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DIGITAL CONTROL SYSTEMS INTRODUCTION
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Typical digital control systems feedback loop

Sampling of the error signal:
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Signal classification

(a) Analogical signal; b) Quantized signal; ¢) Sampled signal; d) Digital signal
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Interface devices

A/D, Analog/Digital converter:

x(t) z(kT)
A/D .

Y

Model: impulsive sampling

x(t) z(kT)
A/D -

Y
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Interface devices

D/A, Digital/Analog converter

{D/A K

Model: zero order hold

e(kT) 7 w(kT)3(t - kT)
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MATHEMATICAL TOOLS
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Difference equations

ur = f(€o, €1,y €L;UQ, ULy, Ug—_1)
If f(-) is linear:
U = —A1UL—1 — ... — ApUk—p, +bo€r + ... + br—m
Example:
Uk = —A1UK—1 — A2Uk—2 + boeg

Defining V as the delay operator

ur = Uk
Up—1 = ur — Vug
Up—2 — U — QVUk + VZ’LLk

we obtain

asV2uy — (a1 + 2a2)Vuy, + (ag + a1 + Dug, = boey,
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Difference equations

Solution of a difference equation with constant coefficients
Uk = Uk—1 + Uk—2 k> 2
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Difference equations

The elementary solution is in the form of z*:

cz"C = czk_l + czl'“_2

2 —2—-1=0 210 = (1£V5)/2

In general it holds:

k k
Ul = C12] + C225

with ¢1, co to be computed using initial conditions for £ = 0, 1. In previous case:

C1+VE (1445 k+—1+\/5 VAW
RN 2 2v/5 2

The trend is diverging, hence the system is unstable.

If all the roots of the characteristic equations are within the unitary circle, then the
corresponding difference equation is stable , i.e., its solution will converge to zero In
time for any finite initial condition.
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The Z-Transform

Given a sequence r; € R, defined for £k = 0,1,2,...and null for £ < 0. La Z-transform
of x;. Is a function of the complex variable z defined as

X(z)=Zlxx] = x0+x1z_1+---+:ckz_k+...:Z:ckz_k
k=0

In the case of a sequence x;, obtained by uniformly sampling a continuous signal
x(t), t > 0 with a sampling time 7', then z;, = z(kT):

X(z) =) a(k)z""
k=0

The extended equation
X)) =2z(0)+2(D) 2z +2Q2T) 22+ +a(kT)z7F +--.

Implies the specification of the sampling time T, from which the samples depends
(.e., the coefficients of the series).
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The Z-transform

We write: X (z) = Z[X (s)] meaning X (z) [{ﬁ )Ht:kTH

In engineering applications, the function X (z) assumes in general a rational fractional
expression

boz™ + by 2"+ 4 b,
2P +ay 2"+ +ay

X(z) =
that can also be expressed in powers of z—1:

o (bO Z—(n—m) + bl Z—(n—m—l—l) 4o bm z—n)

X _
(Z) Zn(1+a/12_1+“'+a/nz_n)

bO Z_(n_m) _I_ bl Z_(n_m+1) + .. + bm Z_n
l4+a1z7t+---F+a,z ™

Example:
z(z+0.5) 14+0.5z71

XC) = 3Dty - i a2
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Z-Transform of elementary terms

Unitary discrete impulse. Kronecker’s function §y(t):

1 t=20
0 t#£0
X(z) = Za®)]=) (kD)2 =140z"+02""40z3+..- =1
k=0
Unitary step:
1 1 k=0,1,2,...
:c(t):h(t):{o l.e h(k):{o L <0
H(z) = Z[O] =Y hkD)z" =Y zF =14z 42242704
k=0 k=0

1

1 — 21

The series converges for|z| > 1.
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Z-Transform of elementary terms

Unitary ramp:
t t >0
z(t) = { 0 t<0

Since x(kT) =kT, k=0,1,2,..., the Z-transform is

X(z) = Zlt]= io::I:(kT)z_l‘C = Tikz_k
k=0 k=0

= T('"+2:72+327°+--+)

= Tr Y1420 43224

z_l Z

I S FE e

converging for |z| > 1.
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Z-Transform of elementary terms

Exponential function:

et t>0
0 t <0

where a is a real or complex constant. Since z(kT) = e~ %1 k£ =0,1,2, ..., we have

X(Z) _ Z[G_at] _ Z e—ak:TZ—k:

1] —eaTl ;-1 5, __ g—al

that converges for |z| > e~ R¢(@)T Note that for « = 0 we move back to the unitary step.
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Z-Transform of elementary terms

Sinusoidal function:

0=15"" 120
From Euler’'s equations
sin wt = %(ejm — eI
1 1 1
X(z) = Zlsinwt] = 2 (1 R s i —" ey z_1>
1 (7wl — gmiwl) =1

2j 1 — (e3T 4 e=iwT)z=1 4 ;=2

> lsinwT zsin w1’

1—2z"lcoswT +272 22 —-2zcoswT +1

converging for |z| > 1.
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Z-Transform of elementary terms

Cosinusoidal function:

cos wt t>0
z(t) = { 0 t<0
1 1 1
XG) = 2leoswt] = 3 ({—oorm + T

2 L (e—jWT + eij)Z—l

1
21 _ (e39T 4 e=3wT)z=1 4 72

1 — 2z 1coswT
1 —2z"1coswT + 272

2(z — coswT) 2> 1
— 2
2?2 —2zcoswT + 1
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Z-Transform of elementary terms

Example:
1
X —
(5) s(s+1)
First technique:
r(t)=1—e"
1 1
_ —t] _
X(2) = Z[l—e } T 1—2z1 1Tyt
(1—e 1)zt (=2

1—zH1—-eTz1) (2—=1)(z—eT)

Second technique:
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The Z-transform

The Z-transform X (z) and the corresponding sequence x(k) are in one-to-one
correpondance

This is not true for the Z-transform X (z) and its inverse x(t)
From a X (z) it is possible to obtain many z(t)

This ambiguity does not hold if restrictive conditions on the sampling time 7" hold
(Shannon’s theorem )

Different continuous time functions can have the same samples: x(k)

(o] 2 4 (S) 8 10 12

1

1

|

1
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Properties of the Z-transform

& Linearity:

aF(z) + bG(2)

>
—~
N
~—~

I

& Multiplication for a*:

Being X (z) the Z-transform of x(t), a a constant value.

