
Object-Oriented Middleware for Distributed Systems
Distributed Systems

Sistemi Distribuiti

Andrea Omicini
andrea.omicini@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2010/2011

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 1 / 32

Outline

Outline

1 Middleware Overview

2 Object-Oriented Middleware

3 CORBA & OSGi

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 2 / 32

Disclaimer

These Slides. . .

. . . are derived from a Presentation by Giovanni Rimassa, which we
warmly thank

Slides were made kindly available by the author

Every problem or mistake contained in these slides, however, should
be attributed to the sole responsibility of the teacher of this course

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 3 / 32

Middleware Overview

Outline

1 Middleware Overview

2 Object-Oriented Middleware

3 CORBA & OSGi

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 4 / 32

Middleware Overview

What is Middleware?

Traditional definition

What is middleware?

The word suggests something belonging to the middle
But middle between what?

The traditional middleware definition

The middleware lies in the middle between the Operating System and
the applications

The traditional definition stresses vertical layers

Applications on top of middleware on top of the OS
Middleware-to-application interfaces (top interfaces)
Middleware-to-OS interfaces (bottom interfaces)

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 5 / 32

Middleware Overview

Why Middleware?

Behind middleware

Problems of today

Software development is hard
Experienced designers are rare (and costly)
Applications become more and more complex

What can middleware help with?

Middleware is developed once for many applications
Higher quality designers can be afforded
Middleware can provide services to applications
Middleware abstracts away from the specific OS

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 6 / 32

Middleware Overview

Middleware and Models I

Middlewares

A key feature of middleware is interoperability

Applications using the same middleware can interoperate
This is true of any common platform (e.g. OS file system)

But, many incompatible middleware systems exist

Applications on middleware A can work together
Applications on middleware B can work together, too
But, A-applications and B-applications cannot!

The Enterprise Application Integration (EAI) task

Emphasis on horizontal communication
Application-to-application and middleware-to-middleware

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 7 / 32

Middleware Overview

Middleware and Models II

Conceptual integrity

Software development does not happen in vacuum

Almost any software project must cope with past systems
There is never time nor resources to start from scratch
Legacy systems were built with their own approaches

System integration is the only way out

Take what is already there and add features to it
Try to add without modifying existing subsystem

First casualty: Conceptual Integrity

The property of a system of being understandable and explainable
through a coherent, limited set of concepts

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 8 / 32

Middleware Overview

Middleware and Models III

Models from middleware to applications

Real systems are heterogeneous

Piecemeal growth is a very troublesome path for software evolution
Still, it is very popular – being asymptotically the most cost effective
when development time goes to zero

Middleware technology is an integration technology

Adopting a given middleware should ease both new application
development and legacy integration
To achieve integration while limiting conceptual drift, middleware tries
to cast a model on heterogeneous applications.

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 9 / 32

Middleware Overview

Middleware and Models IV

Integration middleware

Before: you have a total mess

A lot of systems, using different technologies
Ad-hoc interactions, irregular structure
Each piece must be described in its own reference frame

Then: the Integration Middleware (IM) comes

A new, shiny model is supported by the IM
Existing systems are re-cast under the Model
New model-compliant software is developed

After: you have the same total mess

But, no, now they are CORBA objects, or TuCSoN agents

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 10 / 32

Middleware Overview

Middleware Technologies

Abstract vs. concrete middleware

Abstract middleware: a common model

Concrete middleware: a common infrastructure

Example: Distributed Objects
Abstractly, any middleware modeling distributed systems as a collection
of network reachable objects has the same model: OMG CORBA, Java
RMI, MS DCOM, OSGI Architecture. . .

Actually, even at the abstract level there are differences. . .

Concrete implementations, instead, aim at actual interoperability, so
they must handle much finer details

Until CORBA 2.0, two CORBA implementations from different vendors
were not interoperable
OSGI easily provides you with specifications—technology not so easy to
find

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 11 / 32

Middleware Overview

Middleware Standards

The role of standards

Dealing with infrastructure, a key-issue is the so-called network effect

The value of a technology grows with the number of its adopters

Standardisation efforts become critical to build momentum around an
infrastructure technology

Large standard consortia are built, which gather several industries
together (OMG, W3C, FIPA, OSGi)
Big industry players try to push their technology as de facto standards,
or set up more open processes for them (Microsoft, IBM, Sun)

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 12 / 32

Middleware Overview

Middleware Discussion Template

How to (re)present a middleware

Presentation and analysis of the model underlying the middleware

What do they want your software to look like?

Presentation and analysis of the infrastructure created by widespread
use of the middleware

If they conquer the world, what kind of world will it be?

Discussion of implementation issues at the platform and application
level

What kind of code must I write to use this platform?
What kind of code must I write to build my own platform?

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 13 / 32

Object-Oriented Middleware

Outline

1 Middleware Overview

2 Object-Oriented Middleware

3 CORBA & OSGi

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 14 / 32

Object-Oriented Middleware

Distributed Objects

From OO to Distributed OO

Distributed systems need quality software, and they are a difficult
system domain

OOP is a current software best practice

Questions are

Can we apply OOP to Distributed Systems programming?
What changes and what stays the same?

Distributed Objects apply the OO paradigm to Distributed Systems

Examples: CORBA, DCOM, Java RMI, JINI, EJB, OSGi

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 15 / 32

Object-Oriented Middleware

Core of OOP I

What is the fundamental concept of OOP?

From the very name of object-oriented programming, could it be

The Object
?

Definitely not—and you should know this!

The fundamental concept of object-oriented programming is

The Class
!

