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m.casadei@unibo.it

Progetto di Sistemi Informatici LS

A.Y. 2009/10
June 15, 2010

M. Casadei (UniBO) Self-* Coord. 06/15/2010 1 / 65



Outline

1 Self-organising Coordination

2 Biochemical Tuple Spaces

3 Service Ecosystems

4 Computational Fields

5 Theses

6 Bibliography

M. Casadei (UniBO) Self-* Coord. 06/15/2010 2 / 65



Motivation

New coordination models recently emerged

Computational-fields in TOTA for pervasive computing
[Mamei and Zambonelli, 2004]

Biologically-inspired clustering of tuples in SwarmLinda
[Menezes and Tolksdorf, 2004]

Biologically-inspired pheromone infrastructures [Parunak et al., 2002]

Infrastructures for service ecosystems [Zambonelli and Viroli, 2008]

A common view

Addressing openness and dynamism of today and future networks

The coordination space should not be “inert”..

..but rather it should self-organise to tackle adaptiveness
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Self-Organising Coordination [Viroli et al., 2009]

How should coordination laws be designed?

1 They should be “local”

2 They should be continuously fired

3 They should be stochastic

What are the goals of self-organisation?

Making some global pattern/behaviour emerge

Leading to intrinsic adaptiveness properties

How to find good coordination laws to this end?

Several attempts to find a methodology

But nothing better than take inspiration from nature
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Biochemical Tuple Spaces

We introduce the “biochemical tuple space” model

a tuple space augmented with chemical reactions

population of tuples evolves exactly as would happen in chemistry

relying upon ideas of Computational Systems Biology

Motivations, applications

emerging networks call for self-organising coordination

we show an application scenario of service ecosystems
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Biochemical Tuple Spaces

Main idea

Tuple spaces + (bio)chemical reactions as coordination laws

Tuples have a concentration (a.k.a. weight, or activity value) as in
ProbLinCa [Bravetti et al., 2004]

Concentration is evolved “exactly” as in chemistry [Gillespie, 1977]

Some reactions can even fire a tuple from one space to another

Why design coordination with biochemical metaphor?

Chemistry fits coordination (Gamma) [Bonâtre and Le Métayer, 1996]

Can get inspiration from natural/artificial biochemistry

Can model population evolution (prey-predator, [Berryman, 1992])
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First settings

One tuple space, two agents

  

ag1

ag2

tuple space
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Inserting tuples

Primitive out: default concentration is 1

  

t(red)<10> out(t(red)<10>)

ag1

ag2

tuple space

t(green)<5> out(t(green)<5>) 
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A pictorial representation

A tuple as substance of uniform molecules – but still a single tuple

  

ag1

ag2

tuple space

t(red)

t(green)
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Reading Tuples

Primitive rd: reading current concentration

  

ag1

tuple space

t(red)

t(green)

rd(t(red)<X>)

X=10
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Reading Tuples

Primitive rd: reading a given amount – possibly blocking

  

ag1

tuple space

t(red)

t(green)

rd(t(red)<12>)

blocked
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Reading Tuples

Primitive rd: concentration as probability, i.e., relevance

  

ag1

tuple space

t(red)

t(green)

rd(t(X)<Y>)

blocked66%:X=red,Y=10

  33%:X=green,Y=5
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Removing Tuples

Primitive in: removing entirely or partially a tuple

  

ag1

tuple space

t(red)

t(green)

in(t(red)<2>)

blockedok
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Installing Chemical Reactions

A chemical reaction, with tuples in place of molecules

t(red) + t(green)
r−→ t(red) + t(red) + t(blue)

  

ag1

ag2

tuple space

t(red) t(green)

t(blue)

+ + +
r
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Firing Chemical Reactions

Reactions are executed over time according to [Gillespie, 1977]

t(red) + t(green)
r−→ t(red) + t(red) + t(blue)

Transition (Markovian) rate: r ∗#t(red) ∗#t(green)

  