Z[aka:(k)} = X(a '2)

Zla"z(k)] = Zakx(k)z_kzz:x(k)(a_lz)_k

= X(a '2)
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Properties of the Z-transform

& Time shifting:
If x(t) =0,t <0, X(2) = Z[z(t)],andn =1,2,..., then

Zlx(t—nT)|=2""X(2)
Zlz(t+nT)] = 2" | X(z) — z_: r(kT)z ™"
k=0

Note that:
2 ta(k) =2k —1)

2 ?x(k) = 2(k — 2)
zx(k)=xz(k+1)

(delay)

(anticipation)
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Properties of the Z-transform

& Delay:
Zlx(t —nT)] = f: (kT —nT)z~ "

= _”Zx (kT —nT)z —(k=n)

defining m = k — n,

oo

Zlx(t—nT)|=2"" Z x(mT)z"™

Since x(mT') = 0 for m < 0, we can write

oo

Zlx(t—nT)|=2"" Z x(mT)z"™ =2""X(2)
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Properties of the Z-transform

& Anticipation:
Zlx(t+nT) = Z (kT +nT)z" % = 2" Z x(kT + nT)z~k+n)
k=0 k=0
o n—1 n—1
= 2" [Z (kT +nT)z~k+n) 4 Z r(kT)z™F — Z r(kT)z™"
k=0 k=0 k=0

= 2" [f: r(kT)z™F — ”’z_: r(kT)z™"
k=0

= 2" [X(z) — z_: v (kT)z™"

k=0
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Properties of the Z-transform

& Initial value theorem: If X (z) is the Z-transform of z(¢) and if

lim X(z2)

exists, then the initial value x(0) of x(t) is given by:

z(0) = lim X(z)

zZ— 00

In fact, note that
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Properties of the Z-transform

& Final value theorem: being all the poles of X (z) within the unitary circle with at most
a simple pole in z = 1.

lim z(k) = lim [(1 — 27 ") X (2)]

k— o0 z—1

In fact:

oo

Y w(k)z™h =D w(k—1)27F = X(2) — 271 X(2)
k=0 k=0

: —k _ k|
;1_>H}[ l;)x(k)z l;)a:(k 1)z

oo

= > [z(k) —a(k 1)

k=0
= [2(0) —2z(=1)] + [z(1) = z(0)] + [(2) — z(D)] + -

= lim z(k)

k— oo
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Properties of the Z-transform

& Real convolution theorem:
given two functions z1(t) e z5(t), with x4 (t) = z2(t) = 0, t < 0 and Z-transform

X1 (Z), XQ(Z) Then

k
X1(2)Xa(2) = 2| Y a1 (hT)xo (kT — hT)
h=0
Note that
le ZCQk h] ZZZCl CEQk h szl ZCQk h)
k=0 h=0 k=0 h=0

Since z5(k — h) = 0, h > k. Defining m = k — h we have

le Jxo(k — h) ] = ixl(h)z_h i xro(m)z™
h=0 m=0
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The Inverse Z-transform

Let to obtain a sequence z;, (and possibly the continuous function x(¢) whose samples
are z) from the Z-transform X (z).

X(z) = - (k) - x(t)

one-to-one non one-to-one

If the Shannon’s theorem on sampling holds, then the continuous time function z(t)
can be univocally derived from the sequence x.
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The inverse Z-transform: decomposition in simple fraction S

boz™ 4+ b1z by 12+ by
(z=p1)(z —p2) - (2 — Dn)

X(z) =

Case 1: All the poles are simple

X(z)= —— + 2 +...

< — D1 Z — P2 Z—pn 212 Di

residue ¢; are computed as: ¢; = [(z — p;) X (2)]

Z=p;
If X(z) has a zero in the origine, the function X (z)/z must be used
X (z C Cn X (z
(): 1 N Ci:[(z—pz‘> ()]
2 2= Z = Pn z e,

When we have complex conjugated poles, also the coefficients ¢; are complex number.
In this case use Euler’s equations to obtain trigonometry functions.
The mathematical expression of the inverse transform is

n

z(k) = Z Cz'pf

1=1

Automatic control 2 - Digital control systems — p. 28/139



The inverse Z-transform: decomposition in simple fraction S

Case 2: If X(z), or X(z)/z, has multiple poles

B(z)  boz™ + biz" t+ . 4+ b, 12+ b,

S G T 45 Sy PRy Y Gy Uy Py 1
then
h r; .
X@) =30 gy

where residues can be computed as

“ik = [(k —1 1) dikk_—ll (2 =p)" X (Z>]

Z=DP;
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The inverse Z-transform: decomposition in simple fraction

Example:
X(z) = 1 B 1
24623 41322 +122+4 (2 +2)2(2 +1)2
We have:
C C C C
X(Z) _ 11 4 12 4 21 + 22

(z+2)2  (z+2) (z+1)2  (z+1)

ci = [(2+2°X(2)][i=—2 =1
d 5 B
Clo = _a(z + 2) X(Z)] . =2
C21 E— (Z -+ 1)2X(Z)] o =1
¥ 2 )
Cog = E(Z + 1) X(z)] = —2
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SAMPLING AND INVERSE SAMPLING
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Sampling and inverse sampling

Digital feedback systems are characterized by a continuous time part

a discrete time part (the digital controller)

Hence both continuous time variables

(the plant) and

and discrete time variables coexist

Interface devices are the sampler and the inverse sampler

e(t)

Sampler—!

Zero order hold (hold inverse sampling):

() = f: 2(KT)[h(t — kT) — h(t — (k + 1)T)]

k=0

—kTs _ 6—(k:+1)Ts]

X,(s) = Y a(kT) [6
k=0

S

oo

1 — —T's
= ‘ Z r(kT)e F1s

S
k=0
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Impulsive sampling

1 — G_TS

HQ(S) S

X*(s) = Z:C(kT)e_kTS
k=0

2 (t) = L7X*(9)] =) w(kT)5(t — kT)
k=0

or(t)

sy #Tffff...

= o T 2T 3T 4T 5T t
Sr(t) | .

x(t) | (f)/{\ | :C*(?i) . x(t) | / | :E*(li)

X(s) 1 1 X*(s) X(s) 1 Sp(t) 1 X*(s)

______________
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Impulsive sampling

The impulsive sampler is an ideal model of the real sampler (A/D converter) used to
analyze and design digital control systems

The output of the zero oder hold is:

X,(s) = Hols) X*(s) =+ X*(s)
x(t) g z(kT) 1 Hold z,(t)

|

1 = Z z(kT) 2z~ "
k=0
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Impulsive sampling

Compute the Laplace transform of the sampled signal x*(¢):

x*(t) = a(t)or(t) =a(t) Y 6(t—nT)

- i B 1 [t . 1
@) = 3 @™t con e= g [ o)t = 7
which is
1 — - |
* —_— — E Jnwst _ 7 E Jnwst

X*(S):% Z E[x(t)ejnwst]:% Z X(S—]nws)

nN=——oo nN=——oo

Disregarding the gain 1/7T, the Laplace transform of the sampled signal X*(s) is the
sum of infinite terms , X (s — j nws), each of them obtained by a j nw, shifting of X (s).
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Impulsive sampling

Hence the spectrum of the sampled signal is:

X*(Jw) = Z X(Jw — j nws)
X (jw)[4
N
1
! .
—We 0 We W
[ X*(jw)l]
!
1
T
R .
—2w, 3w  —Ws _ Ws 0 WeWs Ws SWs 2w, W
2 2 2 2
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Sampling and inverse sampling

The condition w, > 2w, let the spectrum of the main spectral component be divided by
the repetitions. Hence, through a filtering operation, it is possible to exactly recovery
the original signal z(¢) from the sampled signal x*(?).

