
Singapore Management University
Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection Dissertations and Theses

5-2017

Mining software repositories for automatic software
bug management from bug triaging to patch
backporting
Yuan TIAN
Singapore Management University, yuan.tian.2012@phdis.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll_all

Part of the Information Security Commons, and the Software Engineering Commons

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional Knowledge at Singapore Management
University. It has been accepted for inclusion in Dissertations and Theses Collection by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
TIAN, Yuan. Mining software repositories for automatic software bug management from bug triaging to patch backporting. (2017).
Dissertations and Theses Collection.
Available at: https://ink.library.smu.edu.sg/etd_coll_all/26

https://ink.library.smu.edu.sg?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/etd_coll_all?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/etd?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/etd_coll_all?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fetd_coll_all%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

MINING SOFTWARE REPOSITORIES FOR AUTOMATIC

SOFTWARE BUG MANAGEMENT

FROM BUG TRIAGING TO PATCH BACKPORTING

YUAN TIAN

SINGAPORE MANAGEMENT UNIVERSITY

2017

Mining Software Repositories for Automatic Software Bug Management

From Bug Triaging to Patch Backporting

by

Yuan Tian

Submitted to School of Information Systems in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy in Information Systems

Dissertation Committee:

David Lo (Chair)
Associate Professor of Information Systems
Singapore Management University

Jing Jiang
Associate Professor of Information Systems
Singapore Management University

Lingxiao Jiang
Assistant Professor of Information Systems
Singapore Management University

Julia Lawall
Director of Research
Inria - Laboratoire d’Informatique de Paris 6

Singapore Management University
2017

Copyright (2017) Yuan Tian

Mining Bug Repositories for Automatic Software Bug Management

From Bug Triaging to Patch Backporting

Yuan Tian

Abstract

Software systems are often released with bugs due to system complexity and inad-

equate testing. Bug resolving process plays an important role in development and

evolution of software systems because developers could collect a considerable num-

ber of bugs from users and testers daily. For instance, during September 2015, the

Eclipse project received approximately 2,500 bug reports, averaging 80 new reports

each day. To help developers effectively address and manage bugs, bug tracking

systems such as Bugzilla and JIRA are adopted to manage the life cycle of a bug

through bug report. Since most of the information related to bugs are stored in soft-

ware repositories, e.g., bug tracking systems, version control repositories, mailing

list archives, etc. These repositories contain a wealth of valuable information, which

could be mined to automate bug management process and thus save developers time

and effort.

In this thesis, I target the automation of three bug management tasks, i.e., bug

prioritization, bug assignment, and stable related patch identification.

Bug prioritization is important for developers to ensure that important reports

are prioritized and fixed first. For automated bug prioritization, we propose an

approach that recommends a priority level based on information available in bug

reports by considering multiple factors, including temporal, textual, author, related-

report, severity, and product, that potentially affect the priority level of a bug report.

After being prioritized, each reported bug must be assigned to an appropriate devel-

oper/team for handling the bug. This bug assignment process is important, because

assigning a bug report to the incorrect developer or team can increase the overall

time required to fix the bug, and thus increase project maintenance cost. More-

over, this process is time consuming and non-trivial since good comprehension of

bug report, source code, and team members is needed. To automate bug assign-

ment process, we propose a unified model based on learning to rank technique. The

unified model naturally combines location-based information and activity-based in-

formation extracted from historical bug reports and source code for more accurate

recommendation. After developers have fixed their bugs, they will submit patches

that could resolve the bugs to bug tracking systems. The submitted patches will

be reviewed and verified by other developers to make sure their correctness. In

the last stage of bug management process, verified patches will be applied on the

software code. In this stage, many software systems prefer to maintain multiple

versions of software systems. For instance, developers of the Linux kernel release

new versions, including bug fixes and new features, frequently, while maintaining

some older “longterm” versions, which are stable, reliable, and secure execution

environment to users. The maintaining of longterm versions raises the problem of

how to identify patches that are submitted to the current version but should be back-

ported to the longterm versions as well. To help developer find patches that should

be moved to the longterm stable versions, we present two approaches that could au-

tomatically identify bug fixing patches based on the changes and commit messages

recorded in code repositories. One approach is based on hand-crafted features and

two machine learning techniques, i.e., LPU (Learning from Positive and Unlabeled

Examples) and SVM (Support Vector Machine). The other approach is based on

a convolutional neural network (CNN), which automatically learns features from

patches.

