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Abstract

The present study offers a more user-friendly and parallelized version of a web-based algorithm
portfolio generator, called ADVISER. ADVISER is a portfolio generation tool to deliver a group
of configurations for a given set of algorithms targeting a particular problem. The resulting config-
urations are expected to be diverse such that each can perform well on a certain type of problem
instances. One issue with ADVISER is that it performs portfolio generation on a single-core which
results in long waiting times for the users. Besides that, it lacks of a reporting system with visualiza-
tions to tell more about the generated portfolios. ADVISER is extended as ADVISER™ to overcome
both of these issues while introducing new tuning based portfolio generation capabilities.

1 Introduction

Algorithm portfolios [[7] have been proposed to build a portfolio of algorithms with varying characteris-
tics in order to effectively solve different instances of a given problem. It achieves this either by choosing
a subset of an existing set of algorithms and/or varying configurations of these algorithms. Hydra [23]
and ISAC [[10] are two successful portfolio methods operating via parameter configuration. After find-
ing an effective portfolio, the next step is how to use it appropriately. Algorithm selection [12} 21] can
be used to pick one or more algorithms from a resulting portfolio. OSCAR [18] is a framework that
hybridizes the notions of algorithm portfolio and algorithm selection in an online manner for operator
selection in a memetic algorithm. Another hybrid approach [5]] utilizes parameter tuning based on design
of experiments for online algorithm selection.

While algorithm portfolios can potentially be utilized by any designer who has access to a machine,
it can be a challenge for novice users, since it is usually not straightforward to work with existing al-
gorithm portfolio tools. One needs to have some background knowledge about how a particular tool
works in order to use it effectively. Furthermore, learning how the tool works does not solve the problem
entirely since it is essential to have an appropriate environment, i.e. installing a suite of softwares, to run
such tools. For instance, LLAMAE] [L1] and auto—sklearrﬂ [4] are very easy-to-use tools for algorithm
selection and hyper-parameter tuning, yet there is still a barrier for whom without knowledge on the re-
lated topics or at least, certain softwares should be installed first. The second issue is on the requirement
of high computational power to generate a portfolio. Especially, from a configuration perspective, port-
folio generation can require substantial computational resource since evaluating a configuration can be
expensive. For instance, an aforementioned portfolio generation method, i.e. Hydra [23]], took 70 CPU
days for the reported case study. Unavailability of such computational power limits the use of similar
tools.

ADVISERE| [17], i.e. an automated Algorithm portfolio DeVISER, was introduced to address the
issue of usability. Since ADVISER runs on remote machines via a web browser, no software installation
is needed. Besides that, its usage is straightforward and no prior knowledge on algorithm portfolios is

"https://bitbucket.org/lkotthoff/1llama
https://github.com/automl/auto-sklearn
*http://research.larc.smu.edu.sqg/adviser/
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required. Its design philosophy follows a web-based algorithm configuration tool, i.e. AutoParTuneE]
[L3].

In order to take ADVISER to the next level of usability, this paper introduces ADVISER™ that offers
enhanced features, both in the front-end and the back-end. For the front-end, a visualization module
is provided that enables the user to understand how the portfolio has been constructed visually. The
back-end is improved by integrating parallelization during training on multi-core processors for faster
response time to the end-users.

In the following, Section 2 explains these added features. Experimental details of running ADVISER ™
on two scenarios with different parametric algorithms applied to varying problem instances are briefly
discussed in Section 3. Section 4 provides a summary of future research plans.

2 ADVISER"

ADVISER [17] as a portfolio generator yields a portfolio of algorithm-configuration pairs based on
the performance of different algorithm configurations on a given set of training instances. ADVISER
offers two major advantages compared to the existing portfolio generation approaches such as Hydra
[23]] and ISAC [10!} [16]. First, ADVISER’s web-based nature allows users to run it remotely without
any implementation effort and computational resources on the users’ side. Second, ADVISER’s generic
feature extraction approach eliminates the need of the instance features required for the known portfolio
methods. In ADVISER, these features represent algorithm-configuration pairs. The latter advantage
is particularly helpful for the users who have limited or no knowledge on the target problem domain
considering the challenges of feature extraction [6]. ADVISER™ extends the portfolio generation and
configuration capabilities by introducing a basic portfolio generator (as provided in ADVISER) as well
as a tuning-based portfolio generator.

The basic generator starts by the discretizing parameters of given algorithms with an equal step size
like a grid search. Then, all possible parameter configurations using these discretized parameter values
run on each training instance. The results, i.e. solution quality, found by all the algorithm-configuration
pairs, are used as features. These features are then utilised to cluster these algorithm-configuration pairs
after they are being normalized by applying k-means clustering [9]. Afterwords, the best algorithm-
configuration pair is picked to build a diverse portfolio. Regarding clustering, similar to ADVISER,
ADVISER™ operates without predefined instance features. Despite the benefit of automated feature
extraction in ADVISER™, using a grid search can be considered a computationally expensive option
for providing those features. However, since the number of configurations to be tested is bounded by a
parameter in ADVISER ™, the possible computational overhead can be kept low.