+ + +

ag1

ag2

tuple space

t(red) t(green)

t(blue)

r
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A tuple space as a chemical solution

Coordination through an exact chemical solution of tuples

The tuple space resembles a chemical solution in a glass

Each tuple resembles a chemical substance

Agents observe, insert and remove substances

Tuple concentration drives the selection of chemical reactions

  
biochemical tuple space

M. Casadei (UniBO) Self-* Coord. 06/15/2010 17 / 65



A tuple space as a chemical solution

Coordination through an exact chemical solution of tuples

The tuple space resembles a chemical solution in a glass

Each tuple resembles a chemical substance

Agents observe, insert and remove substances

Tuple concentration drives the selection of chemical reactions

  
biochemical tuple space (circadian clock)

M. Casadei (UniBO) Self-* Coord. 06/15/2010 18 / 65



Decay example

After installing reaction t(X)
0.01−−→ 0

We let tuples decade (evaporate like pheromones)

This is useful to enact time-pertinency

An agent perceives that the tuple is fading until disappearing

E.g. t(s) represents the temporaneous publication of a service
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Tuple Transfer

Right-hand side of a reaction can have a firing tuple

  

+

t(red) t(green)

r1

r2

r3
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From one node to a full biochemical network

Firing tuples are sent to any neighbour, probabilistically a là Sπ

  

+

t(red) t(green)

r

r1

r2

r3
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On matching and rates

Overcoming discrete matching

We use first-order terms for tuples and templates

Matching is by substitution of variables, but it is ranked

We use an application-dependent match function µ(t, t ′)
I yielding 0 is no match, 1 is perfect match, otherwise it is partial match
I Chemical reactions are applied “modulo match ranking”
I E.g. with µ = 0.5, actual chemical rate is divided by 2

A typical scenario of Web-based match-making (i.e. with preferences)

Example of general decay rule: DECAY
r dec−−−→ 0

A specific tuple t decays with chemical rate µ(DECAY, t) ∗ r dec

E.g., t models a service publication, granted after paying money

µ inspects how much it was payed, hence tuning service life-time
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The calculus

Some credit

Sπ-calculus, Ambient, Membrane Computing, stoKLAIM, ProbLinCa

Syntax

t ::= τ〈n〉 Tuple
T ::= 0 | t | t | (T | T ) Tuple set
L ::= [Ti

r7−→ To ] Chemical Law
S ::= 0 | T | L | (S | S) Space
A ::= wait(r) | out(σ, t) | in(σ, t) | rd(σ, t) Actions
P ::= 0 | A.P | call D(τ1, . . . , τn) Process
C ::= 0 | JSKσ | σ

r
 σ | P | (C | C ) Configuration

Stochastic Transition System semantics: C
λ−→ C ′

C
r−→ C ′, a CTMC transition with rate r (average duration 1/r)

C
r?−→ C ′, a DTMC immediate transition with likelihood r
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The calculus

Semantics

C | C ′ λ−−−−→ C | C ′′ if C ′ λ−→ C ′′

out(σ, τ〈n〉).P | JSKσ
1?−−−−−→ P | Jτ〈n〉 | SKσ

rd(σ, τ〈v〉).P | Jτ ′〈n〉 ⊕ SKσ
µ(τ,τ ′)?−−−−−→ P{τ/τ ′}{v/n} | Jτ ′〈n〉 | SKσ

rd(σ, τ〈n〉).P | Jτ ′〈n+m〉 ⊕ SKσ
n+m

n µ(τ,τ ′)?
−−−−−−−→ P{τ/τ ′} | Jτ ′〈n+m〉 ⊕ SKσ

in(σ, τ〈v〉).P | Jτ ′〈n〉 ⊕ SKσ
µ(τ,τ ′)?−−−−−→ P{τ/τ ′}{v/n} | JSKσ

in(σ, τ〈n〉).P | Jτ ′〈n+m〉 ⊕ SKσ
n+m

n µ(τ,τ ′)?
−−−−−−−→ P{τ/τ ′} | Jτ ′〈m〉 ⊕ SKσ

wait(r).P
r−−−−→ P

Jτ〈n+1〉 ⊕ SKσ| JS ′Kσ′| σ r
 σ′

r(n+1)−−−−−→ Jτ〈n〉 | SKσ| Jτ〈1〉 | S ′Kσ′| σ r
 σ′

J[Ti
r7−→ To ] | T | SKσ

µ(Ti ,T )G(r ,T ,T |S)−−−−−−−−−−−→ J[Ti
r7−→ To ] | To{Ti/T} | SKσ

Gillespie function G (r ,T , S)

