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Introducing Erasures in Decision-Feedback

Equalization to Reduce Error Propagation
Marco Chiani

Abstract—A simple modification of the decision feedback equal-
izer (DFE) slicer is proposed to reduce the effect of error prop-
agation. A comparison of the performance of the modified DFE
and conventional DFE is made for specific channels. On these
channels, modified DFE performs only marginally better than the
conventional DFE in terms of average error probability, but may
offer some advantages in terms of error probability conditioned
on specific input sequences and in terms of the distribution of
error burst lengths. Some examples are given, concerning binary
PAM and multilevel quadrature amplitude modulation ( M–QAM)
systems.

Index Terms—Decision feedback equalization, digital commu-
nications.

I. INTRODUCTION

DECISION-FEEDBACK equalization (DFE) is a well-
known technique that finds applications in many areas

of communications [1]. An example is the transmission of
high data rates over a linear channel causing intersymbol
interferences (ISI) which can be compensated on the receiver
side by a DFE. One of the major disadvantages of DFE is
the effect of error propagation [2]–[6]. In the present letter,
a simple modification of the decision device is proposed to
achieve better system performance. In the binary case, the
analysis of the modified DFE is developed analytically for a
short memory channel. Finally, the system is generalized to
channels with longer memory and higher level constellations,
with some results obtained by computer simulation.

II. DFE WITH ERASURES

Let us refer to the DFE system shown in Fig. 1. We assume
a zero-forcing criterion to design the forward filter (FFF) [1]
so that

(1)

where is the current symbol to be detected, is the
th channel response sample, and is the additive noise.

The previous expression implicitly means that the overall
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channel impulse response is causal. In Sections II and III,
we will refer, for the sake of simplicity, to binary PAM, i.e.,

, whereas, some simulation results will be
presented in Section IV for higher order constellations. For
our purposes, we also will suppose that both and
are sequences of independent identically distributed random
variables. We define Prob and Prob

. The cumulative distribution function of the r.v.’s
is arbitrary: in this paper, we assume it is the Gaussian

distribution, with zero mean and variance. In the following,
we will refer our results to the signal-to-noise ratio .
The key observation of our proposal is that if the sample at
the input of the decision device ( in Fig. 1) is close to
the threshold, the corresponding output of the slicer is
not very reliable: so, using this unreliable symbol can reduce
the noise margin of future symbols instead of enhancing it.
This suggests the possibility of reducing error propagation by
avoiding the feedback of the less reliable symbols. On this
basis, we propose a DFE in which erasures are introduced in
the feedback chain: for the hard-decisor scheme, it is sufficient
to use a different nonlinear function for the slicer, as shown
in Fig. 1, where the input–output characteristic of the dead-
zone limiter used as decision device for the feedback loop is
shown. A symbol is called unreliable if the absolute value of
the corresponding sample is below the threshold . In this
case, the symbol is not fed back, but an erasure is introduced.
The erasure criterion can be stated as follows:

feedback “1”
unreliable symbol: feedback “0”
feedback “ 1.”

The resulting scheme is a “decision feedback with erasures”
equalizer, and will be indicated as “E-DFE.”

III. ERROR PROBABILITY ANALYSIS

FOR 1-BIT MEMORY CHANNELS

Let us start with the 1-bit memory channels ,
for . At the input of the slicer, the receiver computes

(2)

(3)

where assumes a value in the set . The
random sequence in (3) represents a finite-state, discrete-
time Markov chain with state diagram as shown in Fig. 2.
Moreover, the Markov chain given by the sequence of is
homogeneous. It is possible to show that the error probability
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Fig. 1. Modified DFE system.

at time is given by [7]

(4)

where , is the probability to
be in state at time ; the elements of vector are given by

, , and
are the possible values ofas reported in Fig. 2.

Finally, we obtain the asymptotic bit error probability as

(5)

where is the transition matrix associated with the state
diagram in Fig. 2 and is the initial state vector (arbitrary).
The elements of , i.e., the transition probabilities , can be
calculated as Prob
where is the probability of going into state given the
current state [7]:

(6)

Note that the system proposed is coincident with the conven-
tional DFE if we let 1 and becomes the unequalized
system (except for the FFF) if we let tend to infinity.

A. Conventional DFE

For (5) can be reduced [7] to the following closed
form:

(7)

where and . For
the last formula is coincident with the result presented in [3]. It
is worthwhile observing that this formula gives the exact error
probability of conventional DFE, whateverand , for a one-
symbol memory channel: by comparing it with the ideal case

, we can evaluate the effect of error propagation.

1In this case, the states�3 and�4 are not reachable.

Fig. 2. Markov chain state diagram for the DFE with erasure.