In case the condition w, > 2w, does not hold:

A

X (jw)]

1 1 1 ] ] ] »
'

—2wg —Wg 0 Ws 2Wg

The main spectral component is partially superimposed to its repetitions, hence it is not
possible to isolate it recovering the original signal.
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Sampling and inverse sampling

Shannon’s theorem
Let w, = 2% be the sampling pulse(T is the sampling tim), and let w. be the higher

spectral component of the continuous time signal x(t).
Signal z(t) can be recovered starting from the sampled signal x*(¢) if and only if:

We > 2We

The perfect recovery can be pursued using the ideal filter:

|Gr(jw)|4
w w
T L o< s 1
G1(jw) = o =¥ =79 T
0 elsewhere Y N

_Ws Ws
20 2
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Sampling and inverse sampling

The ideal filter G;(jw) is not feasible; in fact, its impulsive response is:

sin(wst/2)
wst /2

gr(t) =

AT

This means that the recovered signal is

> 0 sin(ws(t — 1) /2)

x(t) = /OO r (T) gt —7)dr = ) x(kT)/ §(t — kT) ol T2 dr

— 00 b= — oo — 00
- sin(ws(t — kT)/2)
- k;oofv(kT) ws(t — KT)/2

We need all the past and future samples xz(k7T)!!

We will use approximated feasible inverse sampler.
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The aliasing phenomenon

With the term aliasing we intend the generation of new spectral components, due to
the sampling operation, partially superimposed to the main component. These new
components do not allow the exact recovery of the original signal.

The aliasing appears just if the Shannon’s theorem condition w, > 2w, IS not met.
Example: consider

{ x(t) = sin(wst + 0)
y(t) = sin((w2 + nws)t + 6)

having the same phase 6 and pulses that differ for a integer multiple of w;.
If the signals are sampled

( x(kT) = sin(wkT + 0)
! y(kT) = sin((w2 + nws)kT + 0)
= sin(wokT + 2kmn + 0)

\ = sin(w2kT + 0)

samples are the same: z(kT) = y(kT)
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The aliasing phenomenon

Example: wy + w1 = nwy

Being wy = %ws € Wy — Wg — W] = %ws

{a:(t) = sin(wit) = sin(wst/8)

y(t) = sin(wot) = sin(Twst/8 + m)

Sampling we have

{ z(kT)
y(kT)

sin(wgk T'/8) = sin(2k7w/8) = sin(kn/4)

sin(TwskT' /8 + 7) = sin(Tkw /4 4+ 7) = sin(kn/4)

To avoid aliasing it is important to opportunely filter the signal before the sample: anti
aliasing filters .
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Sampling example

Sampling of the impulsive response of the second order system

25
G(s) =
)= 265525
Unitary DC gain, complex conjugated polesp; » = —3 + j4, natural pulse w,, = 5 rad/s

and damping coefficient § = 3/5.
Amplitude Bode diagram of G(jw):

IG(Gw)! (db)

IGGw)|

T \g:\al\a?lgg\aritmi\(:a T T T T T

0

-20+

-40

-60 N N N N N N
101 100 101

scalalineare

102

103

0 5 10 15 20 25 30

35

40

45

50

For w > 10w,, = 50 rad/s = w,the module of G(jw) is below 1/100 (-40 db) of the DC

gain.
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Sampling example

The spectrum, even if ideally has spectral components until unbounded frequency, can
be neglected for w > & = 50 rad/s

Applying the Z-transform we have

25 e 31 sin(4T) 2

4 2?2 —2e=3T cos(4T) z 4+ e~ 671

G(z) =

We can can compute the spectral behavior as G*(jw) = G(2)|,—ciwr (0
Different trends for 7' = &5 and T' = ¢

I
&

VAN

SN

20

15+

10

0] 50 100 150 200 250

20

15+

10

ANANANAN;

0 50 100 150 200 250
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Typical inverse samplers:

z(kT) x,(t)
Sampler—! -

Y

Zero order hold:

xo(t) =x(kT) kT <t<(k+1)T

Y
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Zero order hold

The frequential response of the zero order hold is:

1 — e—ij 2€—ij/2 6ij/2 . 6—ij/2

Holiw) = —
O(Jw) Jw W 27
:Tsin(wT/2) T2
wT'/2
Module
' T/2

Ho(jw)| =T Smu(j‘;/z/ ) ‘ ~T forw< ws=2m/T

Phase

1 1 T
Arg [Ho(jw)] = Arg [sin %] _ Y x —% forw < wg =27/T
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Zero order hold

HGWHIT

Fase (deg)

| Scala [ineare |
1
0.5+
0
0 1 2 3
W/W's
0
_50 L
-100+
-150+
0 1 2 3
W/W's

HGW)|/T (db)

Fase (deg)

Scda

logaritmica
TTl T T

T T T TTT

|-

1

1

1

1

| |-

100 101

W/Ws
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Zero order hold

10
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Antialiasing filters

The aliasing produced by the sampling introduces undesired harmonic components
within the bandwidth of the closed loop system.

r(t)

—?— Controller

Y

Plant

We need to introduce filters that attenuate the more as possible the noise.
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Antialiasing filters

n3
n1 77’2__ (a)

Y I

. & ' (b)
— *Tc

y Fo - (©)
— f h

F, N

— l (@

— f de
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Antialiasing filters

Analogical filters: passive or actives
- RC filters (first order)
- Slope 20 db per decade
- The filter should not perturb the frequencies at which system works

Digital filters
- Sampling time lower then the sampling time of the controller
- Mean filter:
1 N—1
k) = 5 2 ulk =

with sampling time

1
Td — W
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Antialiasing filters

Bode diagrams of Bode filters

Ampiezze

|G| (db)

-20

40—

Fasi

gradi

w (rad/s)
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Antialiasing filters

