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Abstract Complex life history processes of corals, such
as fission, fusion, and partial mortality of colonies, that
decouple coral age from size, are rare or clearly detect-
able in corals that produce distinct colonial or solitary
forms. In some of these corals, individual age may be
determined from size, and standard age-based growth
and population dynamics models may be applied. We
determined population size and structure and measured
growth rates of Balanophyllia europaea individuals at
Calafuria in the eastern Ligurian Sea. We then applied
demographic models to these data. Growth rate de-
creased with increasing coral size. The age–size curve
derived from field measurements of growth rates fits that
obtained from the computerized tomography analysis of
skeletal growth bands. The frequency of individuals in
each age class decreased exponentially with age, indi-
cating a population in a steady state. The survival curve
showed a turnover time of 3.6 years and a maximum life
span of 20 years. This is nearly three times the turnover
time and maximum life span recorded for Balanophyllia
elegans living off the western coasts of North America,
the only congeneric species whose population dynamics
has been studied. The Beverton and Holt population
model may be useful for comparative analyses of
demographic traits and for resource management of
solitary or compact, upright growth forms that rarely
fragment. This paper completes the description of the
main life-strategy characteristics of the Mediterranean

endemic coral B. europaea, together with our previous
studies on the reproductive biology of this species. This
constitutes a major advance in the understanding of the
biology and ecology of Mediterranean scleractinian
corals, and represents the most complete description of a
coral from this geographic area to date that we are
aware of.

Keywords Dendrophylliidae Æ Solitary coral Æ Growth
model Æ Population ecology Æ Mediterranean Sea Æ
Reef management

Introduction

Demographic parameters reveal relationships between
organisms and their environment, and contribute to the
assessment of habitat stability (Grigg 1975; Bak and
Meesters1998; Meesters et al. 2001). In addition, infor-
mation on population turnover may contribute to
techniques for the restoration of damaged or degraded
coastal areas (Connell1973; Rinkevich1995; Chadwick-
Furman et al. 2000; Goffredo and Chadwick-Furman
2003).

Scattered information is available on the population
dynamics of scleractinian corals. Connell (1973) re-
viewed the modest amount of data that had been col-
lected in the previous 30 years, and described parameters
such as growth and survivorship. Since then, demo-
graphic processes have been described for some coral
species in the Red Sea (Loya 1976a, 1976b; Goffredo
1995; Chadwick-Furman et al. 2000; Goffredo and
Chadwick-Furman 2003), northeastern Pacific (Gerro-
dette 1979a; Fadlallah 1983), Caribbean Sea (Hughes
and Jackson 1985; Johnson 1992; Meesters et al. 2001),
Great Barrier Reef, Australia (Babcock 1988, 1991), and
in the Mediterranean Sea (Goffredo 1999). The paucity
of information on population dynamics in most species
of scleractinian corals may be attributed in part to a
distortion of age–size relationships in this group,
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resulting from processes of fragmentation, fusion, and
partial colony mortality (Hughes and Jackson 1985;
Hughes and Connell 1987; Babcock 1991; Hughes et al.
1992). These phenomena, characteristic of clonal mod-
ular organisms (Hughes 1989), prevent the application
of traditional growth and population dynamics models
based on organism age and create highly complex
demographic patterns (Hughes and Jackson 1985). Due
to these complexities, a recent analysis of 13 Caribbean
coral species used a size-based, rather than age-based,
assessment of population structure (Meesters et al.
2001). However, in species in which individuals rarely
fragment or fuse, and partial mortality is discernable by
anomalies in the regular growth pattern, it is possible to
determine coral age (Chadwick-Furman et al. 2000).
Corals that form discrete, upright branching colonies
that rarely fragment in certain environments, such as
Pocillopora and Stylophora, are suitable for this analysis
(Grigg 1984). In addition, in some solitary corals, age
estimates may be easily obtained from growth bands
that are visible externally (Abe 1940; Chadwick-Furman
et al. 2000; Goffredo and Chadwick-Furman 2003).
Growth-band analysis has been used more widely to
determine the age of colonial scleractinian and gorgo-
nian corals (Knuston et al. 1972; Buddemeir and Mar-
agos 1974; Grigg 1974; Logan and Anderson 1991;
Mistri and Ceccherelli 1993; Mitchell et al. 1993). Thus
growth and population dynamics models based on age
can be applied to certain growth forms of scleractinian
corals to describe demographic characteristics (Nisbet
and Gurney 1982; Grigg 1984; Ross 1984; Bak and
Meesters 1998; Chadwick-Furman et al. 2000; Goffredo
and Chadwick-Furman 2003).

Balanophyllia europaea is a solitary, ahermatypic,
zooxanthellate scleractinian coral that lives on rocky
substratum and is endemic to the Mediterranean Sea
(Zibrowius 1980,1983; Schumacher and Zibrowius 1985;
Aleem and Aleem 1992; Veron 2000). Owing to its
symbiosis with zooxanthellae, depth distribution ap-
pears restricted in this species; it is found between 0 m
and a maximum of 50 m depth (Zibrowius 1980),
though congeneric azooxanthellate corals have been re-
ported at depths of up to 1,100 m (Cairns 1977). The
reproductive biology of this species is characterized by
simultaneous hermaphroditism and brooding (Goffredo
and Telò 1998). B. europaea is the only species in the
genus Balanophyllia and one of the few in the family
Dendrophylliidae that exhibit hermaphroditism (Harri-
son 1985; Goffredo et al. 2000). During the annual cycle
of sexual reproduction, fertilization takes place from
March to June and planulation in August and Septem-
ber (Goffredo et al. 2002).

