Provided by Institutional Knowledge at Singapore Management University

Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

6-2017

Measuring the declared SDK versions and their
consistency with API calls in android apps

Daoyuan WU
Singapore Management University, dywu.2015@phdis.smu.edu.sg

Ximing LIU
Singapore Management University, xmliu.2015@phdis.smu.edu.sg

Jiayun XU
Singapore Management University, jyxu.201S@phdis.smu.edu.sg

David LO
Singapore Management University, davidlo@smu.edu.sg

Debin GAO
Singapore Management University, dbgao@smu.edu.sg

DOI: https://doi.org/10.1007/978-3-319-60033-8_ S8

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the OS and Networks Commons, and the Software Engineering Commons

Citation

WU, Daoyuan; LIU, Ximing; XU, Jiayun; LO, David; and GAO, Debin. Measuring the declared SDK versions and their consistency
with API calls in android apps. (2017). Wireless Algorithms, Systems, and Applications: Proceedings of the 12th International Conference,
WASA 2017, Guilin, China, June 19-21Systems, and Applications: WASA 207, Guilin, China, 2017 June 19-21. 10251, 678-690. Research
Collection School Of Information Systems.

Available at: https://ink library.smu.edu.sg/sis_research/3802

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized

administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

https://core.ac.uk/display/111761936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3802&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3802&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3802&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/978-3-319-60033-8_58
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3802&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3802&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3802&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Measuring the Declared SDK Versions
and Their Consistency with API
Calls in Android Apps

(=) Ximing Liu, Jiayun Xu, David Lo, and Debin Gao

Daoyuan Wu

School of Information Systems, Singapore Management University,
Singapore, Singapore

{dywu.2015,xmliu.2015, jyxu.2015,davidlo,dbgao}@smu.edu.sg

Abstract. Android has been the most popular smartphone system, with
multiple platform versions (e.g., KITKAT and Lollipop) active in the
market. To manage the application’s compatibility with one or more
platform versions, Android allows apps to declare the supported plat-
form SDK versions in their manifest files. In this paper, we make a first
effort to study this modern software mechanism. Our objective is to mea-
sure the current practice of the declared SDK versions (which we term as
DSDK versions afterwards) in real apps, and the consistency between the
DSDK versions and their app API calls. To this end, we perform a three-
dimensional analysis. First, we parse Android documents to obtain a
mapping between each API and their corresponding platform versions.
We then analyze the DSDK-API consistency for over 24K apps, among
which we pre-exclude 1.3K apps that provide different app binaries for
different Android versions through Google Play analysis. Besides shed-
ding light on the current DSDK practice, our study quantitatively mea-
sures the two side effects of inappropriate DSDK versions: (i) around 1.8K
apps have API calls that do not exist in some declared SDK versions,
which causes runtime crash bugs on those platform versions; (ii) over 400
apps, due to claiming the outdated targeted DSDK versions, are poten-
tially exploitable by remote code execution. These results indicate the
importance and difficulty of declaring correct DSDK, and our work can
help developers fulfill this goal.

Keywords: Android bug detection + Android app security

1 Introduction

Recent years have witnessed the extraordinary success of Android, a smartphone
operating system owned by Google. At the end of 2013, Android became the
most sold phone and tablet OS. As of 2015, Android evolved into the largest
installed base of all operating systems. Along with the fast-evolving Android, its
fragmentation problem becomes more and more serious. Although new devices

X. Liu, J. Xu—These two author names are in alphabetical order.

ship with the recent Android versions, there are still huge amounts of existing
devices running old Android versions [1].

To better manage the application’s compatibility with multiple platform ver-
sions, Android allows apps to declare the supported platform SDK versions in
their manifest files. We term these declared SDK versions as DSDK versions.
The DSDK mechanism is a modern software mechanism that to the best of our
knowledge, few systems are equipped with such mechanism until Android. Nev-
ertheless, so far the DSDK receives little attention and few understandings are
known about the effectiveness of the DSDK mechanism.

