
1 The connectivity issue

1. The question to be asked: how can connectivity be
studied?

We do know the importance of trade, money, clusters of
districts, cities. We know the crucial role of information
and thus its �ows across communities, �rms etc. In par-
ticular, �rms�clustering is crucial for development. More
generally, interaction is an important key to explain it

2. The theory of networks does shed some important
light on these issues. The following reports some notions
that can be useful to apply it to questions dealing with
development.

It is expedient to start with some de�nitions

3. Cluster: a web of edges (links) connecting a node�s
neighbours to each other.
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4. A graph, de�ne it as composed by a set of nodes, P ,
and edges, E

G = G(P;E)



5. Let us begin with notions dealing with random graphs
and use them as a benchmark.

A random graph G is a graph of jP j = N nodes con-
nected by jEj = n edges chosen randomly from all pos-
sible edges. The order of magnitude of the latter is

nmax = CN:2 =
N(N � 1)

2

6. Another, interesting order of magnitude: since one
can randomly generate a graph by connecting nodes by
drawing n edges from a pool of CN:2, there are as many
as CN:2 edges to generate such a graph. This means
that one can generate as many as

CCN:2;n =

N(N�1)
2 !

n!
�
N(N�1)

2 � n
�
!



(for instance, if N = 6 and n = 3; C6:2 = 15; C15;3 =
455 graphs can be generated).



7. The interesting question: how does a random graph
evolve? More speci�cally, why is it that certain cliques or
clusters come to be when randomness prevails?

8. Let us introduce the following idea: nodes are initially
entirely unconnected but then proceed to connect them
with some probability p. Thus p is the probability that
any two nodes be connected.

9. The expected number of connected nodes after some
experiments have been made to connect them. In other
words what is the expected number of edges?

E(#) =
N(N � 1)

2
p

10. What is the probability of obtaining a speci�c graph
G0 with n edges?



P (G0) = pn(1� p)
N(N�1)

2 �n

(for instance a speci�c graph from N = 6; n = 3 and
p = :2; say G0 = (adf), P (adf) ' :00055)

11. The average degree of random graphs: how many
connections, on average, is a node likely to possess in
a random graph? A node can connect to as many as
N � 1 other nodes with probability p: The answer is
hki = p(N � 1).

In an evolutionary context, if n edges have been success-
fully established, then we can compute the probability of
connection of any two nodes: since there are N(N�1)2
possibilities of connecting and n have been the actual
ones (the favourable cases)



p = p(N;n) =
n

N(N�1)
2

=
2n

N(N � 1)
� 2n

N2
(for large N)



12. What�s most interesting is the emergence of some
properties: the shape of a graph connection.

- Given a random graph, what is the expected number of
subgraphs made up of, say, k nodes? This is an important
question. In a graph of N nodes there are CN;k ways to
generate graphs of k nodes, i.e. there are

CN;k =
N !

k!(N � k)!

possible graphs. But, from the point of view of the exact
shape that a graph acquires, especially if we are consid-
ering an evolving process, each subgraph can potentially
give rise to k! other graphs (e.g. take a graph of N = 6
(a; b; c; d; e; f) nodes and consider a subgraph of k = 3
nodes (adf) this subgraph can also come in the shape of
(afd ,daf; dfa; fad; fda). In actual and practical prob-
lems some allowance must be made for the fact that some
of these subgraphs have the same relevance and thus if
there are a such ones, the actual number that each graph
can really generate is k!a .



- the next question is what is the expected number of
connected subgraphs if the available edges to connect
the k nodes is l and the connection probability is p?

E(X) = CN;k
k!

a
pl =

N !

k!(N � k)!
k!

a
pl =

pl

a

N !

(N � k)!
� pl

a
Nk

(for large N and relatively small k. An example, N =

100; k = 6; l = 3; a = 1; p = :2 ! E(X) =

10; 000:000 � :008 = 80; 000)

13. There exists an important property of random graphs.
The probability p depends on the edges that have been
successfully set (p � 2n

N2
) and also on N . It has been

found that there exists a critical probability pc = pc(N)

below which (for p = p(N) < pc) almost no �prop-
erty�or subgraph connections appear whilst above it (for
p = p(N) � pc) most such subgraphs connections do!



