
Coordination-based Systems
Distributed Systems

Sistemi Distribuiti

Andrea Omicini
andrea.omicini@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2011/2012

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 1 / 144

Outline

Outline

1 Elements of Distributed Systems Engineering

2 Coordination: A Meta-model

3 Enabling vs. Governing Interaction

4 Classifying Coordination Models

5 Tuple-based Coordination Models

6 Programming Tuple Spaces

7 Coordination in the Spatio-Temporal Fabric

8 Situatedness & CoordinationAndrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 2 / 144

Distributed Systems Engineering

Outline
1 Elements of Distributed Systems Engineering
2 Coordination: A Meta-model
3 Enabling vs. Governing Interaction
4 Classifying Coordination Models
5 Tuple-based Coordination Models

Linda & Tuple-based Coordination
Hybrid Coordination Models

6 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics

7 Coordination in the Spatio-Temporal Fabric
Time as a Coordination Issue
Space as a Coordination Issue

8 Situatedness & Coordination
Situatedness as a Coordination Issue
Extending ReSpecT Toward Situatedness
Situated ReSpecT: A Case Study

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 3 / 144

Distributed Systems Engineering

Scenarios for Concurrent / Distributed Systems

Issues

Concurrency / Parallelism

Multiple independent activities / loci of control
Active simultaneously
Processes, threads, actors, active objects, agents. . .

Distribution

Activities running on different and heterogeneous execution contexts
(machines, devices, . . .)

“Social” Interaction

Dependencies among activities
Collective goals involving activities coordination / cooperation

“Environmental” Interaction

Interaction with external resources
Interaction within the time-space fabric

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 4 / 144

Distributed Systems Engineering

Scenarios for Concurrent / Distributed Systems

Issues

Concurrency / Parallelism

Multiple independent activities / loci of control
Active simultaneously
Processes, threads, actors, active objects, agents. . .

Distribution

Activities running on different and heterogeneous execution contexts
(machines, devices, . . .)

“Social” Interaction

Dependencies among activities
Collective goals involving activities coordination / cooperation

“Environmental” Interaction

Interaction with external resources
Interaction within the time-space fabric

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 4 / 144

Distributed Systems Engineering

Scenarios for Concurrent / Distributed Systems

Issues

Concurrency / Parallelism

Multiple independent activities / loci of control
Active simultaneously
Processes, threads, actors, active objects, agents. . .

Distribution

Activities running on different and heterogeneous execution contexts
(machines, devices, . . .)

“Social” Interaction

Dependencies among activities
Collective goals involving activities coordination / cooperation

“Environmental” Interaction

Interaction with external resources
Interaction within the time-space fabric

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 4 / 144

Distributed Systems Engineering

Scenarios for Concurrent / Distributed Systems

Issues

Concurrency / Parallelism

Multiple independent activities / loci of control
Active simultaneously
Processes, threads, actors, active objects, agents. . .

Distribution

Activities running on different and heterogeneous execution contexts
(machines, devices, . . .)

“Social” Interaction

Dependencies among activities
Collective goals involving activities coordination / cooperation

“Environmental” Interaction

Interaction with external resources
Interaction within the time-space fabric

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 4 / 144

Distributed Systems Engineering

Scenarios for Concurrent / Distributed Systems

Issues

Concurrency / Parallelism

Multiple independent activities / loci of control
Active simultaneously
Processes, threads, actors, active objects, agents. . .

Distribution

Activities running on different and heterogeneous execution contexts
(machines, devices, . . .)

“Social” Interaction

Dependencies among activities
Collective goals involving activities coordination / cooperation

“Environmental” Interaction

Interaction with external resources
Interaction within the time-space fabric

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 4 / 144

Distributed Systems Engineering

Basic Engineering Principles

Principles

Abstraction

Problems should be faced / represented at the most suitable level of
abstraction
Resulting “abstractions” should be expressive enough to capture the
most relevant problems
Conceptual integrity

Locality & encapsulation

Design abstractions should embody the solutions corresponding to the
domain entities they represent

Run-time vs. design-time abstractions

Incremental change / evolutions
On-line engineering [Fredriksson and Gustavsson, 2004]
(Cognitive) Self-organising systems

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 5 / 144

Distributed Systems Engineering

Basic Engineering Principles

Principles

Abstraction

Problems should be faced / represented at the most suitable level of
abstraction
Resulting “abstractions” should be expressive enough to capture the
most relevant problems
Conceptual integrity

Locality & encapsulation

Design abstractions should embody the solutions corresponding to the
domain entities they represent

Run-time vs. design-time abstractions

Incremental change / evolutions
On-line engineering [Fredriksson and Gustavsson, 2004]
(Cognitive) Self-organising systems

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 5 / 144

Distributed Systems Engineering

Basic Engineering Principles

Principles

Abstraction

Problems should be faced / represented at the most suitable level of
abstraction
Resulting “abstractions” should be expressive enough to capture the
most relevant problems
Conceptual integrity

Locality & encapsulation

Design abstractions should embody the solutions corresponding to the
domain entities they represent

Run-time vs. design-time abstractions

Incremental change / evolutions
On-line engineering [Fredriksson and Gustavsson, 2004]
(Cognitive) Self-organising systems

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 5 / 144

Distributed Systems Engineering

Basic Engineering Principles

Principles

Abstraction

Problems should be faced / represented at the most suitable level of
abstraction
Resulting “abstractions” should be expressive enough to capture the
most relevant problems
Conceptual integrity

Locality & encapsulation

Design abstractions should embody the solutions corresponding to the
domain entities they represent

Run-time vs. design-time abstractions

Incremental change / evolutions
On-line engineering [Fredriksson and Gustavsson, 2004]
(Cognitive) Self-organising systems

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 5 / 144

Distributed Systems Engineering

Which Components?

Open systems

No hypothesis on the component’s life & behaviour

Distributed systems

No hypothesis on the component’s location & motion

Heterogeneous systems

No hypothesis on the component’s nature & structure

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 6 / 144

Distributed Systems Engineering

Which Components?

Open systems

No hypothesis on the component’s life & behaviour

Distributed systems

No hypothesis on the component’s location & motion

Heterogeneous systems

No hypothesis on the component’s nature & structure

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 6 / 144

Distributed Systems Engineering

Which Components?

Open systems

No hypothesis on the component’s life & behaviour

Distributed systems

No hypothesis on the component’s location & motion

Heterogeneous systems

No hypothesis on the component’s nature & structure

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 6 / 144

Distributed Systems Engineering

Which Interaction? Control vs. Data

How to model an independent activity?

Objects? No way
Objects encapsulate a state and a behaviour, but not a control flow

Objects have autonomy over their state, they can control it
Objects have not autonomy over their behaviour, they cannot control it
Control flows along with data, by means of method invocation (as a
reification of message passing)

Control is outside objects, owned by human designer who acts as a
control authority, establishing the control flow
Object interaction is limited and disciplined by interfaces, governed by
the human designer

How to model concurrent activities?

How to model interaction and coordination among concurrent
activities?
How to decouple data and control?
Method invocation? No way!

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 7 / 144

Distributed Systems Engineering

Which Interaction? Control vs. Data

How to model an independent activity?

Objects? No way
Objects encapsulate a state and a behaviour, but not a control flow

Objects have autonomy over their state, they can control it
Objects have not autonomy over their behaviour, they cannot control it
Control flows along with data, by means of method invocation (as a
reification of message passing)

Control is outside objects, owned by human designer who acts as a
control authority, establishing the control flow
Object interaction is limited and disciplined by interfaces, governed by
the human designer

How to model concurrent activities?

How to model interaction and coordination among concurrent
activities?
How to decouple data and control?
Method invocation? No way!

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 7 / 144

Distributed Systems Engineering

Which Interaction? Control vs. Data

How to model an independent activity?

Objects? No way
Objects encapsulate a state and a behaviour, but not a control flow

Objects have autonomy over their state, they can control it
Objects have not autonomy over their behaviour, they cannot control it
Control flows along with data, by means of method invocation (as a
reification of message passing)

Control is outside objects, owned by human designer who acts as a
control authority, establishing the control flow
Object interaction is limited and disciplined by interfaces, governed by
the human designer

How to model concurrent activities?

How to model interaction and coordination among concurrent
activities?
How to decouple data and control?
Method invocation? No way!

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 7 / 144

Distributed Systems Engineering

The Space of Interaction

interaction
space

software
component

!"

!"

!"

!"

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 8 / 144

Distributed Systems Engineering

Components of an Interactive System

What is a component of an interactive system?

A computational abstraction characterised by an independent
computational activity, and by I/O capabilities

Independent elaboration / computation and interaction

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 9 / 144

Distributed Systems Engineering

Algorithmic Computation

Elaboration / Computation

Turing Machine

Black box algorithms

Church and computable functions

Beyond Turing Machines

Wegner’s Interaction Machines [Goldin et al., 2006]

Examples: AGV, Chess oracle

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 10 / 144

Distributed Systems Engineering

Algorithmic Computation

Elaboration / Computation

Turing Machine

Black box algorithms

Church and computable functions

Beyond Turing Machines

Wegner’s Interaction Machines [Goldin et al., 2006]

Examples: AGV, Chess oracle

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 10 / 144

Distributed Systems Engineering

Basics of Interaction

A simple sequential machine

Output: shows part of its state outside

Input: bounds a portion of its own state to the outside

Coupling across component’s boundaries

Information

Time – internal / sequential vs. external / entropic

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 11 / 144

Distributed Systems Engineering

Basics of Interaction

A simple sequential machine

Output: shows part of its state outside

Input: bounds a portion of its own state to the outside

Coupling across component’s boundaries

Information

Time – internal / sequential vs. external / entropic

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 11 / 144

Distributed Systems Engineering

Compositionality vs. Non-compositionality

Compositionality

Sequential composition P1; P2

behaviour(P1; P2) = behaviour(P1) + behaviour(P2)

Non-compositionality

Interactive composition P1|P2

behaviour(P1|P2) =
behaviour(P1) + behaviour(P2) + interaction(P1,P2)

Interactive composition is more than the sum of its parts

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 12 / 144

Distributed Systems Engineering

Compositionality vs. Non-compositionality

Compositionality

Sequential composition P1; P2

behaviour(P1; P2) = behaviour(P1) + behaviour(P2)

Non-compositionality

Interactive composition P1|P2

behaviour(P1|P2) =
behaviour(P1) + behaviour(P2) + interaction(P1,P2)

Interactive composition is more than the sum of its parts

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 12 / 144

Distributed Systems Engineering

Non-compositionality

Issues

Compositionality vs. formalisability

A notion of formal model is required for stating any compositional
property
However, formalisability does not require compositionality, and does
not imply predictability
Partial formalisability may allow for proof of properties, and for partial
predictability

Emergent behaviours

Fully-predictabile / formalisable systems do not allow by definition for
emergent behaviours

Formalisability vs. expressiveness

Less / more formalisable systems are (respectively) more / less
expressive in terms of potential behaviours

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 13 / 144

Distributed Systems Engineering

Coordination in Distributed Programming

Coordination model as a glue

A coordination model is the glue that binds separate activities
into an ensemble [Gelernter and Carriero, 1992]

Coordination model as an agent interaction framework

A coordination model provides a framework in which the
interaction of active and independent entities called agents can
be expressed [Ciancarini, 1996]

Issues for a coordination model

A coordination model should cover the issues of creation and
destruction of agents, communication among agents, and
spatial distribution of agents, as well as synchronization and
distribution of their actions over time [Ciancarini, 1996]

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 14 / 144

Distributed Systems Engineering

Coordination in Distributed Programming

Coordination model as a glue

A coordination model is the glue that binds separate activities
into an ensemble [Gelernter and Carriero, 1992]

Coordination model as an agent interaction framework

A coordination model provides a framework in which the
interaction of active and independent entities called agents can
be expressed [Ciancarini, 1996]

Issues for a coordination model

A coordination model should cover the issues of creation and
destruction of agents, communication among agents, and
spatial distribution of agents, as well as synchronization and
distribution of their actions over time [Ciancarini, 1996]

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 14 / 144

Distributed Systems Engineering

Coordination in Distributed Programming

Coordination model as a glue

A coordination model is the glue that binds separate activities
into an ensemble [Gelernter and Carriero, 1992]

Coordination model as an agent interaction framework

A coordination model provides a framework in which the
interaction of active and independent entities called agents can
be expressed [Ciancarini, 1996]

Issues for a coordination model

A coordination model should cover the issues of creation and
destruction of agents, communication among agents, and
spatial distribution of agents, as well as synchronization and
distribution of their actions over time [Ciancarini, 1996]

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 14 / 144

Distributed Systems Engineering

Coordination in Distributed Programming

Coordination model as a glue

A coordination model is the glue that binds separate activities
into an ensemble [Gelernter and Carriero, 1992]

Coordination model as an agent interaction framework

A coordination model provides a framework in which the
interaction of active and independent entities called agents can
be expressed [Ciancarini, 1996]

Issues for a coordination model

A coordination model should cover the issues of creation and
destruction of agents, communication among agents, and
spatial distribution of agents, as well as synchronization and
distribution of their actions over time [Ciancarini, 1996]

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 14 / 144

Distributed Systems Engineering

What is Coordination?

Ruling the space of interaction

coordination

elaboration /
computation

!"

!"

!"

!"

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 15 / 144

Distributed Systems Engineering

New Perspective on Computational Systems

Programming languages

Interaction as an orthogonal dimension

Languages for interaction / coordination

Software engineering

Interaction as an independent design dimension

Coordination patterns

Artificial intelligence

Interaction as a new source for intelligence

Social intelligence

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 16 / 144

Distributed Systems Engineering

New Perspective on Computational Systems

Programming languages

Interaction as an orthogonal dimension

Languages for interaction / coordination

Software engineering

Interaction as an independent design dimension

Coordination patterns

Artificial intelligence

Interaction as a new source for intelligence

Social intelligence

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 16 / 144

Distributed Systems Engineering

New Perspective on Computational Systems

Programming languages

Interaction as an orthogonal dimension

Languages for interaction / coordination

Software engineering

Interaction as an independent design dimension

Coordination patterns

Artificial intelligence

Interaction as a new source for intelligence

Social intelligence

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 16 / 144

Coordination: A Meta-model

Outline
1 Elements of Distributed Systems Engineering
2 Coordination: A Meta-model
3 Enabling vs. Governing Interaction
4 Classifying Coordination Models
5 Tuple-based Coordination Models

Linda & Tuple-based Coordination
Hybrid Coordination Models

6 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics

7 Coordination in the Spatio-Temporal Fabric
Time as a Coordination Issue
Space as a Coordination Issue

8 Situatedness & Coordination
Situatedness as a Coordination Issue
Extending ReSpecT Toward Situatedness
Situated ReSpecT: A Case Study

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 17 / 144

Coordination: A Meta-model

Coordination: Sketching a Meta-model

The medium of coordination

“fills” the interaction space

enables / promotes / governs
the admissible / desirable /
required interactions among the
interacting entities

according to some coordination
laws

enacted by the behaviour of
the medium
defining the semantics of
coordination coordinables

coordination

medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 18 / 144

Coordination: A Meta-model

Coordination: Sketching a Meta-model

The medium of coordination

“fills” the interaction space

enables / promotes / governs
the admissible / desirable /
required interactions among the
interacting entities

according to some coordination
laws

enacted by the behaviour of
the medium
defining the semantics of
coordination coordinables

coordination

medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 18 / 144

Coordination: A Meta-model

Coordination: Sketching a Meta-model

The medium of coordination

“fills” the interaction space

enables / promotes / governs
the admissible / desirable /
required interactions among the
interacting entities

according to some coordination
laws

enacted by the behaviour of
the medium
defining the semantics of
coordination coordinables

coordination

medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 18 / 144

Coordination: A Meta-model

Coordination: Sketching a Meta-model

The medium of coordination

“fills” the interaction space

enables / promotes / governs
the admissible / desirable /
required interactions among the
interacting entities

according to some coordination
laws

enacted by the behaviour of
the medium
defining the semantics of
coordination coordinables

coordination

medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 18 / 144

Coordination: A Meta-model

Coordination: Sketching a Meta-model

The medium of coordination

“fills” the interaction space

enables / promotes / governs
the admissible / desirable /
required interactions among the
interacting entities

according to some coordination
laws

enacted by the behaviour of
the medium
defining the semantics of
coordination coordinables

coordination

medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 18 / 144

Coordination: A Meta-model

Coordination: Sketching a Meta-model

The medium of coordination

“fills” the interaction space

enables / promotes / governs
the admissible / desirable /
required interactions among the
interacting entities

according to some coordination
laws

enacted by the behaviour of
the medium
defining the semantics of
coordination coordinables

coordination

medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 18 / 144

Coordination: A Meta-model

Coordination: A Meta-model [Ciancarini, 1996]

A constructive approach

Which are the components of a coordination system?

Coordination entities Entities whose mutual interaction is ruled by the
model, also called the coordinables

Coordination media Abstractions enabling and ruling interaction among
coordinables

Coordination laws Laws ruling the observable behaviour of coordination
media and coordinables, and their interaction as well

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 19 / 144

Coordination: A Meta-model

Coordination: A Meta-model [Ciancarini, 1996]

A constructive approach

Which are the components of a coordination system?

Coordination entities Entities whose mutual interaction is ruled by the
model, also called the coordinables

Coordination media Abstractions enabling and ruling interaction among
coordinables

Coordination laws Laws ruling the observable behaviour of coordination
media and coordinables, and their interaction as well

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 19 / 144

Coordination: A Meta-model

Coordination: A Meta-model [Ciancarini, 1996]

A constructive approach

Which are the components of a coordination system?

Coordination entities Entities whose mutual interaction is ruled by the
model, also called the coordinables

Coordination media Abstractions enabling and ruling interaction among
coordinables

Coordination laws Laws ruling the observable behaviour of coordination
media and coordinables, and their interaction as well

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 19 / 144

Coordination: A Meta-model

Coordination: A Meta-model [Ciancarini, 1996]

A constructive approach

Which are the components of a coordination system?

Coordination entities Entities whose mutual interaction is ruled by the
model, also called the coordinables

Coordination media Abstractions enabling and ruling interaction among
coordinables

Coordination laws Laws ruling the observable behaviour of coordination
media and coordinables, and their interaction as well

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 19 / 144

Coordination: A Meta-model

Coordination: A Meta-model [Ciancarini, 1996]

A constructive approach

Which are the components of a coordination system?

Coordination entities Entities whose mutual interaction is ruled by the
model, also called the coordinables

Coordination media Abstractions enabling and ruling interaction among
coordinables

Coordination laws Laws ruling the observable behaviour of coordination
media and coordinables, and their interaction as well

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 19 / 144

Coordination: A Meta-model

Coordinables

Original definition [Ciancarini, 1996]

These are the entity types that are coordinated. These could be
Unix-like processes, threads, concurrent objects and the like, and
even users.

examples Processes, threads, objects, human users, agents, . . .

focus Observable behaviour of the coordinables

question Are we anyhow concerned here with the internal machinery /
functioning of the coordinable, in principle?

→ This issue will be clear when comparing Linda & TuCSoN
agents

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 20 / 144

Coordination: A Meta-model

Coordinables

Original definition [Ciancarini, 1996]

These are the entity types that are coordinated. These could be
Unix-like processes, threads, concurrent objects and the like, and
even users.

examples Processes, threads, objects, human users, agents, . . .

focus Observable behaviour of the coordinables

question Are we anyhow concerned here with the internal machinery /
functioning of the coordinable, in principle?

→ This issue will be clear when comparing Linda & TuCSoN
agents

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 20 / 144

Coordination: A Meta-model

Coordinables

Original definition [Ciancarini, 1996]

These are the entity types that are coordinated. These could be
Unix-like processes, threads, concurrent objects and the like, and
even users.

examples Processes, threads, objects, human users, agents, . . .

focus Observable behaviour of the coordinables

question Are we anyhow concerned here with the internal machinery /
functioning of the coordinable, in principle?

→ This issue will be clear when comparing Linda & TuCSoN
agents

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 20 / 144

Coordination: A Meta-model

Coordinables

Original definition [Ciancarini, 1996]

These are the entity types that are coordinated. These could be
Unix-like processes, threads, concurrent objects and the like, and
even users.

examples Processes, threads, objects, human users, agents, . . .

focus Observable behaviour of the coordinables

question Are we anyhow concerned here with the internal machinery /
functioning of the coordinable, in principle?

→ This issue will be clear when comparing Linda & TuCSoN
agents

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 20 / 144

Coordination: A Meta-model

Coordinables

Original definition [Ciancarini, 1996]

These are the entity types that are coordinated. These could be
Unix-like processes, threads, concurrent objects and the like, and
even users.

examples Processes, threads, objects, human users, agents, . . .

focus Observable behaviour of the coordinables

question Are we anyhow concerned here with the internal machinery /
functioning of the coordinable, in principle?

→ This issue will be clear when comparing Linda & TuCSoN
agents

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 20 / 144

Coordination: A Meta-model

Coordination media

Original definition [Ciancarini, 1996]

These are the media making communication among the agents
possible. Moreover, a coordination medium can serve to
aggregate agents that should be manipulated as a whole.
Examples are classic media such as semaphores, monitors, or
channels, or more complex media such as tuple spaces,
blackboards, pipelines, and the like.

examples Semaphors, monitors, channels, tuple spaces, blackboards,
pipes, . . .

focus The core around which the components of the system are
organised

question Which are the possible computational models for
coordination media?

→ This issue will be clear when comparing Linda tuple spaces &
ReSpecT tuple centres

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 21 / 144

Coordination: A Meta-model

Coordination media

Original definition [Ciancarini, 1996]

These are the media making communication among the agents
possible. Moreover, a coordination medium can serve to
aggregate agents that should be manipulated as a whole.
Examples are classic media such as semaphores, monitors, or
channels, or more complex media such as tuple spaces,
blackboards, pipelines, and the like.

examples Semaphors, monitors, channels, tuple spaces, blackboards,
pipes, . . .

focus The core around which the components of the system are
organised

question Which are the possible computational models for
coordination media?

→ This issue will be clear when comparing Linda tuple spaces &
ReSpecT tuple centres

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 21 / 144

Coordination: A Meta-model

Coordination media

Original definition [Ciancarini, 1996]

These are the media making communication among the agents
possible. Moreover, a coordination medium can serve to
aggregate agents that should be manipulated as a whole.
Examples are classic media such as semaphores, monitors, or
channels, or more complex media such as tuple spaces,
blackboards, pipelines, and the like.

examples Semaphors, monitors, channels, tuple spaces, blackboards,
pipes, . . .

focus The core around which the components of the system are
organised

question Which are the possible computational models for
coordination media?

→ This issue will be clear when comparing Linda tuple spaces &
ReSpecT tuple centres

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 21 / 144

Coordination: A Meta-model

Coordination media

Original definition [Ciancarini, 1996]

These are the media making communication among the agents
possible. Moreover, a coordination medium can serve to
aggregate agents that should be manipulated as a whole.
Examples are classic media such as semaphores, monitors, or
channels, or more complex media such as tuple spaces,
blackboards, pipelines, and the like.

examples Semaphors, monitors, channels, tuple spaces, blackboards,
pipes, . . .

focus The core around which the components of the system are
organised

question Which are the possible computational models for
coordination media?

→ This issue will be clear when comparing Linda tuple spaces &
ReSpecT tuple centres

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 21 / 144

Coordination: A Meta-model

Coordination media

Original definition [Ciancarini, 1996]

These are the media making communication among the agents
possible. Moreover, a coordination medium can serve to
aggregate agents that should be manipulated as a whole.
Examples are classic media such as semaphores, monitors, or
channels, or more complex media such as tuple spaces,
blackboards, pipelines, and the like.

examples Semaphors, monitors, channels, tuple spaces, blackboards,
pipes, . . .

focus The core around which the components of the system are
organised

question Which are the possible computational models for
coordination media?

→ This issue will be clear when comparing Linda tuple spaces &
ReSpecT tuple centres

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 21 / 144

Coordination: A Meta-model

Coordination laws

Original definition [Ciancarini, 1996]

A coordination model should dictate a number of laws to
describe how agents coordinate themselves through the given
coordination media and using a number of coordination
primitives. Examples are laws that enact either synchronous or
asynchronous behaviors or exploit explicit or implicit naming
schemes for coordination entities.

Coordination laws rule the observable behaviour of coordination
media and coordinables, as well as their interaction

a notion of (admissible interaction) event is required to define
coordination laws

The interaction events are (also) expressed in terms of
the communication language, as the syntax used to express and
exchange data structures

examples tuples, XML elements, FOL terms, (Java) objects, . . .

the coordination language, as the set of the asmissible interaction
primitives, along with their semantics

examples in/out/rd (Linda), send/receive (channels), push/pull (pipes), . . .

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 22 / 144

Coordination: A Meta-model

Coordination laws

Original definition [Ciancarini, 1996]

A coordination model should dictate a number of laws to
describe how agents coordinate themselves through the given
coordination media and using a number of coordination
primitives. Examples are laws that enact either synchronous or
asynchronous behaviors or exploit explicit or implicit naming
schemes for coordination entities.

Coordination laws rule the observable behaviour of coordination
media and coordinables, as well as their interaction

a notion of (admissible interaction) event is required to define
coordination laws

The interaction events are (also) expressed in terms of
the communication language, as the syntax used to express and
exchange data structures

examples tuples, XML elements, FOL terms, (Java) objects, . . .

the coordination language, as the set of the asmissible interaction
primitives, along with their semantics

examples in/out/rd (Linda), send/receive (channels), push/pull (pipes), . . .

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 22 / 144

Coordination: A Meta-model

Coordination laws

Original definition [Ciancarini, 1996]

A coordination model should dictate a number of laws to
describe how agents coordinate themselves through the given
coordination media and using a number of coordination
primitives. Examples are laws that enact either synchronous or
asynchronous behaviors or exploit explicit or implicit naming
schemes for coordination entities.

Coordination laws rule the observable behaviour of coordination
media and coordinables, as well as their interaction

a notion of (admissible interaction) event is required to define
coordination laws

The interaction events are (also) expressed in terms of
the communication language, as the syntax used to express and
exchange data structures

examples tuples, XML elements, FOL terms, (Java) objects, . . .

the coordination language, as the set of the asmissible interaction
primitives, along with their semantics

examples in/out/rd (Linda), send/receive (channels), push/pull (pipes), . . .

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 22 / 144

Coordination: A Meta-model

Coordination laws

Original definition [Ciancarini, 1996]

A coordination model should dictate a number of laws to
describe how agents coordinate themselves through the given
coordination media and using a number of coordination
primitives. Examples are laws that enact either synchronous or
asynchronous behaviors or exploit explicit or implicit naming
schemes for coordination entities.