We describe the population dynamics of B. europaea
in the eastern Ligurian Sea, applying Beverton and
Holt’s population dynamics model based on age
(Beverton and Holt 1957; Chadwick-Furman et al. 2000;
Goffredo and Chadwick-Furman 2003). This paper
completes the description of the life strategy of this
Mediterranean endemic coral together with previous

studies on the reproductive biology of this species
(Goffredo and Telò1998; Goffredo et al. 2000, 2002;
Goffredo and Zaccanti in press).

Materials and methods

The studied population of Balanophyllia europaea was
located off the coast of Calafuria (10 km south of Leg-
horn city, Tuscany region, Italy, eastern Ligurian Sea
(NW Mediterranean), 43�28.4¢N, 10�20¢E). From April
to October 1997, five transects were surveyed to collect
data on population structure and bathymetric distribu-
tion of B. europaea (after Gerrodette 1979a; Mistri and
Ceccherelli 1994; Goffredo and Chadwick-Furman
2000). Using an underwater compass, we set transects
perpendicular to the coastline towards the open sea.
Transect length was determined using a metered rope.
Along each transect starting at a depth of 13 m, we
monitored a series of 23 quadrats, each 1 m2. Distance
between quadrats was 2 m. Within each quadrat, we
recorded the depth and the size of all B. europaea
polyps. We measured polyp length (L: oral disc axis
parallel to stomodaeum) and width (W: oral disc axis
perpendicular to stomodaeum) (after Chadwick-Furman
et al. 2000; Goffredo and Chadwick-Furman 2003).
Regular spacing of quadrats and transects may be biased
if laid over a population with a natural regular spacing.
However, this should not have occurred in this case
since the distributional pattern of B. europaea individ-
uals is disaggregated (random) (Goffredo and Zaccanti
in press).

During each dive, a mercury thermometer was used
to measure water temperature in the field at a depth of
6 m. We also placed two digital thermometers (DS
1921L.F5, Dallas Semiconductors) at the same depth in
the center of our research area to record water temper-
ature readings every 4 h during the period under study.
Photoperiod was calculated from astronomical alma-
nacs.

In April 1998, we collected 75 polyps at a depth of
6 m (depth of maximum population density) and per-
formed biometric analyses on them. Polyps were dried at
400 �C for 24 h and then height (h) (oral–aboral axis),
dry skeletal mass (M), length, and width were measured
(after Goffredo and Telò1998; Chadwick-Furman et al.
2000; Goffredo and Chadwick-Furman 2003; Goffredo
et al. 2002).

Furthermore, we recorded the growth rates of 62
individuals of B. europaea, marked in situ by a num-
bered plastic tag nailed to the rock, at a depth of 6 m
from December 1999 to April 2002. Length and width
were measured in situ every 3 months for 0.3–2.3 years.
The period of measurement varied between individuals,
because corals that died were replaced by others of
similar size during the study. The choice of the depth of
maximum abundance for the determination of growth
rates may bias the growth rate towards fast growth. This
could underestimate the age of a coral of a given size,
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but the bias should not affect most individuals, since
most of the population biomass (62%) is concentrated at
5–7 m (Goffredo 1999).

To obtain an objective relationship between polyp size
and age, for comparison with that obtained by field
measurement of growth rates, we counted the number of
annual growth bands by means of computerized
tomography (CT) technology (after Dodge1980; Kenter
1989; Logan and Anderson 1991; Bosscher 1993). Spec-
imens used in the CT measurements were collected at
Calafuria, at a depth of 6 m near the marked individuals.
Age was determined from the growth-band counts based
on the observation that temperate zooxanthellate corals
deposit two bands per year, a high density band in winter
and a low density band in summer (Peirano et al. 1999).
Growth bands were counted on corals up to 15 mm in
length (75% of the maximum coral size in this popula-
tion). Individuals larger than this had growth bands too
close to be distinguished by CT scans.

Growth was fit to the von Bertalanffy function (von
Bertalanffy 1938):

Lt ¼ L1 1� e�Kt
� �

where Lt is individual length at age t, L¥ is asymptotic
length (maximum expected length), K is a growth con-
stant, and t is individual age. The parameters L¥ and K
were determined via application of ‘‘Gulland and Holt
plot’’ and ‘‘Ford-Walford plot’’ traditional methods
(Ford1933; Walford1946; Gulland and Holt 1959 and
see the manuals of Pauly 1984 and Sparre et al. 1989,
and for the exact procedure Sebens1983 and Mitchell
et al. 1993 and Chadwick-Furman et al. 2000 for
examples of application to corals).