In this paper, we make a first attempt to systematically study the DSDK
mechanism. In particular, our objective is to measure the current practice of
DSDK versions in real apps, and the consistency between DSDK versions and their
apps’ API calls. To this end, we perform a three-dimensional analysis that ana-
lyzes Google Play, Android documents, and each individual app. We use a large
dataset that contains over 24K apps crawled from Google Play in July 2015. Our
study sheds light on the current DSDK practice and quantitatively measures the
two side effects of inappropriate DSDK versions.

We summarize the contributions of this paper as follows:

(New problem) We study a modern software mechanism, i.e., allowing apps to
declare the supported platform SDK versions. In particular, we are the first
to measure the declared SDK versions and their consistency with API calls
in Android apps.
— (New understanding) We give the first demystification of the DSDK mechanism
and its two side effects of inappropriate DSDK versions.
— (Hybrid approach) We propose a three-dimensional analysis method that
operates at both Google Play, Android document, and Android app levels.
— (Insightful results) We have three major findings, including (i) around 17%
apps do not claim the targeted DSDK versions or declare them wrongly, (ii)
around 1.8K apps under-set the minimum DSDK versions, causing them crash
when running on lower Android versions, and (iii) over 400 apps under-claim
the targeted DSDK versions, making them potentially exploitable by remote
code execution.

2 Demystifying the Declared SDK Versions
and Their Two Side Effects

In this section, we first demystify the declared platform SDK versions in Android
apps, and then explain their two side effects if inappropriate DSDK versions are
being used.

2.1 Declared SDK Versions in Android Apps

<uses-sdk android:minSdkVersion="integer"
android:targetSdkVersion="integer"
android:maxSdkVersion="integer" />

Listing 1.1. The syntax for declaring the platform SDK versions in Android apps.

Listing 1.1 illustrates how to declare the supported platform SDK versions in
Android apps by defining the <uses-sdk> element in apps’ manifest files (i.e.,
AndroidManifest.xml). These DSDK versions are for the runtime Android system
to check apps’ compatibility, which is different from the compiling-time SDK for
compiling source codes. The value of each DSDK version is an integer, which
represents the API level of the corresponding SDK. For example, if a developer
wants to declare the SDK version 5.0, he/she sets its value as 21 (the API
level of Android 5.0 is 21). Since each API level has a precise mapping of the
corresponding SDK version [2], we do not use another term, declared API level,
to represent the same meaning of DSDK throughout this paper.
We explain the three DSDK attributes as follows:

— The minSdkVersion integer specifies the minimum platform API level
required for the app to run. The Android system refuses to install an app
if its minSdkVersion value is greater than the system’s API level. Note that
if an app does not declare this attribute, the system by default assigns the
value of “1”, which means that the app can be installed in all versions of
Android.

— The targetSdkVersion integer designates the platform API level that the
app targets at. An important implication of this attribute is that Android
adopts the back-compatible API behaviors of the declared target SDK ver-
sion, even when an app is running on a higher version of the Android plat-
form. Android makes such compromised design because it aims to guarantee
the same app behaviors as developers expect, even when apps run on newer
platforms. It is worth noting that if this attribute is not set, the default value
equals to the value of minSdkVersion.

— The maxSdkVersion integer specifies the maximum platform API level on
which an app can run. However, this attribute is not recommended and
already deprecated since Android 2.1 (API level 7). That said, modern
Android no longer checks or enforces this attribute during the app instal-
lation or re-validation. The only effect is that Google Play continues to use
this attribute as a filter when it presents users a list of applications available
for download. Not that if this attribute is not set, it implies no any restriction
on the maximum platform API level.

2.2 Two Side Effects of Inappropriate DSDK Versions

Figure 1 illustrates the two side effects of inappropriate DSDK versions. We first
explain the symbols used in this figure, and then describe the two side effects

in the subsequent paragraphs. As shown in Fig.1, we can obtain minSDK,
targetSDK, and maxSDK from an app manifest file. Based on the API calls
of an app, we can calculate the minimum and maximum API levels it requires,
i.e., minLevel and maxLevel. Eventually, the app will be deployed to a range
of Android platforms between minSDK and maxSDK.

