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Part I

The euclidean space Rn

1 The euclidean space Rn as a metric space

1.1 The euclidean metric (distance) in Rn

Let us consider the set of of all ordered n−tuples

Rn = {(x1, x2, . . . , xn); xi ∈ R, i = 1, . . . , n}.

The set Rn is endowed with a structure of finite dimensional (real) vector space of
dimension n in the usual way.

From now on, we will regard Rn as an euclidean metric space, that is a set endowed
with a function d, called the euclidean metric (distance), defined as follows.

given two vectors (points) x = (x1, x2, . . . , xn), x′ = (x′1, x2, . . . , xn) ∈ Rn, we set:

d(x, x′) =
√

(x1 − x′1)2 + · · ·+ (xn − x′n)2.

The euclidean metric satisfies the axioms of ”abstract” metric, that is:

1. d(x, x′) ≥ 0; d(x, x′) = 0 se e solo se x = x′.

2. d(x, x′) = d(x′, x).

3. d(x, x′) ≤ d(x, x′′) + d(x′′, x′) (THE TRIANGULAR INEQUALITY).

1.2 Basic topological concepts in Rn

Given x0 ∈ Rn and r ∈ R+, the spherical open neighbourhood with center x0 and ray
r is the subset

I(x0, r) = {x ∈ Rn; d(x, x0) < r} ⊆ Rn.
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A subsetA ⊆ Rn is said to be limited if and only if its diameter

d(A) = sup {d(x, x′); x, x′ ∈ A}

is a FINITE real number. A more ”geometric” and intuitive equivalent definition is
the following: A is a limited subset if and only if

∀x ∈ Rn ∃ r ∈ R+ such that A ⊆ I(x, r).

A subset A ⊆ Rn is said to be open if and only if

∀ x ∈ A ∃ r ∈ R+ such that I(x, r) ⊆ A.

Given B ⊆ Rn and a point x0 ∈ Rn, we say that x0 is an accumulation point (or, limit
point) for B if and only if

∀ r ∈ R+ we have (I(x0, r)− {x0}) ∩B 6= ∅.

A subset D ⊆ Rn is said to be closed if and only if its complementary subset Dc =
Rn −D is an open set in Rn.

Proposition 1. A subset D ⊆ Rn is closed if and only if it contains its accumulation
points.

The proof is left as an (useful) exercise.

REMARK 1. • In general, given a subset C ⊆ Rn it may be neither an open
set nor a closed set. For example, the interval [0, 1[ is neither an open subset
nor a closed subset of the euclidean line R. On the one hand, the point 1 is an
accumulation point for [0, 1[ but it doesn’t belong to it; On the other hand, it isn’t
possible to find a neighbourhood with center 0 and contained in [0, 1[.

• The subsets ∅ and Rn are simultaneously open and closed subsets.

In the euclidean spaces Rn, the following deep result holds:

Therem 1. In the euclidean spaces Rn, if a subset A is both an open subset and a
closed subset, then A = or A = Rn.

Corollary 1. Let C ⊆ Rn, C 6= ∅, C 6= Rn.

• if C is open, then C is not closed.

• If C is closed, then C is not open.

Proposition 2. • O1) The union of any family of open sets is an open set.

• O2) The intersection of a FINITE family of open sets is an open set.

• C1) The union of a FINITE family of closed sets is a closed set.
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• C2) The intersection of any family of closed sets is a closed set.

REMARK 2. By the ”De Morgan laws”, assertion O1 is equivalent to assertion C2,
and assertion O2 is equivalent to assertion C1.

COUNTEREXAMPLES IN R

• ∩n∈Z+ ]− 1
n
, 1

n
[= {0} is an intersection of open sets, but it is closed, and, therefore,

NOT open.

• ∪n∈Z+ [−1+ 1
n
, 1− 1

n
] =]− 1, 1[ is a union of closed sets, but it is open, therefore,

NOT closed.

1.3 Continuous functions f : A ⊆ Rn → R

Let f : A ⊆ Rn → R - A 6= ∅ - be a real valued function. In the following, we will
assume that the domain A ⊆ Rn is a metric space with respect to the metric induced
- by restriction - by the euclidean metric of Rn.

Given a point x0 ∈ A, we say that f is continuous at the point x0 if and only if

∀ε ∈ R+, ∃ δ ∈ R+ such that |f(x)− f(x0)| < ε, ∀x ∈ I(x0, δ) ∩ A.

This is a ”local” definition; ”globally”, we say that f is continuous on A if and only if
it is continuous at every point of A.

We have a quite useful characterization of the global continuity of a function

f : A ⊆ Rn → R.

For the convenience of the reader, we recall the notion of preimage (or, fiber) of a subset
C ⊆ R with respect to the function f.

Given C ⊆ R, its preimage with respect to the function f is the set:

f−1[C] = {x ∈ A; f(x) ∈ C} ⊆ A ⊆ Rn.

Therem 2. Consider a function f : A ⊆ Rn → R, A 6= ∅.
The following assertions are equivalent:

• f is continuous on A.

• ∀ B ⊆ R, B open in R, ∃ B1 ⊆ Rn, B1 open in Rn, such that
f−1[B] = A ∩B1.

• ∀ D ⊆ R, D closed in R, ∃ D1 ⊆ Rn, D1 closed in Rn, such that
f−1[D] = A ∩D1.

Corollary 2. Consider a function f : Rn → R.

The following assertions are equivalent:

• f is continuous on Rn.

• ∀ B ⊆ R, B open in R, f−1[B] is open in Rn.

• ∀ D ⊆ R, D closed in R, f−1[D] is closed in Rn.
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1.4 The Theorem of Weierstrass

Una fondamentale conseguenza della continuita’ globale e’ data dal seguente risultato.

Therem 3. (Weierstrass)

Consider a function f : A ⊆ Rn → R, A 6= ∅.
if A is a closed and limited set (i.e., A is a compact set), then the image f [A] =
{f(x); x ∈ A} ⊆ R has a maximum and a minimum.

1.5 Sequences in Rn; convergent sequences and Cauchy se-
quences

Let (xn)n∈N be a sequence with elements in Rn, that is xn ∈ Rn, for every n ∈ N.

We say that the sequence (xn)n∈N converges to the point x0 ∈ Rn if and only if

∀ ε ∈ R+, ∃ ν ∈ N such that d(xn, x0) < ε, ∀n > ν.

In this case, we also write, in short notation,

lim
n→∞

xn = x0.

In this case, we also say that the sequence (xn)n∈N is convergent.

A sequence (xn)n∈N with elements in Rn is said to be a a Cauchy sequence if and only
if

∀ ε ∈ R+, ∃ ν ∈ N such that d(xn, xm) < ε, ∀n,m > ν.

From the ”triangular inequality”, it follows (useful and easy exercise) that any conver-
gent sequence is a Cauchy sequence.

The converse assertion is NOT in general true, in abstract (general) metric spaces.

However, in the euclidean space Rn, the following fundamental result is valid:

Therem 4. (The Completeness Theorem for the euclidean space Rn)

A sequence (xn)n∈N with elements in Rn is convergent if and only if it is a Cauchy
sequence.

In general, a metric space is said to be complete if and only se any Cauchy sequence
is convergent (in general, this implication is FALSE; for example, in the space Q
of rational numbers, endowed with the restriction of the euclidean metric of R, this
assertion is false.

We have an important characterization of the continuity of a function f at a point x0

in terms of convergent sequences.

Proposition 3. Consider a function f : A ⊆ Rn → R, A 6= ∅, and a point x0 ∈ A.

The function f is continuous at the point x0 ∈ A if and only if for every sequence
(xn)n∈N in A the condition

lim
xn→x0

xn = x0

implies
lim

xn→x0

f(xn) = f(x0)
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2 The euclidean space Rn as a normed space

From now on, we will regard Rn also as a normed space, that is, we will endow Rn

with a function, calledeuclidean norm:

|| || : Rn → R

defined as follows. Given x = (x1, x2, . . . , xn) ∈ Rn, we set:

||x|| =
√

x2
1 + · · ·+ x2

n.

The euclidean norm satisfies the axioms of ”abstract” norm, that is:

1. ||x|| ≥ 0; ||x|| = 0 se e solo se x = 0.

2. ||λ · x|| = |λ| · ||x||, λ ∈ R.

3. ||x + x′|| ≤ ||x||+ ||x′||.