How to chose time constants for the analog and digital filters

G
............. \\‘
T " .
,wc_ﬂ_f rwd_ﬂ_f w
W, - 2 TC Td 2 Td Ta
WGZ?ZT, wa%2/Tc, Ta:]./wa%Tc/2

T4 =~ T. /2, while the time constant of the analog filter 7, must be computed according
to the sampling time of the filter: 7, ~ Ty /2
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Antialiasing filters: example

2 D(z) = 0.94527(z — 0.97884)(z — 0.92433)
s(s+1)(s+2) (2 —0.80687)(z — 0.99216)

Response without antialiasing filtering. Gaussian noise with variance 0.1

G(s) =

16 F ]
’ | A}WM%%WM%%VMWWWWMWWV AV“V““WM
yn : i
y
-0.2 |
1
u
-0.3 | | | | 7
0 (secondi) 30
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Antialiasing filters: example

Antialiasing first order filter with 1/7 =5 rad/s (1/7 = 2 rad/s)

16 1 16 F
C . C
yf y
y yf
0 0
1 * 1

uf

uf

-0.3 | | | | ; -03 | | | | i
0 (secondi) 30 0 (secondi) 30

Drawback: system slows down and overshoot increase

Automatic control 2 - Digital control systems — p. 54/139



Antialiasing filters: example

Sinusoidal noise with amplitude 0.5 and frequency f = 0.3183 Hz = 2 rad/s

Selective filter (notch): w = 2 rad/s

s> +4
F —
(5) s2 4+ 0.4s+4

16 F ‘
¢ 7 M
y
yf

0

) W@wﬂw

(secondl)
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Plane s and plane z correspondence

Since
X7(s) = X(2)]szesr

variables s and z are linked by the relation z = e*7
Being s = o + jw we have

o — T(otjw) _ To jTw _ eTaejT(w—l—%T”)

Important : any pointin z is in correspondence with infinite points if the plane s.

The points in s with negative real part (o < 0) are in correspondence with the points in
z within the unitary circle

z| =e'7 < 1

The points in s on the imaginary axis (o = 0) are mapped on the unitary circle (|z| = 1),
while those with positive real part (¢ > 0) are mapped outside the unitary circle

(|z] > 1).

The strip of the s plane bounded by the horizontal lines s = jw,/2 and s = —jws/2 is
called main strip .
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Plane s and plane z correspondence

Main strip and complementary strips

jw A
TIT777770077 777000777775 ) 2
Y
Complementaryg
Strip

NA\\

.
W
w‘e
0

Complementaryy Im| zplane
Strip § 1
N - ws
W/] 2
ain Z i 1 i
Strig %O 0 0 1 Re
Complementaryy
Strip

|
<o
w
N(E
v2)

N\\\\\\\\\//7/7///7.

Complementary
Strip

ot
N
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Plane s and plane z correspondence

Complex variables s and z are linked by the relation z = %'
Being s = o + jw we have

2 =T (0Fiw) = TogiTw (0 <w< % = %)

Mapping between main strip and z plane

A

Jw )
s plane Im z plane
““ ,K T T WA f@)
Y @il (g
- O JT |
Main ) i_2@\/ 0 \
oo strip @0 ¢ © Gf |0 ® Re
®_)A' _.]uif
L, . @) .
______ R \@)
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Plane s and plane z correspondence

Constant exponential decay loci (o =const)

Jw

s plane

02

Y

Im

6—|—O‘2T

z plane

>

Y

Re

01

1
-

Automatic control 2 - Digital control systems — p. 59/139



Plane s and plane z correspondence

Constant pulse loci (w =const)

Jw

oy — eT(0'—|—jw2)

s plane
%1
Jw2
Jwi
0 o
Jwi
_]%

z plane

5 — 6T(0—|—jw1)

e — eT(U_jwl)
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Plane s and plane z correspondence

Example:

z plane

o o o o o o o o o o o

o o o o o o o o o o o

-] o o o -] -] o o o -] -]

-] o o o -] -] o o o -] -]

o o o o o o o o o o o

|

o o o o o o o o o o o O O-
-] o o o -] -] o o o -] -]

-] o o o -] -] o o o -] -] .

""" —Jw2
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Plane s and plane =z correspondence

Constant damping coefficient 6 and natural pulse w,, loci in z plane

Wo0=0.6

Wo0=0.8

d=0 01 0.2 04 z=0 z=1
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Plane s and plane z correspondence

The points in s and in z, such that z = ¢!, can be considered as the poles of the
corresponding Laplace transform F'(s) and Z-transform F'(z), with F'(z) obtained by

sampling F'(s).

Jw

z plane

jw‘ s plane
2T T e
X7 X9
X 4 X6

X >

oy 2 3><6 o
X7 X9
je oo 112

6 X
H X
4 X
1211 10 / 1 23
\_ d
4 X
H X
6 X

9
8
7
7
8
9
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Transient responses in  z plane




DISCRETE TIME SYSTEMS
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Discrete time systems

Continuous time systems

Y

Y
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Discrete time systems

Discrete convolution

¥ (t) = ix(kT)d(t — kT)
k=0
( g(t)z(0) 0<t<T
)x(0) + g(t — T)x(T) T <t<2T
)z( T) + g(t — 2T)z(2T)

L g()2(0) + g(t — T)a(T) + ... + g(t — kT)a(KT)
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Discrete time systems

Since ¢(t) = 0,t < 0, we have

y(t) = g(t)x(0)+git—T)x(T)+ ...+ g(t — ET)x(kT)

k
= Y gt—hD)z(hT) 0<t<(k+1)T
h=0

Considering the samples of y(t) t = kT, k =0,1,2,..., we have

k

y(kT) = > g(kT — hT)x(hT)
h=0

k

= Y a(kT — hT)g(hT)
h=0
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Discrete time systems

Example: z(t) =e "  G(s) = T T =1
z(t) y(t)
—1 G(s) |—
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Discrete time systems

Example (cont’d)
Case a)
1 1 1

s+1ls+1 (s+1)?

Yo (kT) = kTe ¥

(a) -- Risposta al segnale x(t)
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Discrete time systems

Example (cont’d)
Case b)

Yn(t) = <

¢ g(t)x(0)
g(t)x(0) 4+ g(t — T)z(T)

| g(6)2(0) + g(t — T)a(T) + . ..