In other words, a phase transition occur. A sudden ap-
pearance of the expected number of subgraphs with l
edges.

14. To see what is such a critical probability, consider

E(X) = pl

aN
k. If

p = pc(N) = cN
�kl

then

E(X) =
cl

a

15. Some cases: the critical probability at which almost
every graph contains a subgraph with k

nodes and l edges



- a tree of order k (l = k � 1) : pc(N) = cN�
k
k�1

- a cycle or order k (l = k) ; pc(N) = cN�1

- a complete subgraph of order k (l = k(k�1)
2 ):

pc(N) = cN
� 2
k�1

(an example, the critical probability for a graph to contain
a completely connected subgraph of k = 10 , i.e. with
45 connections and having N = 1000 nodes, and c = 2,
is pc = 43%, if N = 10000, pc = 26% , if N =

100000, pc = 15; 5%, thus in graphs of many nodes,
cliques start appearing even for low probabilities of setting
up a connection).



17. The degree distribution of random graphs. Ques-
tion: what is the probability that a node named ki has k
degrees (connected to k other nodes)?

P (ki = k) = P (k) = CN�1;kp
k(1� p)(N�1)�k

and the expected number of so connected nodes is

E(Xk) = NP (k)

Note that, since hki ' pN , and for N !1;

P (k) = e�hki
hkik

k!

namely a Poisson distribution.



18. Some important quantities (magnitudes) in random
graphs.

- average path length, l: average distance between any
pair of nodes. Assume that the average degree is hki.
If on average the path length is l, then multiplying hki
a number l of times, one counts (approximately) all the
nodes in the network N . Hence hkil = N from which

lrand =
logN

log hki

Thus, the average path length scales with the log of the
network size.

- clustering coe¢ cient of a random graph= p:This is so
since de�nitionally Ci =

2Ei
ki(ki�1)

but given that the ex-

pected number of connections is pki(ki�1)2 , then Ci = p.
Since p = 2n

N2
and hki = 2n

N , then



Ci =
hki
N



19. The Watts and Strogatz conundrum

-. Consider a very regular and ordered network that is
highly clustered with a high path length.

Such a network can easily be represented by a ring lattice
in which each node is immediately connected right and
left with a given number of other nodes. Assume that
this number be K � hki.

-. The relevant magnitudes for a network N o K o
logN o 1 are :

C(ordered) = 2E
K(K�1) =

3
4
K�2
K�1 ! 3

4 in the case of
large networks.

l(ordered) = N
2K

Thus, highly clustered network (C close to 1) and very
high average path length.



-. Consider now a random network:

C(rand om) ' K
N

l(rand om) ' logN
logK

Thus, a scarcely clustered network with a fairly short av-
erage path length.



.- Question is a short average path length always associ-
ated with a little clustered network? A long path length
with a highly clustered one? The answer is NO.

.- Consider the following algorithm (procedure)

a) Begin by setting up an ordered network on a ring lattice
with the mentioned magnitudes.

b) Proceed by randomly rewiring with probability p , bar-
ring duplications and self wiring. This means taking an
edge at random away from one node and reconnecting
it to another node at random. Since the total number
of rewirable edges is N nodes times K=2 neighbours on
either side of the ring, this procedure allows for a long
range rewiring of pNK2 edges. How does the network
evolve?

c) Clearly, the network evolves according to p, if p = 0

the network remains as it is, i.e. ordered, if p = 1 the net-
work becomes totally random. Hence, C(p) and l(p) are



expected to vary as a function of p, from C(ordered) �
C(0); l(ordered) � l(0) toC(rand om) � C(1); l(rand om) �
l(1).

d) Note that l(p) drops very rapidly with small in-
creases in p while C(p) varies little with p. It follows
that there is a large interval in which l is short and
C is high.

e) To see why this happens consider that for small p, the
path length scales with the system size whilst the cluster-
ing coe¢ cient remains roughly constant (' 3=4). As the
network becomes more and more random the path length
begins to scale logarithmically (small changes) while C
begins to approach the small value of K=N .