2.1 Norms and metrics

In general, given a norm function || ||, we can canonically associate to it two-variable
function d : Rn ×Rn → R by setting

d(x, x′) = ||x− y||;

it is not difficult to prove that the function d is a metric.

In plain words, the normed space (Rn, || ||) may be regarded as a metric space. This
is a general fact about normed spaces. In the case ”euclidean” Rn, the situation is
extremely simple and intuitive.

Given x = (x1, x2, . . . , xn), x′ = (x′1, x2, . . . , xn) ∈ Rn, and denoted by || || the eu-
clidean norm, we have

||x− x′|| =
√

(x1 − x′1)2 + · · ·+ (xn − x′n)2 = d(x, x′),

that is, the euclidean metric.

3 The euclidean space Rn as a space with inner

product

From now on, we will regard Rn also as a space with inner product, that is, we will
endow Rn with a function, calledeuclidean inner product

< >: Rn ×Rn → R
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defined as follows. Given x = (x1, x2, . . . , xn), x′ = (x′1, x2, . . . , xn) ∈ Rn, we set:

< x, x′ >= x1x
′
1 + · · ·+ xnx′n =

n∑
i=1

xix
′
i.

The euclidean inner product satisfies the axioms of ”abstract” inner product, that is:

1.
< x + x′, y > = < x, y > + < x′, y >,

e
< x, y + y′ > = < x, y > + < x, y′ >,

2.
< λ · x, y >= < x, λ · y > = λ· < x, y >, λ ∈ R

3.
< x, y > = < y, x > .

4.
< x, x > ≥ 0; < x, x >6= 0 per ogni x 6= 0.

The properties 1) e 2) are also also expressed by saying that the inner product is
bilinear, the property 3) by saying that it is symmetric, the property 4) by saying that
it is positively defined.

3.1 Geometric interpretation: inner products and angles

The euclidean inner product in Rn allows us to provide a transparent and rigorous
definition of the notion of angle between a pair of non-zero vectors in Rn.

The starting point is the following result.

Therem 5. (The Cauchy-Schwarz inequality)

Let x, y be vectors in Rn. Then:

| < x, y > | ≤ √
< x, x >

√
< y, y > = ||x|| · ||y||.

In geometric language, we may interpret the Cauchy-Schwarz inequality in the following
way.

Let x, y non-zero vectors in Rn. The preceding inequality may be rewritten in the form

−1 ≤ < x, y >

||x|| · ||y|| ≤ 1.

Thus, there exists aunique ureal number θ ∈ [0, π] such that

cos(θ) =
< x, y >

||x|| · ||y|| .

The value θ is called the angle between the non-zero vectors x, y ∈ Rn.
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Example 1. let x = (x1, 0), y = (0, y2) be vectors in R2, x1, y2 6= 0. Then

< x, y > = 0 = cos(
π

2
),

that is the vectors x e y are orthogonal.

3.2 Inner products, norms and metrics

In general, given an inner product function < >, the one variable function defined by
setting ||x|| =

√
< x, x > turns out to be a norm function.

In plain words, the inner product space (Rn, < >) may be¡ regarded as a normed
space. This is a general fact about inner product spaces. In the case ”euclidean” Rn,
the situation is extremely simple and intuitive.

Given x = (x1, x2, . . . , xn) ∈ Rn, and denoted by < , > the euclidean inner product,
we have: √

< x, x > =
√

x2
1 + · · ·+ x2

n = ||x||,
that is the euclidean norm.

In plain words, we say that the norm (canonically) associated to the euclidean inner
product is the euclidean norm. Furthermore, we recall that the metric associated to
the euclidean norm is the euclidean norm.

Thus, all the concepts we introduced for Rn as an euclidean metric space (for example,
limited set, open sets, closed sets, continuous functions, convergent and Cauchy se-
quences, completeness) preserve their meaning when we regard Rn as a space endowed
with the euclidean inner product.

Part II

Real-valued differentiable functions.
Local maximum and minimum
points

4 Differentiable functions f : A (A ⊂ Rn) → R

4.1 Directional derivatives and partial derivatives

A vector v ∈ Rn is said to be a direction, (or, versor) if and only if its euclidean norm
equals 1: in symbols, ||v|| = 1.

if x ∈ Rn e v is a direction, the set

rx,v = {x ∈ Rn; x = x + tv, t ∈ R}
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is a LINE, in particular the(unique) line passing through the point x and with direction
v.

LetA be an open set of Rn, x A, and let us consider a function

f : A → R.

We say that f e’ has the directional derivative in the direction v at the point x A if
and only if the limit

lim
t→0∈R

f(x + tv)− f(x)

t

EXISTS and is FINITE (i.e., is a real number).

This limit, when it exists and is finite, is usually denoted by the symbol

∂ f

∂ v
(x),

and is called the directional derivative in the direction v at the point x A.

If v is a vector of the ”canonical basis” {e1, e2, . . . , en}, the directional derivative in
the direction ei is called the i−th PARTIAL DERIVATIVE and is usually denote by
the symbol

∂ f

∂ xi

(x), Di(f)(x).

or, (short notation)
Di(f)(x).

OSSERVAZIONE FONDAMENTALE. In generale, se n > 1, le derivate direzionali
(se esistono) sono INFINITE. Invece le derivate parziali (se esistono) sono in numero
FINITO (al massimo n), cioe’ la dimensione dello spazio dominio della funzione, o,
equivalentemente, il numero delle variabili.

Consider a point (vector)
x = (x1, x2, . . . , xn) ∈ Rn;

thus,
x + tei = (x1, . . . , xi + t, . . . , xn).

Given i = 1, . . . , n, we have (direct computation)

∂ f

∂ xi

(x) = lim
t→0∈R

f(x + tei)− f(x)

t
=

lim
t→0∈R

f(x1, . . . , xi + t, . . . , xn)− f(x1, . . . , xi, . . . , xn)

t
.

Therefore, the i−th partial derivative ∂ f
∂ xi

(x) (at the point x) is computed by regarding
the variables x1, . . . , xi−1, xi+1, . . . , xn as COSTANTS, and by differentiating (as in the
one variable case) with respect to the variable xi.
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4.2 Differentiable functions f : A → R

Given a function f : A → R, A open subset of Rn, f is said to be DIFFERENTIABLE
at the point x ∈ A if and only if there exists a linear functional

Lx : Rn → R

(depending from the point x) such that

lim
h→0∈Rn

f(x + h)− f(x)− Lx(h)

||h|| = 0.

The linear functional Lx is called the differential of f at the point x, and it is also
denoted by the symbol df(x).

If f is differentiable at every point of A, we will say that f is differentiable in A.

4.3 ”Geometric” interpretation of the differentiability condi-
tion

Let f : A → R be a differentiable function at the point x ∈ A,

and let Lx denote its its differential at the point x.

Consider the numerator of the fraction that appears in the preceding limit, that is

Ex(h) = f(x + h)− f(x)− Lx(h),

regarded as a function of the ”vector increment” h ∈ Rn.

The value Ex(h) may be interpreted as the error (again, as a function of the ”vector
increment” h ∈ Rn) that we make when we ”approximate” that value of the function
f (at the point x + h) with the value

f(x) + Lx,

the sum of a constant f(x) and the evaluation of a linear function Lx.

On the other hand, the denominator ||h|| = ||(x + h)− h|| is the distance of the point
x + h from the ”base point” x.

Thus, the differentiability condition for f at the point x may be rewritten in the
following way:

∃Lx : Rn → R linear

and
Ex function of h in a neighbourhood of x

such that
f(x + h) = (f(x) + Lx(h)) + Ex(h),

with

lim
h→0∈Rn

Ex(h)

||h|| = 0.

IN PLAIN WORS: near x, we may approximate f by the polynomial f(x) + Lx by
making an error Ex (function of ||h|| = d(x + h, x)) that, if h → 0, ”goes to 0 more
quickly” than the norm of h.
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4.4 Differentials and directional derivatives

Proposition 4. Let A be an open subset of Rn, and let f : A → R be a function
differentiable at x ∈ A. Then f admits, at x, all the directional derivatives ∂ f

∂ v
(x), for

every direction v. Furthermore

∂ f

∂ v
(x) = Lx(v),

for every direction v.

DIMOSTRAZIONE. Let v be a given direction in Rn. By specializing the differentia-
bility condition to the case h = tv, we get

lim
t→0∈R

f(x + tv)− f(x)− Lx(tv)

|t| = 0.

This condition is EQUIVALENT to the condition

lim
t→0∈R

f(x + tv)− f(x)− Lx(tv)

t
= 0.