Added APIs Removed APIs
A patched API i

V]

minSDK target@K

maxSDK

minLevel maxLevel

Crash Less secure Crash
i

Fig. 1. Illustrating the two side effects of inappropriate DSDK versions. (Color figure
online)

Side Effect I: Causing Runtime Crash Bugs. The blue part of Fig. 1 shows
two scenarios in which inappropriate DSDK versions can cause app crash. The first
scenario is minLevel > minSDK, which means a new API is introduced after
the minS DK . Consequently, when an app runs on the Android platforms between
minSDK and minLevel (marked as the block 1 in Fig. 1), it will crash. We veri-
fied this case by using the VpnService.Builder.addDisallowedApplication()
API, which was introduced at Android 5.0 at the API level 21. We called this
APT at the MopEye app [3] and ran MopEye on an Android 4.4 device. When
the app executed the addDisallowedApplication() API, it crashed with the
java.lang.NoSuchMethodError exception.

The second crash scenario is maxSDK > maxLevel, which means an old
API is removed at the max Level. Similar to the first scenario, the app will crash
when it runs on the Android platforms between maxLevel and maxSDK.

Side Effect II: Making Apps Less Secure. The red part of Fig. 1 shows the
scenario in which inappropriate DSDK versions cause apps fail to be patched
that they originally should be able to. Suppose an app calls an API (e.g.,
addJavascriptInterface () [4]) that is vulnerable before the targetSDK . How-
ever, if the targetSdkVersion of the app is lower than the patched API level,
Android will still take the compatibility behaviors, i.e., the non-patched API
behavior in this case, even when the app runs on the patched platforms (between
targetSDK and maxLevel). Some such vulnerable app examples are available
in https://sites.google.com/site/androidrce/.

https://sites.google.com/site/androidrce/

Google Play
Websites

Android API
Documents Facebook & Top Developer

Facebook Social *&kkk 30220970 &
Document

Analysis This app is compatible witt

Google Play
Analysis

[Filtered multiple-|

apk apps ADDITIONAL INFORMATION
Updated Size Installs
Single-apk Apps March 30,2016 Varies with device ;888888388
[Manifest | [Bytecode |
1 I Current Version Requires Android Content Rating
Varies with device Varies with device Rated for 12+
dexd Parental Guidance
exdump Recommended
Min/Target/Max API Calls and Fig. 3. The Facebook app’s Google Play
DSDK versions their SDK versions . .
page (with irrelevant contents removed).
Analysis Table 1. The dataset of our study.
Consistency # Note
Results All crawled apps (24,426 |The initial dataset

Multiple-apk apps| 1,301 Filtered apps

Single-apk apps |23,125|The final dataset

Fig. 2. The overview of our
methodology.

3 Methodology

In this section, we present an overview of our methodology and its three major
components.

3.1 Overview

Figure 2 illustrates the overall design of our method. It performs the analysis
at three levels. First, we crawl and analyze each app’s Google Play page to
filter multiple-apk apps that provide different app binaries (i.e., apks) for differ-
ent Android platforms. Since each apk of these apps is tailored for a particu-
lar Android version, its declared platform SDK version is no longer important.
We therefore exclude these multiple-apk apps for further analysis. Second, we
parse Android API documents to build a complete mapping between each API
and their corresponding platform versions. We call this mapping the API-SDK
mapping.

In the final app analysis phase, we first extract apps’ declared SDK versions
and API calls, then leverage the existing API-SDK mapping to infer the range
of SDK versions from API calls, and finally compare these two SDK versions
(i.e., the declared SDK versions and the SDK versions inferred from API calls).

The output is the (in)consistency results between declared SDK versions and
API calls, which can be further leveraged to detect bugs and vulnerabilities.