B. Worst Case Sequence

It is well known that, to operate satisfactorily, DFE needs
the input sequence to be as random as possible: in fact,
for some input sequences, performance greatly deteriorates
by error propagation [4], [5]. So, there is some interest in
determining the system behavior when the worst case input
sequence is given. In our model, the worst case is simply
obtained by putting in the previous analysis and

Prob .

IV. NUMERICAL RESULTS

A. Short-Memory Case

First, we consider it convenient to check whether there is
some improvement by setting the threshold . For this
purpose, in Fig. 3 we report the error probability normalized
to the values referred to (i.e., the conventional DFE)
as a function of threshold for 5, 6, 7, 8, and 9 dB.
So, in this figure, the points having ordinates lower than one
signify an improvement with respect to conventional DFE.
We can conclude that the best performance is obtained with
a threshold , and that the optimum threshold decreases
when increasing the signal-to-noise ratio. It is also important to
note that increasing the value ofbeyond the optimum value
deteriorates the performance; this is because, with high, we
have almost only erasures and the FBF becomes ineffective.
Furthermore, we observe that the optimum value of, as
shown in Fig. 3, depends on: therefore, in order to implement
the E-DFE, an estimate of the signal-to-noise ratio is required.

B. Long-Memory Case

To investigate E-DFE behavior with channel memory higher
than 1, we will proceed by computer simulation. The assess-
ment of the optimum value for the E-DFE also has been
pursued by simulation. In Fig. 4, the error probability for a
channel with

for is investigated with
a random input sequence. The signal-to-noise ratio has been
fixed at 9 dB, and the simulation obtained with
iterations. As we are interested not only in the average error
probability, but in the distribution of the error length too, we
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Fig. 3. Normalized bit-error probability as a function of thresholdA, binary
PAM. h1 = �0.7, analytical results.

Fig. 4. Channel as specified,� = 9 dB, burst percentage versus burst length.
Comparison between DFE (A = 0, Pe = 9:9 � 10�5) and E-DFE (A = 0:1,
Pe = 5:7 � 10�5), binary PAM.

report in this figure the histograms of the number of error
events versus the length (in bits) of the bursts. The two set
of bars refer to conventional DFE ( ) and E-DFE with

. The analysis of this figure makes clear how the
statistics of the error length is modified by the introduction of
erasures: it can be concluded that the average number of errors
decreases, resulting in a lower bit-error probability, and also
that the average error length is lowered. In fact, by introducing
erasures, we increase the number of bursts of length 1, but
obtain a reduction of longer bursts. For example, this effect
can be exploited by means of error-correcting codes designed
to counteract short error bursts: in this case, the use of E-DFE
could give an improvement similar to that obtainable by using
interleaving techniques.

Finally, it is interesting to extend the E-DFE concept to
higher order constellations. To this aim, in Fig. 5, we show,
as an example, the constellation for a 16-QAM modulation,
where the symbols are complex-valued (the real and imagi-

Fig. 5. Decision regions for a 16-QAM constellation.

Fig. 6. Performance of 64-QAM, channel as in Fig. 4,� = 9 dB, number
of bursts versus burst length,3 � 108 iterations. Comparison between DFE
(A = 0, Pe = 7:3 � 10�3) and E-DFE (A = 0:1, Pe = 3:7 � 10�3).

nary parts taking values in the set ). For -QAM
systems, the E-DFE scheme is similar to that shown in Fig. 1
for binary PAM, except that it is necessary to define how
the decision devices work: for this purpose, in Fig. 5, the
thresholds defining the decision regions for symbols

are indicated with continuous lines (placed at
both for the real and imaginary parts), whereas dead

zones (dashed lines) are introduced around these thresholds
for symbols . Similarly to binary PAM, if the
complex received sample falls inside one of these zones,
the intermediate symbol , as shown in Fig. 5, is fed back.
In Fig. 6, the performance of the in-phase component of a 64-
QAM system with DFE and E-DFE over the same five-tap
channel of Fig. 4 is reported.

It can be noted that, by introducing a threshold
the number of bursts of length 1 does not practically change,
whereas longer bursts are significantly decreased: as a result,
the number of errors is halved by using E-DFE.

V. CONCLUSIONS

In this paper, we have described a modification of the
classic decision feedback equalizers. In this new system,
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the nonlinearity of the feedback chain is different from the
classic one-threshold slicer, allowing the possibility of error
propagation to be reduced. In the binary case, an exact
analytical approach has been carried out to investigate system
performance for the 1-bit memory channels. System perfor-
mance for channels with higher memory and higher order
constellations ( -QAM) has been investigated by means of
computer simulations. The analysis shows that the proposed
system allows a reduction of error propagation, resulting in an
improvement in performance, particularly when the channel
exhibits long memory.
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