(WHY? Use the definition of limit)

Since Lx is a linear functional, the last condition is equivalent to the condition

lim
t→0∈R

f(x + tv)− f(x)− t · Lx(v)

t
= 0.

Hence,

lim
t→0∈R

f(x + tv)− f(x)

t
= lim

t→0∈R

t · Lx(v)

t
= Lx(v);

thus,

lim
t→0∈R

f(x + tv)− f(x)

t

exists, is finite, and equals the evaluation Lx(v) of the differential on the direction v.

Therefore, the directional derivative ∂ f
∂ v

(x) exists and, furthermore, we have proved
the crucial identity

∂ f

∂ v
(x) = Lx(v).

4.5 Evaluations of a differential, gradient vector, inner prod-
ucts

Let A be an open set of Rn, and let f : A → R be differentiable at x ∈ A, Lx the
differential of f at the point x ∈ A.

We already know that f has all the directional derivatives atx ∈ A and then, a fortiori,
all the n partial derivatives.
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The vector

grad f(x) = (
∂ f

∂ x1

(x),
∂ f

∂ x2

(x), . . . ,
∂ f

∂ xn

(x) ) ∈ Rn

is called the gradient vector of f at x.

Let v = (v1, v2, . . . , vn) =
∑n

i=1 vi · ei be a vector in Rn.

(Recall: {e1, e2, . . . , en} denotes the canonical basis of Rn)

By linearity, the evaluation on v ∈ Rn of the differential f at the point x ∈ A equals

Lx(v) =
n∑

i=1

vi · Lx(ei) =
n∑

i=1

vi · ∂ f

∂ xi

(x).

Therefore, the evaluation of the differential Lx on a given vector v ∈ Rn may be
expressed, in quite concise way, as the inner product:

< gradf(x), v > =
n∑

i=1

vi · ∂ f

∂ xi

(x) = Lx(v).

Corollary 3. Let A be an open set of Rn, e sia f : A → R differentiable at x ∈ A.

Then
∂ f

∂ v
(x) = < gradf(x), v >,

for every direction v ∈ Rn.

4.6 Directional derivatives and differentials

If n > 1, the converse of Proposition 4 is FALSE.

A function f may have all the directional derivatives at a point x without being differ-
entiable in such a point!

The differentiability condition is strictly stronger than the condition of having all the
directional derivatives at a point (A simple way to understand and remember this
important fact is the following: the differentiability condition at a point x implies the
continuity at this point - as we shall see in a while -, but a function may have all the
directional derivatives at a point x without being continuous in such point.

4.7 Differentiability and continuity

Proposition 5. Let A be an open subset of Rn, and let f : A → R be a function
differentiable at x ∈ A. Then f is continuous in x.

Proof. Since f is differentiable at x, we ahve

f(x + h) = f(x) + Lx(h) + Ex(h),

13



with

lim
h→0∈Rn

Ex(h)

||h|| = 0.

Now
f(x + h)− f(x) = Lx(h) + Ex(h) =< grad f(x), h > +Ex(h);

thus,
|f(x + h)− f(x)| ≤ | < grad f(x), h > |+ |Ex(h)|.

From the Cauchy-Schwarz inequality, it follows

| < grad f(x), h > | ≤ ||grad f(x)|| · ||h||;
ne segue

|f(x + h)− f(x)| ≤ ||grad f(x)|| · ||h||+ |Ex(h)|.
Clearly 0 ≤ |f(x + h) − f(x)| and it is less or equal to the sum of two functions that
tend to 0 for h → 0 ∈ Rn. Then, |f(x + h) − f(x)| → 0 for h → 0 ∈ Rn, that is f is
continuous in x.

The case of ||grad f(x)|| · ||h|| is trivial, by definition. For |Ex(h)|, we argue as follows:

lim
h→0∈Rn

Ex(h)

||h|| = 0 ⇒ lim
h→0∈Rn

Ex(h) = 0 ⇔ lim
h→0∈Rn

|Ex(h)| = 0.

4.8 The Total Differential Theorem

Therem 6. Let A be an open subset of Rn, and let f : A → R be a function differen-
tiable at x ∈ A.

Assume that f has all its partial derivatives in a neighbourhood of the point x and that
these partial derivatives are continuous in x.

Then f is differentiable at x.

4.9 ”Locally good” algebraic operations among differentiable
functions

Proposition 6. Let A be an open subset of Rn, and let f, g : A → R be differentiable
functions at x ∈ A. Then :

• f + g is a differentiable function at x. Furthermore

d(f + g)(x) = d(f)(x) + d(g)(x).

• f · g be a differentiable function at x. Furthermore

d(f · g)(x) = d(f)(x) · g(x) + f(x) · d(g)(x).

• or every λ ∈ R, λf is a differentiable function at x. Furthermore

d(λf)(x) = λ · d(f)(x).

14



4.10 Mixed (successive) partial derivatives

We start with an elementary example. Consider the function:

f : R2 → R, f(x, y) = xy + |y|.

Note that the partial derivative ∂f
∂x

= y is defined at every point of R2, it is continuous
in any point (as a function of the variables x e y) and admits derivative derivative with
respect to the variable y.

Specifically, we have:
∂

∂y

(
∂f

∂x

)
= 1

at any point of the domain R2.

HOWEVER, the partial derivative
∂
∂y

with respect to the variable y DOESN’T EXIST in the points such that y = 0 and,

therefore, it doesn’t exist the mixed (successive) derivative

∂

∂x

(
∂f

∂y

)
.

Therefore, the identity
∂

∂x

(
∂f

∂y

)
=

∂

∂y

(
∂f

∂x

)

is, in general, FALSE.

In plain words, it is not true - in general - that if we ”exchange the order of successive
partial derivation” we obtain the same result; it may happen that a successive partial
derivative exist in some points (in the previous example, ∂

∂y

(
∂f
∂x

)
), the other one doesn’t

exist (in our example, ∂
∂x

(
∂f
∂y

)
, per y = 0 ).

However, under suitable hypothesis, a fundamental ”exchangeability result” holds:

Therem 7. (Schwartz) Let A be an open subset of Rn, and let f : A → R be a
differentiable functions at x ∈ A, x = (x1, . . . , xn) ∈ A.

If, given i, j = 1, 2; . . . , , n, the successive derivatives

∂

∂xi

(
∂f

∂xj

)
,

∂

∂xj

(
∂f

∂xi

)

exist in a NEIGHBOURHOOD of x and they are continuous in x, then their evaluations
at the point x are the same. In symbols:

∂

∂xi

(
∂f

∂xj

)
(x) =

∂

∂xj

(
∂f

∂xi

)
(x).
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4.11 Derivation of iterated functions

Let A be an open set of Rn, f : A → R. Let r : I → Rn, I ⊂ R be an open interval,

r(t) = (r1(t), r2(t), . . . , rn(t))

such that the image of r

r[I] = {(r1(t), r2(t), . . . , rn(t)) ∈ Rn; t ∈ I}
is contained in A.

Let t0 ∈ I be a point such that:

• ri(t) admit the (standard) derivative at t0, for every i = 1, 2, . . . , n.

• f is differentiable at r(t0) ∈ A.

Then, setting
g(t) = f(r1(t), r2(t), . . . , rn(t))

for every t ∈ I, the iterated function

g = f ◦ r :→ R, g : t 7→ g(t)

admit the (standard) derivative at t0. Furthermore, we have:

g′(t0) =< grad f(r(t0)), (r
′
1(t0), r

′
2(t0), . . . , r

′
n(t0)) >=

n∑
i=1

∂f(r(t0))

∂xi

r′i(t0).

4.12 Polinomi di Taylor di grado k

Siano A un aperto di Rn, f : A → R. Sia f di classe C(k+1).

Fissato il punto base x, ci chiediamo come costruire il k−esimo polinomio approssi-
mante di Taylor Tk(x + h) (di grado k e relativo alla scelta del punto base x).

Tale polinomio e’ univocamente determintato, ed e’ il polinomio:

Tk(x + h) =

k∑
p=0

∑

(i1,i2,...,in), i1+i2+...+in=p

1

(i1)!(i2)! · · · (in)!

∂(p) f(x)

∂xi1
1 ∂xi2

2 · · · ∂xin
n

hi1
1 hi2

2 · · ·hin
n .

