Topic: TCP performance

Exercise n. 1

A and B are two TCP Reno entities, with A aimed at transmitting 13 segments to B.
The maximum value of congestion window is 800 bytes, the initial value of slow start threshold ssth is 400 bytes, RTT $=10 \mathrm{~ms}$ and RTO=RTT + e, SMSS=100 bytes. Segments 4 and 9 are lost.

By assuming processing and transmission time as negligible

- draw the exchange of segments/acks as a function of time
- evaluate the instant T when the ack for segment 13 is received by the the sender.

Exercise n. 2

A and B are two TCP Reno entities, with A aimed at transmitting 13 segments to B.
The maximum value of congestion window is 800 bytes, the initial value of slow start threshold ssth is 400 bytes, RTT $=100 \mathrm{~ms}$ and RTO=250 ms, SMSS=100 bytes. Segment 8 is lost during two consecutive transmissions and segment 12 is lost once.

By assuming processing and transmission time as negligible

- draw the exchange of segments/acks as a function of time
- evaluate the instant T when the ack for segment 13 is received by the the sender.

Exercise n. 3

A and B are two TCP Reno entities, with A aimed at transmitting 10 segments to B.
The maximum value of congestion window is 400 bytes, the initial value of slow start threshold ssth is 400 bytes, RTT $=100 \mathrm{~ms}$, SMSS=100 bytes. Segment 4 is lost.

By assuming processing and transmission time as negligible

- draw the exchange of segments/acks as a function of time
- evaluate the instant T when the ack for segment 10 is received by the the sender.

Exercise n. 4

A and B are two TCP Reno entities, with A aimed at transmitting 16 segments to B.
The maximum value of congestion window is 700 bytes, the initial value of slow start threshold ssth is 700 bytes, RTT $=100 \mathrm{~ms}, \mathrm{RTO}=400 \mathrm{~ms}, \mathrm{SMSS}=100$ bytes. Segments 8 and 9 are lost.

By assuming processing and transmission time as negligible

- draw the exchange of segments/acks as a function of time
- evaluate the instant T when the ack for segment 16 is received by the the sender.

Exercise n. 5

A and B are two TCP Reno entities, with A aimed at transmitting 12 segments to B.
The maximum value of congestion window is 800 bytes, the initial value of slow start threshold ssth is 800 bytes, RTT $=100 \mathrm{~ms}, \mathrm{RTO}=500 \mathrm{~ms}, \mathrm{SMSS}=100$ bytes. Segments 8 is lost.

By assuming processing and transmission time as negligible

- draw the exchange of segments/acks as a function of time
- evaluate the instant T when the ack for segment 12 is received by the the sender.

Exercise n. 6

A and B are two TCP Reno entities, with A aimed at transmitting 10 segments to B.
The maximum value of congestion window is 800 bytes, the initial value of slow start threshold ssth is 800 bytes, RTT $=100 \mathrm{~ms}, \mathrm{RTO}=500 \mathrm{~ms}, \mathrm{SMSS}=100$ bytes. Segments 4 is lost twice.

By assuming processing and transmission time as negligible

- draw the exchange of segments/acks as a function of time
- evaluate the instant T when the ack for segment 10 is received by the the sender.

Exercise n. 7

Consider a TCP connection operating in congestion avoidance. By adopting a periodic loss model, calculate the duration of the period T in seconds and the value of throughput S in Kbit/s, assuming that RTT starts from $\mathrm{RTT}_{0}=100 \mathrm{~ms}$ at the first round of the period T and increases by 10 ms at each round, and that the value of the congestion window starts at 10 SMSS, with SMSS=200 bytes.