For the tuning-based portfolio generator, a set of features are initially extracted in the same way
done for the basic generator. Yet, the resulting features are used to characterize the training instances
rather than the algorithm-configuration pairs. Thus, the number of features representing each instance is
equal to the number of the algorithm-configuration pairs tried. The follow-up portfolio generation steps
resemble to ISAC [10] with a more recent parameter tuner. It should be noted that ISAC additionally
has an algorithm selection component [1]] differently than ADVISER™ which purely focuses on portfolio
generation. As in ISAC, the instance features are used to cluster the training instances. Considering
that the primary motivation of portfolio generation is diversity, each instance cluster is independently
targeted to deliver configurations for the existing algorithms. Thus, a tuning tool is separately applied to
the instances from each cluster so that a single configuration for each algorithm is returned. A state-of-
the-art, F—RaceE] [2] based parameter tuning method, namely the Post Selection tuner [24]] is used as the
tuning tool, which makes ADVISER™ comparable to the best tuning methods. After the tuning process,
all the unique algorithm-configurations are kept for the portfolio.

For the both portfolio generators, the portfolio size is directly given by the users depending on their
available computational resources, e.g. the number of CPU cores. In that respect, by setting a portfolio

‘http://research.larc.smu.edu.sg/autopartune/
>from the irace (iterated racing) algorithm configuration package [14]: http://iridia.ulb.ac.be/irace/
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size of 1 when a single target algorithm is given, the portfolio generators can be used to perform the
standard parameter configuration/tuning.
Beside having an additional portfolio generator, the major differences of ADVISER™ to ADVISER

are parallelization used in portfolio generation and visualization of the output portfolio. In the following,
we will describe these two features in detail.

2.1 Visualization

After the algorithm portfolio has been generated, an advanced algorithm designer user may be interested
in knowing how the portfolio has been derived as well. In addition, s/he may be interested in knowing
the scenarios under which an algorithm in the portfolio works well and vice versa. To meet these re-
quirement, we propose that the clusters derived by the basic portfolio generator be explicitly visualized
to show the similarity and dissimilarity among the algorithm configurations.

It is also interesting to understand how similar each algorithm configurations are among each other
with respect to their performance on the training instances. For this purpose, the best and worst per-
forming instances for each cluster are reported so that the user can learn which algorithm configuration
in the portfolio should (or should not) be used when there is a new problem instance. For each target
algorithm configuration that runs on each instance, there are several interesting features that can be dis-
played to the user (such as the quality of solution, running time and cluster number). These information

should be displayed in one graph so the user could see an overview of the interaction among algorithm
configurations.
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Figure 1: An example parallel coordinate graph

Traditional scatter plot to reveal relationship among variables does not work very well on higher di-
mensions. In ADVISER™, we make use of the parallel coordinate graph instead, as illustrated in Figure
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[[] The Parallel coordinate graph is able to show high dimensional data without compromising on the
information. For computing the visual representation, parallel coordinate graph has a low complexity
compared to traditional scatter plot (O(N) vs O(N?) where N=number of variables). The parallel coor-
dinate graph also provides the opportunity for further expansion of the visualization as it can be applied
to any number of dimensions while not dependent on one single dimension. In the graph, each line rep-
resents the target algorithm running on an instance with the specified configuration. The graph shows
the execution time, quality of solutions and the cluster number. It provides an overview of the instances,
target algorithms and intermediate running results.

2.2 Parallelization

ADVISERT allows multiple configurations to run multiple test instances in parallel. This has consider-
ably increased the performance of ADVISER, and made the system capable of supporting multiple users

simultaneously.
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Figure 2: Vertical Parallelization for the Adviser™ Web Application

ADVISER™ employs two levels of parallelization. The first is called vertical parallelization. As
shown in Figure 2] it utilizes a load balancer together with the http web server to create multiple instances
of the algorithm portfolio generator, each of which may be run on a different machine, so that tasks
from multiple users may be executed simultaneously without affecting each other. All instances of the
generator store their outputs into a common database. Users can via the web user interface check the
status and results of their tasks. Different instances of the generator, and the ADVISER™ frontend and
database, can in fact all be on the same machine, depending on the machine’s capacity and the settings
in the load balancer adjustable by the administrator for ADVISER ™.
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Figure 3: Horizontal Parallelization in Each Instance of Portfolio Generator

The second level called horizontal parallelization is within each instance of the algorithm portfolio
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generator in ADVISER™. As shown in Figure |3 when the generator takes the inputs from a user’s task,
it spawns a number of threads based on the available number of hyperthreads or cores or CPUs in the
machine, aiming to fully utilize but not overwhelm the computing power of the machine. Each thread
executes one algorithm configuration on one instance. The generator will spawn a new thread when
a previous thread completes and there are still more configurations or instances to execute. Although
the threads may affect each other’s performance a bit by competing for the CPUs and memory, such
parallelization helps to reduce the completion time for each task significantly.