21. It is intuitively clear that the observed �phenomenon�
on the average path length, l, depends on the system
size which can here be de�ned by KN on which the
probability of rewiring operates: pKN

20. The actual mathematical form has largely been left
to numerical simulations. In any case, approximations
indicate that:

l(p;N;K) � N
1
d

K
f(pKN)

where f(pKN) = const if pKN n 1 and f(pKN) =
ln(pKN) if pKN o 1, d is the lattice dimension (the
ring: d = 1).

22. The equivalent expression for C is more elaborate
and it goes:



C(p) =
3K(K � 1)

2K(2K � 1) + 8pK2 + 4p2K2

23. a �nal word on the degree distribution: it is very
similar to the random graph distribution with a peak
hki = K:

24. In any case, note that even for a small p and a
reasonably sized network the phenomenon emerges. Is
the world a SMALL WORLD? Possibly, yes!



25. The Barabasi�s caper

- The problem with the Watts and Strogatz�model is that
it applies to networks that as noted above have approxi-
mately a Poisson distribution, that are, in a sense, �quasi
random so that the most likely number of connections
for a node is just the average hki meaning that from the
point of view of connectedness they are about the same.

- Most relevant networks do not have this structure. Em-
pirical �ndings have shown that, quite frequently, the dis-
tribution of nodes takes the form:

P (k) = ak�


(in log-log form p(k) = a� 
k ).

- This is an important �nding suggesting that the distri-
bution is not random.



- Since, P (k) ! 0 only for k ! 1, it is a distribution
that exhibits values signi�cantly di¤erent from zero even
for very large k�s. In other words, in such networks there
are likely to be few nodes with high k�s, some with a
sizable k, very many with a small k, i.e. all scales of k
are likely to be present. The average hki is not at all
representative of the network scale and the ratio of the
mean to the variance tends zero for k ! 1. This type
of networks are scale-free networks.



26. Evidence shows that this is the case for most trans-
portation networks, power-line grids, city size distribution
but also �rm size distribution. This has great implications
for a considerable number of problems. .............

The question arises: why is it that many networks have
such a structure? A likely answer is because their evolu-
tion has been such that although they are the result of
a stochastic process they do not feature randomness but
order. Hence, the analytical task is to �nd an evolution-
ary procedure that leads to this result. The following is
the devise conjectured by Albert and Barabasi.

These authors have exploited two major and historically
well established ideas:

a) networks grow, i.e. their size N increases with time;

b) attachment of newly born nodes to existing ones is
preferential, i.e. they attach to nodes that have already
many attachments.



Proceed as follows.

a.1) start with a small number m0 of nodes and at every
time step add a new node with m edges.

b.1) the probability that the new node attaches to node
i depends on ki, hence

�(ki) =
kiP
j kj

c) the problem is now to derive the nodes�distribution.
They follow a continuum theory.



27. Note that:

@ki
@t

= m�(ki) = m
kiP
j kj

knowing that by the above assumptions
P
j kj = 2mt:Thus,

@ki
@t = m

ki
2mt =

ki
2t.

Solving this di¤erential equation by integration and by
assuming that the initial condition for every node is m at
some ti, namely k(ti) = m:

ki(t) = m(
t

ti
)
1
2

all nodes basically evolve in the same way. Now, ask
the question: what is the probability that ki(t) < k,
P (ki(t) < k) ?



The authors follow a very ingenious procedure. Given the
above:

P (ki(t) < k) = P (ti >
m2t

k2
)

turning the question around by asking: what is the proba-
bility that node i appears with its m connections at time

ti > ti =
m2t

k2

The reason to ask this question lies with the fact that
it is very reasonable that the probability of appearing so
connected at time ti be the same for all i0s and inversely
related to the number of time steps, for instance:

P (ti) =
1

m0 + t



28. If this is the case,

P (ti >
m2t

k2
) = 1� 1

m0 + t

m2t

k2
)

and such that by di¤erentiating @P (ki(t)<k)@k =
@P (ti>

m2t
k2
)

@k :

P (k) =
2m2t

m0 + t

1

k3

asymptotically, for t!1

P (k) = 2m2k�3

a power-law, scale free distribution with 
 = 3. Setting
2m2 = �



P (k) = �k�



