UNIVERSITY OF BOLOGNA – FACULTY OF ENGINEERING INTERNATIONAL MASTER CORSE IN CIVIL ENGINEERING 2011/2012 INTRODUCTION TO NUMERICAL METHODS

LAB1a: MATLAB BASICS

a)

Working directly in the Matlab Command Window, create the two matrices $A = \begin{bmatrix} 1 & -6 \\ 6 & 18 \end{bmatrix}$, $B = \begin{bmatrix} -1 & -21 \\ 10 & 6 \end{bmatrix}$,

the column vector $v = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$ and the scalar k = 2, check the existence (and the value, size, bytes and class) of the four created variables in the Matlab Workspace, then compute:

(ADDITION)	A + k	$\mathbf{A} + \mathbf{v}$	A + B	$\mathbf{k} + \mathbf{A}$	v + A	B + A
(SUBTRACTION)	A - k	A - v	A - B	k - A	v - A	B - A
(MULTIPLICATION)	A * k	A * v	A * B	k * A	v * A	B * A
	A .* k	A .* v	A .* B	k .* A	v .* A	В.*А
(RIGHT and LEFT DIVISION)	A / k	A / v	A / B	$A \setminus k$	$A \setminus v$	$\mathbf{A} \setminus \mathbf{B}$
	A ./ k	A ./ v	A ./ B	$A \mathrel{.} \! \setminus k$	$A \mathrel{.} \! \setminus v$	$A \land B$
(EXPONENTIATION)	$v \wedge k$	$A \wedge k$				
	v .^ k	A .^ k				
				А	А	А
(CONCATENATION)	$A \parallel k$	$A \parallel v$	$A \parallel B$	=	=	=
	. T	т	T	k	V	В
(TRANSPOSITION)	\mathbf{k}^{1}	\mathbf{v}^{T}	A^{I}			

PAY ATTENTION !!! Not all the operations are computable: why?

b)

Working directly in the Matlab Command Window, create the following matrix and perform the subsequent exercises:

	2	6	- 4	12]
<i>A</i> =	- 5	- 9	10	2
	- 6	12	- 4 10 8 12	16
	15	- 3	12	2

- a) Create a vector v formed with the elements of the second row of A;
- b) Compute the sum of the elements of v, after these have been divided (element by element) by the elements of the first column of A;
- c) Create a matrix B 4x3 formed with all the elements between the second and the fourth column of A;

UNIVERSITY OF BOLOGNA – FACULTY OF ENGINEERING INTERNATIONAL MASTER CORSE IN CIVIL ENGINEERING 2011/2012 INTRODUCTION TO NUMERICAL METHODS

- d) Create a matrix C 2x3 formed with all the elements of the first two rows and the last three columns of A;
- e) Create A^{t} ;
- f) Create a vector v formed with the minimums of the elements in each column of A^{t}
- g) Create a vector v formed with the maximums of the elements in each row of A^{t}
- h) Create a vector v formed with the sums of the elements in each row of A^{t}
- i) Compute the sum of all the elements of *A*.
- c)

Compute the sum of the first *n* natural numbers $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ by creating and then using:

1) a Matlab script

2) a Matlab function

Which is the difference between script and function?

d)

An object is thrown vertically upwards with an initial velocity v_0 and reaches a height *h* in a time *t*, where $h = v_0 t - \frac{gt^2}{2}$. Write a Matlab function that calculates the time *t* required for reaching a given height *h*, for a given value of v_0 . The function inputs are *h*, v_0 and *g*.

Test the function in the cases: a) h = 170 m, $v_0 = 60$ m/sec e g = 9.81 m/s² b) h = 200 m, $v_0 = 60$ m/sec e g = 9.81 m/s²: What can you conclude?

[case a) 4.4580 - 7.7744 ; case b) complex result]

e)

After exploring (by the Matlab help) the following commands for the creation of special matrices:

zeros	zero matrix	
• ones	matrix of ones	
• eye	identity matrix	
■ diag	diagonal matrix	
• tril	lower triangular matrix	
■ triu	upper triangular matrix	
hilb	Hilbert matrix	
vander	Vandermonde matrix	
rand	matrix of random numbers	
magic	matrix with equal row, column and diagonal sums	

write a Matlab function for the creation of a tridiagonal $n \ge n$ matrix $A = \{a_{ij}\}_{i,j=1,...,n}$ with:

$$a_{ij} = \begin{cases} 0 & \text{if } |i-j| > 1 \\ a_{ij} = 2|i-j| + 1 & \text{if } |i-j| \le 1 \end{cases}$$

UNIVERSITY OF BOLOGNA – FACULTY OF ENGINEERING INTERNATIONAL MASTER CORSE IN CIVIL ENGINEERING 2011/2012 INTRODUCTION TO NUMERICAL METHODS

f)

After exploring (by the Matlab help) the potentialities of the command **plot** (in particular, how to plot with given **color**, **style** and **marker**), write a Matlab script that plots in the same graph the following two functions: y = cosh(x), $y = 0.5e^x$ for $x \in [-2,2]$ using different types of line and a legend in order to distinguish the curves.

g)

Write a Matlab script that plots the following functions in three different figures:

•
$$y = x^3 - 4x$$

• $y = 3\cos(2x) - 2\cos(x)$
• $y = \frac{\sin(2x)}{x}$
• $y = \frac{\sin(2x)}{x}$
• $x \in [-6\pi, 6\pi]$ (PAY ATTENTION TO THE DOMAIN!)

h)

After exploring (by the Matlab help) the command **plot3**, write a Matlab script that plots the curve f(t) defined by the following parametric equations:

$$f(t):\begin{cases} x = a \cdot t \cdot \cos(t) \\ y = a \cdot t \cdot sen(t) \\ z = b \cdot t \end{cases}$$

where a and b are real constants.

Create a plot of the curve f(t) for each of the following four cases:

a)
$$b = 0.1$$

b) $b = 0.5$
c) $b = -0.1$
d) $b = -5$
set $a = 1$ and $-10 \ \pi \le t \le 10 \ \pi$

Compare the four obtained plots by means of the command subplot.