Table of Contents

1 Introduction and Overview 1

1.1 The Life Cycle of a Bug . 1

1.2 Mining Software Repositories . 5

1.3 Outline and Overview . 6

1.4 Acknowledgment of Published Work 6

2 Automated Bug Prioritization via Multi-Factor Analysis 10

2.1 Introduction . 10

2.2 Background . 12

2.2.1 Text Pre-processing . 12

2.2.2 Measuring the Similarity of Bug Reports 14

2.3 Problem Definition & Approach 14

2.3.1 Problem Definition . 15

2.3.2 Approach: Overall Framework 15

2.3.3 Feature Extraction Module 15

2.3.4 Classification Module . 19

2.4 Evaluation . 22

2.4.1 Definition of Scenarios . 22

2.4.2 Dataset Collection . 24

2.4.3 Baseline Approaches . 28

2.4.4 Evaluation Measures . 28

2.4.5 Research Questions . 29

i

2.5 Evaluation Results & Discussion 29

2.5.1 Results for Scenario “Last” 29

2.5.2 Results for Scenario “Assigned” 33

2.5.3 Results for Scenario “First” 35

2.5.4 Results for Scenario “No-P3” 36

2.5.5 Threats to Validity . 37

2.6 Chapter Conclusion . 38

3 Learning-to-Rank for Automatic Bug Assignment 39

3.1 Introduction . 39

3.2 Background . 41

3.2.1 Activity-based Bug Assignee Recommendation 42

3.2.2 Location-based Bug Assignee Recommendation 43

3.3 Approach . 45

3.3.1 Overall Framework . 45

3.3.2 Dataset Collection and Text Pre-processing 47

3.3.3 Extraction of Activity-Based Features 49

3.3.4 Extraction of Location-Based Features 53

3.4 Evaluation . 54

3.4.1 Research Questions . 54

3.4.2 Dataset . 56

3.4.3 Experiment Setup and Evaluation Metrics 56

3.5 Evaluation Results & Discussion 57

3.5.1 Activity-Based Features vs. Location-Based Features vs.

All Features. 57

3.5.2 Our Unified Model Vs Baselines 58

3.5.3 Importance of Features . 60

3.5.4 Threats to Validity . 60

3.6 Chapter Conclusion . 61

ii

4 Identifying Linux Bug Fixing Patches 63

4.1 Introduction . 63

4.2 Background . 65

4.3 Approach . 68

4.3.1 Data Acquisition . 69

4.3.2 Feature Extraction . 72

4.3.3 Model Learning . 74

4.3.4 Bug Fix Identification . 75

4.4 Evaluation . 76

4.4.1 Dataset . 76

4.4.2 Research Questions & Evaluation Metrics 78

4.5 Evaluation Results & Discussion 80

4.5.1 Effectiveness of Our Approach 80

4.5.2 Effects of Varying Parameter k 82

4.5.3 Best Features . 83

4.5.4 Our Approach versus LPU 84

4.5.5 Threats to Validity . 85

4.6 Chapter Conclusion . 86

5 Identifying Patches for Linux Stable Versions: Could Convolutional

Neural Networks Do Better? 87

5.1 Introduction . 87

5.2 Background . 90

5.2.1 Context . 90

5.2.2 Challenges for Machine Learning 92

5.2.3 Convolutional Neural Networks for Sentence Classification . 94

5.3 Approach . 97

5.3.1 Collecting the Data Set . 98

5.3.2 Patch Preprocessing . 100

iii

5.3.3 Learning Model & Performing Identification 103

5.4 Evaluation . 104

5.4.1 Dataset . 104

5.4.2 Model Settings . 104

5.4.3 Baseline Approach . 105

5.4.4 Evaluation Methodology & Metrics 105

5.5 Evaluation Results & Discussion 107

5.5.1 CNN-based Approach vs. LPU+SVM based Approach . . . 107

5.5.2 Potential of Combining the CNN-based and LPU+SVM-

based Approaches . 108

5.5.3 Threats to Validity . 111

5.6 Chapter Conclusion . 112

6 Related Work 113

6.1 Duplicate Bug Report Detection 113

6.2 Bug Severity and Priority Prediction 114

6.3 Bug Report Assignee Recommendation 116

6.4 IR-based Bug Localization . 117

6.5 Identification of Bug Fixing Patches 119

6.6 Deep Learning in Software Engineering 120

7 Conclusion and Future Work 121

7.1 Conclusion and Contributions . 121

7.2 Future Work . 123

7.2.1 As Completion of Previous Studies 123

7.2.2 Others . 124

iv

List of Figures

1.1 A Sample Bug Report from Eclipse Project 2

2.1 DRONE Framework . 16

2.2 GRAY Classification Engine . 20

3.1 Bug report #424772 from Eclipse JDT. 42

3.2 Overall Ranking Process . 47

4.1 Various kinds of patches applied to the stable kernels 2.6.20 and

2.6.27 and to the mainline kernel in the same time period. 67

4.2 Overall Framework . 68

4.3 A bug fixing patch, applied to stable kernel Linux 2.6.27 70

4.4 Model Learning . 75

4.5 Effect of Varying K. The pseudo white data is the bottom k commits

that we treat as a proxy to non bug fixing patches. The three boxes

corresponding to pseudo white (2 of them) and black represent the

aggregate features of the respective pseudo-white and black data in

our training set respectively. The squares and triangles represent

test data points whose labels (i.e., bug fixing patches or not) are to

be predicted. 83

5.1 Rate at which the patches applied to a given subsystem end up in a

stable kernel. Subsystems are ordered by increasing propagation rate. 92

v

5.2 Rate at which a maintainer’s commits that end up in a stable kernel

are annotated with Cc stable. 406 is the median number of commits

per maintainer. Maintainers are ordered by increasing Cc stable rate. 93

5.3 Convolutional Neural Networks for Sentence Classification 95

5.4 Sample Bug Fixing Patch . 97

5.5 Framework of Convolutional Neural Network Based Stable-Relevant

Patch Identification . 99

5.6 Code Example . 102

vi

List of Tables

2.1 Examples of Bug Reports from Eclipse. Comp.=Component. Sev.=Severity.

Prio.=Priority. 12

2.2 DRONE Features Extracted for a Bug Report BR 17

2.3 DRONE Features Extracted for a Bug Report BR (Continued) . . . 18

2.4 Eclipse Dataset Details. Train.=Training Reports. Test.=Testing

Reports. 25

2.5 Modification History for Bug Report with Id 5110 26

2.6 Modification History for Bug Report with Id 185222 27

2.7 Precision, Recall, and F-Measure for DRONE (Scenario “Last”) . . 30

2.8 Precision, Recall, and F-Measure for SeverisPrio (Scenario “Last”) . 30

2.9 Precision, Recall, and F-Measure for SeverisPrio+ (Scenario “Last”) 30

2.10 Efficiency of SeverisPrio, SeverisPrio+, and DRONE (Scenario “Last”).

FE = Average Feature Extraction Time. MB = Model Building

Time. MA = Average Model Application Time. 32

2.11 Top-10 Features in Terms of Fisher Score (Scenario “Last”) 32

2.12 Comparisons of Average F-Measures of GRAY versus Other Classi-

fiers (Scenario “Last”). Class. = Classifiers. SM = SVM-MultiClass.