Coordination laws rule the observable behaviour of coordination
media and coordinables, as well as their interaction

a notion of (admissible interaction) event is required to define
coordination laws

The interaction events are (also) expressed in terms of
the communication language, as the syntax used to express and
exchange data structures

examples tuples, XML elements, FOL terms, (Java) objects, . . .

the coordination language, as the set of the asmissible interaction
primitives, along with their semantics

examples in/out/rd (Linda), send/receive (channels), push/pull (pipes), . . .

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 22 / 144

Coordination: A Meta-model

Coordination laws

Original definition [Ciancarini, 1996]

A coordination model should dictate a number of laws to
describe how agents coordinate themselves through the given
coordination media and using a number of coordination
primitives. Examples are laws that enact either synchronous or
asynchronous behaviors or exploit explicit or implicit naming
schemes for coordination entities.

Coordination laws rule the observable behaviour of coordination
media and coordinables, as well as their interaction

a notion of (admissible interaction) event is required to define
coordination laws

The interaction events are (also) expressed in terms of
the communication language, as the syntax used to express and
exchange data structures

examples tuples, XML elements, FOL terms, (Java) objects, . . .

the coordination language, as the set of the asmissible interaction
primitives, along with their semantics

examples in/out/rd (Linda), send/receive (channels), push/pull (pipes), . . .

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 22 / 144

Coordination: A Meta-model

Coordination laws

Original definition [Ciancarini, 1996]

A coordination model should dictate a number of laws to
describe how agents coordinate themselves through the given
coordination media and using a number of coordination
primitives. Examples are laws that enact either synchronous or
asynchronous behaviors or exploit explicit or implicit naming
schemes for coordination entities.

Coordination laws rule the observable behaviour of coordination
media and coordinables, as well as their interaction

a notion of (admissible interaction) event is required to define
coordination laws

The interaction events are (also) expressed in terms of
the communication language, as the syntax used to express and
exchange data structures

examples tuples, XML elements, FOL terms, (Java) objects, . . .

the coordination language, as the set of the asmissible interaction
primitives, along with their semantics

examples in/out/rd (Linda), send/receive (channels), push/pull (pipes), . . .

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 22 / 144

Coordination: A Meta-model

Coordination laws

Original definition [Ciancarini, 1996]

A coordination model should dictate a number of laws to
describe how agents coordinate themselves through the given
coordination media and using a number of coordination
primitives. Examples are laws that enact either synchronous or
asynchronous behaviors or exploit explicit or implicit naming
schemes for coordination entities.

Coordination laws rule the observable behaviour of coordination
media and coordinables, as well as their interaction

a notion of (admissible interaction) event is required to define
coordination laws

The interaction events are (also) expressed in terms of
the communication language, as the syntax used to express and
exchange data structures

examples tuples, XML elements, FOL terms, (Java) objects, . . .

the coordination language, as the set of the asmissible interaction
primitives, along with their semantics

examples in/out/rd (Linda), send/receive (channels), push/pull (pipes), . . .

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 22 / 144

Coordination: A Meta-model

Coordination laws

Original definition [Ciancarini, 1996]

A coordination model should dictate a number of laws to
describe how agents coordinate themselves through the given
coordination media and using a number of coordination
primitives. Examples are laws that enact either synchronous or
asynchronous behaviors or exploit explicit or implicit naming
schemes for coordination entities.

Coordination laws rule the observable behaviour of coordination
media and coordinables, as well as their interaction

a notion of (admissible interaction) event is required to define
coordination laws

The interaction events are (also) expressed in terms of
the communication language, as the syntax used to express and
exchange data structures

examples tuples, XML elements, FOL terms, (Java) objects, . . .

the coordination language, as the set of the asmissible interaction
primitives, along with their semantics

examples in/out/rd (Linda), send/receive (channels), push/pull (pipes), . . .

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 22 / 144

Enabling vs. Governing Interaction

Outline
1 Elements of Distributed Systems Engineering
2 Coordination: A Meta-model
3 Enabling vs. Governing Interaction
4 Classifying Coordination Models
5 Tuple-based Coordination Models

Linda & Tuple-based Coordination
Hybrid Coordination Models

6 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics

7 Coordination in the Spatio-Temporal Fabric
Time as a Coordination Issue
Space as a Coordination Issue

8 Situatedness & Coordination
Situatedness as a Coordination Issue
Extending ReSpecT Toward Situatedness
Situated ReSpecT: A Case Study

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 23 / 144

Enabling vs. Governing Interaction

Toward a Notion of Coordination Model

What do we ask to a coordination model?

to provide high-level abstractions and powerful mechanisms for
distributed system engineering

to enable and promote the construction of open, distributed,
heterogeneous systems

to intrinsically add properties to systems independently of
components

e.g. flexibility, control, intelligence, . . .

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 24 / 144

Enabling vs. Governing Interaction

Examples of Coordination Mechanisms I

Message passing

communication among peers

no abstractions apart from message

no limitations

the notion of protocol could be added as a coordination abstraction

no intrinsic model of coordination

any pattern of coordination can be superimposed – again, protocols

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 25 / 144

Enabling vs. Governing Interaction

Examples of Coordination Mechanisms II

Agent Communication Languages

Goal: promote information exchange

Examples: Arcol, KQML

Standard: FIPA ACL

Semantics: ontologies

Enabling communication

ACLs create the space of inter-agent communication
they do not allow to constrain it

No “real” coordination, again, if not with protocols

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 26 / 144

Enabling vs. Governing Interaction

Examples of Coordination Mechanisms III

Service-Oriented Architectures

Basic abstraction: service

Basic pattern: Service request / response

Several standards

Very simple pattern of coordination

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 27 / 144

Enabling vs. Governing Interaction

Examples of Coordination Mechanisms IV

Web Server

Basic abstraction: resource (REST/ROA)

Basic pattern: Resource request / representation / response

Several standards

Again, a very simple pattern of coordination

Generally speaking, objects, HTTP, applets, JavaScript with AJAX,
user interface

a multi-coordinated systems
“spaghetti-coordination”, no value added from composition

How can we “fill” the space of interaction to add value to systems?

so, how do we get value from coordination?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 28 / 144

Enabling vs. Governing Interaction

Examples of Coordination Mechanisms V

Middleware

Goal: to provide global properties across distributed systems

Idea: fill the space of interaction with abstractions and shared
features

interoperability, security, transactionality, . . .

Middleware can contain coordination abstractions

but, it can contain anything, so we need to look at specific middleware

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 29 / 144

Enabling vs. Governing Interaction

Examples of Coordination Mechanisms VI

CORBA

Goal: managing object interaction across a distributed systems in a
transparent way

Key features: ORB, IDL, CORBAServices. . .

However, no model for coordination

just the client-servant pattern

However, it can provide a shared support for any coordination
abstraction or pattern

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 30 / 144

Enabling vs. Governing Interaction

Enabling vs. Governing Interaction I

Enabling interaction

ACL, middleware, mediators. . .

enabling communication

enabling components interoperation

no models for coordination of components

no rules on what components should (not) say and do at any given
moment, depending on what other components say and do, and on
what happens inside and outside the system

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 31 / 144

Enabling vs. Governing Interaction

Enabling vs. Governing Interaction II

Governing interaction

ruling communication

providing concepts, abstractions, models, mechanisms for meaningful
component integration

governing mutual component interaction, and
environment-component interaction

in general, a model that does

rule what components should (not) say and do at any given moment
depending on what other components say and do, and on what
happens inside and outside the system

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 32 / 144

Classifying Coordination Models

Outline
1 Elements of Distributed Systems Engineering
2 Coordination: A Meta-model
3 Enabling vs. Governing Interaction
4 Classifying Coordination Models
5 Tuple-based Coordination Models

Linda & Tuple-based Coordination
Hybrid Coordination Models

6 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics

7 Coordination in the Spatio-Temporal Fabric
Time as a Coordination Issue
Space as a Coordination Issue

8 Situatedness & Coordination
Situatedness as a Coordination Issue
Extending ReSpecT Toward Situatedness
Situated ReSpecT: A Case Study

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 33 / 144

Classifying Coordination Models

Two Classes for Coordination Models

Control-oriented vs. Data-oriented Models

— Control-driven vs. Data-driven Models
[Papadopoulos and Arbab, 1998]

Control-oriented Focus on the acts of communication

Data-oriented Focus on the information exchanged during communication

— Several surveys, no time enough here

— Are these really classes?

– actually, better to take this as a criterion to observe
coordination models, rather than to separate them

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 34 / 144

Classifying Coordination Models

Control-oriented Models I

Processes as black boxes

I/O ports

events & signals on state

Coordinators. . .

. . . create coordinated processes as well as communication channels

. . . determine and change the topology of communication

Hierarchies of coordinables / coordinators are possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 35 / 144

Classifying Coordination Models

Control-oriented Models II

Coordinators as meta-level communication components

coordinator

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 36 / 144

Classifying Coordination Models

Control-oriented Models III

General features

High flexibility, high control

Separation between communication / coordination and computation /
elaboration

Examples

RAPIDE
Manifold
ConCoord
Reo

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 37 / 144

Classifying Coordination Models

A Classical Example: Manifold

Main features

coordinators

control-driven evolution

events without parameters

stateful communication

coordination via topology

fine-grained coordination

typical example: sort-merge

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 38 / 144

Classifying Coordination Models

Control-oriented Models: Impact on Design

Which abstractions?

Producer-consumer pattern

Point-to-point communication

Coordinator

Coordination as configuration of topology

Which systems?

Fine-grained granularity

Fine-tuned control

Good for small-scale, closed systems

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 39 / 144

Classifying Coordination Models

Control-oriented Models: Impact on Design

Which abstractions?

Producer-consumer pattern

Point-to-point communication

Coordinator

Coordination as configuration of topology

Which systems?

Fine-grained granularity

Fine-tuned control

Good for small-scale, closed systems

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 39 / 144

Classifying Coordination Models

An Evolutionary Pattern?

Paradigms of sequential programming

Imperative programming with “goto”

Structured programming (procedure-oriented)

Object-oriented programming (data-oriented)

Paradigms of coordination programming

Message-passing coordination

Control-oriented coordination

Data-oriented coordination

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 40 / 144

Classifying Coordination Models

An Evolutionary Pattern?

Paradigms of sequential programming

Imperative programming with “goto”

Structured programming (procedure-oriented)

Object-oriented programming (data-oriented)

Paradigms of coordination programming

Message-passing coordination

Control-oriented coordination

Data-oriented coordination

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 40 / 144

Classifying Coordination Models

Data-oriented Models I

Communication channel

Shared memory abstraction

Stateful channel

Processes

Emitting / receiving data / information

Coordination

Access / change / synchronise on shared data

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 41 / 144

Classifying Coordination Models

Data-oriented Models II

Shared dataspace: constraint on comunication

shared
dataspace

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 42 / 144

Classifying Coordination Models

Data-oriented Models

General features

Expressive communication abstraction

→ information-based design

Possible spatio-temporal uncoupling

No control means no flexibility??

Examples

Gamma / Chemical coordination
Linda & friends / tuple-based coordination

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 43 / 144

Tuple-based Coordination

Outline
1 Elements of Distributed Systems Engineering
2 Coordination: A Meta-model
3 Enabling vs. Governing Interaction
4 Classifying Coordination Models
5 Tuple-based Coordination Models

Linda & Tuple-based Coordination
Hybrid Coordination Models

6 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics

7 Coordination in the Spatio-Temporal Fabric
Time as a Coordination Issue
Space as a Coordination Issue

8 Situatedness & Coordination
Situatedness as a Coordination Issue
Extending ReSpecT Toward Situatedness
Situated ReSpecT: A Case Study

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 44 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Outline
1 Elements of Distributed Systems Engineering
2 Coordination: A Meta-model
3 Enabling vs. Governing Interaction
4 Classifying Coordination Models
5 Tuple-based Coordination Models

Linda & Tuple-based Coordination
Hybrid Coordination Models

6 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics

7 Coordination in the Spatio-Temporal Fabric
Time as a Coordination Issue
Space as a Coordination Issue

8 Situatedness & Coordination
Situatedness as a Coordination Issue
Extending ReSpecT Toward Situatedness
Situated ReSpecT: A Case Study

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 45 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

The Tuple-space Meta-model

The basics

Coordinables synchronise,
cooperate, compete

based on tuples
available in the tuple space
by associatively accessing,
consuming and producing
tuples

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 46 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

The Tuple-space Meta-model

The basics

Coordinables synchronise,
cooperate, compete

based on tuples
available in the tuple space
by associatively accessing,
consuming and producing
tuples

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 46 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

The Tuple-space Meta-model

The basics

Coordinables synchronise,
cooperate, compete

based on tuples
available in the tuple space
by associatively accessing,
consuming and producing
tuples

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 46 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

The Tuple-space Meta-model

The basics

Coordinables synchronise,
cooperate, compete

based on tuples
available in the tuple space
by associatively accessing,
consuming and producing
tuples

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 46 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

The Tuple-space Meta-model

The basics

Coordinables synchronise,
cooperate, compete

based on tuples
available in the tuple space
by associatively accessing,
consuming and producing
tuples

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 46 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Tuple-based / Space-based Coordination Systems

Adopting the constructive coordination meta-model [Ciancarini, 1996]

coordination media tuple spaces

as multiset / bag of data objects / structures called
tuples

communication language tuples

as ordered collections of (possibly heterogeneous)
information items

coordination language tuple space primitives

as a set of operations to put, browse and retrieve tuples
to/from the space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 47 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Tuple-based / Space-based Coordination Systems

Adopting the constructive coordination meta-model [Ciancarini, 1996]

coordination media tuple spaces

as multiset / bag of data objects / structures called
tuples

communication language tuples

as ordered collections of (possibly heterogeneous)
information items

coordination language tuple space primitives

as a set of operations to put, browse and retrieve tuples
to/from the space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 47 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Tuple-based / Space-based Coordination Systems

Adopting the constructive coordination meta-model [Ciancarini, 1996]

coordination media tuple spaces

as multiset / bag of data objects / structures called
tuples

communication language tuples

as ordered collections of (possibly heterogeneous)
information items

coordination language tuple space primitives

as a set of operations to put, browse and retrieve tuples
to/from the space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 47 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Tuple-based / Space-based Coordination Systems

Adopting the constructive coordination meta-model [Ciancarini, 1996]

coordination media tuple spaces

as multiset / bag of data objects / structures called
tuples

communication language tuples

as ordered collections of (possibly heterogeneous)
information items

coordination language tuple space primitives

as a set of operations to put, browse and retrieve tuples
to/from the space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 47 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Tuple-based / Space-based Coordination Systems

Adopting the constructive coordination meta-model [Ciancarini, 1996]

coordination media tuple spaces

as multiset / bag of data objects / structures called
tuples

communication language tuples

as ordered collections of (possibly heterogeneous)
information items

coordination language tuple space primitives

as a set of operations to put, browse and retrieve tuples
to/from the space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 47 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Tuple-based / Space-based Coordination Systems

Adopting the constructive coordination meta-model [Ciancarini, 1996]

coordination media tuple spaces

as multiset / bag of data objects / structures called
tuples

communication language tuples

as ordered collections of (possibly heterogeneous)
information items

coordination language tuple space primitives

as a set of operations to put, browse and retrieve tuples
to/from the space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 47 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Tuple-based / Space-based Coordination Systems

Adopting the constructive coordination meta-model [Ciancarini, 1996]

coordination media tuple spaces

as multiset / bag of data objects / structures called
tuples

communication language tuples

as ordered collections of (possibly heterogeneous)
information items

coordination language tuple space primitives

as a set of operations to put, browse and retrieve tuples
to/from the space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 47 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda: The Communication Language [Gelernter, 1985]

Communication Language

tuples ordered collections of possibly heterogeneous information
chunks

examples: p(1), printer(’HP’,dpi(300)), [0,0.5],
matrix(m0,3,3,0.5),
tree node(node00,value(13),left(),right(node01)), . . .

templates / anti-tuples specifications of set / classes of tuples

examples: p(X), [?int,?int], tree node(N), . . .

tuple matching mechanism the mechanism that matches tuples and
templates

examples: pattern matching, unification, . . .

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 48 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda: The Communication Language [Gelernter, 1985]

Communication Language

tuples ordered collections of possibly heterogeneous information
chunks

examples: p(1), printer(’HP’,dpi(300)), [0,0.5],
matrix(m0,3,3,0.5),
tree node(node00,value(13),left(),right(node01)), . . .

templates / anti-tuples specifications of set / classes of tuples

examples: p(X), [?int,?int], tree node(N), . . .

tuple matching mechanism the mechanism that matches tuples and
templates

examples: pattern matching, unification, . . .

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 48 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda: The Communication Language [Gelernter, 1985]

Communication Language

tuples ordered collections of possibly heterogeneous information
chunks

examples: p(1), printer(’HP’,dpi(300)), [0,0.5],
matrix(m0,3,3,0.5),
tree node(node00,value(13),left(),right(node01)), . . .

templates / anti-tuples specifications of set / classes of tuples

examples: p(X), [?int,?int], tree node(N), . . .

tuple matching mechanism the mechanism that matches tuples and
templates

examples: pattern matching, unification, . . .

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 48 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda: The Communication Language [Gelernter, 1985]

Communication Language

tuples ordered collections of possibly heterogeneous information
chunks

examples: p(1), printer(’HP’,dpi(300)), [0,0.5],
matrix(m0,3,3,0.5),
tree node(node00,value(13),left(),right(node01)), . . .

templates / anti-tuples specifications of set / classes of tuples

examples: p(X), [?int,?int], tree node(N), . . .

tuple matching mechanism the mechanism that matches tuples and
templates

examples: pattern matching, unification, . . .

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 48 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda: The Communication Language [Gelernter, 1985]

Communication Language

tuples ordered collections of possibly heterogeneous information
chunks

examples: p(1), printer(’HP’,dpi(300)), [0,0.5],
matrix(m0,3,3,0.5),
tree node(node00,value(13),left(),right(node01)), . . .

templates / anti-tuples specifications of set / classes of tuples

examples: p(X), [?int,?int], tree node(N), . . .

tuple matching mechanism the mechanism that matches tuples and
templates

examples: pattern matching, unification, . . .

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 48 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda: The Communication Language [Gelernter, 1985]

Communication Language

tuples ordered collections of possibly heterogeneous information
chunks

examples: p(1), printer(’HP’,dpi(300)), [0,0.5],
matrix(m0,3,3,0.5),
tree node(node00,value(13),left(),right(node01)), . . .

templates / anti-tuples specifications of set / classes of tuples

examples: p(X), [?int,?int], tree node(N), . . .

tuple matching mechanism the mechanism that matches tuples and
templates

examples: pattern matching, unification, . . .

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 48 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda: The Communication Language [Gelernter, 1985]

Communication Language

tuples ordered collections of possibly heterogeneous information
chunks

examples: p(1), printer(’HP’,dpi(300)), [0,0.5],
matrix(m0,3,3,0.5),
tree node(node00,value(13),left(),right(node01)), . . .

templates / anti-tuples specifications of set / classes of tuples

examples: p(X), [?int,?int], tree node(N), . . .

tuple matching mechanism the mechanism that matches tuples and
templates

examples: pattern matching, unification, . . .

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 48 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda: The Coordination Language [Gelernter, 1985] I

out(T)

out(T) puts tuple T in to the tuple space

examples out(p(1)), out(0,0.5), out(course(’Antonio
Natali’,’Poetry’,hours(150)) . . .

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 49 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda: The Coordination Language [Gelernter, 1985] II

in(TT)

in(TT) retrieves a tuple matching template TT from to the tuple
space

destructive reading the tuple retrieved is removed from the tuple
centre

non-determinism if more than one tuple matches the template, one is
chosen non-deterministically

suspensive semantics if no matching tuples are found in the tuple
space, operation execution is suspended, and woken
when a matching tuple is finally found

examples in(p(X)), in(0,0.5), in(course(’Antonio
Natali’,Title,hours(X)) . . .

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 50 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda: The Coordination Language [Gelernter, 1985] III

rd(TT)

rd(TT) retrieves a tuple matching template TT from to the tuple
space

non-destructive reading the tuple retrieved is left untouched in the
tuple centre

non-determinism if more than one tuple matches the template, one is
chosen non-deterministically

suspensive semantics if no matching tuples are found in the tuple
space, operation execution is suspended, and awakened
when a matching tuple is finally found

examples rd(p(X)), rd(0,0.5), rd(course(’Alessandro
Ricci’,’Operating Systems’,hours(X)) . . .

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 51 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Predicative Primitives

inp(TT), rdp(TT)

both inp(TT) and rdp(TT) retrieve tuple T matching template TT

from the tuple space

= in(TT), rd(TT) (non-)destructive reading, non-determinism, and
syntax structure is maintained

6=in(TT), rd(TT) suspensive semantics is lost: this predicative
versions primitives just fail when no tuple matching TT

is found in the tuple space
success / failure predicative primitives introduce success / failure

semantics: when a matching tuple is found, it is
returned with a success result; when it is not, a failure is
reported

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 52 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Predicative Primitives

inp(TT), rdp(TT)

both inp(TT) and rdp(TT) retrieve tuple T matching template TT

from the tuple space

= in(TT), rd(TT) (non-)destructive reading, non-determinism, and
syntax structure is maintained

6=in(TT), rd(TT) suspensive semantics is lost: this predicative
versions primitives just fail when no tuple matching TT

is found in the tuple space
success / failure predicative primitives introduce success / failure

semantics: when a matching tuple is found, it is
returned with a success result; when it is not, a failure is
reported

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 52 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Predicative Primitives

inp(TT), rdp(TT)

both inp(TT) and rdp(TT) retrieve tuple T matching template TT

from the tuple space

= in(TT), rd(TT) (non-)destructive reading, non-determinism, and
syntax structure is maintained

6=in(TT), rd(TT) suspensive semantics is lost: this predicative
versions primitives just fail when no tuple matching TT

is found in the tuple space
success / failure predicative primitives introduce success / failure

semantics: when a matching tuple is found, it is
returned with a success result; when it is not, a failure is
reported

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 52 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Predicative Primitives

inp(TT), rdp(TT)

both inp(TT) and rdp(TT) retrieve tuple T matching template TT

from the tuple space

= in(TT), rd(TT) (non-)destructive reading, non-determinism, and
syntax structure is maintained

6=in(TT), rd(TT) suspensive semantics is lost: this predicative
versions primitives just fail when no tuple matching TT

is found in the tuple space
success / failure predicative primitives introduce success / failure

semantics: when a matching tuple is found, it is
returned with a success result; when it is not, a failure is
reported

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 52 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Predicative Primitives

inp(TT), rdp(TT)

both inp(TT) and rdp(TT) retrieve tuple T matching template TT

from the tuple space

= in(TT), rd(TT) (non-)destructive reading, non-determinism, and
syntax structure is maintained

6=in(TT), rd(TT) suspensive semantics is lost: this predicative
versions primitives just fail when no tuple matching TT

is found in the tuple space
success / failure predicative primitives introduce success / failure

semantics: when a matching tuple is found, it is
returned with a success result; when it is not, a failure is
reported

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 52 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Bulk Primitives

in all(TT), rd all(TT)

Linda primitives (including predicative ones) deal with a tuple at a
time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT

(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Many other bulk primitives have been proposed and implemented to
address particular classes of problems

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 53 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Bulk Primitives

in all(TT), rd all(TT)

Linda primitives (including predicative ones) deal with a tuple at a
time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT

(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Many other bulk primitives have been proposed and implemented to
address particular classes of problems

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 53 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Bulk Primitives

in all(TT), rd all(TT)

Linda primitives (including predicative ones) deal with a tuple at a
time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT

(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Many other bulk primitives have been proposed and implemented to
address particular classes of problems

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 53 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Bulk Primitives

in all(TT), rd all(TT)

Linda primitives (including predicative ones) deal with a tuple at a
time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT

(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Many other bulk primitives have been proposed and implemented to
address particular classes of problems

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 53 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Bulk Primitives

in all(TT), rd all(TT)

Linda primitives (including predicative ones) deal with a tuple at a
time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT

(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Many other bulk primitives have been proposed and implemented to
address particular classes of problems

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 53 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Bulk Primitives

in all(TT), rd all(TT)

Linda primitives (including predicative ones) deal with a tuple at a
time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT

(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Many other bulk primitives have been proposed and implemented to
address particular classes of problems

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 53 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Bulk Primitives

in all(TT), rd all(TT)

Linda primitives (including predicative ones) deal with a tuple at a
time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT

(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Many other bulk primitives have been proposed and implemented to
address particular classes of problems

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 53 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Bulk Primitives

in all(TT), rd all(TT)

Linda primitives (including predicative ones) deal with a tuple at a
time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT

(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Many other bulk primitives have been proposed and implemented to
address particular classes of problems

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 53 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Bulk Primitives

in all(TT), rd all(TT)

Linda primitives (including predicative ones) deal with a tuple at a
time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT

(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Many other bulk primitives have been proposed and implemented to
address particular classes of problems

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 53 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination
Many extensions have focussed on making a multiplicity of tuple
spaces available to processes

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

Syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

For instance, ts@node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 54 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination
Many extensions have focussed on making a multiplicity of tuple
spaces available to processes

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

Syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

For instance, ts@node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 54 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination
Many extensions have focussed on making a multiplicity of tuple
spaces available to processes

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

Syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

For instance, ts@node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 54 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination
Many extensions have focussed on making a multiplicity of tuple
spaces available to processes

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

Syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

For instance, ts@node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 54 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination
Many extensions have focussed on making a multiplicity of tuple
spaces available to processes

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

Syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

For instance, ts@node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 54 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination
Many extensions have focussed on making a multiplicity of tuple
spaces available to processes

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

Syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

For instance, ts@node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 54 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination
Many extensions have focussed on making a multiplicity of tuple
spaces available to processes

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

Syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

For instance, ts@node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 54 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination
Many extensions have focussed on making a multiplicity of tuple
spaces available to processes

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

Syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

For instance, ts@node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 54 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination
Many extensions have focussed on making a multiplicity of tuple
spaces available to processes

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

Syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

For instance, ts@node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 54 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Main Features of Tuple-based Coordination

Main features of the Linda model

tuples A tuple is an ordered collection of knowledge chunks,
possibly heterogeneous in sort

generative communication until explicitly withdrawn, the tuples generated
by coordinables have an independent existence in the tuple
space; a tuple is equally accessible to all the coordinables,
but is bound to none

associative access tuples in the tuple space are accessed through their
content & structure, rather than by name, address, or
location

suspensive semantics operations may be suspended based on unavailability
of matching tuples, and be woken up when such tuples
become available

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 55 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Main Features of Tuple-based Coordination