Markovian rate of a reaction with propency r , reactants T , in system S
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Some implementation fact

Gillespie “direct” simulation algorithm [Gillespie, 1977]

1 Compute the markovian rate r1, . . . , rn of reactions, let R be the sum

2 Choose one of them probabilistically, and execute its transition

3 Proceed again with (1) after 1
R ∗ ln 1

τ seconds, with τ = random(0, 1)

Tuple Space implementation

Prototyped on top of TuCSoN [Omicini and Denti, 2001]

Tuple centres programmed with the above algorithm

The maximum overall rate R should be small enough

Should otherwise use approximated sim. techniques (τ -leaping)
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The scenario of service ecosystems

Services and requests as tuples

  

s1

tuple space

s1

s2

s2

c1

c2

c3

r1-a

r1-b

r2-a

r2-b

r2-c

r3-a

r3-b

r3-c

Clients and services as “individuals of an ecology”

Unused services fade until completely disappearing

Concentration of a service increases upon usage

Similar services compete for survival
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Positive-Negative feedback

Idea: Service tuples decay, but can be sustained by a feedback token

Decay rule: DECAY
r dec−−−→ 0

Feed rule: publish(SER)
r feed−−−→ publish(SER) + SER

Example simulation: r dec = 0.01, r feed = 10

time 0: Catalyst Token
publish(S) is inserted

time 400: Service S
reaches an equilibrium

time 1000: The token is
removed (or decays)

time 1600: Service S
vanishes
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Feedback by using (a.k.a. prey-predator)

Idea: Matching Service-Request sustains the service

Use rule: SER + REQ
r use−−−→ SER + SER + toserve(SER, REQ)

Example simulation:
r dec = 0.01, r use = 0.00005, request arrival rate = 50

time 0: Injection of
requests raises service
level

time 30: Requests are
tamed

time 350: Unserved
requests and service
stabilise
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Competition

What happens when more services can handle the same requests?

higher concentration means higher match frequency

some service may match better the request, being more proper

Example simulation: r use1 = 0.06, r use2 = 0.04

time 0: The two services
are in competition for
the same requests

time 100: The one with
better use rate (better
match) is prevailing

time 1300: Service s2
lost competition and
fades
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Spatial Diffusion and Competition

One service monopolises a network and its requests

Services continuously diffuse around, by rule:

Diffuse rule: SER
r diff−−−→ SER 

Scenario: a better service is injected in a node

  
M. Casadei (UniBO) Self-* Coord. 06/15/2010 31 / 65



Resembling a biological tissue scenario

Example Simulation: r use1 = 0.05, r use2 = 0.1

M. Casadei (UniBO) Self-* Coord. 06/15/2010 32 / 65



Discussion

Properties

The coordination space achieves the following:

self-adaptation: the best service is selected over time

self-optimisation: unused services get disposed

openness: can deal with incoming new services and requests

M. Casadei (UniBO) Self-* Coord. 06/15/2010 33 / 65



Service Composition

Service composition via chemical reaction

Two matching services can compose by rule:

Compose rule:

service(S1) | service(S2)
r join−−−→ service(compose(S1, S2))

New composite services can be created

Concentration of composing services is decreased by 1

Concentration of resulting composite service is increased by 1

Composite services can be recursively composed with other services

What concrete model for composition?
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Concrete Model

Service representation via tuples

Service tuple:

service([sf(id502)],

[in(i),out(o),out(h1),in(h2)],

[[in(i),out(h1),in(h2),out(o)]]

).

