
Newton-Cotes Integration

Recall that the Newton-Cotes formulas for approximating the de�nite integral
of a function f(x) over an interval [a, b] are obtained by de�ning a uniform parti-
tion x0, x1, x2, . . . , xn where∆x = (b− a)/n and xi = a + i∆x and interpolating
values of f at the nodes in neighboring intervals by polynomials. These poly-
nomials are then integrated analytically over their respective intervals, and the
results are summed to approximate the integral of f . The various Newton-Cotes
formulas vary according to the degree of the interpolating polynomial. In the
second-order case, we obtain Simpson's rule in which three nodes xi, xi+1, xi+2

(two neighboring sub-intervals) at a time are used to construct a second-order
polynomial pi(x) which interpolates the values f(xi), f(xi+1), f(xi+2). This
leads to the following approximation

ˆ b

a

f(x) dx ≈
n−2∑
i=0︸︷︷︸

i even

ˆ xi+2

xi

pi(x) dx =
n−2∑
i=0︸︷︷︸

i even

(c0f(xi) + c1f(xi+1) + c2f(xi+2)) ∆x,

where the constants c0, c1, c2 represent a speci�c linear combination of the three
measurements within each sub-interval. You will now derive the values of these
constants (and the resulting Simpson rule) in two di�erent ways.

Part I: Direct Derivation

(a) Write down the Langrange interpolating polynomial representa-
tion for the second order polynomial pi(x) that interpolates the values
f(xi), f(xi+1), f(xi+2) at the nodes xi, xi+1, xi+2. Express your answer
only in terms of f(xi), f(xi+1), f(xi+2) and ∆x and xi by substituting
xi+1 = xi + ∆x and xi+2 = xi + 2∆x and then simplifying as much as
possible while still maintaining three separate terms according to the
Lagrange representation).

pi(x) =?

(b) Compute the integral of this Lagrange interpolating polynomial
over its associated sub-interval [xi, xi+2]. Express your answer only in
terms of f(xi), f(xi+1), f(xi+2) and ∆x.

ˆ xi+2

xi

pi(x) dx =?

(c) Now use your expression above in order to solve for the constant
coe�cients c0, c1, c2:

c0 =?, c1 =?, c2 =?
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Part II: Recursive Derivation

The Simpson's rule that you have just derived is fourth-order accurate. Using
only the error formula for the second order polynomial interpolants pi(x), it is
very di�cult to show this (instead it would seem that the error should be only
third-order accurate if you follow such an approach). In order to show that
the error is indeed fourth-order accurate, we need to use the Euler-Maclaurin
formula derived in class. However, we derived this directly for the trapezoid rule,
which only employs �rst order polynomial interpolation rather than the second
order interpolants used by Simpson's rule. On the other hand, the structure of
the this error formula allowed us to develop the Romberg integration algorithm
which shows that if we correctly combine the result of the trapezoid rule for an
initial interval size (which is second-order accurate) together with the results of
the trapezoid rule applied once again for half the original interval size (which
is also second-order accurate), the correctly combined result will fourth order
accurate. Here you will show that applying these two steps of the Romberg
integration algorithm leads to the Simpson rule formula (thereby showing that
it has fourth order accuracy rather than just third order accuracy).

(a) If we assume n is an even number and ignore all of the odd nodes
from our original partition for part I, then we obtain a new uniform
(coarser) partition x0, x2, x4, . . . , xn of the same interval [a, b] with a
sub-intervals of width 2∆x. Within each of these sub-intervals, there
are now only two nodes xi, xi+2. The trapezoid rule will approximate
the integrals over these respective sub-interval as

ˆ xi+2

xi

f(x) dx ≈ (a0f(xi) + a1f(xi+2)) (2∆x)

for some constant coe�cients a0 and a1 which can be determined by
calculating the �rst order polynomial that interpolates the measure-
ments f(xi) and f(xi+2). What are these constants?

a0 =?, a1 =?

(b) Now if we chop each of these larger intervals in half, we get back to
our original partition (which now includes the odd nodes again). If we
apply the trapezoid rule separately on two of these smaller intervals
(which together make up one of the previous larger intervals) we get
a new approximation of the same integral in part (a) as follows:

ˆ xi+2

xi

f(x) dx =
ˆ xi+1

xi

f(x) dx+
ˆ xi+2

xi+1

f(x) dx ≈ (b0f(xi) + b1f(xi+1) + b2f(xi+2)) ∆x

b0 =?, b1 =?, b2 =?
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(c) Now combine these two di�erent second order approximations
of the integral of f over the sub-interval [xi, xi+2] according to the
Romberg iteration rule to obtain a new fourth order approximation
of the integral over the same sub-interval in the following form

ˆ xi+2

xi

f(x) dx ≈ (c0f(xi) + c1f(xi+1) + c2f(xi+2)) ∆x

where the new coe�cients c0, c1, c2 will depend on a combination of the
previous two sets of coe�cients a0, a1 and b0, b1, b2. Do not substitute
the actual values of a0, a1 and b0, b1, b2 yet, but instead express c0, c1, c2

in terms of these previous coe�cients.

c0 =?, c1 =?, c2 =?

(d) Now substitute the values of a0, a1 and b0, b1, b2 from part (a) and
(b) into your expressions in part (c) in order to obtain the actual
numerical values of the coe�cients c0, c1, c2 (they should match the
same values you got in Part I of this problem, thus demonstrating
that Simpson's rule is simply a recursive application of the trapezoid
rule by following the Romberg algorithm).

c0 =?, c1 =?, c2 =?
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