CAPITOLO 5 – DIMENSIONAMENTO DI CAMPI DI SONDE IN ASSENZA DI FLUSSO DELL'ACQUA DI FALDA

Il metodo di dimensionamento ASHRAE, basato su simulazioni numeriche di durata 10 anni, non garantisce la sostenibilità nel lungo periodo di campi di sonde con carichi termici stagionali non bilanciati. Si presenta qui un nuovo metodo per il dimensionamento di campi di sonde in assenza di movimento dell'acqua di falda.

EFFETTI DI LUNGO TERMINE DI UN CARICO TERMICO REGOLARE

Consideriamo un carico termico che, per ciascuna metà dell'anno, varia nel tempo con legge sinusoidale. La distribuzione di temperatura nel terreno prodotta da un carico di questo tipo può essere studiata considerando la sonda come una sorgente termica cilindrica, senza considerare la struttura interna (cylindrical heat source).

Si consideri un solido omogeneo infinito, delimitato internamente da una superficie cilindrica di diametro *D*, ovvero che occupa la regione di spazio $D/2 \le r < + \infty$. Si assuma che la conducibilità termica k_g e la diffusività termica a_g del terreno siano costanti e non ci sia generazione termica nel solido.

All'istante iniziale, $\tau = 0$, il campo di temperatura nel solido è uniforme, con valore T_g . Per $\tau > 0$, un flusso termico per unità di area uniforme e dipendente dal tempo $q(\tau) = (Q_0 / \pi D) \times F(\tau)$ è applicato al solido, alla superficie interna $r = r_0$, dove Q_0 è il carico termico lineare e $F(\tau)$ è una funzione adimensionale del tempo.

In queste condizioni, il campo di temperatura nel solido ha simmetria assiale e l'equazione differenziale della conduzione, in coordinate cilindriche, ha la forma

$$\frac{\partial T}{\partial \tau} = \alpha_g \nabla^2 T \tag{1}$$

La condizione iniziale e la condizione al contorno sono

$$T(r,0) = T_g \tag{2}$$

$$-k_g \frac{\partial T}{\partial r}\Big|_{r=r_0} = \frac{Q_0}{\pi D} F(\tau)$$
(3)

ADIMENSIONALIZZAZIONE RISPETTO AL DIAMETRO

$$\frac{\partial T}{\partial \tau} = \alpha_g \nabla^2 T \tag{1}$$

$$T(r,0) - T_g = 0 \tag{2}$$

$$-\kappa_{g} \frac{\partial T}{\partial r}\Big|_{r=D/2} = \frac{Q_{0}}{\pi D} F(\tau)$$
(3)

Introduciamo le seguenti grandezze adimensionali

$$T^{*} = k_{g} \frac{T - T_{g}}{Q_{0}} \longrightarrow T - T_{g} = \frac{Q_{0} T^{*}}{k_{g}}$$
$$\tau^{*} = \frac{\alpha_{g} \tau}{D^{2}} \longrightarrow \tau = \frac{D^{2} \tau^{*}}{\alpha_{g}}$$
$$\nabla^{*} = D\nabla \longrightarrow \nabla = \frac{1}{D} \nabla^{*}$$
$$r^{*} = \frac{r}{D} \longrightarrow r = Dr^{*}$$

$$\frac{\partial T}{\partial \tau} = \alpha_g \nabla^2 T \qquad (1)$$

$$T - T_g = \frac{Q_0 T^*}{k_g} \qquad \tau = \frac{D^2 \tau^*}{\alpha_g} \qquad \nabla = \frac{1}{D} \nabla^*$$

$$\frac{Q_0}{k_g} \frac{\alpha_g}{D^2} \frac{\partial T^*}{\partial \tau^*} = \frac{\alpha_g}{D^2} \frac{Q_0}{k_g} \nabla^{*2} T^*$$

$$\left[\frac{\partial T^*}{\partial \tau^*} = \nabla^{*2} T^*\right] \qquad (1ad)$$

$$T(r,0) - T_g = 0 \qquad (2) \qquad \longrightarrow \qquad \overline{T^*(r^*,0) = 0} \qquad (2ad)$$

$$-k_g \frac{\partial T}{\partial r}\Big|_{r=D/2} = \frac{Q_0}{\pi D} F(\tau) \qquad (3)$$

$$-k_g \frac{Q_0}{k_g D} \frac{\partial T^*}{\partial r^*}\Big|_{r^*=1/2} = \frac{Q_0}{\pi D} F(\tau)$$

$$\left[-\frac{\partial T^*}{\partial r^*}\Big|_{r^*=1/2} = \frac{1}{\pi} F(\tau)\right] \qquad (3ad)$$

Poiché le equazioni sono lineari, possiamo utilizzare la sovrapposizione degli effetti.