Main features of the Linda model

tuples A tuple is an ordered collection of knowledge chunks,
possibly heterogeneous in sort

generative communication until explicitly withdrawn, the tuples generated
by coordinables have an independent existence in the tuple
space; a tuple is equally accessible to all the coordinables,
but is bound to none

associative access tuples in the tuple space are accessed through their
content & structure, rather than by name, address, or
location

suspensive semantics operations may be suspended based on unavailability
of matching tuples, and be woken up when such tuples
become available

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 55 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Main Features of Tuple-based Coordination

Main features of the Linda model

tuples A tuple is an ordered collection of knowledge chunks,
possibly heterogeneous in sort

generative communication until explicitly withdrawn, the tuples generated
by coordinables have an independent existence in the tuple
space; a tuple is equally accessible to all the coordinables,
but is bound to none

associative access tuples in the tuple space are accessed through their
content & structure, rather than by name, address, or
location

suspensive semantics operations may be suspended based on unavailability
of matching tuples, and be woken up when such tuples
become available

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 55 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Main Features of Tuple-based Coordination

Main features of the Linda model

tuples A tuple is an ordered collection of knowledge chunks,
possibly heterogeneous in sort

generative communication until explicitly withdrawn, the tuples generated
by coordinables have an independent existence in the tuple
space; a tuple is equally accessible to all the coordinables,
but is bound to none

associative access tuples in the tuple space are accessed through their
content & structure, rather than by name, address, or
location

suspensive semantics operations may be suspended based on unavailability
of matching tuples, and be woken up when such tuples
become available

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 55 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Main Features of Tuple-based Coordination

Main features of the Linda model

tuples A tuple is an ordered collection of knowledge chunks,
possibly heterogeneous in sort

generative communication until explicitly withdrawn, the tuples generated
by coordinables have an independent existence in the tuple
space; a tuple is equally accessible to all the coordinables,
but is bound to none

associative access tuples in the tuple space are accessed through their
content & structure, rather than by name, address, or
location

suspensive semantics operations may be suspended based on unavailability
of matching tuples, and be woken up when such tuples
become available

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 55 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
raw semantic interpretation: a tuple contains all information
concerning an given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 56 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
raw semantic interpretation: a tuple contains all information
concerning an given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 56 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
raw semantic interpretation: a tuple contains all information
concerning an given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 56 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
raw semantic interpretation: a tuple contains all information
concerning an given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 56 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
raw semantic interpretation: a tuple contains all information
concerning an given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 56 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
raw semantic interpretation: a tuple contains all information
concerning an given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 56 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
raw semantic interpretation: a tuple contains all information
concerning an given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 56 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
raw semantic interpretation: a tuple contains all information
concerning an given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 56 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
raw semantic interpretation: a tuple contains all information
concerning an given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 56 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
raw semantic interpretation: a tuple contains all information
concerning an given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 56 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
raw semantic interpretation: a tuple contains all information
concerning an given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 56 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
raw semantic interpretation: a tuple contains all information
concerning an given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 56 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
raw semantic interpretation: a tuple contains all information
concerning an given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 56 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
raw semantic interpretation: a tuple contains all information
concerning an given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 56 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Generative Communication

Communication orthogonality

Both senders and the receivers can interact even without having prior
knowledge about each others

space uncoupling no need to coexist in space for two processes to
interact

time uncoupling no need for simultaneity for two processes to interact
name uncoupling no need for names for processes to interact

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 57 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Generative Communication

Communication orthogonality

Both senders and the receivers can interact even without having prior
knowledge about each others

space uncoupling no need to coexist in space for two processes to
interact

time uncoupling no need for simultaneity for two processes to interact
name uncoupling no need for names for processes to interact

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 57 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Generative Communication

Communication orthogonality

Both senders and the receivers can interact even without having prior
knowledge about each others

space uncoupling no need to coexist in space for two processes to
interact

time uncoupling no need for simultaneity for two processes to interact
name uncoupling no need for names for processes to interact

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 57 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Generative Communication

Communication orthogonality

Both senders and the receivers can interact even without having prior
knowledge about each others

space uncoupling no need to coexist in space for two processes to
interact

time uncoupling no need for simultaneity for two processes to interact
name uncoupling no need for names for processes to interact

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 57 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Associative Access

Content-based coordination

Synchronisation based on tuple content & structure

absence / presence of tuples with some content / structure determines
the overall behaviour of the coordinables, and of the coordinated
system in the overall
based on tuple templates & matching mechanism

Information-driven coordination

patterns of coordination based on data / information availability
based on tuple templates & matching mechanism

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 58 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Associative Access

Content-based coordination

Synchronisation based on tuple content & structure

absence / presence of tuples with some content / structure determines
the overall behaviour of the coordinables, and of the coordinated
system in the overall
based on tuple templates & matching mechanism

Information-driven coordination

patterns of coordination based on data / information availability
based on tuple templates & matching mechanism

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 58 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Associative Access

Content-based coordination

Synchronisation based on tuple content & structure

absence / presence of tuples with some content / structure determines
the overall behaviour of the coordinables, and of the coordinated
system in the overall
based on tuple templates & matching mechanism

Information-driven coordination

patterns of coordination based on data / information availability
based on tuple templates & matching mechanism

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 58 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Associative Access

Content-based coordination

Synchronisation based on tuple content & structure

absence / presence of tuples with some content / structure determines
the overall behaviour of the coordinables, and of the coordinated
system in the overall
based on tuple templates & matching mechanism

Information-driven coordination

patterns of coordination based on data / information availability
based on tuple templates & matching mechanism

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 58 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Associative Access

Content-based coordination

Synchronisation based on tuple content & structure

absence / presence of tuples with some content / structure determines
the overall behaviour of the coordinables, and of the coordinated
system in the overall
based on tuple templates & matching mechanism

Information-driven coordination

patterns of coordination based on data / information availability
based on tuple templates & matching mechanism

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 58 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Associative Access

Content-based coordination

Synchronisation based on tuple content & structure

absence / presence of tuples with some content / structure determines
the overall behaviour of the coordinables, and of the coordinated
system in the overall
based on tuple templates & matching mechanism

Information-driven coordination

patterns of coordination based on data / information availability
based on tuple templates & matching mechanism

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 58 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Associative Access

Content-based coordination

Synchronisation based on tuple content & structure

absence / presence of tuples with some content / structure determines
the overall behaviour of the coordinables, and of the coordinated
system in the overall
based on tuple templates & matching mechanism

Information-driven coordination

patterns of coordination based on data / information availability
based on tuple templates & matching mechanism

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 58 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Associative Access

Content-based coordination

Synchronisation based on tuple content & structure

absence / presence of tuples with some content / structure determines
the overall behaviour of the coordinables, and of the coordinated
system in the overall
based on tuple templates & matching mechanism

Information-driven coordination

patterns of coordination based on data / information availability
based on tuple templates & matching mechanism

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 58 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Associative Access

Content-based coordination

Synchronisation based on tuple content & structure

absence / presence of tuples with some content / structure determines
the overall behaviour of the coordinables, and of the coordinated
system in the overall
based on tuple templates & matching mechanism

Information-driven coordination

patterns of coordination based on data / information availability
based on tuple templates & matching mechanism

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 58 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Suspensive Semantics

Blocking primitives

in & rd primitives in Linda have a suspensive semantics

the coordination medium makes the primitives waiting in case a
matching tuple is not found, and wakes it up when such a tuple is found
the coordinable invoking the suspensive primitive is expected to wait
for its successful completion

Twofold wait

in the coordination medium the operation is first (possibly)
suspended, then (possibly) served: coordination based
on absence / presence of tuples belonging to a given set

in the coordination entity the invocation may cause a wait-state in
the invoker: hypothesis on the internal behaviour of the
coordinable

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 59 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Suspensive Semantics

Blocking primitives

in & rd primitives in Linda have a suspensive semantics

the coordination medium makes the primitives waiting in case a
matching tuple is not found, and wakes it up when such a tuple is found
the coordinable invoking the suspensive primitive is expected to wait
for its successful completion

Twofold wait

in the coordination medium the operation is first (possibly)
suspended, then (possibly) served: coordination based
on absence / presence of tuples belonging to a given set

in the coordination entity the invocation may cause a wait-state in
the invoker: hypothesis on the internal behaviour of the
coordinable

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 59 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Suspensive Semantics

Blocking primitives

in & rd primitives in Linda have a suspensive semantics

the coordination medium makes the primitives waiting in case a
matching tuple is not found, and wakes it up when such a tuple is found
the coordinable invoking the suspensive primitive is expected to wait
for its successful completion

Twofold wait

in the coordination medium the operation is first (possibly)
suspended, then (possibly) served: coordination based
on absence / presence of tuples belonging to a given set

in the coordination entity the invocation may cause a wait-state in
the invoker: hypothesis on the internal behaviour of the
coordinable

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 59 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Suspensive Semantics

Blocking primitives

in & rd primitives in Linda have a suspensive semantics

the coordination medium makes the primitives waiting in case a
matching tuple is not found, and wakes it up when such a tuple is found
the coordinable invoking the suspensive primitive is expected to wait
for its successful completion

Twofold wait

in the coordination medium the operation is first (possibly)
suspended, then (possibly) served: coordination based
on absence / presence of tuples belonging to a given set

in the coordination entity the invocation may cause a wait-state in
the invoker: hypothesis on the internal behaviour of the
coordinable

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 59 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Suspensive Semantics

Blocking primitives

in & rd primitives in Linda have a suspensive semantics

the coordination medium makes the primitives waiting in case a
matching tuple is not found, and wakes it up when such a tuple is found
the coordinable invoking the suspensive primitive is expected to wait
for its successful completion

Twofold wait

in the coordination medium the operation is first (possibly)
suspended, then (possibly) served: coordination based
on absence / presence of tuples belonging to a given set

in the coordination entity the invocation may cause a wait-state in
the invoker: hypothesis on the internal behaviour of the
coordinable

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 59 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Suspensive Semantics

Blocking primitives

in & rd primitives in Linda have a suspensive semantics

the coordination medium makes the primitives waiting in case a
matching tuple is not found, and wakes it up when such a tuple is found
the coordinable invoking the suspensive primitive is expected to wait
for its successful completion

Twofold wait

in the coordination medium the operation is first (possibly)
suspended, then (possibly) served: coordination based
on absence / presence of tuples belonging to a given set

in the coordination entity the invocation may cause a wait-state in
the invoker: hypothesis on the internal behaviour of the
coordinable

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 59 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Our Running Example: The Dining Philosophers Problem

Dining Philosophers [Dijkstra, 2002]

In the classical Dining Philosopher problem, N philosophers share N
chopsticks and a spaghetti bowl

Each philosopher either eats or thinks

Each philosopher needs a pair of chopsticks to eat—and can access
the two chopsticks on his left and on his right

Each chopstick is shared by two adjacent philosophers

When a philosopher needs to think, he gets rid of chopsticks

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 60 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Our Running Example: The Dining Philosophers Problem

Dining Philosophers [Dijkstra, 2002]

In the classical Dining Philosopher problem, N philosophers share N
chopsticks and a spaghetti bowl

Each philosopher either eats or thinks

Each philosopher needs a pair of chopsticks to eat—and can access
the two chopsticks on his left and on his right

Each chopstick is shared by two adjacent philosophers

When a philosopher needs to think, he gets rid of chopsticks

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 60 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Our Running Example: The Dining Philosophers Problem

Dining Philosophers [Dijkstra, 2002]

In the classical Dining Philosopher problem, N philosophers share N
chopsticks and a spaghetti bowl

Each philosopher either eats or thinks

Each philosopher needs a pair of chopsticks to eat—and can access
the two chopsticks on his left and on his right

Each chopstick is shared by two adjacent philosophers

When a philosopher needs to think, he gets rid of chopsticks

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 60 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Our Running Example: The Dining Philosophers Problem

Dining Philosophers [Dijkstra, 2002]

In the classical Dining Philosopher problem, N philosophers share N
chopsticks and a spaghetti bowl

Each philosopher either eats or thinks

Each philosopher needs a pair of chopsticks to eat—and can access
the two chopsticks on his left and on his right

Each chopstick is shared by two adjacent philosophers

When a philosopher needs to think, he gets rid of chopsticks

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 60 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Our Running Example: The Dining Philosophers Problem

Dining Philosophers [Dijkstra, 2002]

In the classical Dining Philosopher problem, N philosophers share N
chopsticks and a spaghetti bowl

Each philosopher either eats or thinks

Each philosopher needs a pair of chopsticks to eat—and can access
the two chopsticks on his left and on his right

Each chopstick is shared by two adjacent philosophers

When a philosopher needs to think, he gets rid of chopsticks

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 60 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Our Running Example: The Dining Philosophers Problem

Dining Philosophers [Dijkstra, 2002]

In the classical Dining Philosopher problem, N philosophers share N
chopsticks and a spaghetti bowl

Each philosopher either eats or thinks

Each philosopher needs a pair of chopsticks to eat—and can access
the two chopsticks on his left and on his right

Each chopstick is shared by two adjacent philosophers

When a philosopher needs to think, he gets rid of chopsticks

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 60 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Concurrency issues in the Dining Philosophers Problem

shared resources Two adjacent philosophers cannot eat simultaneously

starvation If one philosopher eats all the time, the two adjacent
philosophers will starve

deadlock If every philosopher picks up the same (say, the left)
chopstick at the same time, all of them may wait indefinitely
for the other (say, the right) chopstick so as to eat

fairness If a philosopher releases one chopstick before the other one,
it favours one of his adjacent philosophers over the other one

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 61 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Concurrency issues in the Dining Philosophers Problem

shared resources Two adjacent philosophers cannot eat simultaneously

starvation If one philosopher eats all the time, the two adjacent
philosophers will starve

deadlock If every philosopher picks up the same (say, the left)
chopstick at the same time, all of them may wait indefinitely
for the other (say, the right) chopstick so as to eat

fairness If a philosopher releases one chopstick before the other one,
it favours one of his adjacent philosophers over the other one

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 61 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Concurrency issues in the Dining Philosophers Problem

shared resources Two adjacent philosophers cannot eat simultaneously

starvation If one philosopher eats all the time, the two adjacent
philosophers will starve

deadlock If every philosopher picks up the same (say, the left)
chopstick at the same time, all of them may wait indefinitely
for the other (say, the right) chopstick so as to eat

fairness If a philosopher releases one chopstick before the other one,
it favours one of his adjacent philosophers over the other one

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 61 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Concurrency issues in the Dining Philosophers Problem

shared resources Two adjacent philosophers cannot eat simultaneously

starvation If one philosopher eats all the time, the two adjacent
philosophers will starve

deadlock If every philosopher picks up the same (say, the left)
chopstick at the same time, all of them may wait indefinitely
for the other (say, the right) chopstick so as to eat

fairness If a philosopher releases one chopstick before the other one,
it favours one of his adjacent philosophers over the other one

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 61 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by the
tuple space

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

Philosophers try to eat by getting their chopstick pairs from the tuple
space as a pair of tuples chop(i) chop(i+1 mod N)

Philosophers start to think by releasing their own chopstick pairs to
the tuple space as a pair of tuples chop(i) chop(i+1 mod N)

! In the following, we will use Prolog for philosopher agents

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 62 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by the
tuple space

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

Philosophers try to eat by getting their chopstick pairs from the tuple
space as a pair of tuples chop(i) chop(i+1 mod N)

Philosophers start to think by releasing their own chopstick pairs to
the tuple space as a pair of tuples chop(i) chop(i+1 mod N)

! In the following, we will use Prolog for philosopher agents

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 62 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by the
tuple space

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

Philosophers try to eat by getting their chopstick pairs from the tuple
space as a pair of tuples chop(i) chop(i+1 mod N)

Philosophers start to think by releasing their own chopstick pairs to
the tuple space as a pair of tuples chop(i) chop(i+1 mod N)

! In the following, we will use Prolog for philosopher agents

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 62 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by the
tuple space

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

Philosophers try to eat by getting their chopstick pairs from the tuple
space as a pair of tuples chop(i) chop(i+1 mod N)

Philosophers start to think by releasing their own chopstick pairs to
the tuple space as a pair of tuples chop(i) chop(i+1 mod N)

! In the following, we will use Prolog for philosopher agents

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 62 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by the
tuple space

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

Philosophers try to eat by getting their chopstick pairs from the tuple
space as a pair of tuples chop(i) chop(i+1 mod N)

Philosophers start to think by releasing their own chopstick pairs to
the tuple space as a pair of tuples chop(i) chop(i+1 mod N)

! In the following, we will use Prolog for philosopher agents

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 62 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by the
tuple space

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

Philosophers try to eat by getting their chopstick pairs from the tuple
space as a pair of tuples chop(i) chop(i+1 mod N)

Philosophers start to think by releasing their own chopstick pairs to
the tuple space as a pair of tuples chop(i) chop(i+1 mod N)

! In the following, we will use Prolog for philosopher agents

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 62 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 63 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 63 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 63 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 63 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 63 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 63 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 63 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 63 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 63 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 63 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 63 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 63 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 64 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 64 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 64 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 64 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 64 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 64 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 64 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 64 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 64 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 64 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 64 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 64 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 64 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 64 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 64 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 64 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 64 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 64 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 65 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 65 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 65 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 65 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 65 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 65 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 65 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 65 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 65 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 65 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 65 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 65 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda: Where is the Problem?

Coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

Bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

As a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 66 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda: Where is the Problem?

Coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

Bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

As a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 66 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda: Where is the Problem?

Coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

Bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

As a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 66 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda: Where is the Problem?

Coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

Bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

As a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 66 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda: Where is the Problem?

Coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

Bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

As a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 66 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda: Where is the Problem?

Coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

Bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

As a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 66 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda: Where is the Problem?

Coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

Bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

As a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 66 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda: Where is the Problem?

Coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

Bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

As a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 66 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda: Where is the Problem?

Coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

Bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

As a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 66 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Tuple-based Models: Solution?

Making the behaviour of the coordination medium adjustable
according to the coordination problem

if the behaviour of the coordination medium is not be fixed once and
for all, and can be defined in accordance to the coordination needs
then, in principle all coordination problems may fit some admissible
behaviour of the coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 67 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Tuple-based Models: Solution?

Making the behaviour of the coordination medium adjustable
according to the coordination problem

if the behaviour of the coordination medium is not be fixed once and
for all, and can be defined in accordance to the coordination needs
then, in principle all coordination problems may fit some admissible
behaviour of the coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 67 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Tuple-based Models: Solution?

Making the behaviour of the coordination medium adjustable
according to the coordination problem

if the behaviour of the coordination medium is not be fixed once and
for all, and can be defined in accordance to the coordination needs
then, in principle all coordination problems may fit some admissible
behaviour of the coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 67 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Tuple-based Models: Solution?

Making the behaviour of the coordination medium adjustable
according to the coordination problem

if the behaviour of the coordination medium is not be fixed once and
for all, and can be defined in accordance to the coordination needs
then, in principle all coordination problems may fit some admissible
behaviour of the coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 67 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Tuple-based Models: Solution?

Making the behaviour of the coordination medium adjustable
according to the coordination problem

if the behaviour of the coordination medium is not be fixed once and
for all, and can be defined in accordance to the coordination needs
then, in principle all coordination problems may fit some admissible
behaviour of the coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 67 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Tuple-based Models: Solution?

Making the behaviour of the coordination medium adjustable
according to the coordination problem

if the behaviour of the coordination medium is not be fixed once and
for all, and can be defined in accordance to the coordination needs
then, in principle all coordination problems may fit some admissible
behaviour of the coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 67 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Tuple-based Models: Solution?

Making the behaviour of the coordination medium adjustable
according to the coordination problem

if the behaviour of the coordination medium is not be fixed once and
for all, and can be defined in accordance to the coordination needs
then, in principle all coordination problems may fit some admissible
behaviour of the coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 67 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Tuple-based Models: Solution?

Making the behaviour of the coordination medium adjustable
according to the coordination problem

if the behaviour of the coordination medium is not be fixed once and
for all, and can be defined in accordance to the coordination needs
then, in principle all coordination problems may fit some admissible
behaviour of the coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 67 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Tuple-based Models: Solution?

Making the behaviour of the coordination medium adjustable
according to the coordination problem

if the behaviour of the coordination medium is not be fixed once and
for all, and can be defined in accordance to the coordination needs
then, in principle all coordination problems may fit some admissible
behaviour of the coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 67 / 144

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Tuple-based Models: Solution?

Making the behaviour of the coordination medium adjustable
according to the coordination problem

if the behaviour of the coordination medium is not be fixed once and
for all, and can be defined in accordance to the coordination needs
then, in principle all coordination problems may fit some admissible
behaviour of the coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 67 / 144

Tuple-based Coordination Hybrid Coordination Models

Outline
1 Elements of Distributed Systems Engineering
2 Coordination: A Meta-model
3 Enabling vs. Governing Interaction
4 Classifying Coordination Models
5 Tuple-based Coordination Models

Linda & Tuple-based Coordination
Hybrid Coordination Models

6 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics

7 Coordination in the Spatio-Temporal Fabric
Time as a Coordination Issue
Space as a Coordination Issue

8 Situatedness & Coordination
Situatedness as a Coordination Issue
Extending ReSpecT Toward Situatedness
Situated ReSpecT: A Case Study

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 68 / 144

Tuple-based Coordination Hybrid Coordination Models

Data- vs. Control-driven Coordination

What if we need to start an activity after, say, at least N processes
have asked for a resource?

More generally, what if we need, in general, to coordinate based on the
coordinable actions, rather than on the information available /
exchanged?

Classical distinction in the coordination community

data-driven coordination vs. control-driven coordination

In more advanced scenario, these names do not fit

information-driven coordination vs. action-driven coordination fits
better
but we might as well use the old terms, while we understand their
limitations

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 69 / 144

Tuple-based Coordination Hybrid Coordination Models

Data- vs. Control-driven Coordination

What if we need to start an activity after, say, at least N processes
have asked for a resource?

More generally, what if we need, in general, to coordinate based on the
coordinable actions, rather than on the information available /
exchanged?

Classical distinction in the coordination community

data-driven coordination vs. control-driven coordination

In more advanced scenario, these names do not fit

information-driven coordination vs. action-driven coordination fits
better
but we might as well use the old terms, while we understand their
limitations

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 69 / 144

Tuple-based Coordination Hybrid Coordination Models

Data- vs. Control-driven Coordination

What if we need to start an activity after, say, at least N processes
have asked for a resource?

More generally, what if we need, in general, to coordinate based on the
coordinable actions, rather than on the information available /
exchanged?

Classical distinction in the coordination community

data-driven coordination vs. control-driven coordination

In more advanced scenario, these names do not fit

information-driven coordination vs. action-driven coordination fits
better
but we might as well use the old terms, while we understand their
limitations

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 69 / 144

Tuple-based Coordination Hybrid Coordination Models

Data- vs. Control-driven Coordination

What if we need to start an activity after, say, at least N processes
have asked for a resource?

More generally, what if we need, in general, to coordinate based on the
coordinable actions, rather than on the information available /
exchanged?

Classical distinction in the coordination community

data-driven coordination vs. control-driven coordination

In more advanced scenario, these names do not fit

information-driven coordination vs. action-driven coordination fits
better
but we might as well use the old terms, while we understand their
limitations

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 69 / 144

Tuple-based Coordination Hybrid Coordination Models

Data- vs. Control-driven Coordination

What if we need to start an activity after, say, at least N processes
have asked for a resource?

More generally, what if we need, in general, to coordinate based on the
coordinable actions, rather than on the information available /
exchanged?

Classical distinction in the coordination community

data-driven coordination vs. control-driven coordination

In more advanced scenario, these names do not fit

information-driven coordination vs. action-driven coordination fits
better
but we might as well use the old terms, while we understand their
limitations

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 69 / 144

Tuple-based Coordination Hybrid Coordination Models

Data- vs. Control-driven Coordination

What if we need to start an activity after, say, at least N processes
have asked for a resource?

More generally, what if we need, in general, to coordinate based on the
coordinable actions, rather than on the information available /
exchanged?

Classical distinction in the coordination community

data-driven coordination vs. control-driven coordination

In more advanced scenario, these names do not fit

information-driven coordination vs. action-driven coordination fits
better
but we might as well use the old terms, while we understand their
limitations

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 69 / 144

Tuple-based Coordination Hybrid Coordination Models

Data- vs. Control-driven Coordination

What if we need to start an activity after, say, at least N processes
have asked for a resource?

More generally, what if we need, in general, to coordinate based on the
coordinable actions, rather than on the information available /
exchanged?