3.2 Google Play Analysis

Design and Implementation. The main objective of running Google Play
analysis is to filter multiple-apk apps. We explain this step using a representative
Google Play page, the Facebook app’s page as shown in Fig. 3. We can notice that
three attributes (“Size”, “Current Version”, and “Requires Android”) all have
the same value of “Varies with device”. This indicates that Facebook employs the
multiple-apk approach to handle the app compatibility over different versions of
Android platforms. The apps that do not have the value of “Varies with device”
are thus the single-apk apps.

To implement the Google Play analysis, we write Python scripts based on
our previous codes [5,6] and Selenium, a web browser automation tool. We use
Selenium’s Firefox driver to load each app’s Google Play page, and extract the
attribute values we are interested by parsing the page’s HT'ML source.

Dataset. Table1 lists the dataset used in this paper. We have crawled 24,426
apps from Google Play in July 2015. We run Google Play analysis for all these
apps, among which we identify and filter 1,301 multiple-apk apps. Therefore,
the remaining 23,125 single-apk apps assemble our final dataset, which will be
further analyzed in Sect. 3.4. Unless stated otherwise, we refer to our dataset as
these 23,125 apps in this paper.

3.3 Android Document Analysis

Method. To build the API-SDK mapping, we analyze Android SDK documents
based on a previous work [7]. Specifically, we first build a list of all Android APIs
and the corresponding platform versions they were introduced to by parsing
a SDK document called api-versions.xml. This file covers both initial APIs
(those introduced in the first Android version) and other newly added APIs in
subsequent Android versions. We further count the API change (e.g., deprecated
and removed APIs) by analyzing the HTML files in the api_diff directory.
After running the document analysis for 23 Android versions (from 1.0 to
6.0), we recorded a total of 30,083 APIs, out of which 794 APIs were afterwards
deprecated and 190 APIs were finally removed. However, we found that the
lists of deprecated and removed APIs are not fully accurate, probably due to
the mistakes made by Google developers when they wrote SDK documents.
For example, the removeAccount (Account, Callback, Handler) API in the
AccountManager class was recorded as “removed in SDK version 22” in the
documents, but actually it is still available in the SDK version 23. This result
implies that such a document-based analysis employed by the previous work [7]
requires further improvement. As a future work, we will explore to retrieve the
API-SDK mapping directly from each SDK jar file. In this paper, since the list

Initial APIs: 15492 3000

2581
2500+

N
o
=3
=]

number of APIs
- -
o &
3 S
3 3

o
1=}
S

48.5%

2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23
APIs added later: 14591 APl level

Fig. 4. The comparison Fig. 5. The distribution of added Android APIs.
between initial and added

APIs.

of added APIs is accurate, we use only this part of results for the subsequent
DSDK analysis in Sect. 4.

Results. We now present the results of document analysis. Figure 4 shows the
comparison between the initial Android APIs and those subsequently added
APIs. We can see that almost half of all APIs were added afterwards. This
indicates that Android evolves dramatically along the whole process. In Fig. 5, we
further plot the distribution of those subsequently added APIs since API level 2.
Android 5.0 (API level 21) changed most, with 2,581 new API introduced. The
following two most changed versions are Android 3.0 (API level 11) and Android
6.0 (API level 23), with 1,760 and 1,657 new APIs, respectively.

3.4 Android App Analysis

Retrieving Declared SDK Versions. We leverage aapt (Android Asset Pack-
aging Tool) to retrieve DSDK versions directly from each app without extracting
the manifest file. This method is more robust than the traditional apktool-based
manifest extraction employed in many other works. Indeed, our aapt-based app-
roach can successfully analyze all 23,125 apps, whereas a recent work [8] shows
that apktool fails six times in the analysis of top 1K apps.

In the course of implementation, we observed and handled two kinds of special
cases. First, some apps define minSdkVersion multiple times, for which we only
extract the first value. Second, we apply the by-default rules (see Sect.2.1) for
the non-defined minSdkVersion and targetSdkVersion. More specifically, we
set the value of minSdkVersion to 1 if it is not defined, and set the value of
targetSdkVersion (if it is not defined) using the minSdkVersion value.