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 16 / 32

Object-Oriented Middleware

Core of OOP II

Class: A definition

A class is an abstract data type, with an associated module that
implements it

Writing this as a conceptual equation à la Wirth,

Type + Module = Class

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 17 / 32

Object-Oriented Middleware

Modules vs. Types

Modules & Types

Modules and types look very different

Modules give structure to the implementation
Types specifies how each part can be used

But they share the interface concept

In modules, the interface selects the public part
In types, the interface describes the allowed operations as well as their
properties

As a result, the interface is at the very core of the notion of class

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 18 / 32

Object-Oriented Middleware

OOP Mechanism

Method Call

The fundamental OOP computation mechanism

res = obj.meth(par)

Parameter List

Method Name

Target Object

Result

Access Operator

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 19 / 32

Object-Oriented Middleware

OOP Extensibility

Subclassing

Subclassing is the main OOP extension mechanism, and it is affected by
the dual nature of classes

Type + Module = Class
Subtyping + Inheritance = Subclassing

Subtyping — a partial order on types

A valid operation on a type is also valid on a subtype
Liskov Substitutability Principle: If S is a subtype of T ,
then replacing objects of type T with objects of type S
does not alter the properties of a program

Inheritance — a partial order on modules

A module grants special access to its sub-modules
Open/Closed Principle: An OO language must allow the
creation of modules closed for use but open for
extension

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 20 / 32

Object-Oriented Middleware

Distributing the Objects

How to?

Q How can we extend OOP to a distributed system, preserving all its
desirable properties?

A Just pretend the system is not distributed, and then do business as
usual!
This is called transparency

As crazy as it may seem, it works!
Well, up to a point at least, but generally enough for a lot of
applications

Problems arise from failure management

In reliable and fast networks, things run smooth. . .
Whenever a failure comes from what we abstracted away – e.g., a
network failure –, we are just plain dead

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 21 / 32

Object-Oriented Middleware

Core of Distributed OOP

What is the fundamental concept of Distributed OOP?

Could it be

The Object

or, again,

The Class

?

Clearly not

The fundamental concept of distributed OOP is

The Remote Interface
!

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 22 / 32

Object-Oriented Middleware

Distributed OOP Mechanism

Remote Method Call

The fundamental Distributed OOP computation mechanism

res = obj.meth(par)
Parameter List

Sent on the network
Target Object
Encapsulates address and protocol

Result
Sent back

Access Operator
Grants location transparency

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 23 / 32

Object-Oriented Middleware

Distributed OOP: Communication Model

The Distributed Objects communication model. . .

. . . is implicit

Transmission is implicit, everything happens through stubs
The stub turns an ordinary call into an Inter-Process Communication
(IPC) mechanism
As a result, both local and remote calls are handled
homogeneously—location transparency

. . . is object-oriented

Only objects exist, invoking operations on each other
Interaction is client/server with respect to the individual call—micro
C/S, not necessarily macro C/S
Each call is attached to a specific target object: the result can depend
on the target object state
Callers refer to objects through an object reference

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 24 / 32

Object-Oriented Middleware

Broker Architecture

Broker architectural pattern [Buschmann et al., 1996]
Broker Architecture

• Broker is an architectural pattern in [BMRSS96].
– Stock market metaphor.
– Publish/subscribe scheme.
– Extensibility, portability, interoperability.
– A broker reduces logic links from Nc•Ns to Nc + Ns .

Broker

Client 1

Client 2

Client 3

Server 1

Server 2

Server 3

Client 1

Client 2

Client 3

Server 1

Server 2

Server 3

Stock market metaphor

Publish/subscribe scheme

Extensibility, portability, interoperability

A broker reduces communication channels from NcxNs to Nc + Ns

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 25 / 32

Object-Oriented Middleware

Proxy and Impl, Stub and SkeletonProxy and Impl, Stub and Skeleton

ResType operation(ParType par) { // 1. Marshal parameter // 2. Send marshalled data to impl transport address // 3. Receive result from impl transport address // 4. Return Result}

Client RemoteInterface
operation(par : ParType) : ResType

invokes

RemoteImplRemoteProxy
skel : Address RemoteSkel

ResType operation(ParType par) { // Execute the operation normally}

connects to

void dispatch() { while(active) { // 1. receive from the RemoteProxy // 2. Unmarshal received data // 3. Call operation on RemoteImpl // 4. Send back result }}

Network

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 26 / 32

CORBA & OSGi

Outline

1 Middleware Overview

2 Object-Oriented Middleware

3 CORBA & OSGi

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 27 / 32

CORBA & OSGi

CORBA

Many thanks. . .

. . . to Giovanni Rimassa for his slides

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 28 / 32

CORBA & OSGi

OSGi

Many thanks. . .

. . . to Marcel Offermans for his slides

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 29 / 32

Conclusions

Summing Up

Object-oriented Middleware. . .

. . . provides a coherent framework for Distributed OOP, both
conceptually and technologically
. . . extends OOP to Distributed Systems
. . . hides the complexity of programming DS
. . . is supported by open standards—such as OMG CORBA and OSGi
. . . promotes integration across OSs, networks and languages
. . . counts on a lot of free implementations available

Does it solve everything?

Of course not.
That is why why have a course on Multi-agent Systems, then!

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 30 / 32

References

References I

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal,
M. (1996).
Pattern-Oriented Software Architecture: A System of Patterns,
volume 1.
John Wiley & Sons, New York, NY.

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 31 / 32

Object-Oriented Middleware for Distributed Systems
Distributed Systems

Sistemi Distribuiti

Andrea Omicini
andrea.omicini@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2010/2011

Andrea Omicini (Università di Bologna) 11 – OO Middleware A.Y. 2010/2011 32 / 32

	Middleware Overview
	Object-Oriented Middleware
	CORBA & OSGi

