Object-Oriented Middleware for Distributed Systems

Distributed Systems
Sistemi Distribuiti

Andrea Omicini
andrea.omicini@unibo.it

Ingegneria Due
ALMA MATER STUDIORUM—Universita di Bologna a Cesena

Academic Year 2010/2011

Andrea Omicini (Universita di Bologna) 11 — OO Middleware A.Y. 2010/2011 1/32



Outline

© Middleware Overview
© Object-Oriented Middleware

© CORBA & OSGi

Andrea Omicini (Universita di Bologna) 11 — OO Middleware A.Y. 2010/2011 2/32



These Slides. . .

are derived from a Presentation by Giovanni Rimassa, which we
warmly thank

Slides were made kindly available by the author

@ Every problem or mistake contained in these slides, however, should
be attributed to the sole responsibility of the teacher of this course

Andrea Omicini (Universita di Bologna) 11 — OO Middleware A.Y. 2010/2011 3/32



Outline

@ Middleware Overview

Andrea Omicini (Universita di Bologna) 11 — OO Middleware A.Y. 2010/2011 4 /32



What is Middleware?

Traditional definition

@ What is middleware?

e The word suggests something belonging to the middle
e But middle between what?

@ The traditional middleware definition

e The middleware lies in the middle between the Operating System and
the applications

@ The traditional definition stresses vertical layers
e Applications on top of middleware on top of the OS
o Middleware-to-application interfaces (top interfaces)
o Middleware-to-OS interfaces (bottom interfaces)

Andrea Omicini (Universita di Bologna) 11 — OO Middleware A.Y. 2010/2011 5/32



Why Middleware?

Behind middleware

@ Problems of today
e Software development is hard
o Experienced designers are rare (and costly)
e Applications become more and more complex

@ What can middleware help with?

Middleware is developed once for many applications
Higher quality designers can be afforded
Middleware can provide services to applications

o
o
o
e Middleware abstracts away from the specific OS

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 6 /32



Middleware and Models |

Middlewares

o A key feature of middleware is interoperability

e Applications using the same middleware can interoperate

e This is true of any common platform (e.g. OS file system)
@ But, many incompatible middleware systems exist

o Applications on middleware A can work together

o Applications on middleware B can work together, too

e But, A-applications and B-applications cannot!
e The Enterprise Application Integration (EAI) task

e Emphasis on horizontal communication

o Application-to-application and middleware-to-middleware

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 7/32



Middleware and Models Il

Conceptual integrity

@ Software development does not happen in vacuum

e Almost any software project must cope with past systems
e There is never time nor resources to start from scratch
o Legacy systems were built with their own approaches

@ System integration is the only way out

e Take what is already there and add features to it
e Try to add without modifying existing subsystem

o First casualty: Conceptual Integrity

e The property of a system of being understandable and explainable
through a coherent, limited set of concepts

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 8 /32



Middleware and Models Il|

Models from middleware to applications

@ Real systems are heterogeneous
e Piecemeal growth is a very troublesome path for software evolution
e Still, it is very popular — being asymptotically the most cost effective
when development time goes to zero

@ Middleware technology is an integration technology
e Adopting a given middleware should ease both new application
development and legacy integration
e To achieve integration while limiting conceptual drift, middleware tries
to cast a model on heterogeneous applications.

Andrea Omicini (Universita di Bologna) 11 — OO Middleware A.Y. 2010/2011 9 /32



Middleware and Models IV

Integration middleware

@ Before: you have a total mess
o A lot of systems, using different technologies
e Ad-hoc interactions, irregular structure
e Each piece must be described in its own reference frame

@ Then: the Integration Middleware (IM) comes
e A new, shiny model is supported by the IM
e Existing systems are re-cast under the Model
o New model-compliant software is developed
@ After: you have the same total mess
e But, no, now they are CORBA objects, or TuCSoN agents

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 10 / 32



Middleware Technologies

Abstract vs. concrete middleware

@ Abstract middleware: a common model

@ Concrete middleware: a common infrastructure

@ Example: Distributed Objects
o Abstractly, any middleware modeling distributed systems as a collection
of network reachable objects has the same model: OMG CORBA, Java
RMI, MS DCOM, OSGI Architecture. . .
o Actually, even at the abstract level there are differences. . .
o Concrete implementations, instead, aim at actual interoperability, so
they must handle much finer details
o Until CORBA 2.0, two CORBA implementations from different vendors

were not interoperable
o OSGl easily provides you with specifications—technology not so easy to

find )

st

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 11 / 32



Middleware Standards

The role of standards

@ Dealing with infrastructure, a key-issue is the so-called network effect
e The value of a technology grows with the number of its adopters

o Standardisation efforts become critical to build momentum around an
infrastructure technology
o Large standard consortia are built, which gather several industries
together (OMG, W3C, FIPA, OSGi)
e Big industry players try to push their technology as de facto standards,
or set up more open processes for them (Microsoft, IBM, Sun)

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 12 / 32



Middleware Discussion Template

How to (re)present a middleware

@ Presentation and analysis of the model underlying the middleware
e What do they want your software to look like?
@ Presentation and analysis of the infrastructure created by widespread
use of the middleware
o If they conquer the world, what kind of world will it be?
@ Discussion of implementation issues at the platform and application
level

o What kind of code must | write to use this platform?
e What kind of code must | write to build my own platform?

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 13 / 32



Outline

© Object-Oriented Middleware

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 14 / 32



Distributed Objects

From OO to Distributed OO

@ Distributed systems need quality software, and they are a difficult
system domain

@ OOP is a current software best practice

@ Questions are
e Can we apply OOP to Distributed Systems programming?
e What changes and what stays the same?