Extracting API Calls and Their SDK Versions. To extract API calls from
apps’ bytecodes, we first translate the compressed bytecodes into readable texts
by using the dexdump tool. We then use a set of Linux bash commands to extract
each app’s method calls from their dexdump outputs.

With the extracted API calls, we use the API-SDK mapping to compute
their corresponding SDK versions (i.e., minLevel and maxLevel, as explained
in Fig.1). To compute the minLevel, we calculate a maximum value of all API
calls’ added SDK versions. Similarly, to compute the maxLevel, we calculate
a minimum value of all API calls’ removed SDK versions. If an API is never
removed, we set its removed SDK version to a large flag value (e.g., 100,000).

During the experiments, we find that it is necessary to exclude library codes’
APT calls from host apps’ own API calls. Libraries such as Android Support
Library provide the stub implementation of higher-version APIs on lower-version
platforms to ensure the backward-compatibility of higher-version APIs. If an app
is running on a higher-version platform, the library directly calls the correspond-
ing API. Otherwise, the library calls the stub implementation, which actually
does nothing but would not crash the app. Since we currently do not differenti-
ate such control-flow information, we exclude library codes for the consistency
analysis.

Comparing Consistency. With the DSDK and API level information, it is easy
to compare their consistency. We compute the following three kinds of inconsis-
tency (as previously mentioned in Sect. 2.2):

— minSdkVersion < minLevel: the minSdkVersion is set too low and the app
would crash when it runs on platform versions between minSdkVersion and
minLevel.

— targetSdkVersion < maxLevel: the targetSdkVersion is set too low and
the app could be updated to the version of maxLevel. If the maxLevel is infi-
nite, the targetSdkVersion could be adjusted to the latest Android version.

— maxSdkVersion > maxLevel: the maxSdkVersion is set too large and the
app would crash when it runs on platform versions between maxLevel and
maxSdkVersion.

4 Evaluation

Our evaluation aims to answer the following three research questions:

RQ1: What are the characteristics of the DSDK versions in real-world apps?

RQ2: What are the characteristics of the API calls in real-world apps?

RQ3: Could we identify the inconsistency between DSDK versions and API calls
in real apps? In particular, could we discover crash bugs and potential security
vulnerabilities?

4.1 RQ1: Characteristics of the Declared SDK Versions

In this section, we report a total of four findings regarding the RQ1.

Finding 1: Not all apps define the minSdkVersion and targetSdkVersion
attributes, and 16.5% apps do not claim the targetSdkVersion
attributes. From Table2, we can see that rare apps (about 0.22%) do not

Table 2. The number and percentage of non-defined DSDK attributes in our dataset.

Non-defined | % Non-defined
minSdkVersion 51 0.22%
targetSdkVersion | 3,826 16.54%
maxSdkVersion 23,109 99.93%

define the minSdkVersion, while a noticeable portion of apps (over 15%) do
not define the targetSdkVersion. Out of these apps, 48 apps declare nei-
ther the minSdkVersion, nor the targetSdkVersion. Consequently, the val-
ues of both minSdkVersion and targetSdkVersion will be assigned to “1” by
the system. We also notice that almost all apps (over 99%) do not define the
maxSdkVersion. This result is reasonable because, as we described in Sect. 2.1,
the maxSdkVersion attribute is strongly suggested not to define.

Finding 2: There are 53 outlier targetSdkVersion values. We also find
out some declared targetSdkVersion are outlier values. One app defines its
targetSdkVersion as 0, which is lower than the minSdkVersion. Others’
targetSdkVersion are larger than the newest SDK version (API level 23 at
that time). Some apps declare targetSdkVersion as 24, 25, 26 or larger,
however, these SDK versions have not been released yet in year 2015. Even
more surprisingly, one app sets the targetSdkVersion value to “10000”. In
general, targetSdkVersion should be always greater than or equal to the
minSdkVersion, but 34 apps have negative targetSdkVersion- minSdkVersion
value.