Population size structure was derived from surveying
the transects, and population age structure was then
determined using the above length-age function. The
instantaneous rate of mortality (Z) was determined by
an analysis of the age frequency distribution (after Grigg
1984; Ross 1984; Pauly 1984; Sparre et al. 1989; Babcock
1991; Chadwick-Furman et al. 2000; Goffredo and
Chadwick-Furman 2003). The method consists of a plot
of the natural logarithm of the numbers (frequency) in
each age class (Nt) against their corresponding age (t), or

lnNt ¼ at þ b;

Z being estimated from the slope a, with sign changed;
the intercept b is equal to the natural logarithm of the
number of individuals at age zero (N0). The most
important limitation of this method to estimate mor-
tality rate is the assumption of the steady state of the
population. The instantaneous rate of mortality was
then used to express the numeric reduction of the corals
over time (i.e., survivorship curve):

Nt ¼ N0e�Zt

Maximum individual lifespan was calculated as the age
at which <0.5% of the population was still surviving,
based on survival curves (after Sparre et al. 1989).

According to the Beverton and Holt (1957) model, an
age-specific curve expressing cohort yield in skeletal
mass was generated using the growth curve of skeletal
mass and the survival curve of the individuals (i.e., co-
hort yield=individual mass at age t·percent survival at
age t; after Grigg 1984; Ross 1984; Chadwick-Furman
et al. 2000; Goffredo and Chadwick-Furman 2003).
Based on the rates of growth and mortality for a pop-
ulation, the model predicts that a cohort of organisms
will gain weight until a point (i.e., age/size) is reached
where growth gains are overtaken by mortality losses.
Maximum production by the cohort occurs at the point
where losses due to mortality equal gains from growth.
As the cohort ages and reaches a point of maximum
longevity, production declines to zero.

Results

Description of habitat and population distribution

The seabed at Calafuria is initially rocky and drops
rapidly from the coastline to a depth of 15 m, at which
point it becomes sandy and slopes slightly but steadily
until it hits a rocky vertical wall approximately 200–
250 m from the coastline. The rocky wall starts at a
depth of 16 m and ends at 45 m in a flat sand and mud
bottom.

Balanophyllia europaea occurred on rocky substrata
from 2 to 12 m deep with an average density of 16
individuals m�2 (SE=3). Population density reached a
peak of 113 individuals m�2 (SE=33) at a depth of 6 m
(Fig. 1).

Fig. 1 Variation in the abundance of Balanophyllia europaea
individuals according to depth on a rocky reef at Calafuria,
eastern Ligurian Sea
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The water temperature at 6-m depth varied seasonally
by approximately 10 �C; the lowest temperatures oc-
curred between January and March with an average of
13.7 �C (range=13.0–15.5 �C), and the highest temper-
atures were in August with an average of 23.3 �C
(range=19.5–27 �C). The average annual temperature
was 18.1 �C. Summer and winter photoperiods had a 6-h
difference, with the longest daylength being 15 h, and
the shortest, 9 h.

Individual growth patterns

The length of B. europaea was chosen as the primary
biometrical measurement because it provided the best fit
to dry skeletal mass. The mass-length plot produced the
equation M (g)=0.0018L(mm)2.537 (r=0.930; p<0.01).
B. europaea growth was characterized by an inverse
exponential relationship between individual length and
width:length ratio, this ratio changing with coral growth
(Fig. 2A). This changing proportion indicated allomet-
ric growth, with oral disc length increasing more rapidly
than width, resulting in an oval body shape. Individual
height and length had a linear relationship, with a con-
stant ratio as the coral grew, indicating isometric growth
(Fig. 2B).

Growth rate and lifetime growth curve

The growth rate of individuals of B. europaea decreased
linearly with increasing coral size (Fig. 3). According to
the Gulland and Holt plot method for the estimation of
von Bertalanffy growth function parameters, the rate of
this decrease is the growth constant K, which is the slope
of the linear regression, with sign reversed. The popu-
lation of B. europaea had K=0.111 (0.058–0.163, 95%
confidence interval (CI); Fig. 3). The maximum expected
coral length (L¥) corresponds to the coral length where
the growth regression intercepts the x-axis (Fig. 3),
which for B. europaea at Calafuria L¥=2.362 (inter-
cept)/0.111 (�slope)=21.279 mm (16.365–26.505, 95%
CI).

For corals <10–11 years in age (<14–15 mm in
length), the von Bertalanffy growth curve derived from
field measurements of growth rates produced a similar
age–size relationship as that obtained from the CT
analysis of skeletal growth bands; after this 10–11 year
age, coral growth was so slow that bands became
indistinguishable and hence the CT analysis unusable
(Fig. 4, Fig. 5). Using the Ford-Walford plot method
for parameter estimation, we also calculated a von
Bertalanffy growth curve from the CT data (Fig. 4). A
Ford-Walford plot factors out differences in growth
that are age-dependent by plotting size (coral length, L)
at age t+1 on the ordinate versus size at age t on
the abscissa. The linear regression of this plot
produced the equation Lt+1(mm)=0.882Lt(mm)+

Fig. 2A, B Dependence of
biometric parameters on
individual length in the solitary
coral Balanophyllia europaea. A
Width. The confidence interval
(CI) of the exponent of the
nonlinear regression does not
contain 1 (0.54–0.83, 95% CI),
indicating allometric growth,
with oral disc length increasing
more rapidly than width. B
Height. The confidence interval
of the exponent of the nonlinear
regression contains 1 (0.86–
1.155, 95% CI), indicating coral
polyp height and length have
isometric growth