Consideriamo due carichi termici adimensionali $F_1(\tau)$ e $F_2(\tau)$

$$F_{1} = \sin\left(\frac{2\pi}{\tau_{0}}\tau\right) \qquad \qquad F_{2} = \left|\sin\left(\frac{2\pi}{\tau_{0}}\tau\right)\right|$$

La sovrapposizione pesata di $F_1(\tau)$ e $F_2(\tau)$, con $\tau_0 = 1$ anno, riproduce qualsiasi tipo di carico con parziale compensazione stagionale e andamento sinusoidale nel semiperiodo.

$$F_{1} = \sin\left(\frac{2\pi}{\tau_{0}}\tau\right) \qquad \qquad F_{2} = \left|\sin\left(\frac{2\pi}{\tau_{0}}\tau\right)\right|$$

Per introdurre nelle espressioni di F_1 ed F_2 il tempo adimensionale, introduciamo il numero di Fourier

$$Fo = \frac{\alpha_g \tau_0}{D^2}$$
Poiché $\tau^* = \frac{\alpha_g \tau}{D^2}$ risulta $\frac{\tau}{\tau_0} = \frac{\tau^*}{Fo}$ e quindi
$$F_1 = \sin\left(\frac{2\pi}{Fo}\tau^*\right)$$

$$F_2 = \left|\sin\left(\frac{2\pi}{Fo}\tau^*\right)\right|$$

Il principio di sovrapposizione degli effetti implica che la variazione di temperatura prodotta in un punto da due o più sonde è uguale alla somma delle variazioni di temperatura prodotta dalle singole sonde, considerate separatamente.

Quindi, la temperatura adimensionale media sulla superficie di una sonda, ad un certo istante, è uguale alla somma dei valori medi delle temperature adimensionali prodotte, sulla superficie in esame, dalla sonda stessa e da tutte le altre, considerate ciascuna separatamente.

Poiché le sonde sono molto sottili rispetto alla loro distanza reciproca, si può ritenere valida la seguente assunzione:

La temperatura adimensionale media sulla superficie della sonda 1, ad un certo istante, è uguale alla somma della temperatura adimensionale prodotta dalla sonda 1 + la somma delle temperature adimensionali prodotte dalle altre sonde, ciascuna considerata separatamente, ad una distanza dal proprio asse pari a quella fra il proprio asse e quello della sonda 1.

Questo consente di progettare un campo sonde eseguendo simulazioni solo su una sonda e andando a sommare i contributi di temperatura adimensionale prodotti a varie distanze dall'asse.

VALORI DEL NUMERO DI FOURIER E DISTANZE

Ricordiamo che

$$Fo = \frac{\alpha_g \tau_0}{D^2}$$

Faremo riferimento a un diametro della sonda D = 0.15 m; questo è un valore tipico per sonde a U o a doppio U, che sono le più diffuse.

In (ASHRAE handbook 2007) sono riportati i valori della diffusività termica di vari tipi di terreno. I valori minimo e massimo sono rispettivamente: 4.86×10^{-7} m²/s (argilla pesante, 15% acqua); 1.62×10^{-6} m²/s (sabbia pesante, 5% acqua).

Il periodo da considerare è $\tau_0 = 3.1536 \times 10^7$ s.

I corrispondenti valori del numero di Fourier sono: *Fo* = 681; *Fo* = 2271.

Considereremo i valori: *Fo* = 700; *Fo* = 1500; *Fo* = 2300.

Faremo riferimento a campi di sonde a linea singola (fino a 5 sonde), doppia linea (fino a 2×5 sonde) e campo quadrato (fino a 5×5 sonde).