Exercise n. 8

Consider a TCP connection operating in congestion avoidance. By adopting a periodic loss model, calculate the value of throughput S in Kbit/s, assuming that RTT= 120 ms and that the congestion window reaches its maximum value during the period T at $\mathrm{T} / 2$ with $p=0.001$ and $S M S S=200$ bytes.

$$
\begin{aligned}
& \mathrm{N}_{1}=\frac{3}{8} W^{2} \\
& \mathrm{~N}_{2}=\frac{W^{2}}{2} \\
& \mathrm{~N}=\mathrm{N}_{1}+\mathrm{N}_{2}=7 / 8 \mathrm{~W}^{2}->\mathrm{W}=33.8
\end{aligned}
$$

$S=(1 / p)^{*} 200 * 8 /(R T T$ W $)=394 \mathrm{Kbit} / \mathrm{s}$

Exercise n. 9

Calculate the latency time for an object $\mathrm{O}=100 \mathrm{Kbyte}$ on a link with $\mathrm{R}=100 \mathrm{Kbit} / \mathrm{s}$ and RTT=200 ms in the first round and 250 ms in the following rounds.

SMSS=200 bytes.
S/R=0.016 s; O/S=500
$\mathrm{K}=\left\lceil\log _{2}\left(1+\frac{O}{S}\right)\right\rceil=9$
$\mathrm{Q}=\left\lfloor\log _{2}\left(1+\frac{R T T_{2}}{S / R}\right)\right\rfloor+1=5$
$\mathrm{P}=\min (\mathrm{K}-1, \mathrm{Q})=5$
$\mathrm{L}_{\mathrm{D}}=R T T_{1}+R T T_{2}+O / R+P\left(R T T_{2}+S / R\right)-\left(2^{P}-1\right) S / R=9,28 s$

Exercise n. 10

Calculate the latency time for an object $\mathrm{O}=20$ Kbyte on a link with $\mathrm{R}=1 \mathrm{Mbit} / \mathrm{s}$. $\mathrm{RTT}=100 \mathrm{~ms}$ during the first and second rounds and 150 ms in further rounds.

SMSS=100 bytes.
$\mathrm{S} / \mathrm{R}=0.0008 \mathrm{~s} ; \mathrm{O} / \mathrm{R}=0.16 \mathrm{~s} ; \mathrm{O} / \mathrm{S}=200$
$\mathrm{K}=\left\lceil\log _{2}\left(1+\frac{O}{S}\right)\right]=8$
$\mathrm{Q}=\left\lfloor\log _{2}\left(1+\frac{R T T_{2}}{S / R}\right)\right\rfloor+1=8$
$\mathrm{P}=\min (\mathrm{K}-1, \mathrm{Q})=7$
$\mathrm{L}_{\mathrm{D}}=2 R T T_{1}+O / R+P\left(R T T_{2}+S / R\right)-\left(2^{P}-1\right) S / R=1,314 s$

Exercise n. 11

Calculate the latency time for an object $\mathrm{O}=15 \mathrm{Kbyte}$ on a link with $\mathrm{R}=90 \mathrm{Kbit} / \mathrm{s}$. RTT $=100 \mathrm{~ms}$ during TCP connection establishment and in the first transmission round. After then RTT increases of 10% at each round. SMSS=500 bytes.
$S / R=44,4 \mathrm{~ms} ; O / R=1,33 \mathrm{~s}$
$\mathrm{L}_{\mathrm{D}}=2$ * $100+1330+100+(110-44.4)+0+0=1,69 \mathrm{~s}$
$\mathrm{K}=\left\lceil\log _{2}\left(1+\frac{O}{S}\right)\right]=5$

Exercise n. 12

Calculate the latency time for an object $\mathrm{O}=100 \mathrm{Kbyte}$ on a link with $\mathrm{R}=10 \mathrm{Mbit} / \mathrm{s}$. RTT $=150 \mathrm{~ms}$ and $\mathrm{SMSS}=100$ bytes.
$\mathrm{O} / \mathrm{R}=0.08 \mathrm{~s} ; \mathrm{S} / \mathrm{R} 80 \mu \mathrm{~s} ; \mathrm{O} / \mathrm{S}=1000$
$\mathrm{K}=\left[\log _{2}\left(1+\frac{O}{S}\right)\right]=10$
$\mathrm{Q}=\left\lfloor\log _{2}\left(1+\frac{R T T}{S / R}\right)\right\rfloor+1=11$
$\mathrm{P}=\min (\mathrm{K}-1, \mathrm{Q})=9$

$$
\mathrm{L}_{\mathrm{D}}=2 R T T+O / R+P(R T T+S / R)-\left(2^{P}-1\right) S / R=1,689 s
$$