Proposition 7. Per ogni p ≤ k, il polinomio di Taylor Tk ha in h = 0 (o, equivalen-
temente, riguardato come funzione di x + h, cioe’ in x) le stesse derivate seccessive di
ordine p di f in x, fino ad ordine p ≤ k.

Proposition 8. Sia f di classe C(k).

Il resto k−esimo Rk(x; h) soddisfa la seguente proprieta’ di andamento a ZERO:

Rk(x; h)

||h||k → 0 per h → 0 ∈ Rn
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5 Local (or, relative) maximum and minimum points

for a function f : A → R on its domain A (A open

set of Rn)

5.1 Local (or, relative) maximum and minimum points for a
function i several variables

Let f : A → R, A ⊂ Rn be a function in n variables.

Let x ∈ A be a point.

We say that x is a local (relative maximum point for f if and only if there exist a
neighbourhood Ux of x in Rn such that

f(x) ≤ f(x),

for every x ∈ A ∩ Ux.

Analogously, we say that x is a local (relative minimum point for f if and and only if
there exist a neighbourhood Ux of x in Rn such that

f(x) ≥ f(x),

for every x ∈ A ∩ Ux.

5.2 Hessian Matrices

Let A be an open set of Rn, f : A → R, and let x ∈ A.Asumme that f is of class C(2).

The matrix

Hf(x) =




∂(2)f(x)

∂x2
1

. . . . . . ∂(2)f(x)
∂x1∂xn

∂(2)f(x)
∂x2∂x1

. . . . . . ∂(2)f(x)
∂x2∂xn

...
∂(2)f(x)
∂xn∂x1

. . . . . . ∂(2)f(x)
∂x2

n




=

(
∂(2)f(x)

∂xi∂xj

)

i,j=1,...,n

is a symmetric matrix (Schwartz Theorem) and it is called the HESSIAN MATRIX of
the function f at the point x.

5.3 Some preliminary remarks and definitions

Let A be an open set of Rn, f : A → R, and let x ∈ A.

Let δ > 0 be a real number such that I(x, δ) ⊆ A.

Given a vector ( direction) v ∈ Rn, v 6= 0, Consider the function (of the unique real
variable t, with |t| < δ

||v||):

17



F (t) = f(x + tv) = (f ◦ r)(t),

r(t) :]− δ

||v|| ,
δ

||v|| [→ R, r(t) = (r1(t), . . . , rn(t))

where
ri(t) = xi + tvi

(xi = (x1, . . . , xn), v = (v1, . . . , vn)).

• Let f of class C(1). Then F has the derivative at every point t ∈]− δ
||v|| ,

δ
||v|| [ and,

furthermore:

F ′(t) =< grad f(r(t)), (r′1(t), r
′
2(t), . . . , r

′
n(t)) >=

n∑
i=1

∂f(x + tv)

∂xi

vi. (∗)

• Let f of class C(2). Then F has the second order derivative at every point
t ∈]− δ

||v|| ,
δ
||v|| [ and, furthermore:

F ′′(t) =
n∑

i,j=1

∂2f

∂xi∂xj

(x + tv))vivj =< v ×Hf(x+tv), v > .

Indeed, since f is of class C(2), the partial derivatives ∂f
∂xj

are of class C(1) and,

therefore, they are differenziable; the assertion follows by applying the theorem
about derivation of iterated functions to all summands in formula (∗).

5.4 Necessary conditions

Proposition 9. Let A be an open set of Rn, f : A → R, and let x ∈ A.

Lat x ∈ A be a local maximum (minimum) point for the fuction f .

If f is differentiable at x, then the differential of f at x is the identically zero linear
functional: in simbols

df(x) ≡ 0.

Proof. If the point ia x a local maximum (minimum) point for the fuction f (and the
function is differentiable at x). then the function f has all the directional derivatives
∂ f
∂ v

(x) at x, and, furthermore
∂ f

∂ v
(x) = 0,

foe every direction v ∈ Rn.

Since ∂ f
∂ v

(x) = df(x)(v), it follows that df(x) ≡ 0.

NB The points x ∈ A such that df(x) ≡ 0) are called CRITICAL POINTS of the
fuction f .
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Proposition 10. Let A be an open set of Rn, f : A → R, and let x ∈ A. Assume that
f is of class C(2).

Let x be a critical point for f .

If x is a local maximum (minimum) point for the function f , then:

for every vector v ∈ Rn,

< v ×Hf(x), v > ≥ 0,
(
< v ×Hf(x), v > ≤ 0

)
,

That is the Hessian matrix Hf(x) is positive semidefinite (negative semidefinite).

Proof. Let δ > 0 be a real nmber such that I(x, δ) ⊆ A, and

f(x) ≥ f(x), ∀x ∈ I(x, δ).

Given v ∈ Rn, v 6= 0, the function (of the unique real variable t, with |t| < δ
||v||):

F (t) = f(x + tv)

is of class C(2) and

F (t) = f(x + tv) ≥ F (0) = f(x), ∀t ∈]− δ

||v|| ,
δ

||v|| [.

Then 0 is a local minimum point for F , and, hence, F ′(0) = 0 e F ′′(0) ≥ 0.

We already know that F ′(0) =
∑n

i=1
∂f(x)
∂xi

vi = df(x)(v) = 0.

Thus,

F ′′(0) =
n∑

i,j=1

∂2f

∂xi∂xj

(x)vivj =< v ×Hf(x), v >≥ 0;

since v may be any vector, the assertion is proved.

5.5 Sufficient conditions

Therem 8. Let A be an open set of Rn, f : A → R, and let x ∈ A. Assume that f is
of class C(2).

Let x be a critical point for f .

If, for every vector v ∈ Rn, v 6= 0 ∈ Rn, we have

< v ×Hf(x), v > > 0,
(
< v ×Hf(x), v > < 0

)
,

that is the Hessian matrix is positive (negative) definite , then x is a local minimum
(maximum) point for f.

The proof is omitted.
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6 Exercises/examples on local maximum and min-

imum points

Let f be a two variables function f (we will denote by x e y the two variables). In
the following section, for the sake simplicity of natation, we will denote by fx, fy, fxx,

fxy,fyx, fyy the partial derivatives ∂f
∂x

, ∂f
∂y

, ∂(2)f
∂x2 , ∂(2)f

∂x∂y
, ∂(2)f

∂y∂x
, ∂(2)f

∂y2 at the ”generic” point

(x, y) of the domain (if they exist).

Given a pointx of the domain in which these derivatives exist, we also write fx(x),
fy(x), fxx(x), fxy(x), fyx(x), fyy(x) for the evaluations of them at the point x.

1)

Consider the function f : R2 → R,

f(x, y) = x3 − 3x2 − 9x +
1

y2 + 1
.

• The function f is differentiable on R2?

• Write the gradient of f at the pointα = (0, 0).

• Compute the directional derivative f at the point α = (0, 0), in the direction

v = (
√

2
2

,−
√

2
2

).

• Determine the local minimum and maximum points of f (if they exist).

SOLUTION.

The partial derivatives at the ”generic” point (x, y) are

fx = 3x2 − 6x− 9, fy =
−2y

(y2 + 1)2
.

Then, the function f is differentiable at every point, since the partial derivatives exist
and are continuous at every point of the domain (cfr., Total Differential Theorem).

We have grad f(0, 0) = (−9, 0); then

∂f

∂v
(0, 0) =< (−9, 0), (

√
2

2
,−
√

2

2
) > .

In order to determine local extremum points, we must determine first the critical points.

Thus, we set fx = 3x2− 6x− 9 = 0; we find two solutions x = 3,−1 e fy = −2y
(y2+1)2

= 0
and, hance, y = 0.

Thus, we found two critical points:

x = (3, 0), x′ = (−1, 0).

The entries of the Hessian matrix (at the generic point (x, y)) are:

fxx = 6x− 6, fyx = fxy = 0, fyy =
6y2 − 2

(y2 + 1)3
,
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and, hence, by evaluating at the critical points, we get

fxx(x) = fxx((3, 0)) = 12 e fxx(x
′) = fxx((−1, 0)) = −12

e
fyy(x) = fyy((3, 0)) = fyy(x

′) = fyy((−1, 0)) = −2.

Thus, the Hessian matrices at the critical points are:

Hf(x) =

(
12 0
0 − 2

)

e

Hf(x′) =

( −12 0
0 − 2

)
.

The first matrix is NOT SEMIDEFINITE, and x is a Saddle point; the second matrix
is NEGATIVE DEFINITE, and x′ is a MAXIMUM POINT.