Se si indica con d^* la distanza adimensionale fra 2 sonde della stessa linea o fra due linee, le distanze adimensionali da considerare, oltre a 1/2 (raggio della sonda), sono le seguenti:

$$d^*$$
; $d^*\sqrt{2}$; $2d^*$; $d^*\sqrt{5}$; $2d^*\sqrt{2}$

Assumeremo $d^* = 40$, e considereremo quindi le distanze adimensionali:

0.5; 40;
$$40\sqrt{2}$$
; 80; $40\sqrt{5}$; $80\sqrt{2}$

RISULTATI

Per ciascun carico adimensionale (F_1 , F_2), valore di *Fo* (700, 1500, 2300) e valore della distanza adimensionale dall'asse della sonda (1/2, 40, 40 $\sqrt{2}$, 80, 40 $\sqrt{5}$, 80 $\sqrt{2}$) la temperatura adimensionale *T*^{*} è stata calcolata numericamente come funzione di τ^*/Fo , nel campo $0 \le \tau^*/Fo \le 50$, con passi di 0.05 τ^*/Fo . Poi sono stati determinati i coefficienti di due funzioni interpolanti (per F_2 ed F_1), con la seguente struttura.

$$T_1^* = a_1 \operatorname{Exp}(a_2 \tau^* / Fo) + a_3 \sin \left[2\pi \left(\tau^* / Fo + a_4 \right) \right] + a_5$$

$$T_{2}^{*} = b_{1} \Big[1 + b_{2} \exp(b_{3} \tau^{*} / Fo) \Big] \ln(b_{4} + \tau^{*} / Fo) + b_{5} \sin\left[4\pi (\tau^{*} / Fo + b_{6}) \right] + b_{7}$$

 $a_1, \ldots, a_5, b_1, \ldots, b_7$ sono costanti, i cui valori sono riportati in tabelle. La temperatura adimensionale prodotta da F_1 è denotata con T_1 , quella prodotta da F_2 è denotata con T_2 .

<i>Fo</i> = 700							
T_1^*	a_1	a_2	a_3	a_4	a_5	use for	
1/2	0	0	0.52	-0.030	0	$\tau^*/Fo\geq 2$	
40	0.011	-0.30	0.0069	-0.48	0.00037	τ^* / Fo ≥ 2	
$40\sqrt{2}$	0.0060	-0.20	0.0020	-0.66	0.00036	τ^* / Fo>4	
80	0.0022	-0.080	0.00036	-0.90	0.00035	τ^* / Fo>4	
$40\sqrt{5}$	0.0018	-0.070	0.00020	-1.01	0.00034	τ^* / Fo>4	
$80\sqrt{2}$	0.0010	-0.050	0.000040	-1.25	0.00030	τ^* / Fo>6	
		-	<i>Fo</i> = 1500				
T_1^*	a_1	a_2	<i>a</i> ₃	a_4	a_5	use for	
1/2	0	0	0.58	-0.03	0	τ^* / Fo \geq 2	
40	0.018	-0.42	0.019	-0.35	0.00037	$\tau^*/Fo>3$	
$40\sqrt{2}$	0.010	-0.32	0.0077	-0.47	0.00035	τ^* / Fo>2	
80	0.0056	-0.21	0.00225	-0.64	0.00030	$ au^*$ / Fo>2	
$40\sqrt{5}$	0.0045	-0.18	0.00135	-0.71	0.00026	τ^* / Fo>2	
$80\sqrt{2}$	0.0028	-0.125	0.00042	-0.88	0.00025	$\tau^*/Fo>3$	
	-	-	Fo = 2300				
T_1^*	a_1	a_2	a_3	a_4	a_5	use for	
1/2	0	0	0.61	-0.03	0	$ au^*$ / Fo>2	
40	0.020	-0.46	0.030	-0.30	0.00037	$ au^*$ / Fo>2	
$40\sqrt{2}$	0.013	-0.32	0.014	-0.40	0.00035	$ au^*$ / Fo>4	
80	0.0065	-0.23	0.0050	-0.54	0.00032	$\tau^*/Fo>5$	
$40\sqrt{5}$	0.0050	-0.20	0.0033	-0.60	0.00031	$\tau^*/Fo>5$	
$80\sqrt{2}$	0.0035	-0.15	0.00125	-0.71	0.00025	$ au^*$ / Fo>4	