Fig. 3 Variation in linear growth rate among individuals of
Balanophyllia europaea. From in situ field measurements of
individual corals during 0.3–2.3 years on a rocky reef at Calafuria,
eastern Ligurian Sea. This plot corresponds to the Gulland and
Holt plot for the estimation of von Bertalanffy Growth function
parameters K and L¥. The observations are independent of one
another; i.e., a single coral contributes one point. The ordinate is
size increment per unit time [(L2�L1)/(t2�t1)], and the abscissa are
mean size for the increments in question [(L1+L2)/2]
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2.494 (r=0.978; p<0.01), from which L¥=intercept/
(1�slope)=21.136 mm (17.820–26.250, 95% CI),
K=�ln (slope)=0.126 (0.080–0.145, 95% CI). The
confidence intervals of the CT function parameters fell
within the confidence intervals of the function parame-
ters from field growth rate measurements, indicating no
significant differences between the two growth curves
(Fig. 4).

According to the von Bertalanffy growth model,
young individuals of B. europaea (1–2 years old) grew
relatively rapidly (2.00–2.49 mm year–1), but, as they
aged their growth rate decreased (0.91–1.04 mm year–1

at 8–9 years old), and by the time they were 19–20 years
old, grew at 0.23–0.30 mm year–1 (Fig. 4).

Population age structure and survivorship

The size-frequency of individuals observed in the field
population, when converted to an age-frequency distri-
bution using the above age–size relationship, revealed a
population dominated by young individuals (Fig. 6A).
Of the population sample, 50% was <5 years old (<9–
10 mm in individual length), i.e., under or at the age of
sexual maturity. The largest individuals observed were
estimated to be 20 years old (=19 mm length). The
gradual diminution in number of corals in the older age
categories suggests that age structure is relatively stable.

From the above age-frequency distribution, we esti-
mated the instantaneous rate of mortality (Z). The
youngest age classes (0–1 years) were excluded from the
mortality-rate analysis because they are known to be
under-represented in field samples (Grigg 1976, 1984;

Babcock 1991; Chadwick-Furman et al. 2000; Goffredo
and Chadwick-Furman 2003). In our case, the under-
representation of young corals is probably a consequence
of the difficulty in seeing corals of this size (<2–3 mm in
length). The plot of the natural logarithm of the numbers
of individuals (frequency) in each age class (Nt) against
their corresponding age (t), produced the equa-
tion lnNt=�0.275t(years)+6.690 (r=0.967; p<0.01).
From this equation Z=�(�0.275)=0.275 and N0=
e6.690=804.3. The estimated survival curve for members
of this population (Nt=804.3e�0.275t) indicated the max-
imum life span to be 20 years (Fig. 6B).

Population yield

The above data were used to calculate yield, in terms of
skeletal mass per recruit, of B. europaea individuals at
Calafuria (Fig. 6B). Cohort yield increased rapidly when
the polyps were young, due to their rapid increases in
size. Yield was maximal at 6–7 years of age, after which
losses due to mortality overtook gains due to individual
growth. The age at maximum yield occurred 2–4 years
after the polyps reached sexual maturity (Fig. 6B).

Discussion

The population dynamics of Balanophyllia europaea at
Calafuria revealed in this study, in combination with
previous works on the species’ reproductive biology
(Goffredo and Telò 1998; Goffredo et al. 2000,2002;
Goffredo and Zaccanti in press), have yielded a
description of the main life strategy characteristics of
this endemic, Mediterranean Sea, solitary coral. This
constitutes a major advance in our understanding of the
biology and ecology of Mediterranean scleractinian
corals, and is the most complete description of a coral of
this geographic area to date.

Depth distribution

The depth distribution of B. europaea at Calafuria was
strictly limited; corals were not found below a depth of
12 m. This contrasts with previous studies, where the
maximum known depth was 50 m (Ziborwius1980).
Because B. europaea is zooxanthellate (Zibrowius1980,
1983), its bathymetric distribution is limited by light
availability, while azooxanthellate congeners can live at
depths of more than 1,000 m (Cairns1977). The very
shallow depth distribution found in this study may be
attributed to turbidity in this area that reduces light
penetration (personal observations). In the nearby is-
lands of the Tuscan archipelago (Elba and Capraia, for
example), which are characterized by more transparent
water because of the absence of continental terrigenous
contributions, individuals of B. europaea have been
found at depths of up to 30 m (personal observations).

Fig. 4 Age-specific growth curves of individuals of the solitary
coral Balanophyllia europaea at Calafuria (eastern Ligurian Sea).
The age-length relationship, obtained from application of the von
Bertalanffy growth model to linear extension rates measured in the
field, is compared with age-length data from CT analysis of growth
bands. NGBA Number of corals examined for growth band analysis
(37)
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Biometry

B. europaea oral disc length and width follow an allo-
metric growth pattern leading to a change in polyp
shape during its lifetime. Sexually immature polyps are
round (with a width: length ratio=1 at 1 year of age).
Polyps gradually acquire a more oval shape, which be-
comes increasingly pronounced with age (width: length
ratios of 0.75 at 3 years of age and 0.50 at 15–18 years of
age). This allometric growth is the product of less active
skeletal secretion along the width than along the length

axis of the oral disc, and results in (lengths being equal)
a smaller oral disc surface area than in individuals with
isometric growth. The relatively small surface area of
oval or elongate corals may favor the removal of sedi-
ments and the acquisition of food in unstable habitats
(Foster et al. 1988; Hoeksema 1991).