2)

• Consider the function f : R2 → R, f(x, y) = (x2 + 1)(y3 − 3y).

• (*) f is differentiable at every point of R2?

• (*) Compute the gradient of f at α = (0, 0) and the directional derivative f in
the direction v = (3

5
,−4

5
) at the point α.

• (*) Consider the points α, β = (0, 1) e γ = (0,−1): are they local extremum
points fro f?

SOLUTION.

The partial derivatives at the ”generic” point (x, y) are

fx = 2x(y3 − 3y), fy = (x2 + 1)(3y2 − 3).

The function f is differentiable at every point, since the partial derivatives exist and
are continuous at every point of the domain (cfr., Total Differential Theorem).

We have grad f(0, 0) = (0,−3), and, hence,

∂f

∂v
(0, 0) =< (0,−3), (

3

5
,−4

5
) > .

The point α = (0, 0) isn’t a critical point, then it isn’t a local extremum point.

The points β = (0, 1) e γ = (0,−1) are critical points and, therefore, we have to study
the Hessian matrices.

The entries of the Hessian matrix (at the ”generic” point (x, y)) are:

fxx = 2(y3 − 3y), fyx = fxy = 2x(3y2 − 3), fyy = 6y(x2 + 1).
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Thus, the Hessian matrices at the points β e γ are:

Hf(β) =

( −4 0
0 6

)

and

Hf(γ) =

(
4 0
0 − 6

)
.

Both the matrices are NOT SEMIDEFINITE; hence, β and γ are SADDLE points.

3)

• Consider the function
f : R2 → R

,
f(x, y) = (x2 + 1)(y3 + 3y2 + 1).

• The function f is differentiable on R2?

• Compute the gradient of f at (1, 1).

• Determine the local minimum and maximum points of f (if they exist).

SOLUTION.

The partial derivatives of f at the ”generic” point (x, y) are

fx = 2x(y3 + 3y + 1), fy = (x2 + 1)(3y2 + 6y).

The function f is differentiable at every point, since the partial derivatives exist and
are continuous at every point of the domain (cfr., Total Differential Theorem).

We have grad f(1, 1) = (10, 18).

The partial derivative fy annihilates at y = 0,−2. Since, for y = 0,−2, we have
y3 + 3y + 1 > 0, the condition grad f = (0, 0) implies x = 0.

Thus, the critical points are x = (0, 0) e x′ = (0,−2).

The entries of the Hessian matrix (at the ”generic” point (x, y)) are:

fxx = 2(y3 − 3y + 1) > 0.

At the critical points,
fyx = fxy = 0,

and
fyy = (x2 + 1)(6y −+6),

that is 6 in x = (0, 0) and −6 at x′ = (0,−2).

Thus, x is a minimum point, x′ is a saddle point.

4)

Let
f : R2 → R, f(x, y) = x2 + xy − y2.
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• f is differentiable on R2?

• Compute the gradient of f at the point x0 = (1, 1).

• Compute the directional derivative of f in x0 = (1, 1) in the direction v =
(
√

2/2,
√

2/2).

• The function f has local extremum points?

SOLUTION.

The partial derivatives at the ”generic” point(x, y) are

fx = 2x + y, fy = x− 2y.

The function f is differentiable at every point, since the partial derivatives exist and
are continuous at every point of the domain (cfr., Total Differential Theorem).

We have grad f(1, 1) = (3,−1).

The unique critical point is x = (0, 0).

The entries of the Hessian matrix (at the ”generic” point (x, y)) are:

fxx = 4 fyx = fxy = 1, fyy = −2.

Note that the determinant of the Hessian matrix equals −9, at every point. Since the
determinant gives the product of the eigenvalues, they have different sign and, then,
the matrix is NOT SEMIDEFINITE. Thus, x = (0, 0) is a saddle point.

5)

Let
f : R2 → R, f(x, y) = 3x3 + 3y2 − x.

Determine the critical points of f . Among them, are there extremum points for f?

SOLUTION.

The partial derivatives at the ”generic” point(x, y) are

fx = 9x2 − 1, fy = 6y.

The function f is differentiable at every point, since the partial derivatives exist and
are continuous at every point of the domain (cfr., Total Differential Theorem).

The critical points are the points x = (1
3
, 0) e x′ = (−1

3
, 0).

The entries of the Hessian matrix (at the ”generic” point (x, y)) are:

fxx = 18x, fyx = fxy = 0, fyy = 6.

Therefore, x is a local minimum point, x′ is a saddle point.

6)

Consider the function f = R2 → R,

f(x, y) = x sin(y).

23



• f is differentiable on R2?

• Compute the gradient of f at the point α = (π, π).

• Compute the directional derivative of f at the point α, in the direction v =
(−1/2,

√
3/2).

• Determine the critical points of f . Among them, are there extremum points for
f?

SOLUTION.

The partial derivatives at the ”generic” point(x, y) are

fx = sin(y), fy = xcos(y).

The function f is differentiable at every point, since the partial derivatives exist and
are continuous at every point of the domain (cfr., Total Differential Theorem).

The critical points are those of the form:

(0, kπ), k ∈ Z.

The entries of the Hessian matrix (at the ”generic” point (x, y)) are:

fxx = 0, fyx = fxy = cos(y), fyy = −xsin(y).

At any critical point the Hessian matrix is:

(
0 1
1 0

)
;

since its determinant is NEGATIVE, the matrix is NOT SEMIDEFINITE. Thus, all
the critical points are saddle points.

Part III

Maxima and minima subject to
constraints

7 Differentiable functions f : A(A ⊂ Rr) → Rn

7.1 Vector- valued functions

Let A ⊂ Rr, f : A → Rn. Again, for the sake of simplicity, we always assume that A
is an open set of Rr.
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Given a vector x = (x1, . . . , xr) ∈ A, its image under f (or, the ”evaluation of f at x”)
is a vector f(x) in Rn; thus, with respect to the canonical basis of Rn, f(x) is written
as an n−tuple

f(x) = (f1(x), f2(x), . . . , fn(x));

the fi(x) are the coordinates of f(x).

Hence, the function f : A → Rn determines and its determined by n functions

f1, f2, . . . , fn

with values in R; these f1, f2, . . . , fn are said to be the scalar components of the vector-
valued function f .

In general, we will identify f : A → Rn, A ⊂ Rr with n−tuple of its scalar components,
and write

f ≡ (f1, f2, . . . , , fn).

7.2 Vector-valued differentiable functions

Let f : A → Rn, A open subset of Rr.

We say that f is differentiable at the point x0 if and only if there exists a linear operator

Lx0 : Rr → Rn

(depending from x0) such that

lim
h→0∈Rr

f(x0 + h)− f(x0)− Lx0(h)

||h|| = 0 ∈ Rn,

where ||h|| denotes the euclidean norm of the vector h ∈ Rr.

The operator h 7→ Lx0(h) is called again thedifferential of f at x0 and is also denoted
by the symbol df(x0); its evaluations are denoted by df(x0)(h), h ∈ Rr.

From the definition, it follows that the vector-valued function f ≡ (f1, f2, . . . , , fn) is
differentiable at x0 if and only if its scalar components f1, f2, . . . , , fn are real-valued
differentiable functions at x0.

Furthermore, for every j = 1, 2, . . . , n, la j−th scalar component Lx0,j of the operator
Lx0 equals the differential of the la j−th scalar component of the function f .

More explicitly, for every h = (h1, h2, . . . , hr) ∈ Rr, we have

Lx0,j(h) =
r∑

k=1

∂fj(x0)

∂xk

· hk =< grad f(x0), h > .

It follows that the matrix of the linear operator Lx0 ( with respect to the canonical
bases of Rr e Rn, respectively) is the matrix hose rows are the gradients
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of the scalar components f1, f2, . . . , , fn; thus, we get the matrix

Jf(x0) =




∂f1(x0)
∂x1

. . . . . . ∂f1(x0)
∂xr

∂f2(x0)
∂x1

. . . . . . ∂f2(x0)
∂xr

...
∂fn(x0)

∂x1
. . . . . . ∂fn(x0)

∂xr




.

This matrix is called the JACOBIAN MATRIX of the function f at x0.

Hence, the differentiability condition for the vector-valued function f may be rewritten
in the following form

lim
h→0∈Rr

f(x0 + h)− f(x0)− Jf(x0) × ht

||h|| = 0 ∈ Rn.