In this case ¢(t) = e~* (inverse transform of G(s)), hence:

Yn(t) =

\

( e—t

6—t —|_ 6—(t—T)€—T — 26—t

—t
\e —l_

yp (KT =

4 e~ (t—kT) o—kT _

(k+1)e *T

(k4 1)e”

+ g(t — kT)x(kT)
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Discrete time systems

Example (cont’d)
Case b)

(b) -- Risposta al segnale x*

0.9}

\
\
\
077 \ "\ _
. \ \
\
1 \
o
\ N
06 . | \
L N \ |
. \ | \
I \
I \
| \
\
\ I
05t \ [ \ ,
. N | \
\ | N
| \

\
| \
N I \
N N
[ N N Q -
. N N \
N \ N
\ | N
N N

02! S ]
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Discrete transfer function

y(kT) =Y g(kT — hT)x(hT)

h=0
X(2) Y(2)
> G(z) >
X(z)=Zx(kT)] =1 — Y(z2) =G(z2)
Discrete harmonic response function
G(e?¥"), D<w< o

G(ej(w—l—kws)T) _ G(@ij), G(ej(—w)T) _ G*(eij)
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Discrete transfer function

The response of an asymptotically stable system G(z) wrt a sinusoidal input sin(wkT)
IS, in steady state, a sinusoidal function A sin(wkT + ) whose amplitude A and phase

@ are respectively given by the module and the phase of the vector G(e/«?1):
A =[G p = Arg[G(e™h)]
Z-transform of the sinusoidal signal:

zsinwT’
2?2 — (2coswT)z+ 1

B 1 z z
2§ \z—elwT gz — T

Y(z) — G(z)X(z):YO(z)+|G(eij)‘( el P 5 ) eI )

27 z —elwl 5 _ e—jwT

X(z) = Zlsin(wt)] =

Is the sum of the asymptotically vanishing term Y, (z), corresponding to stable poles of
G(z), and a sinusoidal term with amplitude and phase equal to |G(e?“1)| and
o = Arg|G(e/“1)] respectivey.
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Composing discrete transfer functions

Case ) z(t) A :’I; ((} G(s) y(t) >
AV ANCR
Fictitious sampler ~ o1 Y(z) !
Y(s) =G(s) X*(s)
Y*(s) = [G(s) X7(s)]" = G(s)” X7 (s)
Y(2) =G(2) X(2)
Case b) ;((2) G(s) ;i((?)
Y(s)=G(s) X(s)
Y*(s) = [G(s) X(s)]”
Y(z) = Z|G(s) X(s)] = GX(z) # G(z) X(2)




Composing discrete transfer functions

Example
w0 () i ut) 7 w(t) . ye) ()
5T st a 5T s+b
0 5/ 0] N | L AL
Case a) ));((Z)) = G(z) H(z) :Z[sia] Lib]
Case b) )5;((?) = Z|G(s) H(s)] = [s —Il— a s j— b]
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Composing discrete transfer functions

Feedback interconnection:

T
—~
V)
~—
A

E(s)
E(s)

I
=
&

Sampling: { g*gs;

G RY(s)
1+ GH*(s)

C*(s) — C(z)
The discrete transfer function of the sampled system is:
Clz) _ G(z)
R(z) 1+ GH(2)
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Composing discrete transfer functions

Typical feedback interconnections

R S Jaal € 06

A—

T
~—~
V)
~—
A

 G(2)R(z)
Cz) = 1+ GH(z)

RO) G C6 s e,
H(s)p G(2) R(2)

C(2)

- 1+ GH(z)
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Composing discrete transfer functions

B e o ey |2 C)

H(s)
_ Gi(2) Ga(2) R(?)
CE) =260 Gali(2)
R(s C'(s C'(z
YW PN R P gl
H(s)
C(Z) o GQ(Z) GlR(Z)
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Composing discrete transfer functions

R(s) C(s) 7C(2)

\ —

-
>

Y
P
~—~

V)
~—
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Digital controllers design methods

1. Indirect method : discretization of an analog controller
2. Direct method : using analytical methods in discrete time domain

3. Standard controllers : PID
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DISCRETIZATION OF ANALOG CONTROLLERS
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Design via discretization

Three steps

1. Definition of sampling time 7" and verification of the phase margin of the system

HO(S)

1 —e 5T

Y
Y

Y

Sl

s+ 1

T

Sl

s+ 1

2. Discretization of the analog controller D(s)

3. A posteriori simulative verification
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Backward difference method

Example: dcyl—sft) + ay(t) = ax(t)

/OtdZ—(tt)dt: —a/oty(t)dtJra/Ot;c(t)dt

evaluating for t = kT, and for t = (k — 1)7T and subtracting we obtain

kT kT
y(kT)—y((k—1)T) = -—a /(k_l)T y(t)dt + a /(k_l)T x(t)dt ~ —aT [y(kT) — x(kT)]

Y(2)=2"Y(2) —aT [Y(2) — X(2)]
Y (z2) aTl a

T 1-—z1+al 12" t+a
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Backward difference method
» I nt?grazi on? al‘indi ?tro
1.2- i
1 ]
0.8+ i
g N *
0.4+ )
0.27& il
% 05 1 1s 2 25 3 35 4 45 5
t
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Metodo delle differenze all'indietro

Correspondence between plane s and plane z:

A A

Im

i% s plar: /%ﬁ:@
. N~
If 2 = o + jw

Re U+jw.—1 — Re (0 + jw—1)(0 — jw) 202—0+w<0
a2+w2 02+w2

(0— 5P+t < (;)2

Stable controllers D(s) are mapped in discrete time stable controllers D(z).

Automatic control 2 - Digital control systems — p. 86/139



Foreward difference method

S = T
Example:
kT kT
/ y(t)dt ~ Ty((k—1)T), / z(t)dt ~ Tx((k—1)T)
(k—1)T (k—1)T

y(kT) = y((k = 1)T) —aT [y((k — )T) — x((k — 1)T)]

Automatic control 2 - Digital control systems — p. 87/139



Foreward difference method

Re

/N

s):Re(Z;1> <0

-
>

Jw

s plane

Y

A\

-

Im

Re(z) < 1

NN

Stable controllers D(s) may be mapped in discrete time unstable controllers D(z)!!
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Bilinear transformation

D)= D(s)| 5y o
5= T1+ 21

also called trapezoidal integration (or Tustin’s transformation)

y(t)dt =~
k—1)T 2

/’“T y(kT) + y((k — D)T)|T
(

x(t)dt
k—1)T 2

Q

/’fT 2(kT) + z((k — 1)T)|T
(
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Bilinear transformation

A A

s plane z plane

N\

—1
Re(z ><O
z+1
Pe o+ jw—1 _ pe 0% — 14+ w? + j2w
(0 + 1) + w?

[ <o

02—1—w2<1
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Bilinear transformation

Frequential relation between w plane, z plane and s plane

Piano w
]Q A

z = Im

VR

3]

Piano z

A

1+ wl/2

—

11
s=—1Inz
T

—>.