NBM = Naive Bayes Multinomial. OOM = Out-Of-Memory (more

than 9GB). CC = Cannot Complete In Time (more than 8 hours). . . 33

2.13 Precision, Recall, and F-Measure for DRONE (Scenario “Assigned”) 34

2.14 Precision, Recall, and F-Measure for SeverisPrio (Scenario “As-

signed”) . 34

vii

2.15 Precision, Recall, and F-Measure for SeverisPrio+ (Scenario “As-

signed”) . 34

2.16 Precision, Recall, and F-Measure for DRONE (Scenario “First”) . . 35

2.17 Precision, Recall, and F-Measure for SeverisPrio (Scenario “First”) . 35

2.18 Precision, Recall, and F-Measure for SeverisPrio+ (Scenario “First”) 35

2.19 Precision, Recall, and F-Measure for DRONE (Scenario “No-P3”) . 36

2.20 Precision, Recall, and F-Measure for SeverisPrio (Scenario “No-P3”) 36

2.21 Precision, Recall, and F-Measure for SeverisPrio+ (Scenario “No-P3”) 36

3.1 Sixteen Activity-Based and Location-Based Features Characteriz-

ing a Bug Report-Developer Pair. 48

3.2 Datasets: Eclipse JDT, Eclipse SWT, ArgoUML 56

3.3 Results of Our Unified Model Trained with Various Features on

Eclipse JDT, Eclipse SWT, and ArgoUML Data 58

3.4 Results of Our Unified Model Trained with Various Features on

Eclipse JDT, Eclipse SWT, and ArgoUML Data (Continue) 58

3.5 Results of Our Approach and Baselines on Eclipse JDT, Eclipse

SWT, ArgoUML . 59

3.6 Results of Our Approach and Baselines on Eclipse JDT, Eclipse

SWT, ArgoUML (Continue) . 59

3.7 Top-5 Most Important Features . 60

4.1 Extracted Features . 73

4.2 Properties of the considered black datasets. LOC refers to the com-

plete patch size, including both the log and the changed code 77

4.3 Properties of the considered grey dataset, broken down by Linux

version. LOC refers to the complete patch size, including both the

log and the changed code. 77

4.4 Precision and Recall Comparison 80

4.5 F-Measures Comparison . 81

viii

4.6 Comparison of AccuracyBlack Scores 81

4.7 Effect of Varying k on Performance. TP = True Positive, FN = False

Negative, FP = False Positive, TN = True Negative. 82

4.8 Top-20 Most Discriminative Features Based on Fisher Score 84

4.9 Comparisons with LPU . 85

5.1 Accuracy@N, Average Precision (AP)@N, Normalized Discounted

Cumulative Gain (NDCG)@N: CNN vs. LPU+SVM 108

5.2 Precision, Recall, F-measure: CNN vs. LPU+SVM 108

5.3 Predictions of CNN and LPU+SVM on 17,967 Testing Patches . . . 110

5.4 Performance of CNN and LPU+SVM on 99 Patches (Option 1) . . . 111

5.5 Performance of CNN and LPU+SVM on 100 Patches (Option 2) . . 111

ix

Acknowledgment

I would like to express my gratitude to my supervisor, collaborators, dissertation

committee members, friends, university staffs, and family members, for their kindly

help in many ways smoothing the progress of my PhD.

First and foremost, I thank my supervisor, Prof. David Lo, for his consistently

support and encouragement during my PhD training. Next, I thank my dissertation

committee members: Prof. Jing Jiang, Prof. Lingxiao Jiang, and Julia Lawall, for

taking time reviewing my thesis, providing valuable suggestions, and attending my

defense. Julia is especially kind for flying all the way to Singapore from France to

attend my defense. I thank my collaborators from worldwide institutions, for their

help in my research. They are Julia Lawall from Inria, Prof. Ahmed E. Hassen from

Queen’s University, Xin Xia from Zhejiang University, Prof. Meiyappan Nagappan

from University of Waterloo, Prof. Claire Le Goues from Carnegie Mellon Univer-

sity, and Dr. Chengnian Sun, who is now working at Google. I acknowledge the

friendship and support from my group members in the SOAR (SOftware Analytics

Research) lab of SMU and my friend Ke Xu. I am also grateful to the following

university staffs: Seow Pei Huan and Ong Chew Hong, for their unfailing support

and assistance, especially in managing the timeline of my graduation process.

Last but not the least, I am grateful to my parents, Kangsheng Tian and Xiaoyan

Wang, for their generous care and believes in me. Thanks my husband, Shuang Xia,

who is working hard for our small family. He makes my life brighter and much

easier :-)

x

Chapter 1

Introduction and Overview

1.1 The Life Cycle of a Bug

Due to system complexity and inadequate testing, many software systems are often

released with defects. To address these defects and improve the next releases, de-

velopers need to get feedback on defects that are present in released systems. Thus,

they often allow users/testers to report defects using bug tracking systems such as

Bugzilla,1JIRA,2or other proprietary systems. Bug tracking is a standard practice in

both open source software development and closed source software development.