By using the analogous results for real valued functions, we have:

Proposition 11. If f is differentiable at x0 ∈ A, then f is continuous in x0; f is
differentiable on A, then f is continuous in A. If f ∈ C

(1)
A , then f is differentiable on

A.

N.B. The last assertion is a (weak) form of Total Differential Theorem.

Therem 9. (on the composition of differentiable functions)

Let A ⊂ Rr, B ⊂ Rn, a internal point of A, b internal point of B.

Let g : A → B, g(a) = b, f : B → Rp, g differentiable a, f differentiable at b.

Then, the iterated (composite) function

f ◦ g : A → Rp

is differentiable at a.

Furthermore
d(f ◦ g)(a) = df(b) ◦ dg(b) (∗).

N.B. The identity (∗) must be read: the linear operator d(f ◦ g)(a) : Rr → Rp is
obtained by iterating (composing) the linear operators dg(a) : Rr → Rn e df(b) :
Rrn → Rp.

In the language of Jacobian matrices, identity has a quite simple form:

Corollary 4.
J(f◦g)(a) = Jf(b) × Jg(a).

Example 2. Consider the functions (differentiable functions, thanks to the preceding
remarks - they are polynomial functions and, hence, of class C(∞))

g : R2 → R3, g(x1, x2) = (x2
1 − x2, x1 + 1, x1 − x2 + 2),

and
f : R3 → R3, f(x1, x2, x3) = (x2, x3 − 1, x1x2).
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Set
F = f ◦ g : R2 → R3;

we have

F (x1, x2) = (g2(x1, x2), g3(x1, x2)−1, g1(x1, x2)g2(x1, x2)) = (x1+1, x1−x2+1, x3
1+x2

1−x1x2−x2).

By setting a = (1, 2) ∈ R2, we have b = g(a) = (−1, 2, 1).

For a ”generic” point (x1, x2) ∈ R2, Jacobian matrix of g is

Jg(x1,x2)) =




2x1 − 1
1 0
1 − 1


 ;

thus, if we evaluate the Jacobian matrix at the point a = (1, 2), we get

Jg(1,2)) =




2 − 1
1 0
1 − 1


 .

For a ”generic” point (x1, x2, x3) ∈ R3, we have

Jf(x1,x2,x3)) =




0 1 0
0 0 1
x2 x1 0


 ,

thus, if we evaluate the Jacobian matrix at the point b = (−1, 2, 1), we get

Jf(−1,2,1)) =




0 1 0
0 0 1
2 − 1 0


 ;

On the other hand, we have:

at the point (x1, x2) ∈ R2, we have

JF (x1,x2) =




1 0
1 −1

3x2
1 + 2x2 − x2 −x1 − 1


 ;

hence,by evaluating the Jacobian matrix at the point a = (1, 2), we have

JF (1,2) =




1 0
1 −1
3 −2


 .

As asserted by the Theorem, we have:

Jf(b) × Jg(a) =




0 1 0
0 0 1
2 −1 0


×




2 −1
1 0
1 −1


 =




1 0
1 −1
3 −2


 = JF (1,2).
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8 Continuous curves in Rn

A (continuous) curve in Rn is a continuous map ϕ from a closed interval J = [a, b] ⊂ R
to Rn.

Given ϕ ≡ (ϕ1, . . . , ϕn), ϕi : [a, b] → R, the curve ϕ is said to be of class C(k) if and
only if its scalar components ϕi are of class C(k), for every i = 1, . . . , n.

Given a curve ϕ : [a, b] → R, the set ϕ ([a, b]) = {ϕ(t); t ∈ [a, b]} ⊂ Rn is called the
image of the curve ϕ.

A curve ϕ : [a, b] → R is called regular if and only if:

• The map ϕ is of class C(1).

• ϕ
′
(t) ≡ (ϕ

′
1(t), . . . , ϕ

′
n(t)) is different from the zero vector of Rn, for every t ∈]a, b[

and, furthermore, if ϕ(a) = ϕ(b) then (ϕ
′
1(a), . . . , ϕ

′
n(a)) = (ϕ

′
1(b), . . . , ϕ

′
n(b)) 6=

0.

A curve ϕ : [a, b] → Rn is said to be simple open if and only if it defines a homeomor-
phism from [a, b] to ϕ ([a, b]) = {ϕ(t); t ∈ [a, b]} ⊂ Rn.

REMARK 3. We recall the following general result about continuous functions be-
tween metric spaces: let f : X → Y be a bijective continuous function, X a compact
metric space. Then f is a homeomorphism. Since [a, b] is a compact space, a continu-
ous curve ϕ : [a, b] → Rn is simple open if and only if it is INJECTIVE.

8.1 Tangent vectors

For the sake of simplicity, from now on we limit ourselves to consider regular simple
open curves ϕ : [a, b] → Rn. Given such a curve and t0 ∈]a, b[, the tangent versor to
the curve a the point ϕ(t0) is the versor (direction)

T (t0) = (ϕ
′
1(t0)

2 + · · ·+ ϕn
′(t0)2)−

1
2 (ϕ

′
1(t0), . . . , ϕ

′
n(t0).

Consistently,the line
{ϕ(t0) + λT (t0); λ ∈ R}

is called the ”tangent line” to ϕ at the point ϕ(t0), and any (non zero) vector propor-
tional to T (t0) is called a ”tangent vector” to the curve at the point ϕ(t0).

9 Varieties in Rn

9.1 Jacobian matrices

Let F be a function
F ≡ (F1, . . . , Fn−r) : I(α, δ) → Rn−r,

28



where I(α, δ) ⊂ Rn is a spherical open neighbourhood of the point α ∈ Rn.

Assume that F is of class C(k), k ≥ 1 (that is Fi of class C(k), k ≥ 1, for every
i = 1, . . . , n− r).

We recall that the JACOBIAN MATRIX of F at the point α (n− r)× n−matrix:

JF (α) =




∂F1(α)
∂x1

. . . . . . ∂F1(α)
∂xn

∂F2(α)
∂x1

. . . . . . ∂F2(α)
∂xn

...
∂Fn−r(α)

∂x1
. . . ∂Fn−r(α)

∂xn




.

9.2 (Differentiable) Varieties. Regular points

let 1 ≤ r ≤ n, k ≥ 1, amd let V be a subset of Rn.

V is said to be a VARIETY OF Rn of DIMENSION r and CLASS C(k) if and only if,
for every α ∈ V , there exist a spherical open neighbourhood I(α, δ) ⊂ Rn of α and a
function

F ≡ (F1, . . . , Fn−r) : I(α, δ) → Rn−r,

F of class C(k), such that:

1.
V ∩ I(α, δ) = {x ∈ I(α, δ); F (x) = 0}.

2. The Jacobian matrix JF (α) has rank n− r.

In plain words, we say that F ≡ (F1, . . . , Fn−r) is a function that provides (”locally”,
in a neighbourhood of α) the ”equations” of the variety V.

In general, given a subset V ⊂ Rn, the points α for which the preceding conditions
hold are called REGULAR POINTS. Therefore, a variety is a subset V ⊂ Rn whose
points are regular points.

9.3 Curves, varieties, tangent and normal spaces

Let V be a variety of Rn of dimension r (r ≤ n) and class C(k) (k ≥ 1).

A vector h ∈ Rn is said to be TANGENT to V at α if and only if there exist a positive
real number δ ∈ R+ and a regular simple open curve

ϕ : [−δ, δ] → Rn

such that

• i) ϕ ([−δ, δ]) ⊂ V.

• ii) ϕ(0) = α e ϕ
′
(0) = h.
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Geometrically, condition i) means that the image of the curve ϕ ”describe a path” on
the variety V ”passing through α” (for t = 0); condition ii) means that the vector h is
proportional to the ”tangent versor” to ϕ at the point ϕ(0) = α.

The TANGENT SPACE to the variety V at the point α is the set

T(α) = {h ∈ Rn; h tangente a V in α} ∪ {0}.
Therem 10. Let V be a variety of Rn of dimension r and class C(k), k ≥ 1.

Let α ∈ V and F a function

F ≡ (F1, . . . , Fn−r) : I(α, δ) → Rn−r,

F of class C(k), such that:

1.
V ∩ I(α, δ) = {x ∈ I(α, δ); F (x) = 0}.

2. The Jacobian matrix JF (α) has rank n− r.

Then T(α) = Ker dF (α), where dF (α) denotes, as usual, the differential of F at the
point α.