2.3 Usage

ADVISER™ can be accessed fromhttp://research.larc.smu.edu.sg/adviserplus/. The
input to the system is exactly the same as ADVISER. It includes the algorithms and their respective con-
figuration space, as well as a set of training instances and the maximum portfolio size (K). All the
algorithms should be in the form of .exe, accepting parameters as follows:

algorithm.exe -I instance_file -S seed ... OtherParameters

A parameter space file should also be provided. In this file, each parameter should be specified with
a parameter name (e.g. INITIAL_TEMPERATURE), a parameter argument (e.g. "-T"), a parameter
type (i: integer, r: continuous, c: categorical) and its configuration space, illustrated as follows:

INITIAL_TEMPERATURE "-T" i [4000, 6500]

3 Case Study

For evaluating ADVISER™, two test domains including the Quadratic Assignment Problem (QAP) and
Traveling Salesman Problem (TSP) are used. For the QAP, a hybrid simulated annealing-tabu search
meta-heuristic (SA-TS) [19] is used as the target algorithm, while an iterated local search (ILS) imple-
mentation is used for the TSP. Table [I| presents all the parameter configuration details.

Table 1: Configuration spaces

Method Type Parameter Range

A Integer Initial Temperature (T) [4000, 6500]
g, SA-TS | Continuous Cooling Factor (C) [0.85, 0.95]
Integer Tabu List Length (L) [5, 10]

Integer Perturbation Strength (P) [1,10]

e ILS Integer Better Acceptance Criteria (B) [0,1]
= Categorical Non-improving Tolerance (N) [1,2]
Categorical OptChoose (O) [3.4]

For each problem, 22 instances are considered, all from QAPLIB [3] and TSPLIB [20]: 14 of those
instances are used for training, including portfolio generation and separate tuning, and the remaining 8
instances are utilized for testing. Each configuration returned is run on each instance for 10 times due to
the stochastic nature of both SA-TS and ILS. The portfolio size is set to 5, meaning that the number of
configurations in a resulting portfolio can be 5 at most.

Table |2] illustrates both the configuration portfolio derived and the single configuration determined
by the aforementioned parameter tuner on each problem. Each portfolio is composed of 4 configurations.
Thus, the resulting portfolios require 4 CPU cores to run each of its constituent algorithm-configuration
pairs.
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Table 2: Portfolios suggested by ADVISER™ for each problem domain (*-Tuner indicates the single
configuration found by the tuner when it is applied to the complete training set)

Method Portfolios of Configurations
-T 5300 -C 0.95-L 7
-T 5400 -C 0.94 -L 7
) -
g, SATS -T 6000 -C 0.90 -L 5
-T 4000 -C 0.93-L9
SA-TS-Tuner -T 5100 -C 0.89 -L 8
-P4-B1-N2-0O3
-P2-B1-N1-0O3
A
2 ILS -P1-B1-N2-0O3
-P3-B1-N1-0O4
ILS-Tuner -P1-B1-N2-0O3
6 T T 6.0 ‘ ; ‘ :
| | ]
| | >3
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B asl
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Figure 4: Average ranks on the test instances (P1, P2, P3 and P4 are the constituent configurations of the
resulting portfolios as in Table

Figure [ presents the results in terms of average ranks. Pure parameter tuning is compared against
the portfolio and each configuration in the portfolio, P1 — P4. The existing portfolio generation meth-
ods aren’t considered for comparison since they require instance features to be able run, as discussed
earlier. For the QAP, the performance of the portfolio is significantly better than the pure tuning case
(Tuner) in terms of solution quality on the test instances. Considering the performance of each individual
configuration in the portfolio, P1 and P2 return the best solutions for 3 instances, P4 comes up with the
best solution only on one instance. The best solution for the last instance is provided by Tuner. For the
average rank performance, SA-TS-Tuner outperforms only P4, yet not significantly.

For the TSP, the results are rather different than the QAP case. ILS-Tuner delivers the same average
rank performance compared to one of the configurations in the portfolio, i.e. P3. ILS-Tuner and P3
achieve the best performance compared to the other configurations in the portfolio. Yet, the portfolio
itself is able to surpass ILS-Tuner, mainly by the help of P2 that finds the best solutions on two instances.
Still, there is no statistical performance difference. One possible reason behind the high performance of
ILS-Tuner is related to the configuration space. The number of configuration for ILS is limited to only
80 configurations.
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4 Conclusion

ADVISER™ is an enhancement of ADVISER by introducing a useful reporting system with various
visualization tools, and improving the response time for performing portfolio generation processes across
multiple cores/CPUs. For improving ADVISER™ further, integrating other existing portfolio generation
related tools will need to be considered. The system will be extended as a web-service such that it can
be reached directly from different programming platforms, like AzureMLﬂ Related to that, online and
interactive capabilities will be added. Additionally, a parameter importance module, like fANOVA [8]],
will be integrated to determine which parameters of a given algorithm matters most. Besides that, a
feature generation through deep learning [[15]] option will be provided as an alternative to the grid search.
Finally, algorithm scheduling [22]] will be incorporated to be able to efficiently use algorithm portfolios
even on a single core.
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