Finding 3: The minimal platform versions most apps support are
Android 2.3 and 2.2, whereas the most targeted platform versions
are Android 4.4 and 5.0. In Figs.6 and 7, we plot the distribution of
minSdkVersion and targetSdkVersion, respectively. We can see that most apps
(around 85%) have minSdkVersion lower than or equal to level 11 (i.e., Android
3.0), which means that they can run on the majority of Android devices in
the market [1]. Moreover, the minimal platform versions most apps support are
Android 2.3 and 2.2. Figure 7 shows that more than 89% apps test their apps
on platform versions larger than Android 4.0, and the most targeted platform
versions are Android 4.4 and 5.0.

Finding 4: The mean version difference between targetSdkVersion and
minSdkVersion is 8. We define a new metric called lagSdkVersion to measure
the version difference between targetSdkVersion and minSdkVersion, as shown
in Eq. 1.

lagSdkVersion = targetSdkVersion — minSdkVersion (1)

After removing negative targetSdkVersion values and outliers, we draw the
CDF (Cumulative Distribution Function) plot of lagSdkVersion in Fig.8.

7000 5000 ——————"—+—"—"—T—T """

6000 [
4000 -

5000 [

3000

IS
o
S
=)

w
o
<]
=]

2000

Number of apps
Number of apps

N
=3
S
=)

1000+

0
1234567 8 9101112131415161718192021 1234567 8 91011121314151617181920212223
Minimum SDK version Target SDK version

Fig. 6. Distribution of minSdkVersion. Fig. 7. Distribution of targetSdkVersion.

10

0.9

08
07 03]
06

CDF

05 05|

CDF
oF

04
03
02
01

0
12345678 09101112131415161718192021 © Too0 7000 3000 000
targetSdkVersion - minSdkVersion The number of each app's API calls

‘The number of API calls that have higher APl level than minSdkVersion

Fig. 8. CDF plot of Fig. 10. CDF plot of
lagSdkVersion. Fig. 9. CDF plot of each app’s number of
the number of each API calls that have
app’s API calls. higher API level than

minSdkVersion.

It shows that more than 20% apps have equal targetSdkVersion and
minSdkVersion. Furthermore, the majority of apps (more than 95% apps) have
a lagSdkVersion less than 12.

4.2 RQ2: Characteristics of the API Calls

In this section, we briefly present two more findings related to the RQ2. It is
worth noting that here we consider all APT calls that include the API calls in
libraries.

Finding 5: Around 500 apps call less than 50 APIs, making them
lightweight apps. On the other hand, half of apps call over 1.8K APIs.
We find that 446 apps call less than 50 APIs. The majority of them are about
user interface improvement, such as system theme and wallpaper apps. These
apps are regarded as lightweight ones that have less dependency on the SDK
versions. Additionally, many other apps contain several thousand API calls. We
plot the distribution of apps by API call numbers in Fig. 9.

Finding 6: Library codes contribute more higher-version API calls
than apps’ own codes. Libraries such as Android support library provide

6000

7000

5000
6000
4000 5000

4000

Number of apps
g
8
Number of apps

3000

2000

2000

1000
1000

0 0
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Minimum API level Minimum API level

(a) All API calls with library code. (b) App’s own API calls without library code.

Fig. 11. The distribution of minLevel that is calculated from API calls w/o library.

backward-compatible versions of Android framework APIs, as well as the fea-
tures that are only available through the library APIs. Each support library
is backward-compatible to a specific API level, which allows an app that con-
tains higher-version APIs run correctly on a lower version of Android system.
Figure 11(a) shows that distribution of the minLevel of API calls with the library
code, whereas Fig. 11(b) presents the distribution of the minLevel of API calls
without the library code. By analyzing and de-compiling the support library, we
found that they can redirect the APIs calls in a higher-version SDK to some
similar APIs which are already in a lower SDK or to an empty function.

4.3 RQ3: Inconsistency Results

In this section, we report two important findings regarding the RQ3.