Arguments:

identifier

list of input/output ports

list representing a sequence of
ports
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Composing Two Services (1)

Two matching services

One service for flight reservation One service for hotel booking

Sf and Sh can be composed

output port h1 matches input port x

output port y matches input port h2

What chemical rules for composing them?
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The Comprehensive Framework for Composition

service(C 1, in(B2)⊕ I ,P) | service(C ′1, out(B′2)⊕ I ′,P′)
r comp7−−−−→

service(C ⊕ C ′, link(in(B), out(B′))⊕ I ⊕ I ′,P ⊕ P′) [COMPOSE]

service(C , in(B1)⊕ out(B′1)⊕ I ,P)
r link7−−−→ service(C , link(in(B), out(B′))⊕ I ,P) [LINK]

service(C , I ,P)
r dec7−−−→ 0 [DECAY]

service(C , I ,P)1 | request(ServiceDescription1,A)
r use7−−−→

service(C , I ,P) | session(X f,A,C , I ,P) [USE]

session(X f,A,C , I , []) | service(C , I ,P)
∗7−−−→ service(C , I ,P) | service(C , I ,P)[COMPLETE]

session(X ,A,C , in(B)⊕ I , [in(B)|T ]⊕ P) | input(X ,A,B,M)
∗7−−−→

session(X ,A,C , in(B)⊕ I ,T ⊕ P) | accepted − input(X ,A,B,M) [INPUT]

session(X ,A,C , out(B)⊕ I , [out(B)|T ]⊕ P) | output(X ,A,B,M)
∗7−−−→

session(X ,A,C , out(B)⊕ I ,T ⊕ P) | produced − output(X ,A,B,M) [OUTPUT]

session(X ,A,C , link(in(B), out(B′))⊕ I , [out(B′)|T ′]⊕ [in(B)|T ]⊕ P) |
produced − output(X ,A,B′,M)
∗7−−−→

session(X ,A,C , link(in(B), out(B′))⊕ I ,T ′ ⊕ T ⊕ P) |
accepted − input(X ,A,B,M) [IN-OUT]

session(X ,A,C , I ,P) | abort(X ,A)
∗7−−−→ 0 [ABORT]
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Composing Two Services (2)

From the two matching services . . .

One service for flight reservation One service for hotel booking

. . . to the composite service

service([sf(id502),sh(id103)],

[in(i),out(o),link(in(x),out(h1)),

link(in(h2),out(y))],

[ [in(i),out(h1),in(h2),out(o)],

[in(x),out(y)] ]

).
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An Example of Service Composition (1)

Scenario

Two services sf and sh for flight and hotel booking (respectively)

Service decay rate rdecay = 0.01

Three kinds of requests coming:
I rf (flight reservation) and rh (hotel booking) served with ruse = 1.0
I rfh asking for both a flight and a hotel: served by both sf and sh

with ruse = 0.3 (partial match!)
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An Example of Service Composition (2)

No composition:
rh arrival rate = rf arrival rate = 25, rfh arrival rate = 100

The two services reach
equilibrium

Approximate activity
level: 7500 per service
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An Example of Service Composition (3)

sh and sf compose: composite service sfh in now available

sfh serves only requests
rfh with ruse = 1.0

As a result, now sfh
competes with sf and
sh
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Ongoing Works on Service Composition

Summing up . . .

Exploited the chemical-inspired tuple-space model to . . .

. . . devise a model for service composition and competition

→ Prototype implementation in TuCSoN

Work in progress

Tune reaction rates

Introduce semantic matching

Finalize the prototyped implementation

Find case studies
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Computational Fields

Scenario

A spatially distributed network made of . . .