Growth rate and models

Many scleractinian corals are known to grow indeter-
minately, and thus theoretically to have unlimited body
size (reviewed in Hughes and Jackson 1985; Bak and
Meesters 1998). However, some corals reduce their
growth rate as they age. Scleractinian corals with size-
dependent growth include species with branching colo-
nies (Pocillopora spp.; Stephenson and Stephenson 1933;
Grigg and Maragos1974), massive colonies (Goniastrea
spp.; Motoda 1940; Sakai 1998), free-living colonies
(Manicina areolata; Johnson 1992), free living solitary
polyps (many species of mushroom corals; Stephenson
and Stephenson 1933; Goffredo 1995; Yamashiro and
Nishihira 1998; Chadwick-Furman et al. 2000; Goffredo
and Chadwick-Furman 2003), and attached solitary
polyps such as B. europaea (this study), B. elegans, and

Fig. 5A–D Computerized tomography (CT) scans of Balanophyllia
europaea corallites collected at Calafuria. Saggital CT scan sections
are shown in A and B (the oral pole is at the top). hd High density
band. Multiple CT views facilitated the identification of hd bands.
The slab thickness of the tomography scan was 1 mm. A Age
determination by counting the skeletal growth bands was possible
in corallites up to 15 mm in length. In this sample (8 mm in length),
five high-density bands, corresponding to 5 years of growth, are
visible. B Age determination in individuals larger than 15 mm in
length was not obtained by counting the skeletal growth bands
because the growth bands are too close and no longer distinguish-
able by CT scans. In this sample (19 mm in length), determining
age on the basis of an accurate band count is clearly not possible.
C, D The original corallite is shown, in which is indicated where the
saggital CT scan section was taken
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Paracyathus stearnsii (Gerrodette 1979a). In free-living
corals, which often colonize soft substrata, a genetic
limitation on maximum size may represent an adapta-
tion to avoid sinking (Chadwick-Furman and Loya
1992). Among attached corals, other constraints may
influence maximal size, such as the biomechanics of a
skeleton with highly branched architecture, or the
physiology of a solitary polyp with a single mouth.

The maximum individual length predicted by the von
Bertalanffy model (L¥=21 mm) is similar to that ob-
served in the field population sampled at Calafuria
(maximum observed length is 19 mm). Zibrowius (1980)
gave 24 mm as the maximum length for B. europaea
individuals, although larger individuals, up to 28 mm in

length, are common in depths ranging from 0 to 30 m in
the Straits of Messina about 625 km south of Calafuria
(G. Neto, personal communication). The smaller size of
the Calafuria individuals compared to those found at
Messina and observations by Zibrowius (1980) could be
attributed both to latitudinal characteristics of the an-
nual daylength cycle and water temperature, and to
mechanical limitations of the colonized environment (see
Denny et al. 1985). A negative relationship between
growth rate and latitude was shown for scleractinians in
the genus Porites (Isdale1983; Lough and Barnes 2000;
Grigg 1981, 1997) and in the family Fungiidae (Goffredo
and Chadwick-Furman 2003). Alternatively, the Cala-
furia coast is often hit by storms, which expose the coral
population to intense wave action. Organisms growing
in strong wave action environments are generally smaller
than organisms living in deeper or calmer waters
(Harger 1970, 1972; Paine 1976; Adey 1978; Smith and
Harrison 1977; Vosburgh 1977).

Population dynamics

The age structure of the examined population showed an
exponential decrease in the frequency of individuals with
age. This structure indicates a population in steady state,
in that no age cohorts were missing or over-represented,
as would be the case if a major disturbance event had
recently altered recruitment patterns (Coe1956; Grigg
1977, 1984; Santangelo et al. 1993; Chadwick-Furman
et al. 2000; Goffredo and Chadwick-Furman 2003).
Other coral populations reported to occur in a steady
state are those of the scleractinian Pocillopora verrucosa
(Grigg 1984; Ross 1984), of scleractinian mushroom
corals (Chadwick-Furman et al. 2000; Goffredo and
Chadwick-Furman 2003), the gorgonians Muricea cali-
fornica (Grigg 1977) and Lophogorgia ceratophyta
(Mistri 1995), and the commercially important Coralli-
um rubrum (Santangelo et al. 1993), C. secundum and
Anthipathes dichotoma (Grigg 1984).