Finding 7: Around 1.8K apps under-set the minSdkVersion value, caus-
ing them would crash when they run on lower Android versions. We
find that 1,750 apps have over five API calls, the levels of which are larger than
the declared minSdkVersion. In 692 apps, more than ten API calls have higher
API level than minSdkVersion. In Fig. 10, we draw the CDF plot of the num-
ber of API calls that have higher API level than minSdkVersion. Based on this
figure, we find that several apps have more than 50 API calls whose API level
is higher than minSdkVersion.

Finding 8: Around 400 apps fail to update their targetSdkVersion
values, making them potentially exploitable by remote code execu-
tion. The addJavascriptInterface() API [4] has a serious security issue. By
exploiting this API, attackers are able to inject malicious codes, which may
obtain any information from SD card. Google later fixed this bug on Android
4.2 and afterward. However, as mentioned in the side effect II, if an app has the
targetSdkVersion lower than 17 and calls this API, the system will still call the
vulnerable API even when running in Android 4.2 and afterward. In our dataset,
we find that 909 apps call the addJavascriptInterface() API. Among these

apps, 413 apps are vulnerable, which may cause privacy information leakage. In
particular, out of these 413 apps, 238 apps do not define the targetSdkVersion
attribute (i.e., targetSdkVersion is null).

5 Threats to Validity

In this section, we discuss a couple of threats to the validity of our study.

First, we have not performed the control-flow analysis to determine whether
an API call will be invoked only when running on certain Android versions.
During the experiments, we noticed that many library codes take if-else blocks
to call higher-version APIs on when the app is running on the corresponding
versions. To mitigate its impact to our analysis, we currently exclude the library
codes for consistency analysis (Sect. 3.4), and use a threshold value to minimize
the potential version-related if-else blocks in app codes (Sect.4.3).

Apps may employ Java reflection to call private Android APIs [9] that are not
included in the SDK but contained in Android framework. Similarly, developers
may use native codes to access Android APIs. Currently we have not handled
these two cases and leave them as our future work.

Our assumption in Sect. 3.1 that multiple-apk apps do not have compatibility
issues may not be always true. In particular, developers may provide only one
apk for several Android platforms to share. In this case, those shared apks are
similar to single-apk apps.

6 Related Work

Our paper is mainly related to prior works that also study Android APIs or
SDKs. The work performed by McDonnell et al. [7] is the closest to our paper.
They studied the Android API evolution and how client apps follow Android
API changes, which is different from our focus on the consistency between apps’
DSDK and API calls. In the methodology part, we followed their document analy-
sis method for extracting the API-SDK mapping. But in the future we plan to
directly analyze Android SDKs instead of documents for more accurate map-
ping extraction. Other related works have studied the coefficient between apps’
API change and their success [10], the deprecated API usage in Java-based sys-
tems [11], and the inaccessible APIs in Android framework and their usage in
third-party apps [12]. Two recent works [13,14] also focused on the fragmen-
tation issues in Android. Compared to all these works, our study is the first
systematic work on DSDK versions and their consistency with API calls.

7 Conclusion and Future Work

In this paper, we made a first effort to systematically study the declared SDK
versions in Android apps, a modern software mechanism that has received lit-
tle attention. We measured the current practice of the declared SDK versions

or DSDK versions in a large dataset of apps, and the consistency between the
DSDK versions and their app API calls. To facilitate the analysis, we proposed a
three-dimensional analysis method that operates at both Google Play, Android
document, and Android app levels. We have obtained some interesting and novel
findings, including (i) around 17% apps do not claim the targeted DSDK versions
or declare them wrongly, (ii) around 1.8K apps under-set the minimum DSDK
versions, causing them would crash when running on lower Android versions,
and (iii) over 400 apps under-claim the targeted DSDK versions, making them
potentially exploitable by remote code execution. In the future, we plan to con-
tact the authors of the apps to inform them about the detected issues and collect
their feedback, release a publicly available tool to let app developers detect and
fix issues, and improve our approach to further mitigate the threats to validity
(e.g., by designing and incorporating a suitable control-flow analysis technique).