Classical distinction in the coordination community

data-driven coordination vs. control-driven coordination

In more advanced scenario, these names do not fit

information-driven coordination vs. action-driven coordination fits
better
but we might as well use the old terms, while we understand their
limitations

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 69 / 144

Tuple-based Coordination Hybrid Coordination Models

Hybrid Coordination Models

Generally speaking, control-driven coordination does not fit so well
information-driven contexts, like Web-based ones, for instance

control-driven models like Reo [Arbab, 2004] need to be adapted to
agent-based contexts, mainly to deal with the issue of autonomy in
distributed systems [Dastani et al., 2005]
control should not pass through the component boundaries in order to
avoid coupling in distributed systems

We need features of both approaches to coordination

hybrid coordination models
adding for instance a control-driven layer to a Linda-based one

What should be added to a tuple-based model to make it hybrid, and
how?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 70 / 144

Tuple-based Coordination Hybrid Coordination Models

Hybrid Coordination Models

Generally speaking, control-driven coordination does not fit so well
information-driven contexts, like Web-based ones, for instance

control-driven models like Reo [Arbab, 2004] need to be adapted to
agent-based contexts, mainly to deal with the issue of autonomy in
distributed systems [Dastani et al., 2005]
control should not pass through the component boundaries in order to
avoid coupling in distributed systems

We need features of both approaches to coordination

hybrid coordination models
adding for instance a control-driven layer to a Linda-based one

What should be added to a tuple-based model to make it hybrid, and
how?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 70 / 144

Tuple-based Coordination Hybrid Coordination Models

Hybrid Coordination Models

Generally speaking, control-driven coordination does not fit so well
information-driven contexts, like Web-based ones, for instance

control-driven models like Reo [Arbab, 2004] need to be adapted to
agent-based contexts, mainly to deal with the issue of autonomy in
distributed systems [Dastani et al., 2005]
control should not pass through the component boundaries in order to
avoid coupling in distributed systems

We need features of both approaches to coordination

hybrid coordination models
adding for instance a control-driven layer to a Linda-based one

What should be added to a tuple-based model to make it hybrid, and
how?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 70 / 144

Tuple-based Coordination Hybrid Coordination Models

Hybrid Coordination Models

Generally speaking, control-driven coordination does not fit so well
information-driven contexts, like Web-based ones, for instance

control-driven models like Reo [Arbab, 2004] need to be adapted to
agent-based contexts, mainly to deal with the issue of autonomy in
distributed systems [Dastani et al., 2005]
control should not pass through the component boundaries in order to
avoid coupling in distributed systems

We need features of both approaches to coordination

hybrid coordination models
adding for instance a control-driven layer to a Linda-based one

What should be added to a tuple-based model to make it hybrid, and
how?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 70 / 144

Tuple-based Coordination Hybrid Coordination Models

Hybrid Coordination Models

Generally speaking, control-driven coordination does not fit so well
information-driven contexts, like Web-based ones, for instance

control-driven models like Reo [Arbab, 2004] need to be adapted to
agent-based contexts, mainly to deal with the issue of autonomy in
distributed systems [Dastani et al., 2005]
control should not pass through the component boundaries in order to
avoid coupling in distributed systems

We need features of both approaches to coordination

hybrid coordination models
adding for instance a control-driven layer to a Linda-based one

What should be added to a tuple-based model to make it hybrid, and
how?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 70 / 144

Tuple-based Coordination Hybrid Coordination Models

Hybrid Coordination Models

Generally speaking, control-driven coordination does not fit so well
information-driven contexts, like Web-based ones, for instance

control-driven models like Reo [Arbab, 2004] need to be adapted to
agent-based contexts, mainly to deal with the issue of autonomy in
distributed systems [Dastani et al., 2005]
control should not pass through the component boundaries in order to
avoid coupling in distributed systems

We need features of both approaches to coordination

hybrid coordination models
adding for instance a control-driven layer to a Linda-based one

What should be added to a tuple-based model to make it hybrid, and
how?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 70 / 144

Tuple-based Coordination Hybrid Coordination Models

Hybrid Coordination Models

Generally speaking, control-driven coordination does not fit so well
information-driven contexts, like Web-based ones, for instance

control-driven models like Reo [Arbab, 2004] need to be adapted to
agent-based contexts, mainly to deal with the issue of autonomy in
distributed systems [Dastani et al., 2005]
control should not pass through the component boundaries in order to
avoid coupling in distributed systems

We need features of both approaches to coordination

hybrid coordination models
adding for instance a control-driven layer to a Linda-based one

What should be added to a tuple-based model to make it hybrid, and
how?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 70 / 144

Tuple-based Coordination Hybrid Coordination Models

Towards Tuple Centres

What should be left unchanged?

no new primitives
basic Linda primitives are preserved, both syntax and semantics
matching mechanism preserved, still depending on the communication
language of choice
multiple tuple spaces, flat name space

New features?

ability to define new coordinative behaviours embodying required
coordination policies
ability to associate coordinative behaviours to coordination events

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 71 / 144

Tuple-based Coordination Hybrid Coordination Models

Towards Tuple Centres

What should be left unchanged?

no new primitives
basic Linda primitives are preserved, both syntax and semantics
matching mechanism preserved, still depending on the communication
language of choice
multiple tuple spaces, flat name space

New features?

ability to define new coordinative behaviours embodying required
coordination policies
ability to associate coordinative behaviours to coordination events

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 71 / 144

Tuple-based Coordination Hybrid Coordination Models

Towards Tuple Centres

What should be left unchanged?

no new primitives
basic Linda primitives are preserved, both syntax and semantics
matching mechanism preserved, still depending on the communication
language of choice
multiple tuple spaces, flat name space

New features?

ability to define new coordinative behaviours embodying required
coordination policies
ability to associate coordinative behaviours to coordination events

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 71 / 144

Tuple-based Coordination Hybrid Coordination Models

Towards Tuple Centres

What should be left unchanged?

no new primitives
basic Linda primitives are preserved, both syntax and semantics
matching mechanism preserved, still depending on the communication
language of choice
multiple tuple spaces, flat name space

New features?

ability to define new coordinative behaviours embodying required
coordination policies
ability to associate coordinative behaviours to coordination events

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 71 / 144

Tuple-based Coordination Hybrid Coordination Models

Towards Tuple Centres

What should be left unchanged?

no new primitives
basic Linda primitives are preserved, both syntax and semantics
matching mechanism preserved, still depending on the communication
language of choice
multiple tuple spaces, flat name space

New features?

ability to define new coordinative behaviours embodying required
coordination policies
ability to associate coordinative behaviours to coordination events

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 71 / 144

Tuple-based Coordination Hybrid Coordination Models

Towards Tuple Centres

What should be left unchanged?

no new primitives
basic Linda primitives are preserved, both syntax and semantics
matching mechanism preserved, still depending on the communication
language of choice
multiple tuple spaces, flat name space

New features?

ability to define new coordinative behaviours embodying required
coordination policies
ability to associate coordinative behaviours to coordination events

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 71 / 144

Tuple-based Coordination Hybrid Coordination Models

Towards Tuple Centres

What should be left unchanged?

no new primitives
basic Linda primitives are preserved, both syntax and semantics
matching mechanism preserved, still depending on the communication
language of choice
multiple tuple spaces, flat name space

New features?

ability to define new coordinative behaviours embodying required
coordination policies
ability to associate coordinative behaviours to coordination events

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 71 / 144

Tuple-based Coordination Hybrid Coordination Models

Towards Tuple Centres

What should be left unchanged?

no new primitives
basic Linda primitives are preserved, both syntax and semantics
matching mechanism preserved, still depending on the communication
language of choice
multiple tuple spaces, flat name space

New features?

ability to define new coordinative behaviours embodying required
coordination policies
ability to associate coordinative behaviours to coordination events

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 71 / 144

Programming Tuple Spaces

Outline
1 Elements of Distributed Systems Engineering
2 Coordination: A Meta-model
3 Enabling vs. Governing Interaction
4 Classifying Coordination Models
5 Tuple-based Coordination Models

Linda & Tuple-based Coordination
Hybrid Coordination Models

6 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics

7 Coordination in the Spatio-Temporal Fabric
Time as a Coordination Issue
Space as a Coordination Issue

8 Situatedness & Coordination
Situatedness as a Coordination Issue
Extending ReSpecT Toward Situatedness
Situated ReSpecT: A Case Study

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 72 / 144

Programming Tuple Spaces Tuple Centres

Outline
1 Elements of Distributed Systems Engineering
2 Coordination: A Meta-model
3 Enabling vs. Governing Interaction
4 Classifying Coordination Models
5 Tuple-based Coordination Models

Linda & Tuple-based Coordination
Hybrid Coordination Models

6 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics

7 Coordination in the Spatio-Temporal Fabric
Time as a Coordination Issue
Space as a Coordination Issue

8 Situatedness & Coordination
Situatedness as a Coordination Issue
Extending ReSpecT Toward Situatedness
Situated ReSpecT: A Case Study

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 73 / 144

Programming Tuple Spaces Tuple Centres

Ideas from the Dining Philosophers

1 Keeping information representation and perception separated

in the tuple space
this would enable process interaction protocols to be organised around
the desired / required process perception of the interaction space (tuple
space), independently of its actual representation in terms of tuples

2 Properly relating information representation and perception through a
suitably defined tuple-space behaviour

so, processes could get rid of the unnecessary burden of coordination,
by embedding coordination laws into the coordination media

In the Dining Philosophers example. . .

. . . this would amount to representing each chopstick as a single
chop(i) tuple in the tuple space, while enabling philosophers to
perceive chopsticks as pairs (tuples chops(i,j)), so that
philosophers could acquire / release two chopsticks by means of a
single tuple space operation in(chops(i,j)) / out(chops(i,j)).
How could we do that, in the example, and in general?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 74 / 144

Programming Tuple Spaces Tuple Centres

Ideas from the Dining Philosophers

1 Keeping information representation and perception separated

in the tuple space
this would enable process interaction protocols to be organised around
the desired / required process perception of the interaction space (tuple
space), independently of its actual representation in terms of tuples

2 Properly relating information representation and perception through a
suitably defined tuple-space behaviour

so, processes could get rid of the unnecessary burden of coordination,
by embedding coordination laws into the coordination media

In the Dining Philosophers example. . .

. . . this would amount to representing each chopstick as a single
chop(i) tuple in the tuple space, while enabling philosophers to
perceive chopsticks as pairs (tuples chops(i,j)), so that
philosophers could acquire / release two chopsticks by means of a
single tuple space operation in(chops(i,j)) / out(chops(i,j)).
How could we do that, in the example, and in general?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 74 / 144

Programming Tuple Spaces Tuple Centres

Ideas from the Dining Philosophers

1 Keeping information representation and perception separated

in the tuple space
this would enable process interaction protocols to be organised around
the desired / required process perception of the interaction space (tuple
space), independently of its actual representation in terms of tuples

2 Properly relating information representation and perception through a
suitably defined tuple-space behaviour

so, processes could get rid of the unnecessary burden of coordination,
by embedding coordination laws into the coordination media

In the Dining Philosophers example. . .

. . . this would amount to representing each chopstick as a single
chop(i) tuple in the tuple space, while enabling philosophers to
perceive chopsticks as pairs (tuples chops(i,j)), so that
philosophers could acquire / release two chopsticks by means of a
single tuple space operation in(chops(i,j)) / out(chops(i,j)).
How could we do that, in the example, and in general?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 74 / 144

Programming Tuple Spaces Tuple Centres

Ideas from the Dining Philosophers

1 Keeping information representation and perception separated

in the tuple space
this would enable process interaction protocols to be organised around
the desired / required process perception of the interaction space (tuple
space), independently of its actual representation in terms of tuples

2 Properly relating information representation and perception through a
suitably defined tuple-space behaviour

so, processes could get rid of the unnecessary burden of coordination,
by embedding coordination laws into the coordination media

In the Dining Philosophers example. . .

. . . this would amount to representing each chopstick as a single
chop(i) tuple in the tuple space, while enabling philosophers to
perceive chopsticks as pairs (tuples chops(i,j)), so that
philosophers could acquire / release two chopsticks by means of a
single tuple space operation in(chops(i,j)) / out(chops(i,j)).
How could we do that, in the example, and in general?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 74 / 144

Programming Tuple Spaces Tuple Centres

Ideas from the Dining Philosophers

1 Keeping information representation and perception separated

in the tuple space
this would enable process interaction protocols to be organised around
the desired / required process perception of the interaction space (tuple
space), independently of its actual representation in terms of tuples

2 Properly relating information representation and perception through a
suitably defined tuple-space behaviour

so, processes could get rid of the unnecessary burden of coordination,
by embedding coordination laws into the coordination media

In the Dining Philosophers example. . .

. . . this would amount to representing each chopstick as a single
chop(i) tuple in the tuple space, while enabling philosophers to
perceive chopsticks as pairs (tuples chops(i,j)), so that
philosophers could acquire / release two chopsticks by means of a
single tuple space operation in(chops(i,j)) / out(chops(i,j)).
How could we do that, in the example, and in general?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 74 / 144

Programming Tuple Spaces Tuple Centres

Ideas from the Dining Philosophers

1 Keeping information representation and perception separated

in the tuple space
this would enable process interaction protocols to be organised around
the desired / required process perception of the interaction space (tuple
space), independently of its actual representation in terms of tuples

2 Properly relating information representation and perception through a
suitably defined tuple-space behaviour

so, processes could get rid of the unnecessary burden of coordination,
by embedding coordination laws into the coordination media

In the Dining Philosophers example. . .

. . . this would amount to representing each chopstick as a single
chop(i) tuple in the tuple space, while enabling philosophers to
perceive chopsticks as pairs (tuples chops(i,j)), so that
philosophers could acquire / release two chopsticks by means of a
single tuple space operation in(chops(i,j)) / out(chops(i,j)).
How could we do that, in the example, and in general?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 74 / 144

Programming Tuple Spaces Tuple Centres

Ideas from the Dining Philosophers

1 Keeping information representation and perception separated

in the tuple space
this would enable process interaction protocols to be organised around
the desired / required process perception of the interaction space (tuple
space), independently of its actual representation in terms of tuples

2 Properly relating information representation and perception through a
suitably defined tuple-space behaviour

so, processes could get rid of the unnecessary burden of coordination,
by embedding coordination laws into the coordination media

In the Dining Philosophers example. . .

. . . this would amount to representing each chopstick as a single
chop(i) tuple in the tuple space, while enabling philosophers to
perceive chopsticks as pairs (tuples chops(i,j)), so that
philosophers could acquire / release two chopsticks by means of a
single tuple space operation in(chops(i,j)) / out(chops(i,j)).
How could we do that, in the example, and in general?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 74 / 144

Programming Tuple Spaces Tuple Centres

Ideas from the Dining Philosophers

1 Keeping information representation and perception separated

in the tuple space
this would enable process interaction protocols to be organised around
the desired / required process perception of the interaction space (tuple
space), independently of its actual representation in terms of tuples

2 Properly relating information representation and perception through a
suitably defined tuple-space behaviour

so, processes could get rid of the unnecessary burden of coordination,
by embedding coordination laws into the coordination media

In the Dining Philosophers example. . .

. . . this would amount to representing each chopstick as a single
chop(i) tuple in the tuple space, while enabling philosophers to
perceive chopsticks as pairs (tuples chops(i,j)), so that
philosophers could acquire / release two chopsticks by means of a
single tuple space operation in(chops(i,j)) / out(chops(i,j)).
How could we do that, in the example, and in general?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 74 / 144

Programming Tuple Spaces Tuple Centres

A Possible Solution

A twofold solution
1 maintaining the standard tuple space interface
2 making it possible to enrich the behaviour of a tuple space in terms of

the state transitions performed in response to the occurrence of
standard communication events

So, in principle, the new tuple-based abstraction should be

a tuple space whose behaviour in response to communication events is
no longer fixed once and for all by the coordination model, but can be
defined according to the required coordination policies

Consequences

Since it has exactly the same interface, a tuple centre is perceived by
processes as a standard tuple space
However, since its behaviour can be specified so as to encapsulate the
coordination rules governing process interaction, a tuple centre may
behave in a completely different way with respect to a tuple space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 75 / 144

Programming Tuple Spaces Tuple Centres

A Possible Solution

A twofold solution
1 maintaining the standard tuple space interface
2 making it possible to enrich the behaviour of a tuple space in terms of

the state transitions performed in response to the occurrence of
standard communication events

So, in principle, the new tuple-based abstraction should be

a tuple space whose behaviour in response to communication events is
no longer fixed once and for all by the coordination model, but can be
defined according to the required coordination policies

Consequences

Since it has exactly the same interface, a tuple centre is perceived by
processes as a standard tuple space
However, since its behaviour can be specified so as to encapsulate the
coordination rules governing process interaction, a tuple centre may
behave in a completely different way with respect to a tuple space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 75 / 144

Programming Tuple Spaces Tuple Centres

A Possible Solution

A twofold solution
1 maintaining the standard tuple space interface
2 making it possible to enrich the behaviour of a tuple space in terms of

the state transitions performed in response to the occurrence of
standard communication events

So, in principle, the new tuple-based abstraction should be

a tuple space whose behaviour in response to communication events is
no longer fixed once and for all by the coordination model, but can be
defined according to the required coordination policies

Consequences

Since it has exactly the same interface, a tuple centre is perceived by
processes as a standard tuple space
However, since its behaviour can be specified so as to encapsulate the
coordination rules governing process interaction, a tuple centre may
behave in a completely different way with respect to a tuple space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 75 / 144

Programming Tuple Spaces Tuple Centres

A Possible Solution

A twofold solution
1 maintaining the standard tuple space interface
2 making it possible to enrich the behaviour of a tuple space in terms of

the state transitions performed in response to the occurrence of
standard communication events

So, in principle, the new tuple-based abstraction should be

a tuple space whose behaviour in response to communication events is
no longer fixed once and for all by the coordination model, but can be
defined according to the required coordination policies

Consequences

Since it has exactly the same interface, a tuple centre is perceived by
processes as a standard tuple space
However, since its behaviour can be specified so as to encapsulate the
coordination rules governing process interaction, a tuple centre may
behave in a completely different way with respect to a tuple space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 75 / 144

Programming Tuple Spaces Tuple Centres

A Possible Solution

A twofold solution
1 maintaining the standard tuple space interface
2 making it possible to enrich the behaviour of a tuple space in terms of

the state transitions performed in response to the occurrence of
standard communication events

So, in principle, the new tuple-based abstraction should be

a tuple space whose behaviour in response to communication events is
no longer fixed once and for all by the coordination model, but can be
defined according to the required coordination policies

Consequences

Since it has exactly the same interface, a tuple centre is perceived by
processes as a standard tuple space
However, since its behaviour can be specified so as to encapsulate the
coordination rules governing process interaction, a tuple centre may
behave in a completely different way with respect to a tuple space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 75 / 144

Programming Tuple Spaces Tuple Centres

A Possible Solution

A twofold solution
1 maintaining the standard tuple space interface
2 making it possible to enrich the behaviour of a tuple space in terms of

the state transitions performed in response to the occurrence of
standard communication events

So, in principle, the new tuple-based abstraction should be

a tuple space whose behaviour in response to communication events is
no longer fixed once and for all by the coordination model, but can be
defined according to the required coordination policies

Consequences

Since it has exactly the same interface, a tuple centre is perceived by
processes as a standard tuple space
However, since its behaviour can be specified so as to encapsulate the
coordination rules governing process interaction, a tuple centre may
behave in a completely different way with respect to a tuple space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 75 / 144

Programming Tuple Spaces Tuple Centres

A Possible Solution

A twofold solution
1 maintaining the standard tuple space interface
2 making it possible to enrich the behaviour of a tuple space in terms of

the state transitions performed in response to the occurrence of
standard communication events

So, in principle, the new tuple-based abstraction should be

a tuple space whose behaviour in response to communication events is
no longer fixed once and for all by the coordination model, but can be
defined according to the required coordination policies

Consequences

Since it has exactly the same interface, a tuple centre is perceived by
processes as a standard tuple space
However, since its behaviour can be specified so as to encapsulate the
coordination rules governing process interaction, a tuple centre may
behave in a completely different way with respect to a tuple space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 75 / 144

Programming Tuple Spaces Tuple Centres

A Possible Solution

A twofold solution
1 maintaining the standard tuple space interface
2 making it possible to enrich the behaviour of a tuple space in terms of

the state transitions performed in response to the occurrence of
standard communication events

So, in principle, the new tuple-based abstraction should be

a tuple space whose behaviour in response to communication events is
no longer fixed once and for all by the coordination model, but can be
defined according to the required coordination policies

Consequences

Since it has exactly the same interface, a tuple centre is perceived by
processes as a standard tuple space
However, since its behaviour can be specified so as to encapsulate the
coordination rules governing process interaction, a tuple centre may
behave in a completely different way with respect to a tuple space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 75 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centres

Definition [Omicini and Denti, 2001]

A tuple centre is a tuple space enhanced with a behaviour
specification, defining the behaviour of a tuple centre in response to
interaction events

The behaviour specification of tuple centre

is expressed in terms of a reaction specification language, and
associates any tuple-centre event to a (possibly empty) set of
computational activities, which are called reactions

More precisely, a reaction specification language

enables the definitions of computational activities within a tuple centre,
called reactions, and
makes it possible to associate reactions to the events that occur in a
tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 76 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centres

Definition [Omicini and Denti, 2001]

A tuple centre is a tuple space enhanced with a behaviour
specification, defining the behaviour of a tuple centre in response to
interaction events

The behaviour specification of tuple centre

is expressed in terms of a reaction specification language, and
associates any tuple-centre event to a (possibly empty) set of
computational activities, which are called reactions

More precisely, a reaction specification language

enables the definitions of computational activities within a tuple centre,
called reactions, and
makes it possible to associate reactions to the events that occur in a
tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 76 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centres

Definition [Omicini and Denti, 2001]

A tuple centre is a tuple space enhanced with a behaviour
specification, defining the behaviour of a tuple centre in response to
interaction events

The behaviour specification of tuple centre

is expressed in terms of a reaction specification language, and
associates any tuple-centre event to a (possibly empty) set of
computational activities, which are called reactions

More precisely, a reaction specification language

enables the definitions of computational activities within a tuple centre,
called reactions, and
makes it possible to associate reactions to the events that occur in a
tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 76 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centres

Definition [Omicini and Denti, 2001]

A tuple centre is a tuple space enhanced with a behaviour
specification, defining the behaviour of a tuple centre in response to
interaction events

The behaviour specification of tuple centre

is expressed in terms of a reaction specification language, and
associates any tuple-centre event to a (possibly empty) set of
computational activities, which are called reactions

More precisely, a reaction specification language

enables the definitions of computational activities within a tuple centre,
called reactions, and
makes it possible to associate reactions to the events that occur in a
tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 76 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centres

Definition [Omicini and Denti, 2001]

A tuple centre is a tuple space enhanced with a behaviour
specification, defining the behaviour of a tuple centre in response to
interaction events

The behaviour specification of tuple centre

is expressed in terms of a reaction specification language, and
associates any tuple-centre event to a (possibly empty) set of
computational activities, which are called reactions

More precisely, a reaction specification language

enables the definitions of computational activities within a tuple centre,
called reactions, and
makes it possible to associate reactions to the events that occur in a
tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 76 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centres

Definition [Omicini and Denti, 2001]

A tuple centre is a tuple space enhanced with a behaviour
specification, defining the behaviour of a tuple centre in response to
interaction events

The behaviour specification of tuple centre

is expressed in terms of a reaction specification language, and
associates any tuple-centre event to a (possibly empty) set of
computational activities, which are called reactions

More precisely, a reaction specification language

enables the definitions of computational activities within a tuple centre,
called reactions, and
makes it possible to associate reactions to the events that occur in a
tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 76 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centres

Definition [Omicini and Denti, 2001]

A tuple centre is a tuple space enhanced with a behaviour
specification, defining the behaviour of a tuple centre in response to
interaction events

The behaviour specification of tuple centre

is expressed in terms of a reaction specification language, and
associates any tuple-centre event to a (possibly empty) set of
computational activities, which are called reactions

More precisely, a reaction specification language

enables the definitions of computational activities within a tuple centre,
called reactions, and
makes it possible to associate reactions to the events that occur in a
tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 76 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centres

Definition [Omicini and Denti, 2001]

A tuple centre is a tuple space enhanced with a behaviour
specification, defining the behaviour of a tuple centre in response to
interaction events

The behaviour specification of tuple centre

is expressed in terms of a reaction specification language, and
associates any tuple-centre event to a (possibly empty) set of
computational activities, which are called reactions

More precisely, a reaction specification language

enables the definitions of computational activities within a tuple centre,
called reactions, and
makes it possible to associate reactions to the events that occur in a
tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 76 / 144

Programming Tuple Spaces Tuple Centres

Reactions

Each reaction can in principle

access and modify the current tuple centre state—like adding or
removing tuples)
access the information related to the triggering event—such as the
performing process, the primitive invoked, the tuple involved,
etc.)—which is made completely observable
invoke link primitives upon other tuple centres

As a result, the semantics of the standard tuple space communication
primitives is no longer constrained to be as simple as in the Linda
model—i.e., adding, reading, and removing tuples

instead, it can be made as complex as required by the specific
application needs

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 77 / 144

Programming Tuple Spaces Tuple Centres

Reactions

Each reaction can in principle

access and modify the current tuple centre state—like adding or
removing tuples)
access the information related to the triggering event—such as the
performing process, the primitive invoked, the tuple involved,
etc.)—which is made completely observable
invoke link primitives upon other tuple centres

As a result, the semantics of the standard tuple space communication
primitives is no longer constrained to be as simple as in the Linda
model—i.e., adding, reading, and removing tuples

instead, it can be made as complex as required by the specific
application needs

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 77 / 144

Programming Tuple Spaces Tuple Centres

Reactions

Each reaction can in principle

access and modify the current tuple centre state—like adding or
removing tuples)
access the information related to the triggering event—such as the
performing process, the primitive invoked, the tuple involved,
etc.)—which is made completely observable
invoke link primitives upon other tuple centres

As a result, the semantics of the standard tuple space communication
primitives is no longer constrained to be as simple as in the Linda
model—i.e., adding, reading, and removing tuples

instead, it can be made as complex as required by the specific
application needs

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 77 / 144

Programming Tuple Spaces Tuple Centres

Reactions

Each reaction can in principle

access and modify the current tuple centre state—like adding or
removing tuples)
access the information related to the triggering event—such as the
performing process, the primitive invoked, the tuple involved,
etc.)—which is made completely observable
invoke link primitives upon other tuple centres

As a result, the semantics of the standard tuple space communication
primitives is no longer constrained to be as simple as in the Linda
model—i.e., adding, reading, and removing tuples

instead, it can be made as complex as required by the specific
application needs

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 77 / 144

Programming Tuple Spaces Tuple Centres

Reactions

Each reaction can in principle

access and modify the current tuple centre state—like adding or
removing tuples)
access the information related to the triggering event—such as the
performing process, the primitive invoked, the tuple involved,
etc.)—which is made completely observable
invoke link primitives upon other tuple centres

As a result, the semantics of the standard tuple space communication
primitives is no longer constrained to be as simple as in the Linda
model—i.e., adding, reading, and removing tuples

instead, it can be made as complex as required by the specific
application needs

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 77 / 144

Programming Tuple Spaces Tuple Centres

Reactions

Each reaction can in principle

access and modify the current tuple centre state—like adding or
removing tuples)
access the information related to the triggering event—such as the
performing process, the primitive invoked, the tuple involved,
etc.)—which is made completely observable
invoke link primitives upon other tuple centres

As a result, the semantics of the standard tuple space communication
primitives is no longer constrained to be as simple as in the Linda
model—i.e., adding, reading, and removing tuples

instead, it can be made as complex as required by the specific
application needs

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 77 / 144

Programming Tuple Spaces Tuple Centres

Reaction Execution

The main cycle of a tuple centre works as follows

when a primitive invocation reaches a tuple centre, all the
corresponding reactions (if any) are triggered, and then executed in a
non-deterministic order
once all the reactions have been executed, the primitive is served in the
same way as in standard Linda
upon completion of the invocation, the corresponding reactions (if any)
are triggered, and then executed in a non-deterministic order
once all the reactions have been executed, the main cycle of a tuple
centre may go on possibly serving another invocation

As a result, tuple centres exhibit a couple of fundamental features

since an empty behaviour specification brings no triggered reactions
independently of the invocation, the behaviour of a tuple centre
defaults to a tuple space when no behaviour specification is given
from the process’s viewpoint, the result of the invocation of a tuple
centre primitive is the sum of the effects of the primitive itself and of
all the reactions it triggers, perceived altogether as a single-step
transition of the tuple centre state

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 78 / 144

Programming Tuple Spaces Tuple Centres

Reaction Execution

The main cycle of a tuple centre works as follows

when a primitive invocation reaches a tuple centre, all the
corresponding reactions (if any) are triggered, and then executed in a
non-deterministic order
once all the reactions have been executed, the primitive is served in the
same way as in standard Linda
upon completion of the invocation, the corresponding reactions (if any)
are triggered, and then executed in a non-deterministic order
once all the reactions have been executed, the main cycle of a tuple
centre may go on possibly serving another invocation