In a theoretical population in steady state, the coef-
ficient of correlation of the semi-log regression from
which the instantaneous rate of mortality (Z) is esti-
mated has a value r=�1.000 (see Beverton and Holt
1956; Robson and Chapman 1961; Pauly 1984 for re-
views on this method). In B. europaea, this coefficient of
correlation was r=�0.967. This value is close to the best
value of those calculated for other coral populations
reported to occur in a steady state (r values reported for
other coral populations with a stationary age distribu-
tion range from �0.851 to �0.993; Grigg 1984; Ross
1984; Chadwick-Furman et al. 2000; Goffredo and
Chadwick-Furman 2003). This indicates that the steady-
state assumption that we made in order to calculate the
instantaneous rate of mortality is not unreasonable.
According to population dynamics models, the instan-
taneous rate of mortality equals the inverse of the mean
lifespan of the individuals in a population (turnover
time), and hence is equal to their turnover rate, or

Fig. 6A, B Population age structure (A), and (B) survivorship
curve and population yield (B) in dry skeletal mass of the solitary
coral Balanophyllia europaea at Calafuria (eastern Ligurian Sea).
Age at sexual maturity is from Goffredo et al. (2002). N Sample size
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annual production:biomass ratio (P/B) (Pauly 1984;
Clasing et al. 1994; Chadwick-Furman et al. 2000;
Goffredo and Chadwick-Furman 2003). The turnover
time for B. europaea at Calafuria was 3.6 years (calcu-
lated as the reciprocal of Z). Our estimates of the mor-
tality rate and maximum life span for B. europaea
appear to be reasonable, in that values derived from the
survival curve closely reflect field observations.

We did not observe any 0-year-old and relatively few
1-year-old individuals of B. europaea at Calafuria.
Probably, newly settled individuals are under-repre-
sented because of the difficulty in locating them, due to
their small size (<2–3 mm in individual length). Young
of other coral species are known to be under-represented
in field samples (as mentioned in Results), and the
youngest age classes of corals are usually excluded from
population dynamic analyses to overcome this difficulty
(Grigg 1984; Babcock 1991).

Life strategies in the genus Balanophyllia

The average population density of B. europaea in Cal-
afuria (16 individuals m�2) is markedly lower than the
only other Balanophyllia species for which population
dynamics and reproductive biology are reported, namely
Balanophyllia elegans off western North America
(Table 1). B. elegans occurs from the Island of Van-
couver (50�N) to Baja California (29�N) (Gerrodette
1979b). At the center of its geographic range, between a
depth 6 and 13 m, the average population density is 563
individuals m�2 (Fadlallah1983), while at its northern
limit, at a depth of 15 m the average population density
is 136 individuals m�2 (Bruno and Witman1996). The
higher population density of B. elegans is most likely due
to the low dispersion capability of the azooxanthellate
benthic larvae which attach to the bottom less than
0.5 m from the parent polyp (Gerrodette1981; Fadlallah
and Pearse1982; Fadalallah1983). On the other hand,
the low population density of B. europaea may be caused

by the high dispersion capability of the larvae, which are
zooxanthellate and have neutral buoyancy, with a
prevalently swimming and pelagic behavior (Goffredo
and Zaccanti in press). Symbiont zooxanthellae con-
tribute to the energy requirement of larvae during dis-
persion and this may increases the dispersion capability
(Richmond 1987, 1989; Ben-David-Zaslow and Bena-
yahu 1998; Goffredo and Zaccanti in press).

Pianka (1970) visualized an r–K continuum, with any
particular organism occupying a position along it. The
r-endpoint represents the quantitative strategy, while the
K-endpoint represents the qualitative strategy (see
Table 1 in Pianka 1970 for a summary of the correlates
of the r- and K-selected extremes). The comparison of
the biological characteristics of the two congeneric spe-
cies B. europaea and B. elegans, which is presented in
Table 1 of this paper, reveals that the two species have
evolved opposite life strategies, which are not identifi-
able with the endpoints of the r–K continuum. Rather,
the two strategies appear mixed; B. europaea shows K
characteristics for demography and r characteristics for
reproduction, while on the contrary, B. elegans has a
demography with r characteristics and a reproduction
with K characteristics.

Application to the management of exploited populations

We propose that the Beverton and Holt population
dynamics model, which expresses a cohort’s biomass
curve in relation to age, could be applied more widely to
the management of exploited populations of certain
scleractinian corals. This model has been previously
applied to the study and/or management of populations
of precious corals in Hawaii (Grigg 1976, 1984) and in
the Mediterranean (Caddy 1993), as well as to popula-
tions of reef-building stony corals in the Philippines
(Ross 1984) and in the Red Sea (Chadwick-Furman
et al. 2000, Goffredo and Chadwick-Furman 2003). By
estimating the minimum size at which individuals may

Table 1 Life-history characteristics of two species of the genus
Balanophyllia. Data for B. europaea are from Goffredo and Telò
(1998), Goffredo (1999), Goffredo et al. (2000, 2002), Goffredo and

Zaccanti (in press), and this paper. Data for B. elegans are from
Gerrodette (1979a, 1979b, 1981), Fadlallah and Pearse (1982),
Fadlallah (1983), and Beauchamp (1993)

Balanophyllia europaea Balanophyllia elegans

Trophic strategy Zooxanthellate coral Azooxanthellate coral
Demography Large coral size (maximum

length=21 mm)
Small coral size (maximum length <10 mm)

Long time of turnover (3.6 years) Short time of turnover (1.3 years)
Long longevity (maximum=20 years) Short longevity (maximum=7 years)
Low population density
(mean=16 individuals/m2)

High population density (mean=563 individuals/m2)

Reproductive
biology

Hermaphroditism Gonochorism
High fecundity (14 mature oocytes/
100 mm3polyp volume)

Low fecundity (6 mature oocytes/100 mm3polyp volume)

Short period of embryo incubation
(4–5 months)

Long period of embryo incubation (14–15 months)

Small planulae size (mean oral-aboral
diameter=2,150 lm)

Large planulae size (mean oral-aboral diameter=4,000 lm)

Pelagic dispersion of planulae Benthic dispersion of planulae
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be removed sustainably from populations (i.e., the size
at maximum yield), a wider use of this model could
contribute to techniques for the transplantation of corals
from ‘‘pristine’’ reef habitats to damaged areas in need
of restoration (Rinkevich 1995; Edwards and Clark
1998; Epstein et al. 1999).