&/Ee
22z—1 sT

w:Tz—I—l

q"

The transformation does not generate frequential overlapping but introduce distortions!!

Q=

21—e vt

T1+eiwT

2 25sinwT'/2

T 2coswT'/2

2 6ij/2 _ e—ij/2

2 wik
— 7— tan —

T 2

T T eiwT/2 4 e—jwT/2
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Bilinear transformation

2 T
]Q:]Ttan%

D.(j) = Da(e’™")

for _
9 T GGW)|

G(e”GwT)
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Bilinear transformation with prewarping

W1 1— 271 W1 z—1
S = —
tan% 14271 tan% z+1
For (2 = w; we have w = w;
Example
a
G(s) =
(s) Tt a

Prewarping at w = a
a 1—2z71

 tan “2T 1+ 21

tan - (1 4+ 271)
o al —1 al’ 4 q
(tan &~ ) + (tan %- + 1)
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Bilinear transformation with prewarping

Example

Design a discrete time low pass filter that approximate the frequential behavior for
w € |0, 10]rad/s del filtro analogico

10

G(s) = with T =0.2
(5) s+ 10 °
10 1 + 271
Ga(z) = 5~
T 1 —1 + 10 2
. 10 1
Gd(eij) _

]Ttan L 110 ]tan().lw—i—l
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Bilinear transformation with prewarping

Example (cont’d)
Using prewarping at w = 10 rad/s, we get

10 ~0.609(1 + 271
10 _1—27 4 19  140.218271

tan 191 1+z~1

Ga(z) =

Ampiezzadei filtri analogico e digitali

IGJ (db)
=

\ :
:
' \
(b) \ \
:
-5 ‘ \ .
‘ :

Al @ |

©

_8 i i i i i T R ! i ! i i i i T
100 101 102

W (cont.) e W (anal.)
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Zeros/Poles matching

Write D(s) enlightening poles and zeros factors.
Transform each pole and zero as

(s+a) — (1—ealz71

(s+ax£jb) — (1—2e" cosbTz 1+ e 201 ,72)

Introduce as many zeros in z = —1 as the relative degree
Adjust the low frequencies gain (z = 1) or the high frequency gain (z = —1)
Example
b
D(s)= "7
S+ a
z — e b1
D(z)=k
(Z> s — e—aT

1 — e 0T b b1l —e oL
D(z=1) =k =Dls=0)= (k:51—e—bT>
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Zeros/Poles matching

Example: High pass filter

S
D(s) =
(5) =777
z—1 14 el
(2) z —e—al 2
Example:
1 1

Dis) = (s+a)>+0  (s+a+;jb)(s+a—jb)

= relative degree equal to 2

(2 + 1)

D(z) =k
(2) 22 — 2ze= T cos T + e—2aT

1 —2e % cogsbT + e 20T

I —
4(a? + b?)
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Discretization design example

Plant;
1

s(s+2)
Feedback specification: 6 = 0.5 (S = 16.3%) e T, < 2 s (al 2%)

G(s) =

— =2 =  wp,=4rad/s

Sampling time T
- damped oscillations with period 27 /(w, V1 — 62) = 1.814 s
- we want 8-10 samples per period
- T=02s
Effect of the zero order hold
C1—est 1 10

~ Gh(S)

H _ _
0(5) p Ts/2+1 s+ 10
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Discretization design example (cont'd)

gradi

101 100 101 102
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Discretization design example (cont'd)

An analog controller D(s) that meets the specifications for the modified plant G,,, Is

S+ 2
) = D(s) = 20.2
Gm(s) = Gr(s)G(s) = (5) =20 5s+6.667

Being G, (s) = D(s)Gp(s)G(s), the feedback transfer function

 Gals) 202.5
14 Gu(s) 83 +16.66752 + 66.67s + 202.5

has polesin s = —12.665eins = -2+ 53.462 (0 = 0.5, 6w, =2=1T, =2 s)
Discretizing the controller using the zeros/poles matching method:

G0(8>

z = e 90671 — (0.2644, z=¢21 =0.6703
2 — 0.6703
D —
(2) =k 02614
D(z=1)=D(s=0) = k= 13.57
— 0.6703
D(z) = 13.57>

z —0.2644
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Discretization design example (cont'd)

Step response of the feedback continuous time system (left) and feedback poles
position (right)

Sistema con controllore analogico

y(t)

Re
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Discretization design example (cont'd)

Step response of the feedback system with discrete time controller (a) and

corresponding control action (b)

y(KT)

12

0.8+

0.6+

04r

D
0.2+

(a) uscitadel sistema equivalente discreto

(o}

05 1

15 2
kT

25

35

m(kT)

14

12+

10+

(b) Variabile di controllo

T

05

1

15

2 25 3 35 4
kT
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How to choose sample time

I performance index
cost index
=
Performances

- disturbance rejection Costs

- set-point tracking - computational burden
- control effort - speed of computation
- delays and stability - precision

- robustness
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How to choose sample time

The effects of 17" on performances are:
- effects of destabilization grow when T' grows;
- Information loss grows when T’ grows;
- discretization accuracy grows when 1" decrease;

The best choice is the higher value of T' that guarantees good performances in terms
of:

1) Loss of information: wg > 2wy

2) Smooth dynamics without delays: 6 < 22 <20
Wh

3) Disturbance rejection efficacy: Wg > 2wy

4) Antialiasing filter efficacy: Y > 20
Wh
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How to choose sample time

Some practical rules:

a)
T < Tdom
— 10
b)
r<?
!
c)
Tq
T < —
10

we > 10 wy,
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ANALYTICAL DESIGN OF DIGITAL CONTROLLERS
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Analytical design: poles and zeros assignment

O Gyla)
v O0) ) '
T | Contr. /T(—k):> Hy(s) = Gp(s) : 7,
| |
y(k) \_
() B
=0 T AR

where B(z) and A(z) have no common factors and have degree equal to m and n
respectively with n > m

Controller:
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Analytical design: poles and zeros assignment

Control action combine a feedforward action

Hpp(z) = RC)

and a feedback action

Hyp(2) = RC)

Causality implies that

grado(R) > grado(T), grado(R) > grado(S)

In pratice
grado(R) = grado(T) = grado(S)

or
grado(R) = 1+ grado(T) = 1 + grado(S)

Automatic control 2 - Digital control systems — p. 108/139



Analytical design: poles and zeros assignment

_______________

| | dl d2
| |

I h I A

| |

| |

: AN

I i

| 1 |

_controllor

Y(2) BT

. o B (z)

Specs: G (z) = A,.(2)

. . BT B
Design equation: o where

AR+BS A,
grado(A,,) — grado(B,,) > grado(A) — grado(B)
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Analytical design: poles and zeros assignment

Considering internal stable dynamics (“observer dynamics”) we define

In order to have small errors for low frequency disturbances, the gain function

B(z) S(2)
A(z) R(z) ry—eiwT

must be high for w — 0.