. . . many computing devices, usually defined as nodes

Computational Fields

simply put: a function mapping each node to a value

this value denotes some relevant aspects of the system state locally to
each node

→ A dynamically evolving spatial data structure
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Relevance for Pervasive Systems

Two Important Aspects

Computational fields intrinsically support two important requirements
of pervasive systems:
I context-awareness
I self-adaptation

Context-Awareness

local field value in a node depends on the state of the surrounding
nodes
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Relevance for Pervasive Systems

Two Important Aspects

Computational fields intrinsically support two important requirements
of pervasive systems:
I context-awareness
I self-adaptation

Self-Adaptation

value mapping occurs on a neighborhood-basis so as to adapt to
changes in the network
I node failures and mobility , etc.
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Uses in Pervasive Domains (I)

Finding Art Pieces in a Big Museum

From [Mamei and Zambonelli, 2009]
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Uses in Pervasive Domains (II)
Discovering in a Big Museum

From [Mamei and Zambonelli, 2009]
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Examples of Computational Field Algorithms

Gradient

A computational field where the field value in a specific node depends
exclusively on some notion of distance from the source node of the
gradient

Example of uses in pervasive systems:
I find the shortest path to a device in the network
I build virtual communication channels between devices that need to

communicate
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Examples of Computational Field Algorithms

Gradient Descent

A gradient diffusing over the network until reaching a target device
(e.g. containing information of interest): the sought information can
then follow downhill the gradient until reaching the gradient source

Example of uses in pervasive systems:
I data retrieval in spatial settings
I device discovery
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Modelling and Verifying Computational Fields (I)

Our Specification Language

Spec ::= vdef rl Specification
rl ::= p −− Exp −−> u; Rule
vdef ::= X : [lb..up]; Variable Definition
p ::= c | a Precondition
c ::= Exp opb Exp Boolean Condition
a ::= N := &neigh[c] Neighborhood Assignment
u ::= V ′ = Exp Update
Exp ::= Re | V | Exp op Exp | neigh[Exp] Numeric Expressions
opb ::= >= | <= | > | < | = | ! = Boolean Operators
op ::= + | − | ∗ | / Math Operators
neigh ::= any | min | max Neighborhood Functions
V ::= X | N.X | @.X Variables
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Modelling and Verifying Computational Fields (II)

Verification

Computational Fields modelled via our specification language needs
to be verified

This can be done via stochastic model checking

Stochastic Model Checking

Our Models will be translated into CTMC models, in particular into
PRISM models

This allows to perform quantitative analysis related on performance
and costs
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Modelling Gradient Descent

Model
pump : [0..1];

field : [0..MAX];

desc : [0..1];

[] pump=1 & field>0 -- 1.0 --> field’= 0;

[diff] pump=0 -- 1.0 --> field’= min[@.field]+1;

[move] desc=1 & N:=&any[@.field<field]

-- (field-@.field)/@.field/sum((field-@.field)/@.field) -->

desc’=0 & N.desc’=1;
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Quantitative Verification: Performance

Time Required to Reach Gradient Source (I)

As we are in a stochastic domain, this translates to: which is the
probability of reaching source within k time units?

This is expressed via the following CSL formula:

P=? [true U<=k "descent_complete"]

Where descent complete is a property specified on the model
according to the syntax:

property "descent_complete" = exist[ pump=1 & desc=1 ];
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Quantitative Verification: Performance

Time Required to Reach Gradient Source (II)
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Quantitative Verification: Cost

Number of Network Hops to Reach Gradient Source (I)

As we are in a stochastic domain, this translates to: which is the
expected number of hops necessary to reach source?

This is expressed via the following CSL formula:

R{hops}=? [F "descent_complete"]

Where the hops reward structure is specified on the model according
to the syntax:

rewards "hops" = [move] true : 1;
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Quantitative Verification: Cost

Number of Network Hops to Reach Gradient Source (II)
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Available Theses on the Presented Topics

Biochemical Tuple Spaces

Implementation of a a new framework explicitly supporting the
biochemical tuple space model

Computational Fields

Implementation of a framework for modelling and verifying
computational fields

Model Checking

Model checker for approximate model checking starting from
simulation tools developed by our research group
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