As a result, tuple centres exhibit a couple of fundamental features

since an empty behaviour specification brings no triggered reactions
independently of the invocation, the behaviour of a tuple centre
defaults to a tuple space when no behaviour specification is given
from the process’s viewpoint, the result of the invocation of a tuple
centre primitive is the sum of the effects of the primitive itself and of
all the reactions it triggers, perceived altogether as a single-step
transition of the tuple centre state

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 78 / 144

Programming Tuple Spaces Tuple Centres

Reaction Execution

The main cycle of a tuple centre works as follows

when a primitive invocation reaches a tuple centre, all the
corresponding reactions (if any) are triggered, and then executed in a
non-deterministic order
once all the reactions have been executed, the primitive is served in the
same way as in standard Linda
upon completion of the invocation, the corresponding reactions (if any)
are triggered, and then executed in a non-deterministic order
once all the reactions have been executed, the main cycle of a tuple
centre may go on possibly serving another invocation

As a result, tuple centres exhibit a couple of fundamental features

since an empty behaviour specification brings no triggered reactions
independently of the invocation, the behaviour of a tuple centre
defaults to a tuple space when no behaviour specification is given
from the process’s viewpoint, the result of the invocation of a tuple
centre primitive is the sum of the effects of the primitive itself and of
all the reactions it triggers, perceived altogether as a single-step
transition of the tuple centre state

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 78 / 144

Programming Tuple Spaces Tuple Centres

Reaction Execution

The main cycle of a tuple centre works as follows

when a primitive invocation reaches a tuple centre, all the
corresponding reactions (if any) are triggered, and then executed in a
non-deterministic order
once all the reactions have been executed, the primitive is served in the
same way as in standard Linda
upon completion of the invocation, the corresponding reactions (if any)
are triggered, and then executed in a non-deterministic order
once all the reactions have been executed, the main cycle of a tuple
centre may go on possibly serving another invocation

As a result, tuple centres exhibit a couple of fundamental features

since an empty behaviour specification brings no triggered reactions
independently of the invocation, the behaviour of a tuple centre
defaults to a tuple space when no behaviour specification is given
from the process’s viewpoint, the result of the invocation of a tuple
centre primitive is the sum of the effects of the primitive itself and of
all the reactions it triggers, perceived altogether as a single-step
transition of the tuple centre state

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 78 / 144

Programming Tuple Spaces Tuple Centres

Reaction Execution

The main cycle of a tuple centre works as follows

when a primitive invocation reaches a tuple centre, all the
corresponding reactions (if any) are triggered, and then executed in a
non-deterministic order
once all the reactions have been executed, the primitive is served in the
same way as in standard Linda
upon completion of the invocation, the corresponding reactions (if any)
are triggered, and then executed in a non-deterministic order
once all the reactions have been executed, the main cycle of a tuple
centre may go on possibly serving another invocation

As a result, tuple centres exhibit a couple of fundamental features

since an empty behaviour specification brings no triggered reactions
independently of the invocation, the behaviour of a tuple centre
defaults to a tuple space when no behaviour specification is given
from the process’s viewpoint, the result of the invocation of a tuple
centre primitive is the sum of the effects of the primitive itself and of
all the reactions it triggers, perceived altogether as a single-step
transition of the tuple centre state

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 78 / 144

Programming Tuple Spaces Tuple Centres

Reaction Execution

The main cycle of a tuple centre works as follows

when a primitive invocation reaches a tuple centre, all the
corresponding reactions (if any) are triggered, and then executed in a
non-deterministic order
once all the reactions have been executed, the primitive is served in the
same way as in standard Linda
upon completion of the invocation, the corresponding reactions (if any)
are triggered, and then executed in a non-deterministic order
once all the reactions have been executed, the main cycle of a tuple
centre may go on possibly serving another invocation

As a result, tuple centres exhibit a couple of fundamental features

since an empty behaviour specification brings no triggered reactions
independently of the invocation, the behaviour of a tuple centre
defaults to a tuple space when no behaviour specification is given
from the process’s viewpoint, the result of the invocation of a tuple
centre primitive is the sum of the effects of the primitive itself and of
all the reactions it triggers, perceived altogether as a single-step
transition of the tuple centre state

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 78 / 144

Programming Tuple Spaces Tuple Centres

Reaction Execution

The main cycle of a tuple centre works as follows

when a primitive invocation reaches a tuple centre, all the
corresponding reactions (if any) are triggered, and then executed in a
non-deterministic order
once all the reactions have been executed, the primitive is served in the
same way as in standard Linda
upon completion of the invocation, the corresponding reactions (if any)
are triggered, and then executed in a non-deterministic order
once all the reactions have been executed, the main cycle of a tuple
centre may go on possibly serving another invocation

As a result, tuple centres exhibit a couple of fundamental features

since an empty behaviour specification brings no triggered reactions
independently of the invocation, the behaviour of a tuple centre
defaults to a tuple space when no behaviour specification is given
from the process’s viewpoint, the result of the invocation of a tuple
centre primitive is the sum of the effects of the primitive itself and of
all the reactions it triggers, perceived altogether as a single-step
transition of the tuple centre state

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 78 / 144

Programming Tuple Spaces Tuple Centres

Reaction Execution

The main cycle of a tuple centre works as follows

when a primitive invocation reaches a tuple centre, all the
corresponding reactions (if any) are triggered, and then executed in a
non-deterministic order
once all the reactions have been executed, the primitive is served in the
same way as in standard Linda
upon completion of the invocation, the corresponding reactions (if any)
are triggered, and then executed in a non-deterministic order
once all the reactions have been executed, the main cycle of a tuple
centre may go on possibly serving another invocation

As a result, tuple centres exhibit a couple of fundamental features

since an empty behaviour specification brings no triggered reactions
independently of the invocation, the behaviour of a tuple centre
defaults to a tuple space when no behaviour specification is given
from the process’s viewpoint, the result of the invocation of a tuple
centre primitive is the sum of the effects of the primitive itself and of
all the reactions it triggers, perceived altogether as a single-step
transition of the tuple centre state

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 78 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centre’s State vs. Process’s Perception

Reactions are executed in such a way that the observable behaviour of
a tuple centre in response to a communication event is still perceived
by processes as a single-step transition of the tuple-centre state

as in the case of tuple spaces
so tuple centres are perceived as tuple spaces by processes

Unlike a standard tuple space, whose state transitions are constrained
to adding, reading or deleting one single tuple, the perceived
transition of a tuple centre state can be made as complex as needed

this makes it possible to decouple the process’s view of the tuple centre
(perceived as a standard tuple space) from the actual state of a tuple
centre, and to relate them so as to embed the coordination laws
governing the distributed system

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 79 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centre’s State vs. Process’s Perception

Reactions are executed in such a way that the observable behaviour of
a tuple centre in response to a communication event is still perceived
by processes as a single-step transition of the tuple-centre state

as in the case of tuple spaces
so tuple centres are perceived as tuple spaces by processes

Unlike a standard tuple space, whose state transitions are constrained
to adding, reading or deleting one single tuple, the perceived
transition of a tuple centre state can be made as complex as needed

this makes it possible to decouple the process’s view of the tuple centre
(perceived as a standard tuple space) from the actual state of a tuple
centre, and to relate them so as to embed the coordination laws
governing the distributed system

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 79 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centre’s State vs. Process’s Perception

Reactions are executed in such a way that the observable behaviour of
a tuple centre in response to a communication event is still perceived
by processes as a single-step transition of the tuple-centre state

as in the case of tuple spaces
so tuple centres are perceived as tuple spaces by processes

Unlike a standard tuple space, whose state transitions are constrained
to adding, reading or deleting one single tuple, the perceived
transition of a tuple centre state can be made as complex as needed

this makes it possible to decouple the process’s view of the tuple centre
(perceived as a standard tuple space) from the actual state of a tuple
centre, and to relate them so as to embed the coordination laws
governing the distributed system

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 79 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centre’s State vs. Process’s Perception

Reactions are executed in such a way that the observable behaviour of
a tuple centre in response to a communication event is still perceived
by processes as a single-step transition of the tuple-centre state

as in the case of tuple spaces
so tuple centres are perceived as tuple spaces by processes

Unlike a standard tuple space, whose state transitions are constrained
to adding, reading or deleting one single tuple, the perceived
transition of a tuple centre state can be made as complex as needed

this makes it possible to decouple the process’s view of the tuple centre
(perceived as a standard tuple space) from the actual state of a tuple
centre, and to relate them so as to embed the coordination laws
governing the distributed system

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 79 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centre’s State vs. Process’s Perception

Reactions are executed in such a way that the observable behaviour of
a tuple centre in response to a communication event is still perceived
by processes as a single-step transition of the tuple-centre state

as in the case of tuple spaces
so tuple centres are perceived as tuple spaces by processes

Unlike a standard tuple space, whose state transitions are constrained
to adding, reading or deleting one single tuple, the perceived
transition of a tuple centre state can be made as complex as needed

this makes it possible to decouple the process’s view of the tuple centre
(perceived as a standard tuple space) from the actual state of a tuple
centre, and to relate them so as to embed the coordination laws
governing the distributed system

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 79 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centres & Hybrid Coordination

Tuple centres promote a form of hybrid coordination

aimed at preserving the advantages of data-driven models
while addressing their limitations in terms of control capabilities

On the one hand, a tuple centre is basically an information-driven
coordination medium, which is perceived as such by processes

On the other hand, a tuple centre also features some capabilities
which are typical of action-driven models, like

the full observability of events
the ability to selectively react to events
the ability to implement coordination rules by manipulating the
interaction space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 80 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centres & Hybrid Coordination

Tuple centres promote a form of hybrid coordination

aimed at preserving the advantages of data-driven models
while addressing their limitations in terms of control capabilities

On the one hand, a tuple centre is basically an information-driven
coordination medium, which is perceived as such by processes

On the other hand, a tuple centre also features some capabilities
which are typical of action-driven models, like

the full observability of events
the ability to selectively react to events
the ability to implement coordination rules by manipulating the
interaction space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 80 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centres & Hybrid Coordination

Tuple centres promote a form of hybrid coordination

aimed at preserving the advantages of data-driven models
while addressing their limitations in terms of control capabilities

On the one hand, a tuple centre is basically an information-driven
coordination medium, which is perceived as such by processes

On the other hand, a tuple centre also features some capabilities
which are typical of action-driven models, like

the full observability of events
the ability to selectively react to events
the ability to implement coordination rules by manipulating the
interaction space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 80 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centres & Hybrid Coordination

Tuple centres promote a form of hybrid coordination

aimed at preserving the advantages of data-driven models
while addressing their limitations in terms of control capabilities

On the one hand, a tuple centre is basically an information-driven
coordination medium, which is perceived as such by processes

On the other hand, a tuple centre also features some capabilities
which are typical of action-driven models, like

the full observability of events
the ability to selectively react to events
the ability to implement coordination rules by manipulating the
interaction space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 80 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centres & Hybrid Coordination

Tuple centres promote a form of hybrid coordination

aimed at preserving the advantages of data-driven models
while addressing their limitations in terms of control capabilities

On the one hand, a tuple centre is basically an information-driven
coordination medium, which is perceived as such by processes

On the other hand, a tuple centre also features some capabilities
which are typical of action-driven models, like

the full observability of events
the ability to selectively react to events
the ability to implement coordination rules by manipulating the
interaction space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 80 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centres & Hybrid Coordination

Tuple centres promote a form of hybrid coordination

aimed at preserving the advantages of data-driven models
while addressing their limitations in terms of control capabilities

On the one hand, a tuple centre is basically an information-driven
coordination medium, which is perceived as such by processes

On the other hand, a tuple centre also features some capabilities
which are typical of action-driven models, like

the full observability of events
the ability to selectively react to events
the ability to implement coordination rules by manipulating the
interaction space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 80 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centres & Hybrid Coordination

Tuple centres promote a form of hybrid coordination

aimed at preserving the advantages of data-driven models
while addressing their limitations in terms of control capabilities

On the one hand, a tuple centre is basically an information-driven
coordination medium, which is perceived as such by processes

On the other hand, a tuple centre also features some capabilities
which are typical of action-driven models, like

the full observability of events
the ability to selectively react to events
the ability to implement coordination rules by manipulating the
interaction space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 80 / 144

Programming Tuple Spaces Tuple Centres

Tuple Centres & Hybrid Coordination

Tuple centres promote a form of hybrid coordination

aimed at preserving the advantages of data-driven models
while addressing their limitations in terms of control capabilities

On the one hand, a tuple centre is basically an information-driven
coordination medium, which is perceived as such by processes

On the other hand, a tuple centre also features some capabilities
which are typical of action-driven models, like

the full observability of events
the ability to selectively react to events
the ability to implement coordination rules by manipulating the
interaction space

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 80 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Outline
1 Elements of Distributed Systems Engineering
2 Coordination: A Meta-model
3 Enabling vs. Governing Interaction
4 Classifying Coordination Models
5 Tuple-based Coordination Models

Linda & Tuple-based Coordination
Hybrid Coordination Models

6 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics

7 Coordination in the Spatio-Temporal Fabric
Time as a Coordination Issue
Space as a Coordination Issue

8 Situatedness & Coordination
Situatedness as a Coordination Issue
Extending ReSpecT Toward Situatedness
Situated ReSpecT: A Case Study

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 81 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by
tuple centre table

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

A philosopher tries to eat by getting his chopstick pair from the tuple
centre by means of a in(chops(i,i+1 mod N) invocation

A philosopher starts to think by releasing his own chopstick pair to
the tuple centre by means of a out(chops(i,i+1 mod N) invocation

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 82 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by
tuple centre table

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

A philosopher tries to eat by getting his chopstick pair from the tuple
centre by means of a in(chops(i,i+1 mod N) invocation

A philosopher starts to think by releasing his own chopstick pair to
the tuple centre by means of a out(chops(i,i+1 mod N) invocation

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 82 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by
tuple centre table

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

A philosopher tries to eat by getting his chopstick pair from the tuple
centre by means of a in(chops(i,i+1 mod N) invocation

A philosopher starts to think by releasing his own chopstick pair to
the tuple centre by means of a out(chops(i,i+1 mod N) invocation

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 82 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by
tuple centre table

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

A philosopher tries to eat by getting his chopstick pair from the tuple
centre by means of a in(chops(i,i+1 mod N) invocation

A philosopher starts to think by releasing his own chopstick pair to
the tuple centre by means of a out(chops(i,i+1 mod N) invocation

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 82 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by
tuple centre table

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

A philosopher tries to eat by getting his chopstick pair from the tuple
centre by means of a in(chops(i,i+1 mod N) invocation

A philosopher starts to think by releasing his own chopstick pair to
the tuple centre by means of a out(chops(i,i+1 mod N) invocation

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 82 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 83 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 83 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 83 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 83 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 83 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 83 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 83 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 83 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 83 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 83 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT:
table Behaviour Specification

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)),

out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)),

out(chops(C1,C)))).

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 84 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT:
table Behaviour Specification

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)),

out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)),

out(chops(C1,C)))).

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 84 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT:
table Behaviour Specification

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)),

out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)),

out(chops(C1,C)))).

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 84 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT:
table Behaviour Specification

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)),

out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)),

out(chops(C1,C)))).

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 84 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT:
table Behaviour Specification

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)),

out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)),

out(chops(C1,C)))).

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 84 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT:
table Behaviour Specification

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)),

out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)),

out(chops(C1,C)))).

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 84 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

- starvation still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 85 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

- starvation still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 85 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

- starvation still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 85 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

- starvation still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 85 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

- starvation still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 85 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

- starvation still possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 85 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers

Dining Philosophers in a distributed setting

N philosophers are distributed along the network

each philosopher is assigned a seat, represented by the tuple centre
seat(i,j)

seat(i,j) denotes that the associated philosopher needs chopstick
pair chops(i,j) so as to eat

each chopstick i is represented as a tuple chop(i) in the table

tuple centre
each philosopher expresses his intention to eat / think by emitting a
tuple wanna eat / wanna think in his seat(i,j) tuple centre

everything else is handled automatically in ReSpecT, embedded in the
tuple centre behaviour

N individual tuple centres (seat(i,j)) + 1 social tuple centre
(table) connected in a star network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 86 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers

Dining Philosophers in a distributed setting

N philosophers are distributed along the network

each philosopher is assigned a seat, represented by the tuple centre
seat(i,j)

seat(i,j) denotes that the associated philosopher needs chopstick
pair chops(i,j) so as to eat

each chopstick i is represented as a tuple chop(i) in the table

tuple centre
each philosopher expresses his intention to eat / think by emitting a
tuple wanna eat / wanna think in his seat(i,j) tuple centre

everything else is handled automatically in ReSpecT, embedded in the
tuple centre behaviour

N individual tuple centres (seat(i,j)) + 1 social tuple centre
(table) connected in a star network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 86 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers

Dining Philosophers in a distributed setting

N philosophers are distributed along the network

each philosopher is assigned a seat, represented by the tuple centre
seat(i,j)

seat(i,j) denotes that the associated philosopher needs chopstick
pair chops(i,j) so as to eat

each chopstick i is represented as a tuple chop(i) in the table

tuple centre
each philosopher expresses his intention to eat / think by emitting a
tuple wanna eat / wanna think in his seat(i,j) tuple centre

everything else is handled automatically in ReSpecT, embedded in the
tuple centre behaviour

N individual tuple centres (seat(i,j)) + 1 social tuple centre
(table) connected in a star network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 86 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers

Dining Philosophers in a distributed setting

N philosophers are distributed along the network

each philosopher is assigned a seat, represented by the tuple centre
seat(i,j)

seat(i,j) denotes that the associated philosopher needs chopstick
pair chops(i,j) so as to eat

each chopstick i is represented as a tuple chop(i) in the table

tuple centre
each philosopher expresses his intention to eat / think by emitting a
tuple wanna eat / wanna think in his seat(i,j) tuple centre

everything else is handled automatically in ReSpecT, embedded in the
tuple centre behaviour

N individual tuple centres (seat(i,j)) + 1 social tuple centre
(table) connected in a star network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 86 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers

Dining Philosophers in a distributed setting

N philosophers are distributed along the network

each philosopher is assigned a seat, represented by the tuple centre
seat(i,j)

seat(i,j) denotes that the associated philosopher needs chopstick
pair chops(i,j) so as to eat

each chopstick i is represented as a tuple chop(i) in the table

tuple centre
each philosopher expresses his intention to eat / think by emitting a
tuple wanna eat / wanna think in his seat(i,j) tuple centre

everything else is handled automatically in ReSpecT, embedded in the
tuple centre behaviour

N individual tuple centres (seat(i,j)) + 1 social tuple centre
(table) connected in a star network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 86 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers

Dining Philosophers in a distributed setting

N philosophers are distributed along the network

each philosopher is assigned a seat, represented by the tuple centre
seat(i,j)

seat(i,j) denotes that the associated philosopher needs chopstick
pair chops(i,j) so as to eat

each chopstick i is represented as a tuple chop(i) in the table

tuple centre
each philosopher expresses his intention to eat / think by emitting a
tuple wanna eat / wanna think in his seat(i,j) tuple centre

everything else is handled automatically in ReSpecT, embedded in the
tuple centre behaviour

N individual tuple centres (seat(i,j)) + 1 social tuple centre
(table) connected in a star network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 86 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers

Dining Philosophers in a distributed setting

N philosophers are distributed along the network

each philosopher is assigned a seat, represented by the tuple centre
seat(i,j)

seat(i,j) denotes that the associated philosopher needs chopstick
pair chops(i,j) so as to eat

each chopstick i is represented as a tuple chop(i) in the table

tuple centre
each philosopher expresses his intention to eat / think by emitting a
tuple wanna eat / wanna think in his seat(i,j) tuple centre

everything else is handled automatically in ReSpecT, embedded in the
tuple centre behaviour

N individual tuple centres (seat(i,j)) + 1 social tuple centre
(table) connected in a star network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 86 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers

Dining Philosophers in a distributed setting

N philosophers are distributed along the network

each philosopher is assigned a seat, represented by the tuple centre
seat(i,j)

seat(i,j) denotes that the associated philosopher needs chopstick
pair chops(i,j) so as to eat

each chopstick i is represented as a tuple chop(i) in the table

tuple centre
each philosopher expresses his intention to eat / think by emitting a
tuple wanna eat / wanna think in his seat(i,j) tuple centre

everything else is handled automatically in ReSpecT, embedded in the
tuple centre behaviour

N individual tuple centres (seat(i,j)) + 1 social tuple centre
(table) connected in a star network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 86 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()

thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table

from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 87 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()

thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table

from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 87 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()

thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table

from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 87 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()

thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table

from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 87 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()

thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table

from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 87 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()

thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table

from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 87 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()

thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table

from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 87 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()

thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table

from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 87 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()

thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table

from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 87 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()

thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table

from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 87 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

ReSpecT code for seat(i,j) tuple centres

reaction(out(wanna_eat), (operation, invocation), (% (1)

in(philosopher(thinking)), out(philosopher(waiting_to_eat)),

current_target(seat(C1,C2)), table@node ? in(chops(C1,C2)))).

reaction(out(wanna_eat), (operation, completion), % (2)

in(wanna_eat)).

reaction(in(chops(C1,C2)), (link_out, completion), (% (3)

in(philosopher(waiting_to_eat)), out(philosopher(eating)),

out(chops(C1,C2)))).

reaction(out(wanna_think), (operation, invocation), (% (4)

in(philosopher(eating)), out(philosopher(waiting_to_think)),

current_target(seat(C1,C2)), in(chops(C1,C2)),

table@node ? out(chops(C1,C2)))).

reaction(out(wanna_think), (operation, completion), % (5)

in(wanna_think)).

reaction(out(chops(C1,C2)), (link_out, completion), (% (6)

in(philosopher(waiting_to_think)), out(philosopher(thinking)))).

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 88 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Social Interaction

Seat–table interaction (link)

tuple centre seat(i,j) requires / returns tuple chops(i,j) from /
to table tuple centre

tuple centre table transforms tuple chops(i,j) into a tuple pair
chop(i), chop(j) whenever required, and back chop(i), chop(j)
into chops(i,j) whenever required and possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 89 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Social Interaction

Seat–table interaction (link)

tuple centre seat(i,j) requires / returns tuple chops(i,j) from /
to table tuple centre

tuple centre table transforms tuple chops(i,j) into a tuple pair
chop(i), chop(j) whenever required, and back chop(i), chop(j)
into chops(i,j) whenever required and possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 89 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Social Interaction

Seat–table interaction (link)

tuple centre seat(i,j) requires / returns tuple chops(i,j) from /
to table tuple centre

tuple centre table transforms tuple chops(i,j) into a tuple pair
chop(i), chop(j) whenever required, and back chop(i), chop(j)
into chops(i,j) whenever required and possible

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 89 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

ReSpecT code for table tuple centre

reaction(out(chops(C1,C2)), (link_in, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (link_in, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (link_in, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)),

out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)),

out(chops(C1,C)))).