Corollary 5. The tangent space T(α) is the vector subspace of dimension r given by:

{h ∈ Rn;JF (α) × ht = 0} ⊂ Rn.

Since the i−th row of the Jacobian matrix JF (α) is the gradient grad Fi(α) of the
i−th scalar component Fi of the function F , i = 1, . . . , n− r, the preceding result can
rephrased as follows.

Corollary 6. The tangent space T(α) is the space of all vectors h ∈ Rn such that

< grad Fi(α), h >= 0, per ogni i = 1, . . . , n− r,

that is, the space of the vectors that are orthogonal to the gradients of the n− r scalar
components of F , evaluated at the point α.

Let V be a variety of Rn of dimension r and class C(k), k ≥ 1.

The NORMAL SPACE to the variety V at the point α is the orthogonal complement
(in Rn) of the tangent space T(α), that is, the vector subspace

N(α) = {u ∈ Rn; < u, h >= 0 per ogni h ∈ T(α)} ⊂ Rn.

REMARK 4. If V has dimension r, we already know that the tangent space T(α)
has dimension r (as a vector subspace of Rn): therefore, the normal space N(α) is a
vector subspace of dimension n− r.

We also know that the n− r vectors

grad Fi(α), i = 1, . . . , n− r

belong to the normal space N(α).

Furthermore, since the Jacobian matrix JF (α) has rank n− r, these vectors are linearly
independent.
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Thus, we have

Corollary 7. the set
{grad Fi(α); i = 1, . . . , n− r}

is a basis of the normal space N(α).

10 Maxima and minima subject to constraints. La-

grange multipliers

Let V be a variety of Rn of dimension r and class C(k), k ≥ 1.

Let A be an open subset Rn, V ⊂ A; consider a function Φ : A → R of class C(1) on
A.

A local maximum (minimum) point of the ”restriction” function Φ/V of Φ to V is said
to be a CONSTRAINED LOCAL MAXIMUM (MINIMUM) POINT of Φ with respect
to the ”constraint” V.

Therem 11. (Lagrange multipliers theorem)

If Φ has a constrained maximum (minimum) point in α ∈ V (with respect to the
constraint V ), Then there exist scalars

λ1, λ2, . . . , λn−r

such that α turns out to be a critical point for the function

Φ−
n−r∑
j=1

λjfj,

where
f ≡ (f1, . . . , fn−r) : I(α, δ) → Rn−r

is the function that provides (”locally”, in a neighbourhood of α) the ”equations” of the
variety V.

Proof. Let h be a tangent vector to V at α and let ϕ : [−δ, δ] → Rn be a regular simple
open curve such that

• i) ϕ ([−δ, δ]) ⊂ V.

• ii) ϕ(0) = α e ϕ
′
(0) = h.

Set ω(t) = Φ(ϕ)(t); since ϕ(t) ∈ V and Φ/V has a local extremum (maximum or
minimum point) in α, it follows that ω has a local extremum in t = 0, and, hence,
ω
′
(0) = 0.

On the other hand, we have

ω
′
(0) =

n∑
j=1

∂Φ(ϕ(0))

∂xj

· ϕ′
j(0) = < grad Φ(ϕ(0)), ϕ

′
(0) > = < grad Φ(α), h > = 0.
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( Note that this relation holdsfor every tangent vector h to V at α.)

Thus, grad Φ(α) belongs to the normal space to V in α and, since, this space is spanned
by the vectors

grad f1(α), grad f2(α), . . . , grad fn−r(α),

there exist scalars
λ1, λ2, . . . , λn−r

such that

grad Φ(α) =
n−r∑
j=1

λj grad fj(α).

Hence, grad (Φ − ∑n−r
j=1 λj grad fj)(α) = 0, that is, α is a critical point for Φ −∑n−r

j=1 λj grad fj.

11 Examples on Lagrange multipliers

1) LetΦ : R2 → R, Φ(x1, x2) = x1 + x2 and let

V = {(x1, x2) ∈ R2; f(x1, x2) = x2
1 + x2

2 − 1 = 0}.

The set V is a variety of R2 of dimension 1

The critical points in V are the points where grad Φ(x1, x2) = (1, 1) is proportional to
grad f = (2x1, 2x2); thus, it must be x1 = x2 and, hence, since the points belong to V
we have two cases:

(x1, x2) = (

√
2

2
,

√
2

2
), (−

√
2

2
,−
√

2

2
).

Since V is compact, by the theorem of Weierstrass, these two points will be a minimum
and a maximum (absolute, with respect to the constraint V ).

2) Let Φ : R3 → R, Φ(x1, x2, x3) = x1 + x2 + x2
3 and let

V = {(x1, x2, x3) ∈ R3; f(x1, x2, x3) = x2
1 + x2

2 + x2
3 − 1 = 0}.

The set V is a variety of R2 of dimension 1.

The critical points in V are the points where grad Φ(x1, x2, x3) = (1, 1, 2x3) is propor-
tional to grad f(2x1, 2x2, x3) = (2x1, 2x2, 2x3); thus,

1 = λ2x1, 1 = λ2x2, 2x3 = λ2x3;

If x3 6= 0, then λ = 1, and x1 = 1
2
, x2 = 1

2
; since the points must belong to V , we get

x3 = ± 1√
2
.

Thus, we found two critical points

(
1

2
,
1

2
,

1√
2
), (

1

2
,
1

2
,− 1√

2
),

with multiplier λ = 1.

32



If x3 = 0, then x2
1 + x2

2 = 1, but also x1 = x2; thus, x1 = x2 = ± 1√
2
.

We found two other critical points

(
1√
2
,

1√
2
, 0), (− 1√

2
,− 1√

2
, 0)

with multipliers λ =
√

2
2

e λ = −
√

2
2

, respectively.

Since V is compact, by the theorem of Weierstrass, the function Φ admits a minimum
and a maximum (absolute, with respect to the constraint V ).

By evaluating the function in the four critical points, we find that the absolute minimum
is in the point

(− 1√
2
,− 1√

2
, 0),

and the absolute maximum is in the two points

(
1

2
,
1

2
,

1√
2
), (

1

2
,
1

2
,− 1√

2
).

3) Let Φ : R3 → R, Φ(x1, x2, x3) = x1 + x2 + x3 and let

f ≡ (f1, f2) : R3 → R2, f1(x1, x2, x3) = x2
1 + x2

2 + x2
3 − 4, f2(x1, x2, x3) = x1 − 1.

Let
V = {(x1, x2, x3) ∈ R3; f(x1, x2, x3) = 0}.

The set V is a variety of R3 of dimension 1.

We have grad Φ(x1, x2, x3) = (1, 1, 1), grad f1 = (2x1, 2x2, 2x3), grad f2 = (1, 0, 0) and
we have to determine the points of V for which there exist λ1, λ2 ∈ R such that

(1, 1, 1) = λ1(2x1, 2x2, 2x3) + λ2(1, 0, 0).

It follows that x2 = x3; since the points must belong to V , we also have x1 = 1
and, then x2 = x3 = ±

√
3

2
. Furthermore, by evaluating the first coordinate we get

λ2 = 1− 2λ1.

Therefore, the critical points are (1,
√

3
2

,
√

3
2

) e (1,−
√

3
2

,−
√

3
2

) with multipliers

λ1 =
1√
3
, λ2 = 1− 2√

3

e

λ1 = − 1√
3
, λ2 = 1 +

2√
3
,

respectively.

Since V is compact, by the theorem of Weierstrass, these two points will be a minimum
and a maximum (absolute, with respect to the constraint V ).

4) Let Φ : R2 → R, Φ(x1, x2) = x1x2 and let

V = {(x1, x2) ∈ R2; f(x1, x2) = x1 + 2x2 − 3 = 0}.
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Since grad Φ(x1, x2) = (x2, x1) e grad f(x1, x2) = (1, 2), it follows

x2 = λ, x1 = 2λ.

Thus, the critical points are of the form (x1, x2) = (2λ, λ); since they must belong to
V , we get 2λ + 2λ− 3 = 0 and, hence, λ = 3

4
.

Therefore, the only critical point is (3
2
, 3

4
), with multiplier λ = 3

4
.

5) Let Φ : R3 → R, Φ(x1, x2, x3) = x1x2 + x2
3 and let

f ≡ (f1, f2) : R3 → R2, f1(x1, x2, x3) = x1 + x2 − 1, f2(x1, x2, x3) = x2
2 + x2

3 − 1.

Let
V = {(x1, x2, x3) ∈ R3; f(x1, x2, x3) = 0}.