The approach used in this study, the Beverton Holt
model, to examine the population dynamics of a solitary
temperate coral may have wider applications to other
scleractinians. Due to the increasing exploitation of
corals on a global scale for the jewelry and handicraft
industries and for live displays in aquariums, sustainable
management programs are urgently needed for the
commercial harvesting of coral populations (Rinkevich
1995; Bentley1998; Hatcher1999). Broader application
of the Beverton and Holt model to suitable coral species
would reduce over-harvesting and rapid depletion of
stony coral populations in economies that depend upon
this natural resource, and may contribute to the recovery
of damaged and degraded reefs.
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Goffredo S, Telò T, Scanabissi F (2000) Ultrastructural observa-
tions of the spermatogenesis of the hermaphroditic solitary
coral Balanophyllia europaea (Anthozoa, Scleractinia). Zoo-
morphology 119:231–240

Goffredo S, Zaccanti F (in press) Laboratory observations on
larval behavior and metamorphosis in the Mediterranean soli-
tary coral Balanophyllia europaea (Scleractinia, Dendrophyllii-
dae). Bull Mar Sci

Grigg RW (1974)Growth rings: annual periodicity in two gorgonian
corals. Ecology 55:876–881

Grigg RW (1975) Age structure of a longevous coral: a relative
index of habitat suitability and stability. Am Nat 109:647–657

Grigg RW (1976) Fishery management of precious and stony corals
in Hawaii. UNIHI-SEAGRANT-TR-77–03:1–48

Grigg RW (1977) Population dynamics of two gorgonian corals.
Ecology 58:278–290

Grigg RW (1981) Coral reef development at high latitudes in Ha-
waii. Proc 4th Int Coral Reef Symp 1:687–693

Grigg RW (1984) Resource management of precious corals: a re-
view and application to shallow water reef building corals. Mar
Ecol PSZNI 5:57–74

Grigg RW (1997) Paleoceanography of coral reefs in the Hawaiian-
Emperor Chain—revisited. Coral Reefs 16:33–38

Grigg RW, Maragos JE (1974) Recolonization of hermatypic
corals on submerged lava flows in Hawaii. Ecology 55:387–395

Gulland JA, Holt SJ (1959) Estimation of growth parameters for
data at unequal time intervals. J Cons Int Explor Mer 25:47–49

Harger JRE (1970) The effect of wave impact on some aspects of
the biology of sea mussels. Veliger 12:401–414

Harger JRE (1972) Competitive co-existence: maintenance of
interacting associations of the sea mussels Mytilus edulis and
Mytilus californianus. Veliger 14:195–201

Harrison PL (1985) Sexual characteristics of scleractinian corals:
systematic and evolutionary implications. Proc 5th Int Coral
Reef Symp 4:337–342

Hatcher BG (1999) Varieties of science for coral reef management.
Coral Reefs 18:305–306

Hoeksema BW (1991) Evolution of body size in mushroom coral
(Scleractinia, Fungiidae) and its ecomorphological conse-
quences. Neth J Zool 41:112–129

Hughes RN (1989) A functional biology of clonal animals. Chap-
man, New York

Hughes TP, Ayre D, Connell JH (1992) The evolutionary ecology
of corals. Trends Ecol Evol 7:292–295

Hughes TP, Connell JH (1987) Population dynamics based on size
or age? A reef-coral analysis. Am Nat 129:818–829

Hughes TP, Jackson JBC (1985) Population dynamics and life
histories of foliaceous corals. Ecol Monogr 55:141–166

Isdale PJ (1983) Geographical patterns in coral growth rates on the
Great Barrier Reef. In: Baker JT, Carter RM, Sammarco PW,
Stark KP (eds) Proceedings Great Barrier Reef conference,
Townsville. James Cook University Press, Townsville, pp 327–
330

Johnson KG (1992) Population dynamics of a free-living coral:
recruitment, growth and survivorship of Manicina areolata
(Linnaeus) on the Caribbean coast of Panama. J Exp Mar Biol
Ecol 164:171–191

Kenter JAM (1989) Applications of computerized tomography in
sedimentology. Mar Geotechnol 8:201–211

Knuston DW, Buddemeir RW, Smith SV (1972) Coral chronom-
eters: seasonal growth bands in reef corals. Science 177:270–272

Logan A, Anderson IH (1991) Skeletal extension growth rate
assessment in corals, using CT scan imagery. Bull Mar Sci
49:847–850

