tuple is found when the
operation is served, the execution fails, and reaction(E,G,R) is
returned; otherwise the operation succeeds

Space Meta-Operations

get s() reads all the specification tuples in the target tuple centre, and returns
them as a list

set s([(E1,G1,R1), ..., (En,Gn,Rn)]) rewrites the target tuple spaces with the
list of specification tuples reaction(E1,G1,R1), ...,

reaction(En,Gn,Rn)

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 65 / 76

Experiments in ReSpecT Tuple Centre Programming

Part 2: Advanced TuCSoN

5 Advanced Model

6 Advanced Architecture

7 Programming Tuple Centres

8 Experiments in ReSpecT

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 66 / 76

Experiments in ReSpecT Tuple Centre Programming

Programming Tuple Centres from TuCSoN CLI

CLI Example
1 out(msg("Hello World!"))

2 rd(msg(Message))

3 out s(in(msg(Message)),completion,out(notice("Message",Message,"removed")))

4 get s()

5 in(msg(Message))

6 get()

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 67 / 76

Experiments in ReSpecT Tuple Centre Programming

Programming Tuple Centres from TuCSoN Agents

Example of a TuCSoN System

check whether your TuCSoN node is still alive

go back to Eclipse

run tucson.examples.programmability.BagOfTaskTest

check your TuCSoN node

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 68 / 76

Part III

Conclusion

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 69 / 76

TuCSoN: Conclusion & Perspectives

Part 3: Conclusion

9 Conclusion & Perspectives

10 Bibliography

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 70 / 76

TuCSoN: Conclusion & Perspectives

TuCSoN & Beyond I

Basic Coordination Middleware

A Java-based coordination middleware for distributed process
coordination

basic tools for monitoring the coordination space

Advanced Coordination Middleware

integrating organisation and security with coordination

tuple centre programming for advanced coordination

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 71 / 76

TuCSoN: Conclusion & Perspectives

TuCSoN & Beyond II

Beyond TuCSoN

ReSpecT: an assembly language for interaction / coordination

TuCSoN: an advanced platform for experiments in

knowledge-based coordination
semantic coordination
adaptive & self-organising coordination

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 72 / 76

Bibliography

Part 3: Conclusion

9 Conclusion & Perspectives

10 Bibliography

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 73 / 76

Bibliography

Bibliography I

Omicini, A. (2002).
Towards a notion of agent coordination context.
In Marinescu, D. C. and Lee, C., editors, Process Coordination and
Ubiquitous Computing, chapter 12, pages 187–200. CRC Press, Boca
Raton, FL, USA.

Omicini, A. and Denti, E. (2001).
From tuple spaces to tuple centres.
Science of Computer Programming, 41(3):277–294.

Omicini, A., Ricci, A., and Viroli, M. (2005a).
An algebraic approach for modelling organisation, roles and contexts
in MAS.
Applicable Algebra in Engineering, Communication and Computing,
16(2-3):151–178.
Special Issue: Process Algebras and Multi-Agent Systems.

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 74 / 76

Bibliography

Bibliography II

Omicini, A., Ricci, A., and Viroli, M. (2005b).
RBAC for organisation and security in an agent coordination
infrastructure.
Electronic Notes in Theoretical Computer Science, 128(5):65–85.
2nd International Workshop on Security Issues in Coordination Models,
Languages and Systems (SecCo’04), 30 August 2004. Proceedings.

Omicini, A. and Zambonelli, F. (1999).
Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems, 2(3):251–269.
Special Issue: Coordination Mechanisms for Web Agents.

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 75 / 76

Bibliography

Experiments in TuCSoN
Distributed Systems

Sistemi Distribuiti

Andrea Omicini Stefano Mariani
{andrea.omicini, s.mariani}@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2011/2012

Omicini, Mariani (Università di Bologna) 8bis – TuCSoN A.Y. 2011/2012 76 / 76

	Basic TuCSoN
	Basic Model & Language
	Basic Architecture
	Basic Technology
	Basic Experiments
	Examples

	Advanced TuCSoN
	Advanced Model
	Advanced Architecture
	Programming Tuple Centres
	Experiments in ReSpecT

	Conclusion
	Conclusion & Perspectives
	Bibliography