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 90 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features

Full separation of concerns

philosophers just express their intentions, in terms of simple tuples
individual tuple centre (seat(i,j) tuple centres) handle individual
behaviours and state, and mediate interaction of individuals with social
tuple centre (table tuple centre)
the social tuple centre (table) deals with shared resources (chop
tuples) and ensures global system properties, like fairness and deadlock
avoidance

At any time, one could look at the coordination media, and find
exactly the consistent representation of the current distributed state

properly distributed, suitably encapsulated

the state of shared resources is in the shared distributed abstraction,
the state of single processes is into individual local abstractions

accessible, represented in a declarative way

the state of individual philosophers is exposed through accessible media
as far as the portion representing their social interaction is concerned

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 91 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features

Full separation of concerns

philosophers just express their intentions, in terms of simple tuples
individual tuple centre (seat(i,j) tuple centres) handle individual
behaviours and state, and mediate interaction of individuals with social
tuple centre (table tuple centre)
the social tuple centre (table) deals with shared resources (chop
tuples) and ensures global system properties, like fairness and deadlock
avoidance

At any time, one could look at the coordination media, and find
exactly the consistent representation of the current distributed state

properly distributed, suitably encapsulated

the state of shared resources is in the shared distributed abstraction,
the state of single processes is into individual local abstractions

accessible, represented in a declarative way

the state of individual philosophers is exposed through accessible media
as far as the portion representing their social interaction is concerned

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 91 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features

Full separation of concerns

philosophers just express their intentions, in terms of simple tuples
individual tuple centre (seat(i,j) tuple centres) handle individual
behaviours and state, and mediate interaction of individuals with social
tuple centre (table tuple centre)
the social tuple centre (table) deals with shared resources (chop
tuples) and ensures global system properties, like fairness and deadlock
avoidance

At any time, one could look at the coordination media, and find
exactly the consistent representation of the current distributed state

properly distributed, suitably encapsulated

the state of shared resources is in the shared distributed abstraction,
the state of single processes is into individual local abstractions

accessible, represented in a declarative way

the state of individual philosophers is exposed through accessible media
as far as the portion representing their social interaction is concerned

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 91 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features

Full separation of concerns

philosophers just express their intentions, in terms of simple tuples
individual tuple centre (seat(i,j) tuple centres) handle individual
behaviours and state, and mediate interaction of individuals with social
tuple centre (table tuple centre)
the social tuple centre (table) deals with shared resources (chop
tuples) and ensures global system properties, like fairness and deadlock
avoidance

At any time, one could look at the coordination media, and find
exactly the consistent representation of the current distributed state

properly distributed, suitably encapsulated

the state of shared resources is in the shared distributed abstraction,
the state of single processes is into individual local abstractions

accessible, represented in a declarative way

the state of individual philosophers is exposed through accessible media
as far as the portion representing their social interaction is concerned

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 91 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features

Full separation of concerns

philosophers just express their intentions, in terms of simple tuples
individual tuple centre (seat(i,j) tuple centres) handle individual
behaviours and state, and mediate interaction of individuals with social
tuple centre (table tuple centre)
the social tuple centre (table) deals with shared resources (chop
tuples) and ensures global system properties, like fairness and deadlock
avoidance

At any time, one could look at the coordination media, and find
exactly the consistent representation of the current distributed state

properly distributed, suitably encapsulated

the state of shared resources is in the shared distributed abstraction,
the state of single processes is into individual local abstractions

accessible, represented in a declarative way

the state of individual philosophers is exposed through accessible media
as far as the portion representing their social interaction is concerned

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 91 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features

Full separation of concerns

philosophers just express their intentions, in terms of simple tuples
individual tuple centre (seat(i,j) tuple centres) handle individual
behaviours and state, and mediate interaction of individuals with social
tuple centre (table tuple centre)
the social tuple centre (table) deals with shared resources (chop
tuples) and ensures global system properties, like fairness and deadlock
avoidance

At any time, one could look at the coordination media, and find
exactly the consistent representation of the current distributed state

properly distributed, suitably encapsulated

the state of shared resources is in the shared distributed abstraction,
the state of single processes is into individual local abstractions

accessible, represented in a declarative way

the state of individual philosophers is exposed through accessible media
as far as the portion representing their social interaction is concerned

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 91 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features

Full separation of concerns

philosophers just express their intentions, in terms of simple tuples
individual tuple centre (seat(i,j) tuple centres) handle individual
behaviours and state, and mediate interaction of individuals with social
tuple centre (table tuple centre)
the social tuple centre (table) deals with shared resources (chop
tuples) and ensures global system properties, like fairness and deadlock
avoidance

At any time, one could look at the coordination media, and find
exactly the consistent representation of the current distributed state

properly distributed, suitably encapsulated

the state of shared resources is in the shared distributed abstraction,
the state of single processes is into individual local abstractions

accessible, represented in a declarative way

the state of individual philosophers is exposed through accessible media
as far as the portion representing their social interaction is concerned

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 91 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features

Full separation of concerns

philosophers just express their intentions, in terms of simple tuples
individual tuple centre (seat(i,j) tuple centres) handle individual
behaviours and state, and mediate interaction of individuals with social
tuple centre (table tuple centre)
the social tuple centre (table) deals with shared resources (chop
tuples) and ensures global system properties, like fairness and deadlock
avoidance

At any time, one could look at the coordination media, and find
exactly the consistent representation of the current distributed state

properly distributed, suitably encapsulated

the state of shared resources is in the shared distributed abstraction,
the state of single processes is into individual local abstractions

accessible, represented in a declarative way

the state of individual philosophers is exposed through accessible media
as far as the portion representing their social interaction is concerned

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 91 / 144

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features

Full separation of concerns

philosophers just express their intentions, in terms of simple tuples
individual tuple centre (seat(i,j) tuple centres) handle individual
behaviours and state, and mediate interaction of individuals with social
tuple centre (table tuple centre)
the social tuple centre (table) deals with shared resources (chop
tuples) and ensures global system properties, like fairness and deadlock
avoidance

At any time, one could look at the coordination media, and find
exactly the consistent representation of the current distributed state

properly distributed, suitably encapsulated

the state of shared resources is in the shared distributed abstraction,
the state of single processes is into individual local abstractions

accessible, represented in a declarative way

the state of individual philosophers is exposed through accessible media
as far as the portion representing their social interaction is concerned

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 91 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Outline
1 Elements of Distributed Systems Engineering
2 Coordination: A Meta-model
3 Enabling vs. Governing Interaction
4 Classifying Coordination Models
5 Tuple-based Coordination Models

Linda & Tuple-based Coordination
Hybrid Coordination Models

6 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics

7 Coordination in the Spatio-Temporal Fabric
Time as a Coordination Issue
Space as a Coordination Issue

8 Situatedness & Coordination
Situatedness as a Coordination Issue
Extending ReSpecT Toward Situatedness
Situated ReSpecT: A Case Study

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 92 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Basic Syntax for Reactions

Logic Tuples

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

while ordinary logic tuples are typically ground facts, there is nothing to
constrain them to be such

specification tuples are logic tuples of the form reaction(E,G,R)

if event Ev occurs in the tuple centre,
which matches event descriptor E such that θ = mgu(E,Ev), and
guard G is true,
then reaction Rθ to Ev is triggered for execution in the tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 93 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Basic Syntax for Reactions

Logic Tuples

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

while ordinary logic tuples are typically ground facts, there is nothing to
constrain them to be such

specification tuples are logic tuples of the form reaction(E,G,R)

if event Ev occurs in the tuple centre,
which matches event descriptor E such that θ = mgu(E,Ev), and
guard G is true,
then reaction Rθ to Ev is triggered for execution in the tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 93 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Basic Syntax for Reactions

Logic Tuples

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

while ordinary logic tuples are typically ground facts, there is nothing to
constrain them to be such

specification tuples are logic tuples of the form reaction(E,G,R)

if event Ev occurs in the tuple centre,
which matches event descriptor E such that θ = mgu(E,Ev), and
guard G is true,
then reaction Rθ to Ev is triggered for execution in the tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 93 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Basic Syntax for Reactions

Logic Tuples

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

while ordinary logic tuples are typically ground facts, there is nothing to
constrain them to be such

specification tuples are logic tuples of the form reaction(E,G,R)

if event Ev occurs in the tuple centre,
which matches event descriptor E such that θ = mgu(E,Ev), and
guard G is true,
then reaction Rθ to Ev is triggered for execution in the tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 93 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Basic Syntax for Reactions

Logic Tuples

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

while ordinary logic tuples are typically ground facts, there is nothing to
constrain them to be such

specification tuples are logic tuples of the form reaction(E,G,R)

if event Ev occurs in the tuple centre,
which matches event descriptor E such that θ = mgu(E,Ev), and
guard G is true,
then reaction Rθ to Ev is triggered for execution in the tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 93 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Basic Syntax for Reactions

Logic Tuples

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

while ordinary logic tuples are typically ground facts, there is nothing to
constrain them to be such

specification tuples are logic tuples of the form reaction(E,G,R)

if event Ev occurs in the tuple centre,
which matches event descriptor E such that θ = mgu(E,Ev), and
guard G is true,
then reaction Rθ to Ev is triggered for execution in the tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 93 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Basic Syntax for Reactions

Logic Tuples

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

while ordinary logic tuples are typically ground facts, there is nothing to
constrain them to be such

specification tuples are logic tuples of the form reaction(E,G,R)

if event Ev occurs in the tuple centre,
which matches event descriptor E such that θ = mgu(E,Ev), and
guard G is true,
then reaction Rθ to Ev is triggered for execution in the tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 93 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Basic Syntax for Reactions

Logic Tuples

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

while ordinary logic tuples are typically ground facts, there is nothing to
constrain them to be such

specification tuples are logic tuples of the form reaction(E,G,R)

if event Ev occurs in the tuple centre,
which matches event descriptor E such that θ = mgu(E,Ev), and
guard G is true,
then reaction Rθ to Ev is triggered for execution in the tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 93 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Basic Syntax for Reactions

Logic Tuples

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

while ordinary logic tuples are typically ground facts, there is nothing to
constrain them to be such

specification tuples are logic tuples of the form reaction(E,G,R)

if event Ev occurs in the tuple centre,
which matches event descriptor E such that θ = mgu(E,Ev), and
guard G is true,
then reaction Rθ to Ev is triggered for execution in the tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 93 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Core Syntax

〈TCSpecification〉 ::= {〈SpecificationTuple〉 .}
〈SpecificationTuple〉 ::= reaction(〈SimpleTCEvent〉 , [〈Guard〉 ,] 〈Reaction〉)
〈SimpleTCEvent〉 ::= 〈SimpleTCPredicate〉 (〈Tuple〉) | time(〈Time〉)

〈Guard〉 ::= 〈GuardPredicate〉 | (〈GuardPredicate〉 {, 〈GuardPredicate〉})
〈Reaction〉 ::= 〈ReactionGoal〉 | (〈ReactionGoal〉 {, 〈ReactionGoal〉})

〈ReactionGoal〉 ::= 〈TCPredicate〉 (〈Tuple〉) | 〈ObservationPredicate〉 (〈Tuple〉) |
〈Computation〉 | (〈ReactionGoal〉 ; 〈ReactionGoal〉)

〈TCPredicate〉 ::= 〈SimpleTCPredicate〉 | 〈TCLinkPredicate〉
〈TCLinkPredicate〉 ::= 〈TCIdentifier〉 ? 〈SimpleTCPredicate〉

〈SimpleTCPredicate〉 ::= 〈TCStatePredicate〉 | 〈TCForgePredicate〉
〈TCStatePredicate〉 ::= in | inp | rd | rdp | out | no | get | set
〈TCForgePredicate〉 ::= 〈TCStatePredicate〉_s

〈ObservationPredicate〉 ::= 〈EventView〉_〈EventInformation〉
〈EventView〉 ::= current | event | start

〈EventInformation〉 ::= predicate | tuple | source | target | time
〈GuardPredicate〉 ::= request | response | success | failure | endo | exo |

intra | inter | from_agent | to_agent | from_tc | to_tc |
before(〈Time〉) | after(〈Time〉)

〈Time〉 is a non-negative integer

〈Tuple〉 is Prolog term

〈Computation〉 is a Prolog-like goal performing arithmetic / logic computations

〈TCIdentifier〉 ::= 〈TCName〉 @ 〈NetworkLocation〉
〈TCName〉 is a Prolog ground term

〈NetworkLocation〉 is a Prolog string representing either an IP name or a DNS entry

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 94 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Behaviour Specification

〈TCSpecification〉 ::= {〈SpecificationTuple〉 .}
〈SpecificationTuple〉 ::= reaction(

〈SimpleTCEvent〉 ,
[〈Guard〉 ,]
〈Reaction〉

)

a behaviour specification 〈TCSpecification〉 is a logic theory of FOL
tuples reaction/3

a specification tuple contains an event descriptor 〈SimpleTCEvent〉, a
guard 〈Guard〉 (optional), and a sequence 〈Reaction〉 of reaction
goals

a reaction/2 specification tuple implicitly defines an empty guard

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 95 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Behaviour Specification

〈TCSpecification〉 ::= {〈SpecificationTuple〉 .}
〈SpecificationTuple〉 ::= reaction(

〈SimpleTCEvent〉 ,
[〈Guard〉 ,]
〈Reaction〉

)

a behaviour specification 〈TCSpecification〉 is a logic theory of FOL
tuples reaction/3

a specification tuple contains an event descriptor 〈SimpleTCEvent〉, a
guard 〈Guard〉 (optional), and a sequence 〈Reaction〉 of reaction
goals

a reaction/2 specification tuple implicitly defines an empty guard

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 95 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Behaviour Specification

〈TCSpecification〉 ::= {〈SpecificationTuple〉 .}
〈SpecificationTuple〉 ::= reaction(

〈SimpleTCEvent〉 ,
[〈Guard〉 ,]
〈Reaction〉

)

a behaviour specification 〈TCSpecification〉 is a logic theory of FOL
tuples reaction/3

a specification tuple contains an event descriptor 〈SimpleTCEvent〉, a
guard 〈Guard〉 (optional), and a sequence 〈Reaction〉 of reaction
goals

a reaction/2 specification tuple implicitly defines an empty guard

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 95 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Event Descriptor

〈SimpleTCEvent〉 ::= 〈SimpleTCPredicate〉 (〈Tuple〉) |
time(〈Time〉)

an event descriptor 〈SimpleTCEvent〉 is either the invocation of a
primitive 〈SimpleTCPredicate〉 (〈Tuple〉) or a time event
time(〈Time〉)

more generally, a time event could become the descriptor of an
environment-related event

an event descriptor 〈SimpleTCEvent〉 is used to match with with
admissible events

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 96 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Event Descriptor

〈SimpleTCEvent〉 ::= 〈SimpleTCPredicate〉 (〈Tuple〉) |
time(〈Time〉)

an event descriptor 〈SimpleTCEvent〉 is either the invocation of a
primitive 〈SimpleTCPredicate〉 (〈Tuple〉) or a time event
time(〈Time〉)

more generally, a time event could become the descriptor of an
environment-related event

an event descriptor 〈SimpleTCEvent〉 is used to match with with
admissible events

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 96 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Event Descriptor

〈SimpleTCEvent〉 ::= 〈SimpleTCPredicate〉 (〈Tuple〉) |
time(〈Time〉)

an event descriptor 〈SimpleTCEvent〉 is either the invocation of a
primitive 〈SimpleTCPredicate〉 (〈Tuple〉) or a time event
time(〈Time〉)

more generally, a time event could become the descriptor of an
environment-related event

an event descriptor 〈SimpleTCEvent〉 is used to match with with
admissible events

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 96 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Admissible Event

〈GeneralTCEvent〉 ::= 〈StartCause〉 , 〈Cause〉 , 〈TCCycleResult〉
〈StartCause〉 , 〈Cause〉 ::= 〈SimpleTCEvent〉 , 〈Source〉 , 〈Target〉 , 〈Time〉
〈Source〉 , 〈Target〉 ::= 〈ProcessIdentifier〉 | 〈TCIdentifier〉
〈ProcessIdentifier〉 ::= 〈ProcessName〉 @ 〈NetworkLocation〉
〈ProcessName〉 is a Prolog ground term

〈TCCycleResult〉 ::= ⊥ | {〈Tuple〉}

an admissible event descriptor includes its prime cause, its immediate
cause, and the result of the tuple centre response

prime cause and immediate cause may coincide—such as when a
process invocation reaches its target tuple centre
or, they might be different—such as when a link primitive is invoked by
a tuple centre reacting to a process’ primitive invocation upon another
tuple centre

a reaction specification tuple reaction(E,G,R) and an admissible
event ε match if E unifies with ε. 〈Cause〉 . 〈SimpleTCEvent〉
the result is undefined in the invocation stage, whereas it is defined in
the completion stage

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 97 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Admissible Event

〈GeneralTCEvent〉 ::= 〈StartCause〉 , 〈Cause〉 , 〈TCCycleResult〉
〈StartCause〉 , 〈Cause〉 ::= 〈SimpleTCEvent〉 , 〈Source〉 , 〈Target〉 , 〈Time〉
〈Source〉 , 〈Target〉 ::= 〈ProcessIdentifier〉 | 〈TCIdentifier〉
〈ProcessIdentifier〉 ::= 〈ProcessName〉 @ 〈NetworkLocation〉
〈ProcessName〉 is a Prolog ground term

〈TCCycleResult〉 ::= ⊥ | {〈Tuple〉}

an admissible event descriptor includes its prime cause, its immediate
cause, and the result of the tuple centre response

prime cause and immediate cause may coincide—such as when a
process invocation reaches its target tuple centre
or, they might be different—such as when a link primitive is invoked by
a tuple centre reacting to a process’ primitive invocation upon another
tuple centre

a reaction specification tuple reaction(E,G,R) and an admissible
event ε match if E unifies with ε. 〈Cause〉 . 〈SimpleTCEvent〉
the result is undefined in the invocation stage, whereas it is defined in
the completion stage

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 97 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Admissible Event

〈GeneralTCEvent〉 ::= 〈StartCause〉 , 〈Cause〉 , 〈TCCycleResult〉
〈StartCause〉 , 〈Cause〉 ::= 〈SimpleTCEvent〉 , 〈Source〉 , 〈Target〉 , 〈Time〉
〈Source〉 , 〈Target〉 ::= 〈ProcessIdentifier〉 | 〈TCIdentifier〉
〈ProcessIdentifier〉 ::= 〈ProcessName〉 @ 〈NetworkLocation〉
〈ProcessName〉 is a Prolog ground term

〈TCCycleResult〉 ::= ⊥ | {〈Tuple〉}

an admissible event descriptor includes its prime cause, its immediate
cause, and the result of the tuple centre response

prime cause and immediate cause may coincide—such as when a
process invocation reaches its target tuple centre
or, they might be different—such as when a link primitive is invoked by
a tuple centre reacting to a process’ primitive invocation upon another
tuple centre

a reaction specification tuple reaction(E,G,R) and an admissible
event ε match if E unifies with ε. 〈Cause〉 . 〈SimpleTCEvent〉
the result is undefined in the invocation stage, whereas it is defined in
the completion stage

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 97 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Admissible Event

〈GeneralTCEvent〉 ::= 〈StartCause〉 , 〈Cause〉 , 〈TCCycleResult〉
〈StartCause〉 , 〈Cause〉 ::= 〈SimpleTCEvent〉 , 〈Source〉 , 〈Target〉 , 〈Time〉
〈Source〉 , 〈Target〉 ::= 〈ProcessIdentifier〉 | 〈TCIdentifier〉
〈ProcessIdentifier〉 ::= 〈ProcessName〉 @ 〈NetworkLocation〉
〈ProcessName〉 is a Prolog ground term

〈TCCycleResult〉 ::= ⊥ | {〈Tuple〉}

an admissible event descriptor includes its prime cause, its immediate
cause, and the result of the tuple centre response

prime cause and immediate cause may coincide—such as when a
process invocation reaches its target tuple centre
or, they might be different—such as when a link primitive is invoked by
a tuple centre reacting to a process’ primitive invocation upon another
tuple centre

a reaction specification tuple reaction(E,G,R) and an admissible
event ε match if E unifies with ε. 〈Cause〉 . 〈SimpleTCEvent〉
the result is undefined in the invocation stage, whereas it is defined in
the completion stage

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 97 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Admissible Event

〈GeneralTCEvent〉 ::= 〈StartCause〉 , 〈Cause〉 , 〈TCCycleResult〉
〈StartCause〉 , 〈Cause〉 ::= 〈SimpleTCEvent〉 , 〈Source〉 , 〈Target〉 , 〈Time〉
〈Source〉 , 〈Target〉 ::= 〈ProcessIdentifier〉 | 〈TCIdentifier〉
〈ProcessIdentifier〉 ::= 〈ProcessName〉 @ 〈NetworkLocation〉
〈ProcessName〉 is a Prolog ground term

〈TCCycleResult〉 ::= ⊥ | {〈Tuple〉}

an admissible event descriptor includes its prime cause, its immediate
cause, and the result of the tuple centre response

prime cause and immediate cause may coincide—such as when a
process invocation reaches its target tuple centre
or, they might be different—such as when a link primitive is invoked by
a tuple centre reacting to a process’ primitive invocation upon another
tuple centre

a reaction specification tuple reaction(E,G,R) and an admissible
event ε match if E unifies with ε. 〈Cause〉 . 〈SimpleTCEvent〉
the result is undefined in the invocation stage, whereas it is defined in
the completion stage

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 97 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Guards

〈Guard〉 ::= 〈GuardPredicate〉 |
(〈GuardPredicate〉 {, 〈GuardPredicate〉})

〈GuardPredicate〉 ::= request | response | success | failure |
endo | exo | intra | inter |
from_agent | to_agent | from_tc | to_tc |
before(〈Time〉) | after(〈Time〉)

〈Time〉 is a non-negative integer

A triggered reaction is actually executed only if its guard is true
All guard predicates are ground ones, so their have always a success /
failure semantics
Guard predicates concern properties of the event, so they can be used
to further select some classes of events after the initial matching
between the admissible event and the event descriptor

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 98 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Guards

〈Guard〉 ::= 〈GuardPredicate〉 |
(〈GuardPredicate〉 {, 〈GuardPredicate〉})

〈GuardPredicate〉 ::= request | response | success | failure |
endo | exo | intra | inter |
from_agent | to_agent | from_tc | to_tc |
before(〈Time〉) | after(〈Time〉)

〈Time〉 is a non-negative integer

A triggered reaction is actually executed only if its guard is true
All guard predicates are ground ones, so their have always a success /
failure semantics
Guard predicates concern properties of the event, so they can be used
to further select some classes of events after the initial matching
between the admissible event and the event descriptor

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 98 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Guards

〈Guard〉 ::= 〈GuardPredicate〉 |
(〈GuardPredicate〉 {, 〈GuardPredicate〉})

〈GuardPredicate〉 ::= request | response | success | failure |
endo | exo | intra | inter |
from_agent | to_agent | from_tc | to_tc |
before(〈Time〉) | after(〈Time〉)

〈Time〉 is a non-negative integer

A triggered reaction is actually executed only if its guard is true
All guard predicates are ground ones, so their have always a success /
failure semantics
Guard predicates concern properties of the event, so they can be used
to further select some classes of events after the initial matching
between the admissible event and the event descriptor

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 98 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Semantics of Guard Predicates in ReSpecT

Guard atom True if

Guard(ε, (g ,G)) Guard(ε, g) ∧ Guard(ε,G)
Guard(ε, endo) ε.Cause.Source = c

Guard(ε, exo) ε.Cause.Source 6= c
Guard(ε, intra) ε.Cause.Target = c
Guard(ε, inter) ε.Cause.Target 6= c

Guard(ε, from agent) ε.Cause.Source is an agent
Guard(ε, to agent) ε.Cause.Target is an agent

Guard(ε, from tc) ε.Cause.Source is a tuple centre
Guard(ε, to tc) ε.Cause.Target is a tuple centre

Guard(ε, before(t)) ε.Cause.Time < t
Guard(ε, after(t)) ε.Cause.Time > t
Guard(ε, request) ε.TCCycleResult is undefined

Guard(ε, response) ε.TCCycleResult is defined
Guard(ε, success) ε.TCCycleResult 6= ⊥
Guard(ε, failure) ε.TCCycleResult = ⊥

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 99 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

〈GuardPredicate〉 aliases

request invocation, inv, req, pre

response completion, compl, resp, post

before(Time),after(Time’) between(Time,Time’)

from agent,to tc operation

from tc,to tc,endo,inter link out

from tc,to tc,exo,intra link in

from tc,to tc,endo,intra internal

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 100 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

〈GuardPredicate〉 aliases

request invocation, inv, req, pre

response completion, compl, resp, post

before(Time),after(Time’) between(Time,Time’)

from agent,to tc operation

from tc,to tc,endo,inter link out

from tc,to tc,exo,intra link in

from tc,to tc,endo,intra internal

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 100 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

〈GuardPredicate〉 aliases

request invocation, inv, req, pre

response completion, compl, resp, post

before(Time),after(Time’) between(Time,Time’)

from agent,to tc operation

from tc,to tc,endo,inter link out

from tc,to tc,exo,intra link in

from tc,to tc,endo,intra internal

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 100 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

〈GuardPredicate〉 aliases

request invocation, inv, req, pre

response completion, compl, resp, post

before(Time),after(Time’) between(Time,Time’)

from agent,to tc operation

from tc,to tc,endo,inter link out

from tc,to tc,exo,intra link in

from tc,to tc,endo,intra internal

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 100 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

〈GuardPredicate〉 aliases

request invocation, inv, req, pre

response completion, compl, resp, post

before(Time),after(Time’) between(Time,Time’)

from agent,to tc operation

from tc,to tc,endo,inter link out

from tc,to tc,exo,intra link in

from tc,to tc,endo,intra internal

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 100 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

〈GuardPredicate〉 aliases

request invocation, inv, req, pre

response completion, compl, resp, post

before(Time),after(Time’) between(Time,Time’)

from agent,to tc operation

from tc,to tc,endo,inter link out

from tc,to tc,exo,intra link in

from tc,to tc,endo,intra internal

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 100 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

〈GuardPredicate〉 aliases

request invocation, inv, req, pre

response completion, compl, resp, post

before(Time),after(Time’) between(Time,Time’)

from agent,to tc operation

from tc,to tc,endo,inter link out

from tc,to tc,exo,intra link in

from tc,to tc,endo,intra internal

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 100 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Reactions

〈Reaction〉 ::= 〈ReactionGoal〉 |
(〈ReactionGoal〉 {, 〈ReactionGoal〉})

〈ReactionGoal〉 ::= 〈TCPredicate〉 (〈Tuple〉) |
〈ObservationPredicate〉 (〈Tuple〉) |
〈Computation〉 |
(〈ReactionGoal〉 ; 〈ReactionGoal〉)

〈TCPredicate〉 ::= 〈SimpleTCPredicate〉 | 〈TCLinkPredicate〉
〈TCLinkPredicate〉 ::= 〈TCIdentifier〉 ? 〈SimpleTCPredicate〉

A reaction goal is either a primitive invocation (possibly, a link), a
predicate recovering properties of the event, or some logic-based
computation

Sequences of reaction goals are executed transactionally with an
overall success / failure semantics

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 101 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Reactions

〈Reaction〉 ::= 〈ReactionGoal〉 |
(〈ReactionGoal〉 {, 〈ReactionGoal〉})

〈ReactionGoal〉 ::= 〈TCPredicate〉 (〈Tuple〉) |
〈ObservationPredicate〉 (〈Tuple〉) |
〈Computation〉 |
(〈ReactionGoal〉 ; 〈ReactionGoal〉)

〈TCPredicate〉 ::= 〈SimpleTCPredicate〉 | 〈TCLinkPredicate〉
〈TCLinkPredicate〉 ::= 〈TCIdentifier〉 ? 〈SimpleTCPredicate〉

A reaction goal is either a primitive invocation (possibly, a link), a
predicate recovering properties of the event, or some logic-based
computation

Sequences of reaction goals are executed transactionally with an
overall success / failure semantics

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 101 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Tuple Centre Predicates

〈SimpleTCPredicate〉 ::= 〈TCStatePredicate〉 | 〈TCForgePredicate〉
〈TCStatePredicate〉 ::= in | inp | rd | rdp | out | no |

get | set
〈TCForgePredicate〉 ::= 〈TCStatePredicate〉_s

Tuple centre predicates are uniformly used for agent invocations,
internal operations, and link invocations

The same predicates are substantially used for changing the
specification state, with essentially the same semantics

pred s invocations affect the specification state, and can be used
within reactions, also as links

no works as a test for absence, get and set work on the overall
theory (either the one of ordinary tuples, or the one of specification
tuples)

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 102 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Tuple Centre Predicates

〈SimpleTCPredicate〉 ::= 〈TCStatePredicate〉 | 〈TCForgePredicate〉
〈TCStatePredicate〉 ::= in | inp | rd | rdp | out | no |

get | set
〈TCForgePredicate〉 ::= 〈TCStatePredicate〉_s

Tuple centre predicates are uniformly used for agent invocations,
internal operations, and link invocations

The same predicates are substantially used for changing the
specification state, with essentially the same semantics

pred s invocations affect the specification state, and can be used
within reactions, also as links

no works as a test for absence, get and set work on the overall
theory (either the one of ordinary tuples, or the one of specification
tuples)

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 102 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Tuple Centre Predicates

〈SimpleTCPredicate〉 ::= 〈TCStatePredicate〉 | 〈TCForgePredicate〉
〈TCStatePredicate〉 ::= in | inp | rd | rdp | out | no |

get | set
〈TCForgePredicate〉 ::= 〈TCStatePredicate〉_s

Tuple centre predicates are uniformly used for agent invocations,
internal operations, and link invocations

The same predicates are substantially used for changing the
specification state, with essentially the same semantics

pred s invocations affect the specification state, and can be used
within reactions, also as links

no works as a test for absence, get and set work on the overall
theory (either the one of ordinary tuples, or the one of specification
tuples)

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 102 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Tuple Centre Predicates