The set V is a variety of R3 of dimension 1.

We have grad Φ(x1, x2, x3) = (x2, x1, 2x3), grad f1 = (1, 1, 0), grad f2 = (0, 2x2, 2x3)
and we have to determine the points of V for which there exist λ1, λ2 ∈ R such that

(x2, x1, 2x3) = λ1(1, 1, 0) + λ2(0, 2x2, 2x3).

Thus, λ1 = x2 and, if x3 6= 0, λ2 = 1, then x1 = λ1 + 2x2 = 3x2; from the condition
f1(x1, x2, x3) = 0 we infer that x2 = 1

4
e x1 = 3

4
.

From the condition f1(x1, x2, x3) = 0 it follows x3 = ±
√

15
4

.

Therefore, there are two critical points with x3 6= 0, specifically

(
3

4
,
1

4
,

√
15

4
) (

3

4
,
1

4
,−
√

15

4
).

If x3 = 0, thenx2 = ±1. We get two other critical points, specifically

(2,−1, 0)

with multipliers λ1 = −1 e λ2 = −3
2

e

(0, 1, 0)

with multipliers λ1 = 1 e λ2 = −1
2
. Since V is compact, by the theorem of Weierstrass,

the function Φ admits a minimum and a maximum (absolute, with respect to the
constraint V ).

By evaluating the function in the four critical points, we find that the absolute minimum
is in the point

(2,−1, 0),

and the absolute maximum is in the two points

(
3

4
,
1

1
,

√
15

4
), (

3

4
,
1

1
,−
√

15

4
).

6) Let Φ : R3 → R, Φ(x1, x2, x3) = x2
1 + x2

2 + x2
3 and let

f ≡ (f1, f2) : R3 → R2, f1(x1, x2, x3) = x2
1 + x2 − 1, f2(x1, x2, x3) = x2 + x3 − 1.
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Let
V = {(x1, x2, x3) ∈ R3; f(x1, x2, x3) = 0}.

The set V is a variety of R3 of dimension 1.

We have grad Φ(x1, x2, x3) = (2x1, 2x2, 2x3), grad f1 = (2x1, 1, 0), grad f2 = (0, 1, 1)
and we have to determine the points of V for which there exist λ1, λ2 ∈ R such that

(2x1, 2x2, 2x3) = λ1(2x1, 1, 0) + λ2(0, 1, 1).

If x1 6= 0, then λ1 = 1. Furthermore

2x2 = λ1 + λ2, 2x3 = λ2;

and, then
2x2 − 2x3 = 1, x2 + x3 = 1;

thus x3 = 1
4

e x2 = 3
4
.

Since the point must belong to a V , it follows that x1 = ±1
2
.

Therefore, we found two critical points

(
1

2
,
3

4
,
1

4
), (−1

2
,
3

4
,
1

4
),

with multipliers

λ1 = 1, λ2 =
1

2
.

If x1 = 0, then x2 = 1 e x3 = 0. Then, we found a third critical point

(0, 1, 0)

with multipliers
λ1 = 1, λ2 = 0.

Part IV

Appendix

12 Dual spaces and differentials

12.1 How to write a differential in ”intrinsic way”?

Given the vector space Rn, its duale space is, by definition, the set

(Rn)∗ = {ϕ : Rn → R; ϕ funzionale lineare},
endowed with thw sum operation:

(ϕ1 + ϕ2)(v) = ϕ1(v) + ϕ2(v), ∀v ∈ Rn,
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and of external multiplication by a scalar:

(λϕ1)(v) = λϕ(v), ∀v ∈ Rn, ∀λ ∈ R.

The resulting algebraic structure is clearly a vector space.

Differential are linear functionals, and, hence, they are elements of the dual space
(Rn)∗; therefore, if we detemine a ”canonical” basis of the dual space (Rn)∗ we will
have a ”canonical way” to express the differentials..

12.2 A ”canonical basis” of the dual space (Rn)∗

Denoted by {e1, . . . , en} the canonical basis of Rn, consider the set of linear functionals

{dx1, . . . , dxn}

defined as follows:
dxi : Rn → R,

where
dxi(ei) = 1 e dxi(ej) = 0 se i 6= j.

FUNDAMENTAL REMARK.

Let v = (v1, . . . , vn) =
∑n

i=1 viei ∈ Rn.

Then
dxi(v) = vi;

this is the reason why the linear functionals dxi are also called the coordinate function-
als.

Therem 12. The set
{dx1, . . . , dxn}

is a basis of the dual space (Rn)∗.

In particular, the dual space (Rn)∗ is a vector space of finite dimension n.

Proof. We have to prove that {dx1, . . . , dxn} is a system of generators and it is a
linearly independent set in the vector space (Rn)∗.

system of generators)

Let ϕ ∈ (Rn)∗, and let v = (v1, . . . , vn) =
∑n

i=1 viei ∈ Rn. Then

ϕ(v) = ϕ(
n∑

i=1

viei) =
n∑

i=1

viϕ(ei) =
n∑

i=1

ϕ(ei)dxi(v), ∀v ∈ Rn.

This (infinite) family of identities among evaluations implies the following identity in
the dual space (Rn)∗:

ϕ =
n∑

i=1

ϕ(ei) dxi.
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linearly independent set)

We have to prove that the condition

n∑
i=1

ci dxi ≡ 0

implies
c1 = c2 = . . . = cn = 0.

Now
n∑

i=1

ci dxi(e1) = c1 = 0,

n∑
i=1

ci dxi(e2) = c2 = 0,

........

n∑
i=1

ci dxi(en) = cn = 0,

and the assertion follows.

Corollary 8. Sia f : A → R, A aperto di Rn, x ∈ A, e sia f differenziabile in x.
Denotiamo con Lx il differenziale di f in x ∈ A.

Allora il differenziale si scrive (in modo unico nello spazio duale (Rn)∗) come segue:

Lx =
n∑

i=1

∂f

∂xi

(x)dxi ∈ (Rn)∗.

Proof. It immediately follows from the equivalence between the (infinite) set of identi-
ties (on the pointwise evaluations):

Lx(v) = < grad f(x), v > =
n∑

i=1

∂f

∂xi

(x)vi =
n∑

i=1

∂f

∂xi

(x)dxi(v), ∀v ∈ Rn

and the ”vectorial” identity:

Lx =
n∑

i=1

∂f

∂xi

(x)dxi ∈ (Rn)∗.

In plain words, the differential Lx is written, in a unique way, as a linear combination
of the coordinate linear functional dxi, where the coefficients are the partial derivatives
∂f
∂xi

(x).
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13 On the differential of composite functions: some

details and proof

Consider two functions g ≡ (g1, . . . , gn) : A → B ⊆ Rn and f ≡ (f1, . . . , fp) : B → Rp.
Let a ∈ A and b = g(a) ∈ B, g differentiable at a and f differentiable at b = g(a).

We know that the composite function f ◦ g is differentiable at a ∈ A.

The Jacobian matrix J(f◦g)(a) is a matrix of order p×r. Given i = 1, . . . , p e k = 1, . . . , r,
we want to compute the entry in the position (i, k) in J(f◦g)(a):

∂(f ◦ g)i(a)

∂xk

.

Our aim is to compute this entry in terms of the Jacobian matrices

Jf(g(a)), Jg(a).

First, we notice that the i−th scalar component i−esima (f ◦g)i of f ◦g coincides with
the composite function (fi ◦ g).

Furthermore, the partial derivative

∂(f ◦ g)i(a)

∂xk

=
∂(fi ◦ g)(a)

∂xk

may be written as the standard derivative of the function fi ◦ g regarded as a function
of a single variable xk, that is, in turn, the composition of the function fi with the
function g ≡ (g1, . . . , gn) regarded as a function of the single variable xk.

Sinc g is differentiable at a, the partial derivatives g1, . . . , gn with respect to the vari-
ables xk exist at a and, hence, - since fi is differentiable at g(a) - the partial derivative

∂(fi ◦ g)(a)

∂xk

exists at a; therefore, we have:

∂(fi ◦ g)(a)

∂xk

=
n∑

j=1

∂fi(g(a))

∂xj

∂gj(a)

∂xk

.

Thus, the entry
∂(f ◦ g)i(a)

∂xk

=
∂(fi ◦ g)(a)

∂xk

∈ J(f◦g)(a)

coincide with the product between the i−th row of Jf(g(a)) and the k−th column of
Jg(a).
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