Figure 1.1 presents a sample bug report from the Eclipse project that is stored in

Bugzilla. It shows that bug tracking system has provided many fields to help soft-

ware maintainers to manage a bug, e.g., the status of the bug, the reporter of the bug,

the product/component impacted by the bug, etc. A bug report also contains textual

information such as a summary of the bug, steps to reproduce the bug, etc. The

values of some fields are provided by the bug reporter when the bug is submitted

to the system, while the values of other fields are provided or updated by software

maintainers after the bug is reported.

Every defect or bug that has been discovered goes through a process before it is

1https://www.bugzilla.org/
2https://www.atlassian.com/software/jira/

1

Figure 1.1: A Sample Bug Report from Eclipse Project

2

resolved. Different organizations might have slightly different strategies to manage

bugs, but the overall life cycle of a bug is usually similar. In this thesis, we segment

the whole bug management process into four stages, i.e., bug detection & reporting,

bug triaging, debugging & bug fixing, and patch verification & backporting. Each

of these stages is described below.

Stage 1: Bug Detection & Reporting. Initially, a bug is detected or encoun-

tered by bug detection tools, testers or users. In order to detect bugs at an early

stage of software development, multiple bug detection techniques have been intro-

duced [8, 30, 70, 77]. After a bug is detected, a developer/user (i.e., bug reporter)

can file a report in the bug tracking system. Inside the bug report, the developer

should describe what is the bug and how to reproduce the bug, and provide values

of fields such as product/component impacted by the bug, version of the software,

severity of the bug, etc. These information will help software maintainers to resolve

the bug.

Stage 2: Bug Triaging. Bug tracking systems receive a large number of bug

reports daily. Each reported bug must be scanned by developers to determine if it

describes a meaningful problem, and if it does, it must be prioritized and assigned to

an appropriate developer for further handling. Such a procedure is called bug triag-

ing. Bug triaging process contains many sub-tasks, some of which are introduced

below.

• Duplicate bug report detection identifies whether a reported bug has already

been reported. It helps developers to filter out duplicate bug reports thus saves

developers’ time in fixing redundant bugs.

• Bug prioritization ranks new bug reports and assigns a priority level to each

bug to prioritize which bugs should be given attention first. Prioritizing bugs

is needed due to limited human resources. It is a manual process and is

time consuming. Bug triagers need to read the information provided by bug

reporters in the new bug reports, compare them with existing reports, and

3

choose the appropriate priority levels.

• Bug assignment decides who should fix a reported bug. Appropriate bug

assignment is important because a bug could be fixed faster if it is assigned

to the right person. Usually bug triagers will consider the description in the

reported bug and find the developer who has taken charge of related source

code files or/and who has enough expertise to fix the bug.

Stage 3: Debugging & Bug Fixing. After the developer has received a bug,

he/she will start to diagnose the cause of the bug based on the information available

in the bug report. For instance, the developer might try to reproduce the bug follow-

ing the description in the report and then locate the buggy code that cause the bug.

Such procedure of finding the location of buggy code for a reported bug based on

its report is called bug report localization. Once the developer figures out where is

the buggy code, he/she will create a patch that could be applied on the source code

to fix the bug. The patch will be submitted to the bug tracking system for further

verification.

Stage 4: Patch Verification & Backporting. Given a patch created by a devel-

oper to fix a bug, some other developers need to verify whether this patch could be

merged into the new version of the software. Such a patch verification procedure

might iterate several times between the patch creater and the patch reviewer until

the patch is ready for merging. After a patch is verified, the reported bug is resolved

and the patch will be merged to the particular version of the software. For some

software, bug fixing patches should be back-ported to the older version of the same

software to improve the usability of older versions. Such process is called patch

backporting. In the patch backporting process, a maintainer will forward the patch

to the maintainers of the longterm versions, if the patch satisfies various guidelines,

such as fixing a real bug, and making only a small number of changes to the code.

In this thesis, we focus on two of the four mentioned stages in the management

of bugs, i.e., bug triaging and patch verification & back-porting. Note that for patch

4

verification & backporting step, we only target one task, i.e., bug fixing patch iden-

tification for stable versions, rather than the whole back-porting scenario. The other

two stages, i.e., bug detection & reporting and debugging & bug fixing, are beyond

the scope of this thesis.

1.2 Mining Software Repositories

Practitioners like bug triagers, developers, testers often make decisions based on

their experience in previous software projects. For instance, bug triagers filter, pri-

oritize, and assign bugs to developers who might be familiar with the concerns

related to the bugs. Developers commonly use their experience when adding a new

feature or fixing a bug. Testers usually prioritize the testing of features that are

known to be error prone based on field and bug reports. Software repositories, such

as bug repositories, contain a wealth of valuable information about software. Using

the information stored in these repositories, practitioners can depend less on their

intuition and experience, and depend more on historical data. In the literature, the

line of work on mining software repositories analyzes and cross-links the rich data

available in software repositories to help developers make decisions more efficiently

or even automatically based on historical data.

In this thesis, we focus on how mining software repositories could help devel-

opers automate three tasks in the management of bugs, i.e., bug prioritization, bug

assignment, and bug fixing patch identification. Based on the definition of the four-

stage bug management process introduced in Section 1.1, the first two tasks happen

in the “Bug Triaging” stage while the last task happens in the “Patch Verification &

Backporting” stage.

5

1.3 Outline and Overview

The remainder of this thesis is organized as follows. Chapters 2-5 present our ap-

proaches that mine software repositories for automating three tasks, i.e., bug prior-

itization, bug assignment, and bug fixing patch identification. Chapter 6 provides a

literature review of related studies. Chapter 7 summarizes the contributions of this

thesis and points to future directions.

1.4 Acknowledgment of Published Work

Most work presented in this thesis have been published in the following interna-

tional conference proceedings or journals, except for the work presented in Sec-

tion 5, which will be submitted to a future conference.