〈SimpleTCPredicate〉 ::= 〈TCStatePredicate〉 | 〈TCForgePredicate〉
〈TCStatePredicate〉 ::= in | inp | rd | rdp | out | no |

get | set
〈TCForgePredicate〉 ::= 〈TCStatePredicate〉_s

Tuple centre predicates are uniformly used for agent invocations,
internal operations, and link invocations

The same predicates are substantially used for changing the
specification state, with essentially the same semantics

pred s invocations affect the specification state, and can be used
within reactions, also as links

no works as a test for absence, get and set work on the overall
theory (either the one of ordinary tuples, or the one of specification
tuples)

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 102 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Observation Predicates

〈ObservationPredicate〉 ::= 〈EventView〉_〈EventInformation〉
〈EventView〉 ::= current | event | start

〈EventInformation〉 ::= predicate | tuple |
source | target | time

event & start clearly refer to immediate and prime cause,
respectively—current refers to what is currently happening,
whenever this means something useful

〈EventInformation〉 aliases

predicate pred, call; deprecated: operation, op
tuple arg

source from

target to

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 103 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Observation Predicates

〈ObservationPredicate〉 ::= 〈EventView〉_〈EventInformation〉
〈EventView〉 ::= current | event | start

〈EventInformation〉 ::= predicate | tuple |
source | target | time

event & start clearly refer to immediate and prime cause,
respectively—current refers to what is currently happening,
whenever this means something useful

〈EventInformation〉 aliases

predicate pred, call; deprecated: operation, op
tuple arg

source from

target to

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 103 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Observation Predicates

〈ObservationPredicate〉 ::= 〈EventView〉_〈EventInformation〉
〈EventView〉 ::= current | event | start

〈EventInformation〉 ::= predicate | tuple |
source | target | time

event & start clearly refer to immediate and prime cause,
respectively—current refers to what is currently happening,
whenever this means something useful

〈EventInformation〉 aliases

predicate pred, call; deprecated: operation, op
tuple arg

source from

target to

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 103 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Observation Predicates

〈ObservationPredicate〉 ::= 〈EventView〉_〈EventInformation〉
〈EventView〉 ::= current | event | start

〈EventInformation〉 ::= predicate | tuple |
source | target | time

event & start clearly refer to immediate and prime cause,
respectively—current refers to what is currently happening,
whenever this means something useful

〈EventInformation〉 aliases

predicate pred, call; deprecated: operation, op
tuple arg

source from

target to

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 103 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Observation Predicates

〈ObservationPredicate〉 ::= 〈EventView〉_〈EventInformation〉
〈EventView〉 ::= current | event | start

〈EventInformation〉 ::= predicate | tuple |
source | target | time

event & start clearly refer to immediate and prime cause,
respectively—current refers to what is currently happening,
whenever this means something useful

〈EventInformation〉 aliases

predicate pred, call; deprecated: operation, op
tuple arg

source from

target to

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 103 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

ReSpecT Observation Predicates

〈ObservationPredicate〉 ::= 〈EventView〉_〈EventInformation〉
〈EventView〉 ::= current | event | start

〈EventInformation〉 ::= predicate | tuple |
source | target | time

event & start clearly refer to immediate and prime cause,
respectively—current refers to what is currently happening,
whenever this means something useful

〈EventInformation〉 aliases

predicate pred, call; deprecated: operation, op
tuple arg

source from

target to

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 103 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Semantics of Observation Predicates

〈(r ,R),Tu,Σ,Re,Out〉ε −→e 〈Rθ,Tu,Σ,Re,Out〉ε
r where

event predicate(Obs) θ = mgu(ε.Cause.SimpleTCEvent.SimpleTCPredicate, Obs)
event tuple(Obs) θ = mgu(ε.Cause.SimpleTCEvent.Tuple, Obs)
event source(Obs) θ = mgu(ε.Cause.Source, Obs)
event target(Obs) θ = mgu(ε.Cause.Target, Obs)
event time(Obs) θ = mgu(ε.Cause.Time, Obs)

start predicate(Obs) θ = mgu(ε.StartCause.SimpleTCEvent.SimpleTCPredicate, Obs)
start tuple(Obs) θ = mgu(ε.StartCause.SimpleTCEvent.Tuple, Obs)

start source(Obs) θ = mgu(ε.StartCause.Source, Obs)
start target(Obs) θ = mgu(ε.StartCause.Target, Obs)
start time(Obs) θ = mgu(ε.StartCause.Time, Obs)

current predicate(Obs) θ = mgu(current predicate, Obs)
current tuple(Obs) θ = mgu(Obs, Obs) = {}
current source(Obs) θ = mgu(c , Obs)
current target(Obs) θ = mgu(c , Obs)

current time(Obs) θ = mgu(nc , Obs)

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 104 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Properties of ReSpecT Tuple Centres

ReSpecT tuple centres

encapsulate knowledge in terms of logic tuples
encapsulates behaviour in terms of ReSpecT specifications

ReSpecT tuple centres are

inspectable
malleable
linkable
situated

time
external resources

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 105 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Properties of ReSpecT Tuple Centres

ReSpecT tuple centres

encapsulate knowledge in terms of logic tuples
encapsulates behaviour in terms of ReSpecT specifications

ReSpecT tuple centres are

inspectable
malleable
linkable
situated

time
external resources

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 105 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Properties of ReSpecT Tuple Centres

ReSpecT tuple centres

encapsulate knowledge in terms of logic tuples
encapsulates behaviour in terms of ReSpecT specifications

ReSpecT tuple centres are

inspectable
malleable
linkable
situated

time
external resources

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 105 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Properties of ReSpecT Tuple Centres

ReSpecT tuple centres

encapsulate knowledge in terms of logic tuples
encapsulates behaviour in terms of ReSpecT specifications

ReSpecT tuple centres are

inspectable
malleable
linkable
situated

time
external resources

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 105 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Properties of ReSpecT Tuple Centres

ReSpecT tuple centres

encapsulate knowledge in terms of logic tuples
encapsulates behaviour in terms of ReSpecT specifications

ReSpecT tuple centres are

inspectable
malleable
linkable
situated

time
external resources

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 105 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Properties of ReSpecT Tuple Centres

ReSpecT tuple centres

encapsulate knowledge in terms of logic tuples
encapsulates behaviour in terms of ReSpecT specifications

ReSpecT tuple centres are

inspectable
malleable
linkable
situated

time
external resources

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 105 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Properties of ReSpecT Tuple Centres

ReSpecT tuple centres

encapsulate knowledge in terms of logic tuples
encapsulates behaviour in terms of ReSpecT specifications

ReSpecT tuple centres are

inspectable
malleable
linkable
situated

time
external resources

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 105 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Properties of ReSpecT Tuple Centres

ReSpecT tuple centres

encapsulate knowledge in terms of logic tuples
encapsulates behaviour in terms of ReSpecT specifications

ReSpecT tuple centres are

inspectable
malleable
linkable
situated

time
external resources

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 105 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Properties of ReSpecT Tuple Centres

ReSpecT tuple centres

encapsulate knowledge in terms of logic tuples
encapsulates behaviour in terms of ReSpecT specifications

ReSpecT tuple centres are

inspectable
malleable
linkable
situated

time
external resources

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 105 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Properties of ReSpecT Tuple Centres

ReSpecT tuple centres

encapsulate knowledge in terms of logic tuples
encapsulates behaviour in terms of ReSpecT specifications

ReSpecT tuple centres are

inspectable
malleable
linkable
situated

time
external resources

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 105 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Inspectability of ReSpecT Tuple Centres

ReSpecT tuple centres: twofold space for tuples

tuple space ordinary (logic) tuples

for knowledge, information, messages, communication
working as the (logic) theory of communication for
distributed systems

specification space specification (logic, ReSpecT) tuples

for behaviour, function, coordination
working as the (logic) theory of coordination for
distributed systems

Both spaces are inspectable

by engineers, via ReSpecT inspectors
by processes, via rd & no primitives

rd & no for the tuple space; rd s & no s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 106 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Inspectability of ReSpecT Tuple Centres

ReSpecT tuple centres: twofold space for tuples

tuple space ordinary (logic) tuples

for knowledge, information, messages, communication
working as the (logic) theory of communication for
distributed systems

specification space specification (logic, ReSpecT) tuples

for behaviour, function, coordination
working as the (logic) theory of coordination for
distributed systems

Both spaces are inspectable

by engineers, via ReSpecT inspectors
by processes, via rd & no primitives

rd & no for the tuple space; rd s & no s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 106 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Inspectability of ReSpecT Tuple Centres

ReSpecT tuple centres: twofold space for tuples

tuple space ordinary (logic) tuples

for knowledge, information, messages, communication
working as the (logic) theory of communication for
distributed systems

specification space specification (logic, ReSpecT) tuples

for behaviour, function, coordination
working as the (logic) theory of coordination for
distributed systems

Both spaces are inspectable

by engineers, via ReSpecT inspectors
by processes, via rd & no primitives

rd & no for the tuple space; rd s & no s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 106 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Inspectability of ReSpecT Tuple Centres

ReSpecT tuple centres: twofold space for tuples

tuple space ordinary (logic) tuples

for knowledge, information, messages, communication
working as the (logic) theory of communication for
distributed systems

specification space specification (logic, ReSpecT) tuples

for behaviour, function, coordination
working as the (logic) theory of coordination for
distributed systems

Both spaces are inspectable

by engineers, via ReSpecT inspectors
by processes, via rd & no primitives

rd & no for the tuple space; rd s & no s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 106 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Inspectability of ReSpecT Tuple Centres

ReSpecT tuple centres: twofold space for tuples

tuple space ordinary (logic) tuples

for knowledge, information, messages, communication
working as the (logic) theory of communication for
distributed systems

specification space specification (logic, ReSpecT) tuples

for behaviour, function, coordination
working as the (logic) theory of coordination for
distributed systems

Both spaces are inspectable

by engineers, via ReSpecT inspectors
by processes, via rd & no primitives

rd & no for the tuple space; rd s & no s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 106 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Inspectability of ReSpecT Tuple Centres

ReSpecT tuple centres: twofold space for tuples

tuple space ordinary (logic) tuples

for knowledge, information, messages, communication
working as the (logic) theory of communication for
distributed systems

specification space specification (logic, ReSpecT) tuples

for behaviour, function, coordination
working as the (logic) theory of coordination for
distributed systems

Both spaces are inspectable

by engineers, via ReSpecT inspectors
by processes, via rd & no primitives

rd & no for the tuple space; rd s & no s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 106 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Inspectability of ReSpecT Tuple Centres

ReSpecT tuple centres: twofold space for tuples

tuple space ordinary (logic) tuples

for knowledge, information, messages, communication
working as the (logic) theory of communication for
distributed systems

specification space specification (logic, ReSpecT) tuples

for behaviour, function, coordination
working as the (logic) theory of coordination for
distributed systems

Both spaces are inspectable

by engineers, via ReSpecT inspectors
by processes, via rd & no primitives

rd & no for the tuple space; rd s & no s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 106 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Inspectability of ReSpecT Tuple Centres

ReSpecT tuple centres: twofold space for tuples

tuple space ordinary (logic) tuples

for knowledge, information, messages, communication
working as the (logic) theory of communication for
distributed systems

specification space specification (logic, ReSpecT) tuples

for behaviour, function, coordination
working as the (logic) theory of coordination for
distributed systems

Both spaces are inspectable

by engineers, via ReSpecT inspectors
by processes, via rd & no primitives

rd & no for the tuple space; rd s & no s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 106 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Inspectability of ReSpecT Tuple Centres

ReSpecT tuple centres: twofold space for tuples

tuple space ordinary (logic) tuples

for knowledge, information, messages, communication
working as the (logic) theory of communication for
distributed systems

specification space specification (logic, ReSpecT) tuples

for behaviour, function, coordination
working as the (logic) theory of coordination for
distributed systems

Both spaces are inspectable

by engineers, via ReSpecT inspectors
by processes, via rd & no primitives

rd & no for the tuple space; rd s & no s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 106 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Inspectability of ReSpecT Tuple Centres

ReSpecT tuple centres: twofold space for tuples

tuple space ordinary (logic) tuples

for knowledge, information, messages, communication
working as the (logic) theory of communication for
distributed systems

specification space specification (logic, ReSpecT) tuples

for behaviour, function, coordination
working as the (logic) theory of coordination for
distributed systems

Both spaces are inspectable

by engineers, via ReSpecT inspectors
by processes, via rd & no primitives

rd & no for the tuple space; rd s & no s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 106 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Inspectability of ReSpecT Tuple Centres

ReSpecT tuple centres: twofold space for tuples

tuple space ordinary (logic) tuples

for knowledge, information, messages, communication
working as the (logic) theory of communication for
distributed systems

specification space specification (logic, ReSpecT) tuples

for behaviour, function, coordination
working as the (logic) theory of coordination for
distributed systems

Both spaces are inspectable

by engineers, via ReSpecT inspectors
by processes, via rd & no primitives

rd & no for the tuple space; rd s & no s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 106 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Inspectability of ReSpecT Tuple Centres

ReSpecT tuple centres: twofold space for tuples

tuple space ordinary (logic) tuples

for knowledge, information, messages, communication
working as the (logic) theory of communication for
distributed systems

specification space specification (logic, ReSpecT) tuples

for behaviour, function, coordination
working as the (logic) theory of coordination for
distributed systems

Both spaces are inspectable

by engineers, via ReSpecT inspectors
by processes, via rd & no primitives

rd & no for the tuple space; rd s & no s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 106 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Malleability of ReSpecT Tuple Centres

The behaviour of a ReSpecT tuple centre is defined by the ReSpecT
tuples in the specification space

it can be adapted / changed by changing its ReSpecT specification

ReSpecT tuple centres are malleable

by engineers, via ReSpecT tools
by processes, via in & out primitives

in & out for the tuple space; in s & out s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 107 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Malleability of ReSpecT Tuple Centres

The behaviour of a ReSpecT tuple centre is defined by the ReSpecT
tuples in the specification space

it can be adapted / changed by changing its ReSpecT specification

ReSpecT tuple centres are malleable

by engineers, via ReSpecT tools
by processes, via in & out primitives

in & out for the tuple space; in s & out s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 107 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Malleability of ReSpecT Tuple Centres

The behaviour of a ReSpecT tuple centre is defined by the ReSpecT
tuples in the specification space

it can be adapted / changed by changing its ReSpecT specification

ReSpecT tuple centres are malleable

by engineers, via ReSpecT tools
by processes, via in & out primitives

in & out for the tuple space; in s & out s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 107 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Malleability of ReSpecT Tuple Centres

The behaviour of a ReSpecT tuple centre is defined by the ReSpecT
tuples in the specification space

it can be adapted / changed by changing its ReSpecT specification

ReSpecT tuple centres are malleable

by engineers, via ReSpecT tools
by processes, via in & out primitives

in & out for the tuple space; in s & out s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 107 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Malleability of ReSpecT Tuple Centres

The behaviour of a ReSpecT tuple centre is defined by the ReSpecT
tuples in the specification space

it can be adapted / changed by changing its ReSpecT specification

ReSpecT tuple centres are malleable

by engineers, via ReSpecT tools
by processes, via in & out primitives

in & out for the tuple space; in s & out s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 107 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Malleability of ReSpecT Tuple Centres

The behaviour of a ReSpecT tuple centre is defined by the ReSpecT
tuples in the specification space

it can be adapted / changed by changing its ReSpecT specification

ReSpecT tuple centres are malleable

by engineers, via ReSpecT tools
by processes, via in & out primitives

in & out for the tuple space; in s & out s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 107 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Malleability of ReSpecT Tuple Centres

The behaviour of a ReSpecT tuple centre is defined by the ReSpecT
tuples in the specification space

it can be adapted / changed by changing its ReSpecT specification

ReSpecT tuple centres are malleable

by engineers, via ReSpecT tools
by processes, via in & out primitives

in & out for the tuple space; in s & out s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 107 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Linkability of ReSpecT Tuple Centres

Every tuple centre coordination primitive is also an ReSpecT primitive
for reaction goals, and a primitive for linking, too

all primitives are asynchronous

so they do not affect the transactional semantics of reactions

all primitives have a request / response semantics

including out / out s

so reactions can be defined to handle both primitive invocations &
completions

all primitives could be executed within a ReSpecT reaction

as either a reaction goal executed within the same tuple centre
or as a link primitive invoked upon another tuple centre

ReSpecT tuple centres are linkable

by using tuple centre identifiers within ReSpecT reactions
< TCIdentifier > @ < NetworkLocation >? < SimpleTCPredicate >

any ReSpecT reaction can invoke any coordination primitive upon any
tuple centre in the network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 108 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Linkability of ReSpecT Tuple Centres

Every tuple centre coordination primitive is also an ReSpecT primitive
for reaction goals, and a primitive for linking, too

all primitives are asynchronous

so they do not affect the transactional semantics of reactions

all primitives have a request / response semantics

including out / out s

so reactions can be defined to handle both primitive invocations &
completions

all primitives could be executed within a ReSpecT reaction

as either a reaction goal executed within the same tuple centre
or as a link primitive invoked upon another tuple centre

ReSpecT tuple centres are linkable

by using tuple centre identifiers within ReSpecT reactions
< TCIdentifier > @ < NetworkLocation >? < SimpleTCPredicate >

any ReSpecT reaction can invoke any coordination primitive upon any
tuple centre in the network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 108 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Linkability of ReSpecT Tuple Centres

Every tuple centre coordination primitive is also an ReSpecT primitive
for reaction goals, and a primitive for linking, too

all primitives are asynchronous

so they do not affect the transactional semantics of reactions

all primitives have a request / response semantics

including out / out s

so reactions can be defined to handle both primitive invocations &
completions

all primitives could be executed within a ReSpecT reaction

as either a reaction goal executed within the same tuple centre
or as a link primitive invoked upon another tuple centre

ReSpecT tuple centres are linkable

by using tuple centre identifiers within ReSpecT reactions
< TCIdentifier > @ < NetworkLocation >? < SimpleTCPredicate >

any ReSpecT reaction can invoke any coordination primitive upon any
tuple centre in the network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 108 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Linkability of ReSpecT Tuple Centres

Every tuple centre coordination primitive is also an ReSpecT primitive
for reaction goals, and a primitive for linking, too

all primitives are asynchronous

so they do not affect the transactional semantics of reactions

all primitives have a request / response semantics

including out / out s

so reactions can be defined to handle both primitive invocations &
completions

all primitives could be executed within a ReSpecT reaction

as either a reaction goal executed within the same tuple centre
or as a link primitive invoked upon another tuple centre

ReSpecT tuple centres are linkable

by using tuple centre identifiers within ReSpecT reactions
< TCIdentifier > @ < NetworkLocation >? < SimpleTCPredicate >

any ReSpecT reaction can invoke any coordination primitive upon any
tuple centre in the network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 108 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Linkability of ReSpecT Tuple Centres

Every tuple centre coordination primitive is also an ReSpecT primitive
for reaction goals, and a primitive for linking, too

all primitives are asynchronous

so they do not affect the transactional semantics of reactions

all primitives have a request / response semantics

including out / out s

so reactions can be defined to handle both primitive invocations &
completions

all primitives could be executed within a ReSpecT reaction

as either a reaction goal executed within the same tuple centre
or as a link primitive invoked upon another tuple centre

ReSpecT tuple centres are linkable

by using tuple centre identifiers within ReSpecT reactions
< TCIdentifier > @ < NetworkLocation >? < SimpleTCPredicate >

any ReSpecT reaction can invoke any coordination primitive upon any
tuple centre in the network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 108 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Linkability of ReSpecT Tuple Centres

Every tuple centre coordination primitive is also an ReSpecT primitive
for reaction goals, and a primitive for linking, too

all primitives are asynchronous

so they do not affect the transactional semantics of reactions

all primitives have a request / response semantics

including out / out s

so reactions can be defined to handle both primitive invocations &
completions

all primitives could be executed within a ReSpecT reaction

as either a reaction goal executed within the same tuple centre
or as a link primitive invoked upon another tuple centre

ReSpecT tuple centres are linkable

by using tuple centre identifiers within ReSpecT reactions
< TCIdentifier > @ < NetworkLocation >? < SimpleTCPredicate >

any ReSpecT reaction can invoke any coordination primitive upon any
tuple centre in the network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 108 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Linkability of ReSpecT Tuple Centres

Every tuple centre coordination primitive is also an ReSpecT primitive
for reaction goals, and a primitive for linking, too

all primitives are asynchronous

so they do not affect the transactional semantics of reactions

all primitives have a request / response semantics

including out / out s

so reactions can be defined to handle both primitive invocations &
completions

all primitives could be executed within a ReSpecT reaction

as either a reaction goal executed within the same tuple centre
or as a link primitive invoked upon another tuple centre

ReSpecT tuple centres are linkable

by using tuple centre identifiers within ReSpecT reactions
< TCIdentifier > @ < NetworkLocation >? < SimpleTCPredicate >

any ReSpecT reaction can invoke any coordination primitive upon any
tuple centre in the network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 108 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Linkability of ReSpecT Tuple Centres

Every tuple centre coordination primitive is also an ReSpecT primitive
for reaction goals, and a primitive for linking, too

all primitives are asynchronous

so they do not affect the transactional semantics of reactions

all primitives have a request / response semantics

including out / out s

so reactions can be defined to handle both primitive invocations &
completions

all primitives could be executed within a ReSpecT reaction

as either a reaction goal executed within the same tuple centre
or as a link primitive invoked upon another tuple centre

ReSpecT tuple centres are linkable

by using tuple centre identifiers within ReSpecT reactions
< TCIdentifier > @ < NetworkLocation >? < SimpleTCPredicate >

any ReSpecT reaction can invoke any coordination primitive upon any
tuple centre in the network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 108 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Linkability of ReSpecT Tuple Centres

Every tuple centre coordination primitive is also an ReSpecT primitive
for reaction goals, and a primitive for linking, too

all primitives are asynchronous

so they do not affect the transactional semantics of reactions

all primitives have a request / response semantics

including out / out s

so reactions can be defined to handle both primitive invocations &
completions

all primitives could be executed within a ReSpecT reaction

as either a reaction goal executed within the same tuple centre
or as a link primitive invoked upon another tuple centre

ReSpecT tuple centres are linkable

by using tuple centre identifiers within ReSpecT reactions
< TCIdentifier > @ < NetworkLocation >? < SimpleTCPredicate >

any ReSpecT reaction can invoke any coordination primitive upon any
tuple centre in the network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 108 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Linkability of ReSpecT Tuple Centres

Every tuple centre coordination primitive is also an ReSpecT primitive
for reaction goals, and a primitive for linking, too

all primitives are asynchronous

so they do not affect the transactional semantics of reactions

all primitives have a request / response semantics

including out / out s

so reactions can be defined to handle both primitive invocations &
completions

all primitives could be executed within a ReSpecT reaction

as either a reaction goal executed within the same tuple centre
or as a link primitive invoked upon another tuple centre

ReSpecT tuple centres are linkable

by using tuple centre identifiers within ReSpecT reactions
< TCIdentifier > @ < NetworkLocation >? < SimpleTCPredicate >

any ReSpecT reaction can invoke any coordination primitive upon any
tuple centre in the network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 108 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Linkability of ReSpecT Tuple Centres

Every tuple centre coordination primitive is also an ReSpecT primitive
for reaction goals, and a primitive for linking, too

all primitives are asynchronous

so they do not affect the transactional semantics of reactions

all primitives have a request / response semantics

including out / out s

so reactions can be defined to handle both primitive invocations &
completions

all primitives could be executed within a ReSpecT reaction

as either a reaction goal executed within the same tuple centre
or as a link primitive invoked upon another tuple centre

ReSpecT tuple centres are linkable

by using tuple centre identifiers within ReSpecT reactions
< TCIdentifier > @ < NetworkLocation >? < SimpleTCPredicate >

any ReSpecT reaction can invoke any coordination primitive upon any
tuple centre in the network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 108 / 144

Programming Tuple Spaces ReSpecT: Language & Semantics

Linkability of ReSpecT Tuple Centres

Every tuple centre coordination primitive is also an ReSpecT primitive
for reaction goals, and a primitive for linking, too

all primitives are asynchronous

so they do not affect the transactional semantics of reactions

all primitives have a request / response semantics

including out / out s

so reactions can be defined to handle both primitive invocations &
completions

all primitives could be executed within a ReSpecT reaction

as either a reaction goal executed within the same tuple centre
or as a link primitive invoked upon another tuple centre

ReSpecT tuple centres are linkable

by using tuple centre identifiers within ReSpecT reactions
< TCIdentifier > @ < NetworkLocation >? < SimpleTCPredicate >

any ReSpecT reaction can invoke any coordination primitive upon any
tuple centre in the network

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 108 / 144

Coordination, Time & Space

Outline
1 Elements of Distributed Systems Engineering
2 Coordination: A Meta-model
3 Enabling vs. Governing Interaction
4 Classifying Coordination Models
5 Tuple-based Coordination Models

Linda & Tuple-based Coordination
Hybrid Coordination Models

6 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics

7 Coordination in the Spatio-Temporal Fabric
Time as a Coordination Issue
Space as a Coordination Issue

8 Situatedness & Coordination
Situatedness as a Coordination Issue
Extending ReSpecT Toward Situatedness
Situated ReSpecT: A Case Study

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 109 / 144

Coordination, Time & Space Time as a Coordination Issue

Outline
1 Elements of Distributed Systems Engineering
2 Coordination: A Meta-model
3 Enabling vs. Governing Interaction
4 Classifying Coordination Models
5 Tuple-based Coordination Models

Linda & Tuple-based Coordination
Hybrid Coordination Models

6 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics

7 Coordination in the Spatio-Temporal Fabric
Time as a Coordination Issue
Space as a Coordination Issue

8 Situatedness & Coordination
Situatedness as a Coordination Issue
Extending ReSpecT Toward Situatedness
Situated ReSpecT: A Case Study

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 110 / 144

Coordination, Time & Space Time as a Coordination Issue

Dining Philosophers in ReSpecT: Starvation?

What is the problem?

The problem is time: no one keeps track of time here, and starvation
is a matter of time

How can we handle time here? Is synchronisation not enough for the
purpose?

Of course not: to avoid problems like starvation, we need the ability
of defining time-dependent coordination policies

What is the solution?

In order to define time-dependent coordination policies, a time-aware
coordination medium is needed

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 111 / 144

Coordination, Time & Space Time as a Coordination Issue

Dining Philosophers in ReSpecT: Starvation?

What is the problem?

The problem is time: no one keeps track of time here, and starvation
is a matter of time

How can we handle time here? Is synchronisation not enough for the
purpose?

Of course not: to avoid problems like starvation, we need the ability
of defining time-dependent coordination policies

What is the solution?

In order to define time-dependent coordination policies, a time-aware
coordination medium is needed

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 111 / 144

Coordination, Time & Space Time as a Coordination Issue

Dining Philosophers in ReSpecT: Starvation?