Coefficienti della funzione interpolante, per il carico F_1

<i>Fo</i> = 700								
T_2^*	b_1	b_2	b_3	b_4	b_5	b_6	b_7	use for
1/2	0.030	0.60	0.0030	0.60	0.21	-0.15	0.41	$\tau^*/Fo>3$
40	0.029	0.62	0.0018	0.50	0.0010	-0.45	0.0060	$\tau^*/Fo>2$
$40\sqrt{2}$	0.026	0.67	0.0016	0.30	0.00010	-0.55	-0.014	$\tau^*/Fo>3$
80	0.024	0.72	0.0015	0.29	0	0	-0.039	$\tau^*/Fo>5$
$40\sqrt{5}$	0.023	0.75	0.0014	0.25	0	0	-0.045	τ^* / Fo>6
$80\sqrt{2}$	0.022	0.76	0.0012	0.24	0	0	-0.060	$\tau^*/Fo>10$
				Fo = 1500				
T_2^*	b_1	b_2	b_3	b_4	b_5	b_6	b_7	use for
1/2	0.060	0.11	0.0022	0.60	0.24	-0.15	0.39	$ au^*$ / Fo>2
40	0.046	0.13	0.0014	0.50	0.0035	-0.37	0.029	$\tau^*/Fo>2$
$40\sqrt{2}$	0.044	0.14	0.00080	0.42	0.0010	-0.46	0.002	$\tau^*/Fo>3$
80	0.038	0.21	0.00070	0.20	0.00020	-0.57	-0.016	$\tau^*/Fo>3$
$40\sqrt{5}$	0.035	0.26	0.00060	0.12	0.00010	-0.65	-0.02	$\tau^*/Fo>3$
$80\sqrt{2}$	0.034	0.27	0.00050	0.08	0	0	-0.038	τ^* / Fo>4
				Fo = 2300				
T_2^*	b_1	b_2	b_3	b_4	b_5	b_6	b_7	use for
1/2	0.090	-0.37	0.0020	0.60	0.26	-0.14	0.43	$ au^*$ / Fo>1
40	0.089	-0.36	0.0010	0.50	0.0060	-0.34	0.040	τ^* / Fo>5
$40\sqrt{2}$	0.079	-0.35	0.000050	0.24	0.0020	-0.40	0.021	$\tau^*/Fo>4$
80	0.070	-0.32	0.000035	0.15	0.00040	-0.50	0.0010	$\tau^*/Fo>3$
$40\sqrt{5}$	0.060	-0.21	0.000023	0.13	0.00030	-0.55	-0.010	$\tau^*/Fo>4$
$80\sqrt{2}$	0.050	-0.060	0.000020	0.10	0	0	-0.031	$\tau^*/Fo>6$

Coefficienti della funzione interpolante, per il carico F_2

Temperatura adimensionale sulla superficie della sonda, prodotta da F_2 : valori computazionali in rosso, funzione interpolante in arancio.

ESEMPI

Distanza di 40 diametri fra sonde adiacenti, *Fo* = 1500, compensazione estateinverno 50 %. Evoluzione nel tempo della temperatura media sulla superficie della sonda più critica, per alcuni campi di sonde.

SONDA SINGOLA E LINEA SINGOLA DA 5 SONDE

Il valore massimo di T^* (dopo 49.3 anni) è 0.647 per la sonda singola e 0.835 per la linea di 5 sonde, con un incremento del 29% (rapporto 1.29).

LINNE DOPPIE $2 \times 3 \to 2 \times 5$

Il valore massimo di T^* è 0.898 per la doppia linea 2 × 3 (+39% rispetto alla singola) e 1.054 per la linea di 2 × 5 (+63% rispetto alla singola, rapporto 1.63).

CAMPI QUADRATI $3 \times 3 E 4 \times 4$

Il valore massimo di T^* è 1.041 per il campo 3 × 3 (+61% rispetto alla singola) e 1.307 per il campo 4 × 4 (+102% rispetto alla singola, rapporto 2.02, pendenza ancora alta, non raccomandabile).

APPLICAZIONE

Si deve progettare il campo sonde per una palazzina con 7 appartamenti, avente carico stagionale prevalente invernale e compensazione 50%, con i seguenti dati.

Carico medio nel mese di gennaio: $Q_0 \times L = -10$ kW; sonde a doppio tubo ad U con D = 0.156 m; terreno con $k_g = 2$ W/(mK), (ρc)_g = 2.5 MJ/(m³K), e quindi $\alpha_g = 8 \times 10^{-7}$ m²/s; malta con $k_{gt} = 1.6$ W/(mK), (ρc)_{gt} = 1.3 MJ/(m³K); temperatura del terreno indisturbato $T_g = 14$ °C; temperatura minima fluido (acqua-glicole 20%) $T_{f, min} = 2$ °C; coefficiente di convezione fluido-tubi (6 °C) 200 W/(m²K); diametro interno tubi $D_i = 26$ mm, esterno $D_e = 32$ mm.