• DRONE: Predicting Priority of Reported Bugs by Multi-Factor Anal-

ysis. This work was published in the proceedings of the 29th IEEE Inter-

national Conference on Software Maintenance (ICSM 2013). An extended

version of this work Automated Prediction of Bug Report Priority Using

Multi-Factor Analysis was published in the Journal of Empirical Software

Engineering (EMSE 2014). The work is presented in Chapter 2.

• Learning to Rank for Bug Report Assignee Recommendation. This work

was published in the proceedings of the 24th IEEE International Conference

on Program Comprehension (ICPC 2016). The work is presented in Chap-

ter 3.

• Identifying Linux Bug Fixing Patches. This work was published in the

proceedings of the 34th ACM/IEEE International Conference on Software

Engineering (ICSE 2012). The work is presented in Chapter 4.

I have published other papers on conference/journal/book/workshop which are

not included in this thesis. These papers are either mining software repositories for

6

software maintenance tasks, or mining social media for software engineering. I list

them below.

1. An Exploratory Study of Functionality and Learning Resources of Web

APIs on ProgrammableWeb [92], 21th International Conference on Evalu-

ation and Assessment in Software Engineering (EASE 2017).

2. Harnessing Twitter to Support Serendipitous Learning of Develop-

ers [80], 24th IEEE International Conference on Software Analysis, Evolu-

tion, and Reengineering (SANER 2017).

3. On the Unreliability of Bug Severity Data [91], in the Journal of Empirical

Software Engineering (EMSE 2016)

4. What’s Hot in Software Engineering Twitter Space? [79], 31nd IEEE

International Conference on Software Maintenance and Evolution (ICSME

2015 ERA track).

5. What are the Characteristics of High-Rated Apps? A Case Study on

Free Android Applications [98], 31nd IEEE International Conference on

Software Maintenance and Evolution (ICSME 2015).

6. A Comparative Study on the Effectiveness of Part-of-Speech Tagging

Techniques on Bug Reports [94], 22nd IEEE International Conference on

Software Analysis, Evolution, and Reengineering (SNEAR 2015 ERA track).

7. NIRMAL: Automatic Identification of Software Relevant Tweets Lever-

aging Language Model [78], 22nd IEEE International Conference on Soft-

ware Analysis, Evolution, and Reengineering (SANER 2015)

8. Evaluating Defect Prediction Approaches Using A Massive Set of Met-

rics: An Empirical Study [110], 30th Annual ACM Symposium on Applied

Computing (SAC 2015).

7

9. Leveraging Web 2.0 for Software Evolution [93], book chapter on Evolving

Software Systems (ESS 2014).

10. Potential Biases in Bug Localization: Do They Matter? [37], 29th

IEEE/ACM International Conference on Automated Software Engineering

(ASE 2014).

11. SEWordSim: software-specific word similarity database [96], ACM/IEEE

International Conference on Software Engineering (ICSE 2014 Tool track).

12. BOAT: An Experimental Platform for Researchers to Comparatively and

Reproducibly Evaluate Bug Localization Techniques [104], ACM/IEEE

International Conference on Software Engineering (ICSE 2014 Tool track).

13. Automated Construction of a Software-Specific Word Similarity

Database [95], IEEE Software Evolution Week on Software Maintenance

Reengineering and Reverse Engineering (CSMR-WCRE 2014).

14. Predicting Project Outcome Leveraging Socio-Technical Network Pat-

terns [87], 17th European Conference on Software Maintenance and Reengi-

neering (CSMR 2013).

15. Automatic Classification of Software Related Microblogs [71], 28th IEEE

International Conference on Software Maintenance (ICSM 2012)

16. Information Retrieval Based Nearest Neighbor Classification for Fine-

Grained Bug Severity Prediction [97], 19th Working Conference on Re-

verse Engineering (WCRE 2012).

17. Observatory of Trends in Software Related Microblogs [3], 27th

IEEE/ACM International Conference on Automated Software Engineering

(ASE 2012 Tool track).

18. What Does Software Engineering Community Microblog About? [90],

9th Working Conference on Mining Software Repository (MSR 2012).

8

19. Improved Duplicate Bug Report Identification [99], 15th European Con-

ference on Software Maintenance and Reengineering (CSMR 2012 ERA

Track).

9

Chapter 2

Automated Bug Prioritization via

Multi-Factor Analysis

2.1 Introduction

Developers are often overwhelmed with the large number of bug reports. Prioritiz-

ing bug reports can help developers manage the bug triaging process better. Devel-

opers often leave bug reports unfixed for years due to various factors including time

constraints. Thus, it is important for developers to prioritize bug reports well so that

important reports are prioritized and fixed first. Bug report prioritization is espe-

cially important for large projects that are used by many clients since they typically

receive higher numbers of bug reports. Prioritizing bugs is a manual process and

is time consuming. Bug triagers need to read the information provided by users in

the new bug reports, compare them with existing reports, and decide the appropriate

priority levels.

To aid bug triagers in assigning priorities, in this chapter, we propose a new auto-

mated approach to recommend priority levels of bug reports. To do so, we leverage

information available in the bug reports. Bug reports contain various information

including short and long descriptions of the issues users encounter while using the

software system, the products that are affected by the bugs, the dates the bugs are

10

reported, the people that report the bugs, the estimated severity of the bugs, and

many more. We would like to leverage this information to predict the priority levels

of bug reports.

We test our solution on more than a hundred thousand bug reports of Eclipse that

span a period of several years. We compare our approach with a baseline solution

that adapts an algorithm by Menzies and Marcus [56] for bug priority prediction.