We can use integral actions: R(z) = (z — 1)? R1(z2)

Problem : design R, S and T’

The cancellation among zeros of B and zeros of AR + B S, I.e., poles of the closed
loop system, must be limited to stable zeros

B=B"B~

B,, = B"B’,
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Analytical design: poles and zeros assignment

The presence of non minimum phase zeros in G,(z) depends on 7. In fact for ' — 0

1 — G_TS

S

G, (2) = z[

oo] =55

For [ > 3 we always have unstable zeros. If [ = 3 (and for 7' — 0)

T3 27 1 +4271 4 272)
-3l (1 —271)3

Gp(2)

with a zero in z = —3.73.

The stable factor B™ can be canceled by chosing R = BT R’
Rewriting the design equation:

B*™B™T BB, s
Bt(AR' +B-S) A,

T B/,
AR +B-S A,

Automatic control 2 - Digital control systems — p. 111/139



Analytical design: poles and zeros assignment

Considering also the observer dynamics Ay, the two design equations became
AR + B~ S = AjA,,
T = AgB,,
The characteristic equation of the feedback loop is
AR+ BS =BT AyA,,

whose roots are
- stable zeros of the plant (B™)

- specification poles (A,,)
- poles of the “observer dynamics” (Ay)
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The Diophantine equation

AX+BY =C

Necessary and sufficient condition for the existence of a solution (X, Y) is that the

maximum common divider of A and B is a factor of C.
This Is satisfied if A and B do not have common factors.
If (X, Yp) then exist infinite solutions

X = Xo+QB
Y = Y5—-QA
Example
3x+4y=7

with z and y integers
Particular solution: o =y =1
General solution (n integer number):

r = x9+4n
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The Diophantine equation

Exists a unique solution if
degree(X) < degree(B)

or
degree(Y) < degree(A)

The solution of the Diophantine equation can be obtained by solving the linear
equations system

A(z) = 2™+ a2 +az™ %+ +ap,
B(z) = boz"+b12" 1+ by 2+ 4+ by,
C(z) = coaP +c12P 7+ 2P 2+ 4 ¢

For degree(Y) =m — 1 and degree(X) =p —m

h<
~—~
N
~—

|

Yoz Y 2™ 4 Y

X(z) = me2?P M4 a2

the system is squared and with a degree equalto p + 1
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The Diophantine equation

1 0 0 0 O 0 _ - _ ;
Lo Co
aq 1 T . bo 0 T : 1 ¢
ag ap - 0 by b - 0 C2
. . | . . 0 - B
Am, a1 by, bO Yo
. U1 Cp—2
0 anm 0 b,
Cp—1
0 ... 0 an O ... 0O b, |t Ym-1- | S
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The Diophantine equation

Being ¢ = ¢p, we have a reduced order system p

10 ... 0 bp 0 o 0T a1 T e —coar T

aq 1 R bl bo R : Co — CoQ9

ao aq R 0 b2 bl R 0 |

: : : : Lp—m
1 bo
Yo — Cm — CoQm

Am aq bn bl U1 Crrnt 1

0 Am 0 bn
0 ... 0 an O ... 0 by |Lymal L o

= Sylvester’'s matrix
In our application, in order to have a unique solution degree(S) = degree(A) — 1
and for causality

degree(A,,) — degree(B,,) > degree(A) — degree(B)
degree(Ag) >2degree(A)—degree(A,,) —degree(BT)—1
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Poles and zeros assignment: design procedure

1. Inputs G, = B/A, Ap and G,,, = By, /An,
2. Decompose B

B=B Bt B,, = B"B’
where BT ismonic
3. Solve
(2 —1)9AR, + B~ S = AyAn,
with

grado(S) = grado(A) +q —1
grado(R}) =grado(Ap)+grado(A,,)—grado(A)—q
4. write the control law

Ru=Tv—Sy con

R=B"R, T = B! Ay, R = (z—1)'R]
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Poles and zeros assignment: design procedure

Chose G,,, = B, /A, as

Q1) B (?)
Gl = B0 Q)
where: Q(z) = 2> + p1z + po
P = —2e%nT cos(w,TV1 — §2)
Dy = 6—25wnT

or: Qz)=z—a a=e T/T
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Poles and zeros assignment: example

1
Example: Gp(s) = S
1—e st 1 K(z—)
=Z
Gp(2) s  s(s+1) (z—1)(z —a)
where
a:e_T’ K=a+4+1T-1, b:l—T(llgaj)

Feedback system specification

" 22 + p12 + Do

G, (%) has a zero in z = b which is not present in G,,(z) hence

B=B"B", Bt =20, B =K

Automatic control 2 - Digital control systems — p. 119/139



Poles and zeros assignment: example

Example (cont'd) It must hold :
Bm 2(1+p1 +p2)

K
degree(Ag) > 0 and we choose Ay =1
degree( R )=degree(Ag)+degree(A,,) —degree(A)=0
degree(S) = degree(A) —1 =1

hence R' =rgand S = (soz + s1)
The design equation is

- B =

m

|

(z—l)(z—a)ro—l—K(soz—l—sl):22+plz—|—p2

from which
o — 1 S _1+a+p1 S b2 —a
0o — 4, 0 — K ) 1 — K
moreover 1
T(z):AOBq’n:Z( + 1+ p2) — tog2

K
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Poles and zeros assignment: example

Example (cont’'d) The control law Ru = Twv — Sy IS

u(k) = bu(k — 1) + tov(k) — soy(k) — s1y(k — 1)

12 F

y(t)

v(t)

u(k)

-3

0 | | (secondi) 10
Output y(t) and control action u(k) in case § = 0.6, w, = 1.2and T' = 0.2
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Poles and zeros assignment: example

1.2 F
y(®)
v(t)
0
3
u(k)
L T
-3 | | | | |
0 (secondi) 10

Output y(¢) and control action u(k) in case § = 0.6, w, = 1.2and T = 0.8
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Poles and zeros assignment: example

Example (cont'd) To eliminate the “ringing” problem, let's modify G,,(z) as

14+ p1+Dp z—0b

G, (z
(=) 1—b 22+ p1z+p2
from which: BT =1, B~ = K(z —b)
p _ 1tpPitp
™o K(1-0b)

Since
degree(Ag) > 2degree(A) — degree(A,,) — degree(BtT) —1 =1

we chose Ay(z) = z. Moreover:

degree(R) = degree(A,,) + degree(Ag) — degree(A,,) =1
degree(S) = degree(A)—1=1
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Poles and zeros assignment: example