Resistenza termica fra fluido e malta sigillante

Resistenza termica convettiva fra fluido e tubi:

$$R_{cv} = \frac{1}{4 \pi D_i h} = 0.015 \frac{\text{mK}}{\text{W}}$$

Resistenza termica conduttiva tubi:

$$R_c = \frac{1}{8\pi k_p} \ln \frac{D_e}{D_i} = 0.021 \quad \frac{\mathrm{mK}}{\mathrm{W}}$$

Resistenza termica fra fluido e malta : $R = R_{cv} + R_c = 0.036$ m K / W.

Impostazione

$$\left(T_{gd} - T_{f}\right)_{\max} = \left(T_{gd} - T_{tub}\right)_{\max} + \left(T_{tub} - T_{f}\right)_{\max}$$

$$T_g - T = \frac{\left| \mathbf{Q}_0 \right| T^*}{k_g}$$

$$\left(T_{gd} - T_{f}\right)_{\max} = \frac{\left|Q_{0}\right|}{k_{g}} \left(T_{tub}^{*}\right)_{\max} + \left|Q_{0}\right| \left(Q_{sh1}\right)_{\max} R$$

$$\left(T_{gd} - T_{f}\right)_{\max} = \left|Q_{0}\right| \left(\frac{1}{k_{g}}\left(T_{tub}^{*}\right)_{\max} + \left(Q_{sh1}\right)_{\max}R\right)\right)$$

$$\left(T_{gd} - T_{f}\right)_{\max} = \left|Q_{0}\right| \left(\frac{1}{k_{g}} \left(T_{tub}^{*}\right)_{\max} + \left(Q_{sh1}\right)_{\max}R\right)$$

$$\left|Q_{0}\right| = \frac{\left(T_{gd} - T_{f}\right)_{\max}}{\frac{1}{k_{g}}\left(T_{tub}^{*}\right)_{\max} + \left(Q_{sh1}\right)_{\max}R}$$
(1)

dove:

$$\left(\mathcal{T}_{tub}^{*}\right)_{\max} = \left(\mathcal{T}_{S}^{*}\right)_{\max} + \left(\mathcal{T}_{tub}^{*} - \mathcal{T}_{S}^{*}\right)_{\max}$$
(2)

 $|Q_0| = 25 \text{ W/m} \rightarrow L = 400 \text{ m} \rightarrow 4 \text{ sonde in linea da 100 m}$

$$T_{S,1\times4}^* = T_{1/2}^* + 2T_{40}^* + T_{80}^*$$

$$Fo = \frac{\alpha_g \tau_0}{D^2} = 1037$$

Utilizzando le funzioni interpolanti per $T_1^* e T_2^* e$ le tabelle dei coefficienti, e interpolando i risultati fra Fo = 700 e Fo = 1500, si trovano gli andamenti, negli ultimi 2 anni di $T_{1/2}^*, T_{40}^*, T_{80}^*$

Si trova quindi l'andamento nel tempo della temperatura sulla superficie della sonda più critica :

$$T_{S,1\times4}^* = T_{1/2}^* + 2T_{40}^* + T_{80}^*$$

Il valore massimo di questa temperatura adimensionale risulta: 0.778, e si realizza per $\tau^*/Fo = 49.3$