Our experiments demonstrate that we can achieve up to 209% improvement in the

average F-measure. The contributions of this approach are as follows:

1. We propose a new problem of predicting the priority of a bug given its re-

port. Past studies on bug report analysis have only considered the problem of

predicting the severity of bug reports, which is an orthogonal problem.

2. We predict priority by considering the different factors that potentially affect

the priority level of a bug report. In particular, we consider the following fac-

tors: temporal, textual, author, related-report, severity,

and product.

3. We introduce a new machine learning framework, named DRONE, that con-

siders these factors and predicts the priority of a bug given its report. We

also propose a new classification engine, named GRAY, which is a compo-

nent of DRONE, that enhances linear regression with thresholding to handle

imbalanced data.

4. We have tested our solution on more than a hundred thousand bug reports

from Eclipse and evaluated its ability to support developers in assigning pri-

ority levels to bug reports. The results show that DRONE can outperform

a baseline approach, built by adapting a bug report severity prediction algo-

rithm, in terms of average F-measure, with a relative improvement of up to

209%.

11

Table 2.1: Examples of Bug Reports from Eclipse. Comp.=Component.
Sev.=Severity. Prio.=Priority.

ID Summary Product Comp. Sev. Prio.

1
4629 Horizontal scroll bar

appears too soon in edi-
tor (1GC32LW)

Platform SWT normal P4

4664 StyledText does not
compute correct text
width (1GELJXD)

Platform SWT normal P2

2
4576 Thread suspend/resume

errors in classes with
the “same” name

JDT Debug normal P1

5083 Breakpoint not hit JDT Debug normal P1

3
4851 Print ignores print to

file option (1GKXC30)
Platform SWT normal P3

5126 StyledText printing
should implement
”print to file”

Platform SWT normal P3

2.2 Background

When a new bug report is submitted into a bug tracking system, a bug triager would

first investigate the fields of the bug report and potentially other reports. Based

on the investigation, he or she would check the validity of the bug report and may

change values of some fields of the bug report. Some bugs are also reported as

duplicate bug reports at this point. We show some example bug reports from Eclipse

in Table 2.1. Note that bug reports shown in the same box (e.g., 4629 and 4664) are

duplicates of one another. Eventually a bug triager would forward the bug to a

developer to fix it. The developer then works on the bug and eventually comes up

with a resolution. The developer may also change the values of some fields of the

bug report when working on it.

2.2.1 Text Pre-processing

In this work, we transform each textual document into a set of features by applying

the standard text preprocessing steps, including tokenization, stop-word removal,

12

and stemming [100]. Text preprocessing has two objectives, word normalization

and lexicon reduction in a text. We present the detail of each step in the following

paragraphs.

Tokenization. A textual document contains many words. Each word is referred

to as a token. These words are separated by delimiters which could be spaces,

punctuation marks, etc. Tokenization is the process of extracting these tokens from

a textual document by splitting the document into tokens at the delimiters.

Stop-Word Removal. Not all words are equally important. There are many words

that are frequently used in many documents but carry little meaning or useful in-

formation. These words are referred to as stop words. These stop words need to

be removed from the set of tokens extracted in the previous steps as they might af-

fect the effectiveness of machine learning or information retrieval solutions due to

their skewed distributions. There are many such words, including “am”, “are”, “is”,

“I”, “he”, etc. We use a collection of 30 stop words and also standard contractions

including, “I’m”, “that’s”, etc.

Stemming. Words can appear in various forms; in English, various grammatical

rules dictate whether a root word appear in its singular, plural, present tense, past

tense, future tense, or many other forms. Words originating from the same root word

but are not identical with one another are semantically related. For example, there

is not much difference in meaning between “write” and “writes”. In the text mining

and information retrieval community, stemming has been proposed to address this

issue. Stemming tries to reduce a word to its ground form. For example, “working”,

“worked”, and “work” would all be reduced to “work”. Various algorithms have

been proposed to perform stemming. In this work, we use the Porter’s stemming

algorithm [68] to process the text, as it has commonly been used by many prior

studies, e.g., [41, 42, 56, 105].

13

2.2.2 Measuring the Similarity of Bug Reports

Various techniques have been proposed to measure the similarity of bug reports.

A number of techniques model a bug report as a vector of weighted tokens. The

similarity of two bug reports can then be evaluated by computing the Cosine sim-

ilarity of their corresponding two vectors. These include the work by Jalbert and

Weimer [29], Runeson et al. [75], Wang et al. [105], etc.

Sun et al. propose an approach called REP, to measure the similarity of bug re-

ports [85]. Their approach extends BM25F [74], which is a state-of-the-art measure

for structured document retrieval. In their proposed approach, past bug reports that

have been labeled as duplicate are used as training data to measure the similarity of

two bug reports. Various fields of bug reports are used for comparison including the

textual and non-textual contents of bug reports. We use an adapted version of REP

to measure the similarity of bug reports. REP includes the comparison of the pri-

ority fields of two bug reports to measure their similarity. In our setting, we would

like to predict the values of the priority field. Thus, we remove the priority field

from REP’s analysis. We call the resulting algorithm REP−. REP− only compares

the textual (summary and description), product, and component fields of two bug

reports to measure their similarity.

2.3 Problem Definition & Approach

In this section, we first define our problem. Next, we describe our proposed frame-

work. First we present the overall structure of our framework. Next, we zoom into

two sub-components of the framework, namely feature extraction and classification

modules. In the feature extraction module, we extract various features that capture

various factors that potentially affect the priority level of a bug report. In the classi-

fication module, we propose a new classification engine leveraging linear regression

and thresholding to handle imbalanced data.

14

2.3.1 Problem Definition

“Given a new bug report and a bug tracking system, predict the priority label of

the new report as either P1, P2, P3, P4, or P5.”