Example (cont'd) The design equation is

(z—=D(z—a)(z+7r1) + K(z—b)(soz + 51) = 2° + p12° + paz

from which
b(b?
"= bt (0" + p1b + p2)
(b—1)(b—a)
K(1—-b)(so+s1) = 1+pi+p2
K(a—b)(sga+s1) = a®+pia®+ paa
SOlVing a1 — Q9 Qo — (1a
S — S1 —
1 —a 1 —a
o 1+ pi+Dpo N a4+ pra® + pa
"TOK(1-0) T K(a-b)
. 1 . .
Since: T(z) = AgB,, = 2 ]j(fl 2592 = toz, the resulting control law is:

u(k) = —riu(k — 1) + tov(k) — soy(k) — s1y(k — 1)
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Poles and zeros assignment: example

Example (cont'd) If 6 = 0.6, w,, = 1.2 and T' = 0.2 we obtain

12 F

y(t)

v(t)

u(k)

-05 |

0 | | (secondi) 10
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Poles and zeros assignment: dealing with noises

_______________

| | d1 d2
| |
v T u ! ‘% B €T % Yy

| R | A

| |

| S

| R |

| i |

controller
T B B S B
RA A RA

T LSBT sEhT 5B
RA RA RA
TB RB SB

+

dy — d
RA+BS. "RA+BS™  RA+BS™
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Poles and zeros assignment: dealing with noises

Defining:

we obtain

By substituting

r=—/—70U-+

Hypy = feedback gain

eSlvy | »n
| »n

H, = loop gain

B, H, 1 H,

d
A, 1+ H, Hppy + 1+ H,

Bn _RB . SB
A U T BTA A, YT BtA A,

B,, R B~ SB~
— U + dl —

A, A A, Ay a,
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Analytical design: deadbeat controller

The controller has just one degree of freedom (feedback control)

UG _SE) _
E() ~ R - P
v e(t) e(k u(k u
O by M by [ Gyt

The deadbeat specifications, in case of step references, are
a) the output must reach its final value in minimum time
b) steady state error must be zero
c) no oscillations between samples
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Analytical design: deadbeat controller

To satisfy the deadbeat specs we impose

aozN—l—alzN_lJr---—i—aN

Gm(z) =

~N

l.e.,
Gm(z) =ag+a1z" 4+ anz N

with N > n, n degree of the denominator of G,,(z)

From

we obtain
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Analytical design: deadbeat controller

Causality conditions:

1. D(z) with positive relative degree

2. If G,(z) has a factor =%, G,,,(z) must have a factor =" with h > k
Stability conditions:

1. All unstable poles of G,,(z) must be zeros ofl — G,,,(z)

2. All unstable zeros of G,,(z) must be zeros of G,,(z)

We refer to reference signals

P(z)
V(Z) — (1 — Z—l)q—|—1
- if P(z) =1, ¢ = 0 we have the unitary step
- if P(z) =Tz™1, ¢ = 1 we have the unitary ramp

- if P(z) = 47227 1(1 + 27 1), ¢ = 2 we have the parable v(t) = 5t
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Analytical design: deadbeat controller

Since

E(z) = V(z)=Y(2) =V(2)[1 = Gn(2)]

P(z)[1 = Gm(2)]
(1— z—1)at!

the error goes to zero In finite time and remains null if
1—Gp(2) =(1—2"HTN(2)

which is
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Analytical design: deadbeat controller

If G,,(s) is stable, in order to avoid oscillations between samples (“ripple”), we aske for
t >nTl

y(t) = const. for step
y(t) = const. for ramp
ij(t) = const. for parable

These must be translated in conditions on the control.
For example, in case of step input, the control «(¢) must be constant in steady state.
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Deadbeat controller: example

v e(t) /4(k u(k U
(t) y Y T’L)> D(Z) ( Z HO(S) (t)= GP(S) y(=>
1
Gp(s) = s(s+1)

Design D(z) so that the closed loop system has a deadbeat step response.
We choose T'=0.8 s

. _ 1 — 5T 1 _ K(Z — b) _ K(l — bZ_l)Z_l
Gp(2) YT 561D T oD A h—ar )

0.2493(1 + 0.7669z1)z~!
(1—271)(1—0.44932~1)
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Deadbeat controller: example

Since G,(z) has a delay z~! and n = 2, we choose
Gm(z) = a1z 4 agz ™2
Since the input is a step:
1 —Gm(z)=(1—-2"1HN(2)
this let also to avoid the cancellation of the critical pole of G, (z) in z = 1.

To avoid ripple we impose that ¢(t) = cost for t > 2T, which is guranteed by u(t) = cost
fort > 2T, I.e.

U(z)=by+biz b +bz24+234+...)

where b = 0 since G,(s) has an integral action.
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Deadbeat controller: example

Therefore
U(z) =bg+brz""
Moreover
Y(z) _ Y(2)V(2) V(2)
Ulz) = = =G, (2
- Gp(z)  V(2)Gp(2) ( )Gp(z)
_ G (1—271)(1 —0.4493271)
T (1= 271) 0.2493(1 + 0.76692 1) 21
— —1
— Go(2) (1 —0.4493z _) _
0.2493(1 + 0.7669z—1)z—1
Making equal
Gm(2) = (140.7669271)271G;
U(z) = 4.01(1-0.4493z"")G,

with G| = cost.
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Deadbeat controller: example

From

we have

Niz)=1+(1—-ay)z"!

Making equal we obtain

1 —a1z ' —agz™? = (1 —2"1)N(2)

1—&1—&220

Gl — ai, as — O76696L1 =0
a1 = 0.560, as = 0.434
And finally
Gon(2) 0.56621 + 0.4342~2
N(z) 1+ 0.434271
Gm 2.27 — 1.02271
D(z) ) — -
Gp(2)(1 — z71)N(2) 14 0.434z—1
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Deadbeat controller: example

1.2

y(t)

v(t)

2.270

u(t)

-1.020 |

0 | | (secondi) 8
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Deadbeat controller: example

In case the plant has an unmodelled dynamics, i.e.,

10
G _
P8 = ST (s 10)
1.2
y(D)
v(t)
0]
2.270
u(t)
-1.020 | j

0 | (secondi) 8
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Simplified deadbeat controller

— D(2) | Hols) [ = Gyls)

Just for step input

G, (z) is stable and minimum phase

Controller cancels all system dynamics

Simplified specs: G,,,(z) = z~* with k greater or equal to the intrinsic delay of
Gp(2)

The controller D(z) results:
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