Lough JM, Barnes DJ (2000) Environmental controls on growth of
the massive coral Porites. J Exp Mar Biol Ecol 245:225–243

Loya Y (1976a) Settlement, mortality and recruitment of a Red Sea
scleractinian coral population. In: Mackie GO (ed) Coelenter-
ate ecology and behavior. Plenum, New York, pp 89–100

Loya Y (1976b) The Red Sea coral Stylophora pistillata is an r-
strategist. Nature 259:478–480

Meesters WH, Hilterman M, Kardinaal E, Keetman M, de Vries
M, Bak RPM (2001) Colony size–frequency distributions of
scleractinian coral populations: spatial and interspecific varia-
tion. Mar Ecol Prog Ser 209:43–54

Mistri M (1995) Population structure and secondary production of
the Mediterranean octocoral Lophogorgia ceratophyta (L.
1758). PSZNI Mar Ecol 16:181–188

Mistri M, Ceccherelli VU (1993) Growth of the Mediterranean
gorgonian Lophogorgia ceratophyta (L., 1758). Mar Ecol
PSZNI 14:329–340

Mistri M, Ceccherelli VU (1994) Growth and secondary produc-
tion of the Mediterranean gorgonian Paramuricea clavata. Mar
Ecol Prog Ser 103:291–296

Mitchell ND, Dardeau MR, Schroeder WW (1993) Colony mor-
phology, age structure, and relative growth of two gorgonian
corals, Leptogorgia hebes (Verrill) and Leptogorgia virgulata
(Lamark), from the northern Gulf of Mexico. Coral Reefs
12:65–70

Motoda S (1940) The environment and the life of massive reef
coral, Goniastrea aspera Verrill, inhabiting the reef flat in Palao.
Palao Trop Biol Station Stud 2:41–80

Nisbet RM, Gurney WS (1982) Modeling fluctuating populations.
Wiley, New York

Paine RT (1976) Biological observations on a subtidal Mytilus
californianus. Veliger 19:125–130

Pauly D (1984) Fish population dynamics in tropical waters: a
manual for use with programmable calculators. International
Center for Living Aquatic Resources Management, Manila

Peirano A, Morri C, Bianchi CN (1999) Skeleton growth and
density pattern of the temperate, zooxanthellate scleractinian
Cladocora caespitosa from the Ligurian Sea (NW Mediterra-
nean). Mar Ecol Prog Ser 185:195–201

Pianka ER (1970) On r- and K-selection. Am Nat 104:592–597
Richmond RH (1987) Energetics, competency, and long-distance

dispersal of planula larvae of the coral Pocillopora damicornis.
Mar Biol 93:527–533

Richmond RH (1989) Competency and dispersal potential of
planula larvae of a spawning versus a brooding coral. Proc 6th
Int Coral Reef Symp 2:827–831

Rinkevich B (1995) Restoration strategies for coral reefs damaged
by recreational activities—the use of sexual and asexual re-
cruits. Restor Ecol 3:241–251

Robson DS, Chapman DG (1961) Catch curves and mortality
rates. Trans Am Fish Soc 90:181–189

Ross MA (1984) A quantitative study of the stony coral fishery in
Cebu, Philippines. Mar Ecol PSZNI 5:75–91

Sakai K (1998) Delayed maturation in the colonial coral Goniastrea
aspera (Scleractinia): whole-colony mortality, colony
growth and polyp egg production. Res Popul Ecol (Kyoto)
40:287–292

Sebens KP (1983) Size structure and growth rates in populations of
colonial and solitary invertebrates. In: Reaka ML (ed) The
ecology of deep and shallow coral reefs. NOAA’s Undersea
Research Prog, pp 9–15

442



Santangelo G, Abbiati M, Caforio G (1993) Age structure and
population dynamics in Corallium rubrum (L). In: Cicogna F,
Cattaneo-Vietti R (eds) Red Coral in the Mediterranean Sea:
art, history and science. Min Ris Agr Al For, Rome, pp 131–
157

Schumacher H, Zibrowius H (1985) What is hermatypic? A
redefinition of ecological groups in corals and other organisms.
Coral Reefs 4:1–9

Smith SV, Harrison JT (1977) Calcium carbonate production of the
mare incognitum, the upper windward reef slope, at Enewetak
Atoll. Science 197:556–559

Sparre P, Ursin E, Venema SC (1989) Introduction to tropical fish
stock assessment. FAO Fisheries Technical Paper, Rome

Stephenson TA, Stephenson A (1933) Growth and sexual repro-
duction in corals. Great Barrier reef Expedition 1928–1929.
Scientific Reports 3:167–217

Veron J (2000) Corals of the world. Australian Institute of Marine
Science, Townsville

von Bertalanffy L (1938) A quantitative theory of organic growth
(inquiries on growth laws II). Hum Biol 10:181–213

Vosburgh F (1977) The response to drag of the reef coral Acropora
reticulata. Proc 3rd Int Coral Reef Symp 1:477–482

Walford LA (1946) A new graphic method of describing the growth
of animals. Biol Bull 90:141–147

Yamashiro H, Nishihira M (1998) Experimental study of growth
and asexual reproduction in Diaseris distorta (Michelin, 1843),
a free-living fungiid coral. J Exp Mar Biol Ecol 225:253–267
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