2.3.2 Approach: Overall Framework

Our framework, named DRONE (PreDicting PRiority via Multi-Faceted FactOr

ANalysEs), is illustrated in Figure 2.1. It runs in two phases: training and pre-

diction. There are two main modules: the feature extraction module and the classi-

fication module.

In the training phase, our framework takes as input a set of bug reports with

known priority labels. The feature extraction module extracts various features that

capture temporal, textual, author, related-report, severity, and

product factors that potentially affect the priority level of a bug report. These

features are then fed to the classification module. The classification module then

produces a discriminative model that can classify a bug report with unknown prior-

ity level.

In the prediction phase, our framework takes a set of bug reports whose priority

levels are to be predicted. Features are first extracted from these bug reports. The

model learned in the training phase is then used to predict the priority levels of the

bug reports by analyzing these features.

Our framework has two placeholders: the feature extraction and classification

modules. Various techniques could be put into these placeholders. We describe our

proposed feature extraction and classification modules in the following two subsec-

tions.

2.3.3 Feature Extraction Module

The goal of the feature extraction module is to characterize a bug report in several

dimensions: temporal, textual, author, related-report, severity,

15

Legend

Input Data

Intermediate

Stored Data

Output

Process

Classifier Module

Training

Reports

Testing

Reports

Training Phase Prediction Phase

Predicted Priority

Feature Extraction Module

Model

Builder

Model

Application
Model

Temporal Severity Related Report

Author Textual Product

Figure 2.1: DRONE Framework

and product. For each dimension, a set of features is considered. For each bug

report BR our feature extraction module processes various fields of BR and a bug

database of reports created prior to the reporting of BR. It then produces a vector

of values for the features listed in Table 2.2 and Table 2.3.

Each dimension/factor is characterized by a set of features. For the temporal

factor, we propose several features that capture the number of bugs that are reported

in the last x days with priority level y. We vary the values of x and y to get a number

of features (TMP1-12). Intuitively, if there are many bugs reported in the last x days

with a higher severity level than BR, BR is likely not assigned a high priority level

since there are many higher severity bug reports in the bug tracking system that need

to be resolved too.

For the textual factor, we take the description of the input bug report BR

and perform the text pre-processing steps listed in Section 2.2. Each of the resulting

word tokens corresponds to a feature. For each feature, we take the number of times

it occurs in a description as its value. Collectively these features (TXT1-n) describe

what the bug is all about and this determines how important it is for a particular bug

16

Table 2.2: DRONE Features Extracted for a Bug Report BR

Temporal Factor
TMP1 Number of bugs reported within 7 days before the report-

ing of BR
TMP2 Number of bugs reported with the same severity within 7

days before the reporting of BR
TMP3 Number of bugs reported with the same or higher severity

within 7 days before the reporting of BR
TMP4-6 The same as TMP1-3 except the time duration is 30 days
TMP7-9 The same as TMP1-3 except the time duration is 1 day
TMP10-12 The same as TMP1-3 except the time duration is 3 days

Textual Factor
TXT1-n Stemmed words from the description field of BR exclud-

ing stop words (Specifically, n=395,996 in our experi-
ment).

Author Factor
AUT1 Mean priority of all bug reports made by the author of BR

prior to the reporting of BR
AUT2 Median priority of all bug reports made by the author of

BR prior to the reporting of BR
AUT3 The number of bug reports made by the author of BR

prior to the reporting of BR

to get fixed.

For the author factor, we capture the mean and median priority, and number

of all bug reports that are made by the author of BR prior to the reporting of BR

(AUT1-3). We extract author factor features based on the hypothesis that if an

author always reports high priority bugs, he or she might continue reporting high

priority bugs. Also, the more bugs an author reports, it is likely that the more reliable

his/her severity estimation of the bug would be.

For the related-report factor, we capture the mean and median priority

of the top-k reports as measured using REP−. REP− is a bug report similarity

measure adapted from the studies by Sun et al. [85] – described in Section 2.2. We

vary the value k to create a number of features (REP1-10). Considering that similar

bug reports might be assigned the same priority, we analyze the top-k most similar

reports to a bug report BR to help us decide the priority of BR. For the severity

factor, we use the severity field of BR as a feature.

17

Table 2.3: DRONE Features Extracted for a Bug Report BR (Continued)

Related-Report Factor
REP1 Mean priority of the top-20 most similar bug reports to

BR as measured using REP− prior to the reporting of
BR

REP2 Median priority of the top-20 most similar bug reports to
BR as measured using REP− prior to the reporting of
BR

REP3-4 The same as REP1-2 except only the top 10 bug reports
are considered

REP5-6 The same as REP1-2 except only the top 5 bug reports are
considered

REP7-8 The same as REP1-2 except only the top 3 bug reports are
considered

REP9-10 The same as REP1-2 except only the top 1 bug report is
considered

Severity Factor
SEV BR’s severity field.

Product Factor
PRO1 BR’s product field. This categorical feature is translated

into multiple binary features.
PRO2 Number of bug reports made for the same product as that

of BR prior to the reporting of BR
PRO3 Number of bug reports made for the same product of the

same severity as that of BR prior to the reporting of BR
PRO4 Number of bug reports made for the same product of the

same or higher severity as those of BR prior to the report-
ing of BR

PRO5 Proportion of bug reports made for the same product as
that of BR prior to the reporting of BR that are assigned
priority P1.

PRO6-9 The same as PRO5 except they are for priority P2-P5 re-
spectively.

PRO10 Mean priority of bug reports made for the same product
as that of BR prior to the reporting of BR

PRO11 Median priority of bug reports made for the same product
as that of BR prior to the reporting of BR

PRO12-22 The same as PRO1-11 except they are for the component
field of BR.