@ Distributed Objects apply the OO paradigm to Distributed Systems
o Examples: CORBA, DCOM, Java RMI, JINI, EJB, OSGi

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 15 / 32



Core of OOP |

What is the fundamental concept of OOP?

@ From the very name of object-oriented programming, could it be

The Object

?
@ Definitely not—and you should know this!

@ The fundamental concept of object-oriented programming is

The Class

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 16 / 32



Core of OOP Il

Class: A definition

@ A class is an abstract data type, with an associated module that
implements it

@ Writing this as a conceptual equation a /a Wirth,

Type + Module = Class

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 17 / 32



Modules vs. Types

Modules & Types

@ Modules and types look very different

e Modules give structure to the implementation
e Types specifies how each part can be used

@ But they share the interface concept
o In modules, the interface selects the public part
o In types, the interface describes the allowed operations as well as their
properties

@ As a result, the interface is at the very core of the notion of class

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 18 / 32



Object-Oriented Middleware

OOP Mechanism

Method Call
The fundamental OOP computation mechanism

rgs = obj.meth(par)

Target Object /
Parameter List

Access Operator Method Name

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 19 / 32



OOP Extensibility

Subclassing

Subclassing is the main OOP extension mechanism, and it is affected by
the dual nature of classes
@ Type + Module = Class
@ Subtyping + Inheritance = Subclassing

Subtyping — a partial order on types
@ A valid operation on a type is also valid on a subtype
@ Liskov Substitutability Principle: If S is a subtype of T,
then replacing objects of type T with objects of type S
does not alter the properties of a program
Inheritance — a partial order on modules

@ A module grants special access to its sub-modules

@ Open/Closed Principle: An OO language must allow the
creation of modules closed for use but open for
extension

4

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 20 / 32



Distributing the Objects

Q How can we extend OOP to a distributed system, preserving all its
desirable properties?
A Just pretend the system is not distributed, and then do business as
usual!
@ This is called transparency
e As crazy as it may seem, it works!
e Well, up to a point at least, but generally enough for a lot of
applications
@ Problems arise from failure management
o In reliable and fast networks, things run smooth. . .
e Whenever a failure comes from what we abstracted away — e.g., a
network failure —, we are just plain dead

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 21 /32



Core of Distributed OOP

What is the fundamental concept of Distributed OOP?

@ Could it be

The Object
or, again,

The Class
?

@ Clearly not
@ The fundamental concept of distributed OOP is

The Remote Interface

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 22 /32



Distributed OOP Mechanism

Remote Method Call
The fundamental Distributed OOP computation mechanism

For AN _
res = obj.meth(par)

Target Object Parameter List
Encapsulates address and protocol Sent on the network

Access Operator
Grants location transparency

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 23 /32



Object-Oriented Middleware

Distributed OOP: Communication Model

The Distributed Objects communication model. . .

e ... is implicit

e Transmission is implicit, everything happens through stubs

e The stub turns an ordinary call into an Inter-Process Communication
(IPC) mechanism

o As a result, both local and remote calls are handled
homogeneously—/ocation transparency

@ ... is object-oriented

Only objects exist, invoking operations on each other

e Interaction is client/server with respect to the individual call—micro
C/S, not necessarily macro C/S

e Each call is attached to a specific target object: the result can depend
on the target object state

o Callers refer to objects through an object reference

v

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 24 /32



Object-Oriented Middleware

Broker Architecture

Broker architectural pattern [Buschmann et al., 1996]

Client 1 Server 1
Client 2 Server 2
Client 3 Server 3

‘ Client 1

‘ Client 2

‘ Client 3 / Server 3

Stock market metaphor
Publish /subscribe scheme
Extensibility, portability, interoperability

A broker reduces communication channels from N-xNs to N. + N

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 25 /32



Object-Oriented Middleware

Proxy and Impl, Stub and Skeleton

’m‘ invokes Remotelnterface

I®operation(par : ParType) : ResType

RemoteProxy J
skel : Address |

RemoteSkel ‘ ‘ Remotelmpl ‘
I ] T 1
L ] L ]

< \ T
ResType operation(ParType par) { \
/1 1. Marshal parameter
/I 2. Send marshalled data to impl transport address \ ResType operation(ParType par) {
/1 3. Receive result from impl transport address \ /I Execute the operation normally
/1 4. Return Result }
}

woid dispatch() {
while(active) {
/1 1. receive from the RemoteProxy
/1 2. Unmarshal received data
// 3. Call operation on Remotelmpl
/1 4. Send back result
}
}

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 26 / 32



Outline

© CORBA & 0SGi

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 27 / 32



CORBA

to Giovanni Rimassa for his slides

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 28 / 32



OSGi

to Marcel Offermans for his slides

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 29 / 32



Summing Up

Object-oriented Middleware. . .

@ ... provides a coherent framework for Distributed OOP, both
conceptually and technologically
. extends OOP to Distributed Systems
.. hides the complexity of programming DS
. is supported by open standards—such as OMG CORBA and OSGi
promotes integration across OSs, networks and languages
. counts on a lot of free implementations available

Does it solve everything?

o Of course not.
@ That is why why have a course on Multi-agent Systems, then!

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 30/ 32



References |

ﬁ Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal,
M. (1996).
Pattern-Oriented Software Architecture: A System of Patterns,

volume 1.
John Wiley & Sons, New York, NY.

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 31/32



Object-Oriented Middleware for Distributed Systems

Distributed Systems
Sistemi Distribuiti

Andrea Omicini
andrea.omicini@unibo.it

Ingegneria Due
ALMA MATER STUDIORUM—Universita di Bologna a Cesena

Academic Year 2010/2011

Andrea Omicini (Universita di Bologna) 11 — OO Middleware AY. 2010/2011 32/32



	Middleware Overview
	Object-Oriented Middleware
	CORBA & OSGi