References

1. Android: Dashboards. https://developer.android.com/about/dashboards/

2. Android: Platform codenames, versions, and API levels. https://source.android.
com/source/build-numbers.html

3. Wu, D, Li, W., Chang, R., Gao, D.: MopEye: monitoring per-app network perfor-
mance with zero measurement traffic. In: CONEXT Student Workshop (2015)

4. Drake, J.: On the WebView addJavascriptInterface saga (2014). http://www.
droidsec.org/news/2014/02/26 /on-the-webview-addjsif-saga.html

5. Wu, D., Chang, R.K.C.: Analyzing android browser apps for:// vulnerabilities. In:
Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol.
8783, pp. 345-363. Springer, Cham (2014). doi:10.1007/978-3-319-13257-0_20

6. Wu, D., Chang, R.K.C.: Indirect file leaks in mobile applications. In: Proceedings
of IEEE Mobile Security Technologies (MoST) (2015)

7. McDonnell, T., Ray, B., Kim, M.: An empirical study of API stability and adoption
in the android ecosystem. In: Proceedings of IEEE ICSM (2013)

8. Wu, D., Luo, X., Chang, R.K.C.: A sink-driven approach to detecting exposed
component vulnerabilities in android apps. CoRR abs/1405.6282 (2014)

9. Andrew: Hacking the “private” Android API. http://andrewoid.blogspot.com/
2008/12/hacking-android-api.html

10. Linares-Vasquez, M., Bavota, G., Bernal-Cardenas, C., Penta, M.D., Oliveto, R.,
Poshyvanyk, D.: API change and fault proneness: a threat to the success of android
apps. In: Proceedings of ACM FSE (2013)

11. Brito, G., Hora, A., Valente, M.T., Robbes, R.: Do developers deprecate APIs with
replacement messages? A large-scale analysis on Java systems. In: Proceedings of
IEEE SANER (2016)

12. Li, L., Bissyandé, T.F., Traon, Y.L., Klein, J.: Accessing inaccessible android APIs:
an empirical study. In: Proceedings of IEEE ICSME (2016)

13. Mutchler, P., Safaei, Y., Doupe, A., Mitchell, J.: Target fragmentation in android
apps. In: Proceedings of IEEE Mobile Security Technologies (MoST) (2016)

14. Wei, L., Liu, Y., Cheung, S.C.: Taming android fragmentation: characterizing and
detecting compatibility issues for android apps. In: Proceedings of ACM ASE
(2016)

https://developer.android.com/about/dashboards/
https://source.android.com/source/build-numbers.html
https://source.android.com/source/build-numbers.html
http://www.droidsec.org/news/2014/02/26/on-the-webview-addjsif-saga.html
http://www.droidsec.org/news/2014/02/26/on-the-webview-addjsif-saga.html
http://dx.doi.org/10.1007/978-3-319-13257-0_20
http://andrewoid.blogspot.com/2008/12/hacking-android-api.html
http://andrewoid.blogspot.com/2008/12/hacking-android-api.html

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	6-2017

	Measuring the declared SDK versions and their consistency with API calls in android apps
	Daoyuan WU
	Ximing LIU
	Jiayun XU
	David LO
	Debin GAO
	Citation

	Measuring the Declared SDK Versions and Their Consistency with API Calls in Android Apps
	1 Introduction
	2 Demystifying the Declared SDK Versions and Their Two Side Effects
	2.1 Declared SDK Versions in Android Apps
	2.2 Two Side Effects of Inappropriate DSDK Versions

	3 Methodology
	3.1 Overview
	3.2 Google Play Analysis
	3.3 Android Document Analysis
	3.4 Android App Analysis

	4 Evaluation
	4.1 RQ1: Characteristics of the Declared SDK Versions
	4.2 RQ2: Characteristics of the API Calls
	4.3 RQ3: Inconsistency Results

	5 Threats to Validity
	6 Related Work
	7 Conclusion and Future Work
	References