What is the problem?

The problem is time: no one keeps track of time here, and starvation
is a matter of time

How can we handle time here? Is synchronisation not enough for the
purpose?

Of course not: to avoid problems like starvation, we need the ability
of defining time-dependent coordination policies

What is the solution?

In order to define time-dependent coordination policies, a time-aware
coordination medium is needed

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 111 / 144

Coordination, Time & Space Time as a Coordination Issue

Dining Philosophers in ReSpecT: Starvation?

What is the problem?

The problem is time: no one keeps track of time here, and starvation
is a matter of time

How can we handle time here? Is synchronisation not enough for the
purpose?

Of course not: to avoid problems like starvation, we need the ability
of defining time-dependent coordination policies

What is the solution?

In order to define time-dependent coordination policies, a time-aware
coordination medium is needed

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 111 / 144

Coordination, Time & Space Time as a Coordination Issue

Dining Philosophers in ReSpecT: Starvation?

What is the problem?

The problem is time: no one keeps track of time here, and starvation
is a matter of time

How can we handle time here? Is synchronisation not enough for the
purpose?

Of course not: to avoid problems like starvation, we need the ability
of defining time-dependent coordination policies

What is the solution?

In order to define time-dependent coordination policies, a time-aware
coordination medium is needed

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 111 / 144

Coordination, Time & Space Time as a Coordination Issue

Dining Philosophers in ReSpecT: Starvation?

What is the problem?

The problem is time: no one keeps track of time here, and starvation
is a matter of time

How can we handle time here? Is synchronisation not enough for the
purpose?

Of course not: to avoid problems like starvation, we need the ability
of defining time-dependent coordination policies

What is the solution?

In order to define time-dependent coordination policies, a time-aware
coordination medium is needed

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 111 / 144

Coordination, Time & Space Time as a Coordination Issue

Time-dependent Coordination I

Time-aware coordination media [Omicini et al., 2007]

A time-aware coordination medium for time-dependent coordination
policies essentially means

Time has to be an integral part of the ontology of a coordination
medium

A coordination medium should allow coordination policies to talk
about time

(Physical) time has to be explicitly embedded into the coordination
medium working cycle

A coordination medium should be able to capture time events, and to
react appropriately

A coordination medium should allow coordination policies to be
changed over time

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 112 / 144

Coordination, Time & Space Time as a Coordination Issue

Time-dependent Coordination II

Timed ReSpecT [Omicini et al., 2005]

Accordingly, ReSpecT is extended with time

by introducing some temporal predicates to get information about
both tuple-centre and event time

current time(?Time)

event time(?Time)

before(@Time), after(@Time), between(@MinTime,@MaxTime)

by making it possible to specify reactions to the occurrence of time
events

reaction(time(@Time), Guard, Body).

by exploiting malleabilty to allow coordination policies to be changed
over time

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 113 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers

An example of time-dependent coordination

table tuple centre stores the maximum amount of time for any
process (philosopher) to use the resource (to eat using chops)

in terms of a tuple max eating time(@Time)

if this time expires the locks are automatically released—chopsticks are
re-inserted by the table tuple centre
late releases (by processes through seat tuple centres) are to be
ignored—linkability used to make seat tuple centres consistent

With a very simple extension using timed reactions, Distributed
Timed Dining Philosophers are done

see [Omicini et al., 2005]

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 114 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers

An example of time-dependent coordination

table tuple centre stores the maximum amount of time for any
process (philosopher) to use the resource (to eat using chops)

in terms of a tuple max eating time(@Time)

if this time expires the locks are automatically released—chopsticks are
re-inserted by the table tuple centre
late releases (by processes through seat tuple centres) are to be
ignored—linkability used to make seat tuple centres consistent

With a very simple extension using timed reactions, Distributed
Timed Dining Philosophers are done

see [Omicini et al., 2005]

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 114 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers

An example of time-dependent coordination

table tuple centre stores the maximum amount of time for any
process (philosopher) to use the resource (to eat using chops)

in terms of a tuple max eating time(@Time)

if this time expires the locks are automatically released—chopsticks are
re-inserted by the table tuple centre
late releases (by processes through seat tuple centres) are to be
ignored—linkability used to make seat tuple centres consistent

With a very simple extension using timed reactions, Distributed
Timed Dining Philosophers are done

see [Omicini et al., 2005]

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 114 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers

An example of time-dependent coordination

table tuple centre stores the maximum amount of time for any
process (philosopher) to use the resource (to eat using chops)

in terms of a tuple max eating time(@Time)

if this time expires the locks are automatically released—chopsticks are
re-inserted by the table tuple centre
late releases (by processes through seat tuple centres) are to be
ignored—linkability used to make seat tuple centres consistent

With a very simple extension using timed reactions, Distributed
Timed Dining Philosophers are done

see [Omicini et al., 2005]

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 114 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers

An example of time-dependent coordination

table tuple centre stores the maximum amount of time for any
process (philosopher) to use the resource (to eat using chops)

in terms of a tuple max eating time(@Time)

if this time expires the locks are automatically released—chopsticks are
re-inserted by the table tuple centre
late releases (by processes through seat tuple centres) are to be
ignored—linkability used to make seat tuple centres consistent

With a very simple extension using timed reactions, Distributed
Timed Dining Philosophers are done

see [Omicini et al., 2005]

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 114 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers

An example of time-dependent coordination

table tuple centre stores the maximum amount of time for any
process (philosopher) to use the resource (to eat using chops)

in terms of a tuple max eating time(@Time)

if this time expires the locks are automatically released—chopsticks are
re-inserted by the table tuple centre
late releases (by processes through seat tuple centres) are to be
ignored—linkability used to make seat tuple centres consistent

With a very simple extension using timed reactions, Distributed
Timed Dining Philosophers are done

see [Omicini et al., 2005]

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 114 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers

An example of time-dependent coordination

table tuple centre stores the maximum amount of time for any
process (philosopher) to use the resource (to eat using chops)

in terms of a tuple max eating time(@Time)

if this time expires the locks are automatically released—chopsticks are
re-inserted by the table tuple centre
late releases (by processes through seat tuple centres) are to be
ignored—linkability used to make seat tuple centres consistent

With a very simple extension using timed reactions, Distributed
Timed Dining Philosophers are done

see [Omicini et al., 2005]

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 114 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers: Philosopher

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

With respect to Dining Philosopher’s protocol. . .

. . . this is left unchanged

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 115 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers: Philosopher

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

With respect to Dining Philosopher’s protocol. . .

. . . this is left unchanged

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 115 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers: table ReSpecT Code

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)), out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)), out(chops(C1,C)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (6)

current_time(T), rd(max eating time(Max)), T1 is T + Max,

out(used(C1,C2,T)),

out_s(time(T1),(in(used(C1,C2,T)), out(chop(C1)), out(chop(C2)))))).

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 116 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers: table ReSpecT Code

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)), out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)), out(chops(C1,C)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (6)

current_time(T), rd(max eating time(Max)), T1 is T + Max,

out(used(C1,C2,T)),

out_s(time(T1),(in(used(C1,C2,T)), out(chop(C1)), out(chop(C2)))))).

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 116 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers: table ReSpecT Code

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)), out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)), out(chops(C1,C)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (6)

current_time(T), rd(max eating time(Max)), T1 is T + Max,

out(used(C1,C2,T)),

out_s(time(T1),(in(used(C1,C2,T)), out(chop(C1)), out(chop(C2)))))).

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 116 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers: table ReSpecT Code

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)), out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)), out(chops(C1,C)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (6)

current_time(T), rd(max eating time(Max)), T1 is T + Max,

out(used(C1,C2,T)),

out_s(time(T1),(in(used(C1,C2,T)), out(chop(C1)), out(chop(C2)))))).

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 116 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers: table ReSpecT Code

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)), out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)), out(chops(C1,C)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (6)

current_time(T), rd(max eating time(Max)), T1 is T + Max,

out(used(C1,C2,T)),

out_s(time(T1),(in(used(C1,C2,T)), out(chop(C1)), out(chop(C2)))))).

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 116 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers: table ReSpecT Code

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)), out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)), out(chops(C1,C)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (6)

current_time(T), rd(max eating time(Max)), T1 is T + Max,

out(used(C1,C2,T)),

out_s(time(T1),(in(used(C1,C2,T)), out(chop(C1)), out(chop(C2)))))).

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 116 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers: table ReSpecT Code

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)))).

reaction(out(chops(C1,C2)), (operation, completion), (% (1’)

out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)), out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)), out(chops(C1,C)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (6)

current_time(T), rd(max eating time(Max)), T1 is T + Max,

out(used(C1,C2,T)),

out_s(time(T1),(in(used(C1,C2,T)), out(chop(C1)), out(chop(C2)))))).

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 116 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers: table ReSpecT Code

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)))).

reaction(out(chops(C1,C2)), (operation, completion), (% (1’)

in(used(C1,C2,_)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)), out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)), out(chops(C1,C)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (6)

current_time(T), rd(max eating time(Max)), T1 is T + Max,

out(used(C1,C2,T)),

out_s(time(T1),(in(used(C1,C2,T)), out(chop(C1)), out(chop(C2)))))).

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 116 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers: table ReSpecT Code

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)))).

reaction(out(chops(C1,C2)), (operation, completion), (% (1’)

in(used(C1,C2,_)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)), out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)), out(chops(C1,C)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (6)

current_time(T), rd(max eating time(Max)), T1 is T + Max,

out(used(C1,C2,T)),

out_s(time(T1),(in(used(C1,C2,T)), out(chop(C1)), out(chop(C2)))))).

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 116 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

tuple centre no starvation

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 117 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

tuple centre no starvation

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 117 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

tuple centre no starvation

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 117 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

tuple centre no starvation

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 117 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

tuple centre no starvation

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 117 / 144

Coordination, Time & Space Time as a Coordination Issue

Timed Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

tuple centre no starvation

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 117 / 144

Coordination, Time & Space Space as a Coordination Issue

Outline
1 Elements of Distributed Systems Engineering
2 Coordination: A Meta-model
3 Enabling vs. Governing Interaction
4 Classifying Coordination Models
5 Tuple-based Coordination Models

Linda & Tuple-based Coordination
Hybrid Coordination Models

6 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics

7 Coordination in the Spatio-Temporal Fabric
Time as a Coordination Issue
Space as a Coordination Issue

8 Situatedness & Coordination
Situatedness as a Coordination Issue
Extending ReSpecT Toward Situatedness
Situated ReSpecT: A Case Study

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 118 / 144

Coordination, Time & Space Space as a Coordination Issue

What About Coordination & Space?

Open problem

Space-aware coordination medium

Issues of topology, space and middleware

Some work already done, space for much more

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 119 / 144

Coordination, Time & Space Space as a Coordination Issue

What About Coordination & Space?

Open problem

Space-aware coordination medium

Issues of topology, space and middleware

Some work already done, space for much more

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 119 / 144

Coordination, Time & Space Space as a Coordination Issue

What About Coordination & Space?

Open problem

Space-aware coordination medium

Issues of topology, space and middleware

Some work already done, space for much more

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 119 / 144

Coordination, Time & Space Space as a Coordination Issue

What About Coordination & Space?

Open problem

Space-aware coordination medium

Issues of topology, space and middleware

Some work already done, space for much more

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 119 / 144

Situatedness & Coordination

Outline
1 Elements of Distributed Systems Engineering
2 Coordination: A Meta-model
3 Enabling vs. Governing Interaction
4 Classifying Coordination Models
5 Tuple-based Coordination Models

Linda & Tuple-based Coordination
Hybrid Coordination Models

6 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics

7 Coordination in the Spatio-Temporal Fabric
Time as a Coordination Issue
Space as a Coordination Issue

8 Situatedness & Coordination
Situatedness as a Coordination Issue
Extending ReSpecT Toward Situatedness
Situated ReSpecT: A Case Study

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 120 / 144

Situatedness & Coordination Situatedness as a Coordination Issue

Outline
1 Elements of Distributed Systems Engineering
2 Coordination: A Meta-model
3 Enabling vs. Governing Interaction
4 Classifying Coordination Models
5 Tuple-based Coordination Models

Linda & Tuple-based Coordination
Hybrid Coordination Models

6 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics

7 Coordination in the Spatio-Temporal Fabric
Time as a Coordination Issue
Space as a Coordination Issue

8 Situatedness & Coordination
Situatedness as a Coordination Issue
Extending ReSpecT Toward Situatedness
Situated ReSpecT: A Case Study

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 121 / 144

Situatedness & Coordination Situatedness as a Coordination Issue

Situatedness & Coordination I

Situatedness. . .

essentially, strict coupling with the environment

technically, the ability to properly perceive and react to changes in
the environment

one of the most critical issues in distributed systems

conceptual clash between pro-activeness in process behaviour and
reactivity w.r.t. environment change

still one of the most critical issues for artificial intelligence & robotics

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 122 / 144

Situatedness & Coordination Situatedness as a Coordination Issue

Situatedness & Coordination II

. . . & coordination

essentially, situatedness concerns interaction between processes and
the environment

technically, situatedness can be conceived as a coordination problem

how to handle and govern interaction between pro-active processes and
an ever-changing environment

Governing interaction

Intra-system interaction via coordination media as rulers of
component-component interaction

Inter-system interaction via. . . ?

coordination media as rulers of component-environment interaction?

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 123 / 144

Situatedness & Coordination Situatedness as a Coordination Issue

Goals

Overall goal of the research

putting coordination models to test in the challenging context of
situatedness

understanding how classical coordination languages need to be
extended to support the coordination of situated processes &
distributed systems

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 124 / 144

Situatedness & Coordination Situating ReSpecT

Outline
1 Elements of Distributed Systems Engineering
2 Coordination: A Meta-model
3 Enabling vs. Governing Interaction
4 Classifying Coordination Models
5 Tuple-based Coordination Models

Linda & Tuple-based Coordination
Hybrid Coordination Models

6 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics

7 Coordination in the Spatio-Temporal Fabric
Time as a Coordination Issue
Space as a Coordination Issue

8 Situatedness & Coordination
Situatedness as a Coordination Issue
Extending ReSpecT Toward Situatedness
Situated ReSpecT: A Case Study

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 125 / 144

Situatedness & Coordination Situating ReSpecT

Situating ReSpecT

ReSpecT tuple centres for environment engineering

Distributed systems are immersed into an environment, and should be
reactive to events of any sort

Also, coordination media should mediate any activity toward the
environment, allowing for a fruitful interaction

⇒ ReSpecT tuple centres should be able to capture general environment
events, and to generally mediate process-environment interaction

Situating ReSpecT: extensions

In [Casadei and Omicini, 2009], the ReSpecT language has been
revised and extended so as to capture environment events, and
express general MAS-environment interactions

⇒ ReSpecT captures, reacts to, and observes general environment events

⇒ ReSpecT can explicitly interact with the environment

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 126 / 144

Situatedness & Coordination Situating ReSpecT

Extending ReSpecT towards Situatedness I

Environment events

ReSpecT tuple centres are extended to capture two classes of
environmental events

the interaction with sensors perceiving environmental properties,
through environment predicate get(〈Key〉,〈Value〉)
the interaction with actuators affecting environmental properties,
through environment predicate set(〈Key〉,〈Value〉)

Source and target of a tuple centre event can be any external
resource

a suitable identification scheme – both at the syntax and at the
infrastructure level – is introduced for environmental resources

Properties of an environmental event can be observed through the
observation predicate env(〈Key 〉,〈Value 〉)

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 127 / 144

Situatedness & Coordination Situating ReSpecT

Extending ReSpecT towards Situatedness II

Environment communication

The ReSpecT language is extended to express explicit communication
with environmental resources

The body of a ReSpecT reaction can contain a tuple centre predicate
of the form

〈EnvResIdentifier〉 ? get(〈Key〉,〈Value〉)
enabling a tuple centre to get properties of environmental resources
〈EnvResIdentifier〉 ? set(〈Key〉,〈Value〉)
enabling a tuple centre to set properties of environmental resources

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 128 / 144

Situatedness & Coordination Situating ReSpecT

Extending ReSpecT towards Situatedness III

Transducers

Specific environment events have to be translated into well-formed
ReSpecT tuple centre events

This should be done at the infrastructure level, through a
general-purpose schema that could be specialised according to the
nature of any specific resource

A ReSpecT transducer is a component able to bring
environment-generated events to a ReSpecT tuple centre (and back),
suitably translated according to the general ReSpecT event model

Each transducer is specialised according to the specific portion of the
environment it is in charge of handling—typically, the specific resource
it is aimed at handling, like a temperature sensor, or a heater.

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 129 / 144

Situatedness & Coordination A Case Study

Outline
1 Elements of Distributed Systems Engineering
2 Coordination: A Meta-model
3 Enabling vs. Governing Interaction
4 Classifying Coordination Models
5 Tuple-based Coordination Models

Linda & Tuple-based Coordination
Hybrid Coordination Models

6 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics

7 Coordination in the Spatio-Temporal Fabric
Time as a Coordination Issue
Space as a Coordination Issue

8 Situatedness & Coordination
Situatedness as a Coordination Issue
Extending ReSpecT Toward Situatedness
Situated ReSpecT: A Case Study

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 130 / 144

Situatedness & Coordination A Case Study

Controlling Environmental Properties of Physical Areas

A set of real sensors are used to measure some environmental property
(for instance, temperature) within an area where they are located
Such information is then exploited to govern suitably placed actuators
(say, heaters) that can affect the value of the observed property in the
environment
Sensors are supposed to be cheap and non-smart, but provided with
some kind of communication interface – either wireless or wired –
that makes it possible to send streams of sampled values of the
environmental property under observation
Accordingly, sensors are active devices, that is, devices pro-actively
sending sensed values at a certain rate with no need of being asked
for such data—this is what typically occurs in pervasive computing
scenarios
Altogether, actuators and sensors are part of a distributed system
aimed at controlling environmental properties (in the case study,
temperature), which are affected by actuators based on the values
measured by sensors and the designed control policies as well
Coordination policies can be suitably automated and encapsulated
within coordination media working as environment artifacts
controlling sensors and actuators

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 131 / 144

Situatedness & Coordination A Case Study

Case Study: ReSpecT-based Architecture

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 132 / 144

Situatedness & Coordination A Case Study

Case Study: Structure of Environment Artifacts

Environment artifacts are built based on of ReSpecT tuple centres:

<<sensor>> artifacts wrapping real temperature sensors which
perceive temperature of different areas of the room

<<actuator>> artifacts wrapping actuators, which act as heating
devices so as to control temperature

<<aggregator>> artifact provides an aggregated view of the
temperature values perceived by sensors spread in the room since it is
linked to <<sensor>> artifacts:

<<sensor>> artifacts update tuples on <<aggregator>>

artifact through linkability

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 133 / 144

Situatedness & Coordination A Case Study

Case Study: Sensor Artifacts

%(1)

reaction(get(temperature, Temp), from_env, (

event_time(Time), event_source(sensor(Id)),

out(sensed_temperature(Id,Temp,Time)),

tc_aggr@node_aggr ? out(sensed_temperature(Id,Temp)))

).

%(2)

reaction(out(sensed_temperature(_,Temp,_)), from_tc, (

in(current_temperature(_)),

out(current_temperature(Temp)))

).

Behaviour

Reaction (1) is triggered by external events generated by a
temperature sensor
Reaction (2) updates current temperature

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 134 / 144

Situatedness & Coordination A Case Study

Case Study: Aggregator Artifacts

%(4)

reaction(out(sensed_temperature(Id,Temp)), from_tc, (

in(total_temperature(OldTotalTemp),

in(sensed_temperature(Id,OldTemp)),

TotalTemp is OldTotalTemp - OldTemp + Temp,

out(total_temperature(TotalTemp),

rd(number_of_sensors(SensorNo),

AvgTemp is TotalTemp / SensorNo,

in(average_temp(_)), out(average_temp(AvgTemp)))

).

Behaviour

Reaction (4) keeps track of the current state of the average
temperature

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 135 / 144

Situatedness & Coordination A Case Study

Case Study: Agents

Observable behaviour

Agents are goal-oriented and proactive processes that control temperature
of the room

1 get local information from sensor
tc sens@node i ? rd(current temperature(Temp i))

2 get global information from aggregator
tc aggr@node aggr ? rd(average temp(AvgTemp))

3 deliberate action by determining TempVar based on Temp i and
AvgTemp

4 act upon actuators (if TempVar 6= 0)
tc-heat i@node i ? out(change temperature(TempVar))

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 136 / 144

Situatedness & Coordination A Case Study

Case Study: Actuator Artifacts

%(3)

reaction(out(change_temperature(TempVar)), from_agent,

actuator_i ? set(temp_inc,TempVar)

).

Behaviour

When the controller agent deliberate an increment in the temperature

a tc-heat i@node i ? out(change temperature(TempVar))

reaches the actuator artifact
by reaction (3), a suitable signal is sent to the actuator, through the
suitably-installed transducer

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 137 / 144

Conclusions

Summing Up

Coordination for Distributed System Engineering

Engineering the space of interaction among components

Coordination as Governing Interaction

Enabling vs. Governing

Classes and Features of Coordination Models

Control-oriented vs. Data-oriented Models

Tuple-based Models

From Linda tuple spaces to ReSpecT tuple centres
Governing distributed systems: from data-oriented to hybrid
coordination models
Time-dependent coordination: experiments of with ReSpecT
Situated coordination: experiments of with ReSpecT

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 138 / 144

Conclusions

Summing Up

Coordination for Distributed System Engineering

Engineering the space of interaction among components

Coordination as Governing Interaction

Enabling vs. Governing

Classes and Features of Coordination Models

Control-oriented vs. Data-oriented Models

Tuple-based Models

From Linda tuple spaces to ReSpecT tuple centres
Governing distributed systems: from data-oriented to hybrid
coordination models
Time-dependent coordination: experiments of with ReSpecT
Situated coordination: experiments of with ReSpecT

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 138 / 144

Conclusions

Summing Up

Coordination for Distributed System Engineering

Engineering the space of interaction among components

Coordination as Governing Interaction

Enabling vs. Governing

Classes and Features of Coordination Models

Control-oriented vs. Data-oriented Models

Tuple-based Models

From Linda tuple spaces to ReSpecT tuple centres
Governing distributed systems: from data-oriented to hybrid
coordination models
Time-dependent coordination: experiments of with ReSpecT
Situated coordination: experiments of with ReSpecT

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 138 / 144

Conclusions

Summing Up

Coordination for Distributed System Engineering

Engineering the space of interaction among components

Coordination as Governing Interaction

Enabling vs. Governing

Classes and Features of Coordination Models

Control-oriented vs. Data-oriented Models

Tuple-based Models

From Linda tuple spaces to ReSpecT tuple centres
Governing distributed systems: from data-oriented to hybrid
coordination models
Time-dependent coordination: experiments of with ReSpecT
Situated coordination: experiments of with ReSpecT

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 138 / 144

References

References I

Arbab, F. (2004).
Reo: A channel-based coordination model for component composition.

Mathematical Structures in Computer Science, 14:329–366.

Casadei, M. and Omicini, A. (2009).
Situated tuple centres in ReSpecT.
In Shin, S. Y., Ossowski, S., Menezes, R., and Viroli, M., editors, 24th
Annual ACM Symposium on Applied Computing (SAC 2009), volume
III, pages 1361–1368, Honolulu, Hawai’i, USA. ACM.

Ciancarini, P. (1996).
Coordination models and languages as software integrators.
ACM Computing Surveys, 28(2):300–302.

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 139 / 144

References

References II

Dastani, M., Arbab, F., and de Boer, F. S. (2005).
Coordination and composition in multi-agent systems.
In Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M. P., and
Wooldridge, M. J., editors, 4rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2005), pages
439–446, Utrecht, The Netherlands. ACM.

Dijkstra, E. W. (2002).
Co-operating sequential processes.
In Hansen, P. B., editor, The Origin of Concurrent Programming:
From Semaphores to Remote Procedure Calls, chapter 2, pages
65–138. Springer.
Reprinted. 1st edition: 1965.

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 140 / 144

References

References III

Fredriksson, M. and Gustavsson, R. (2004).
Online engineering and open computational systems.
In Bergenti, F., Gleizes, M.-P., and Zambonelli, F., editors,
Methodologies and Software Engineering for Agent Systems: The
Agent-Oriented Software Engineering Handbook, volume 11 of
Multiagent Systems, Artificial Societies, and Simulated Organization,
pages 377–388. Kluwer Academic Publishers.

Gelernter, D. (1985).
Generative communication in Linda.
ACM Transactions on Programming Languages and Systems,
7(1):80–112.

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 141 / 144

References

References IV

Gelernter, D. and Carriero, N. (1992).
Coordination languages and their significance.
Communications of the ACM, 35(2):97–107.

Goldin, D. Q., Smolka, S. A., and Wegner, P., editors (2006).
Interactive Computation: The New Paradigm.
Springer.

Omicini, A. and Denti, E. (2001).
From tuple spaces to tuple centres.
Science of Computer Programming, 41(3):277–294.

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 142 / 144

References

References V

Omicini, A., Ricci, A., and Viroli, M. (2005).
Time-aware coordination in ReSpecT.
In Jacquet, J.-M. and Picco, G. P., editors, Coordination Models and
Languages, volume 3454 of LNCS, pages 268–282. Springer-Verlag.
7th International Conference (COORDINATION 2005), Namur,
Belgium, 20–23 April 2005. Proceedings.

Omicini, A., Ricci, A., and Viroli, M. (2007).
Timed environment for Web agents.
Web Intelligence and Agent Systems, 5(2):161–175.

Papadopoulos, G. A. and Arbab, F. (1998).
Coordination models and languages.
In Zelkowitz, M. V., editor, The Engineering of Large Systems,
volume 46 of Advances in Computers, pages 329–400. Academic Press.

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 143 / 144

Coordination-based Systems
Distributed Systems

Sistemi Distribuiti

Andrea Omicini
andrea.omicini@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2011/2012

Andrea Omicini (Università di Bologna) 8 – Coordination-based Distributed Systems A.Y. 2011/2012 144 / 144

	Elements of Distributed Systems Engineering
	Coordination: A Meta-model
	Enabling vs. Governing Interaction
	Classifying Coordination Models
	Tuple-based Coordination Models
	Linda & Tuple-based Coordination
	Hybrid Coordination Models

	Programming Tuple Spaces
	Tuple Centres
	Dining Philosophers with ReSpecT
	ReSpecT: Language & Semantics

	Coordination in the Spatio-Temporal Fabric
	Time as a Coordination Issue
	Space as a Coordination Issue

	Situatedness & Coordination
	Situatedness as a Coordination Issue
	Extending ReSpecT Toward Situatedness
	Situated ReSpecT: A Case Study