Esempio: foglio Excel per il calcolo di $T_{1/2}^{*}$

Carico F1						Carico F2							
- 1/2	a1	a2	a3	a4	a5	- 1/2	b1	b2	b3	b4	b5	b6	b7
Fo = 700	0	0	0.52	-0.03	0	Fo = 700	0.03	0.6	0.003	0.6	0.21	-0.15	0.41
Fo = 1500	0	0	0.58	-0.03	0	Fo = 1500	0.06	0.11	0.0022	0.6	0.24	-0.15	0.39
Tau*/Fo	Fo = 700	Fo = 1500	Fo = 1307			Tau*/Fo	Fo = 700	Fo = 1500	Fo = 1307		RESULT05		
48	-0.0976	-0.1088	-0.1061			48	0.4076	0.4233	0.4195		0.0253		
48.1	0.2213	0.2468	0.2407			48.1	0.4838	0.5105	0.5041		0.3065		
48.2	0.4556	0.5082	0.4955			48.2	0.7308	0.7928	0.7778		0.5661		
48.3	0.5159	0.5754	0.5611			48.3	0.8074	0.8802	0.8627		0.6365		
48.4	0.3792	0.4229	0.4123			48.4	0.6079	0.6522	0.6415		0.4696		
48.5	0.0976	0.1088	0.1061			48.5	0.4082	0.4240	0.4202		0.1846		
48.6	-0.2213	-0.2468	-0.2407			48.6	0.4845	0.5112	0.5048		-0.0543		
48.7	-0.4556	-0.5082	-0.4955			48.7	0.7315	0.7935	0.7785		-0.1770		
48.8	-0.5159	-0.5754	-0.5611			48.8	0.8080	0.8809	0.8634		-0.2050		
48.9	-0.3792	-0.4229	-0.4124			48.9	0.6085	0.6529	0.6422		-0.1487		
49	-0.0976	-0.1088	-0.1061			49	0.4088	0.4247	0.4209		0.0256		
49.1	0.2213	0.2468	0.2407			49.1	0.4851	0.5119	0.5054		0.3069		
49.2	0.4556	0.5082	0.4955			49.2	0.7321	0.7942	0.7792		0.5664		
49.3	0.5159	0.5754	0.5611			49.3	0.8087	0.8817	0.8640		0.6368		
49.4	0.3792	0.4229	0.4124			49.4	0.6091	0.6536	0.6429		0.4700		
49.5	0.0976	0.1088	0.1061			49.5	0.4095	0.4254	0.4216		0.1850		
49.6	-0.2213	-0.2468	-0.2407			49.6	0.4858	0.5126	0.5061		-0.0540		
49.7	-0.4556	-0.5082	-0.4955			49.7	0.7327	0.7949	0.7799		-0.1767		
49.8	-0.5159	-0.5754	-0.5611			49.8	0.8093	0.8824	0.8647		-0.2046		
49.9	-0.3792	-0.4229	-0.4124			49.9	0.6098	0.6543	0.6436		-0.1484		
50	-0.0976	-0.1088	-0.1061			50	0.4101	0.4261	0.4223		0.0260		

Per valutare l'effetto dei carichi di picco, bisogna trovare $Fo_w \in \tilde{k}$

$$\tilde{k} = \frac{1.6}{2} = 0.8$$
 $Fo_w = \frac{k_{gd} \tau_0}{\rho_w c_w D^2}$ $Fo = \frac{k_g \tau_0}{\rho_g c_g D^2}$

$$Fo_{w} = Fo \frac{\rho_{g}c_{g}}{\rho_{w}c_{w}} = \sigma Fo = \frac{2.5}{4.187} Fo = 0.597 \times 1307 = 780$$

$\left(T_{tub}^{*}-T_{s}^{*} ight)_{\max}$								
Winter operation								
Fo_w	$\tilde{k} = 0.4$	$\tilde{k} = 1$						
300	0.261	0.173	0.132					
550	0.301	0.200	0.156					
800	0.334	0.225	0.183					
Summer operation								
Fo_w	$\tilde{k} = 0.4$	$\tilde{k} = 0.7$	$\tilde{k} = 1$					
300	0.426	0.303	0.251					
550	0.514	0.380	0.322					
800	0.577	0.430	0.373					

Interpolando si ottiene, per $Fo_w = 780$ $\tilde{k} = 0.7 \rightarrow 0.223$; $\tilde{k} = 1 \rightarrow 0.181$; $\tilde{k} = 0.8 \rightarrow 0.209$ $\left(T_{tub}^*\right)_{max} = \left(T_S^*\right)_{max} + \left(T_{tub}^* - T_S^*\right)_{max} = 0.778 + 0.209 = 0.987$

$$\left|Q_{0}\right| = \frac{\left(T_{gd} - T_{f}\right)_{\max}}{\frac{1}{k_{g}}\left(T_{tub}^{*}\right)_{\max} + \left(Q_{sh1}\right)_{\max}R}$$
(1)
$$\left|Q_{0}\right| = \frac{12}{0.987/2 + 1.995 \times 0.036} = 22.0 \text{ W/m}$$

$$L = \frac{10000}{|Q_0|} = \frac{10000}{22.0} = 455 \text{ m}$$

Si adottano 4 sonde in linea con lunghezza 114 m ciascuna