18

For the product factor, we capture features related to the product and compo-

nent fields of BR. The product field specifies a part of the software system that is af-

fected by the issue reported in BR. The component field specifies more specific sub-

parts of the software system that are affected by the issue reported in BR. For each

of the product and component fields, we extract 11 features. These product/com-

ponent features include features that capture the value of the field (PRO1,PRO12),

some statistics of bug reports made for that particular product/component prior to

the reporting of BR (PRO2-9,PRO13-20), and the mean and median priority lev-

els of bug reports made for that particular product/component prior to the reporting

of BR (PRO10-11,PRO21-22). Some products or components might play a more

major role in the software systems than other products or components – for these

products a triager might assign higher priority levels.

2.3.4 Classification Module

Feature vectors produced by the feature extraction module for the training and test-

ing data are then fed to the classification module. The classification module has two

parts corresponding to the training and prediction phases. In the training phase, the

goal is to build a discriminative model that can predict the priority of a new bug

report with unknown priority. This model is then used in the prediction phase to

assign priority levels to bug reports.

In this work, we propose a classification engine named GRAY (ThresholdinG

and Linear Regression to ClAssifY Imbalanced Data). We illustrate our classifica-

tion engine in Figure 2.2. It has two main parts: linear regression and thresholding.

Our approach utilizes linear regression to capture the relationship between the fea-

tures and the priority levels. As our data is imbalanced (i.e., most of the bug reports

are assigned priority level P3), we employ a thresholding approach to calibrate a set

of thresholds to decide the class labels (i.e., priority levels).

We follow a regression approach rather than a standard classification approach

19

Training

Features

Testing

Features

Model

Building

Data

Validation

Data

Linear

Regression

Model

Model

Application

Thesholding

Thresholds

Predicted Priority

Training Phase

Prediction Phase

Legend

Input Data

Process

Intermediate

Stored Data

Output

Figure 2.2: GRAY Classification Engine

for the following reason. The bug reports are of 5 priority levels (P1-P5). These

priority levels are not categorical values rather they are ordinal values. It means

there is an order among these priority levels. For instance, Level P1 is higher than

level P2, which is in turn higher than level P3, and so on. Regression makes it

possible to capture this ordering among levels. Standard classification approaches,

e.g., standard support vector machine, naive bayes, logistic regression, etc., consider

the class labels to be categorical. Also, many approaches and standard tools only

support two class labels: +ve and -ve.

Given the training data, a linear regression approach builds a model capturing

the relationship between a set of explanatory variables with a dependent variable.

If the set of explanatory variables has more than one member, it is referred to as

multiple regression, which is the case for our approach. In our problem setting,

the features form the set of explanatory variables while the priority level is the

dependent variable. A bug report in the prediction phase is converted to a vector

of feature values, which is then treated as a set of explanatory variables. The model

20

learned during linear regression could then be applied to produce the value for the

dependent variable which is a real number.

The next step is to convert the value of the dependent variable to one of the

five priority levels. One possibility is to simply truncate the value of the dependent

variable to the nearest integer and treat this as the priority level. However, this would

not work well for our data as it is imbalanced with most bug reports having priority

3 – thus many of the values of the dependent variable are likely to be close to 3. To

address this issue we employ a thresholding approach to pick four thresholds to be

the boundaries of the five priority levels.

Before performing the thresholding approach, we collect a set of validation data

to infer the four thresholds using our thresholding approach. The linear regression

model learned from training data is applied on the validation data which generates

a priority score for each report. These validation reports with other predicted scores

are the input of our thresholding process.

The pseudocode of the thresholding approach which employs greedy hill climb-

ing to tune the thresholds is shown in Algorithm 1. The resulting linear regression

model and thresholds are then used to classify bug reports in the testing data whose

priority level is to be predicted based on their feature vectors.

We first set the 4 thresholds based on the proportion of bug reports that are

assigned as P1, P2, P3, P4, and P5 in the validation data (Line 6). For example, if the

proportion of bug reports belonging to P1 in the validation data is only 10%, then we

sort the data points in the validation data based on their linear regression scores, and

set the first threshold as the regression output of the data point at the 10th percentile.

Next, we modify each threshold one by one to achieve a higher F-measure (Lines

8-15). For each threshold level, we try to increase it or decrease it by a small

amount, which is 1% of the distance between a threshold level and the previous

threshold level (Lines 9, 11-12). At each step, after we change the threshold level,

we evaluate whether the resulting threshold levels increase the average F-measure

for the validation data points. If it does, we keep the new threshold level, otherwise

21

Algorithm 1 Tune Thresholds Using Greedy Hill Climbing
1: Input:
2: VData: Validation Data
3: Output:
4: T : The four thresholds: T1, T2, T3, and T4

5: Method:
6: Initialize T based on the proportion of reports assigned as P1, P2, P3, P4, and P5 in

VData (see text).
7: Let T0 = minimum regression score of reports in VData .
8: for all Ti ∈ {T1, T2, T3, T4} do
9: Let D = Ti − Ti−1

10: repeat
11: Try to increase Ti by 1%×D, compute new F-measure on VData
12: Try to decrease Ti by 1%×D, compute new F-measure on VData
13: Update Ti if the increase or decrease improves F-measure and T0 < T1 < T2 <

T3 < T4

14: until Ti is not updated
15: end for
16: return Tuned thresholds T

we discard it (Line 13). We continue the process until we can no longer improve the

average F-measure by moving a threshold level, with a constraint that a threshold

cannot be moved beyond the next threshold level or under the previous threshold

level, i.e., the second threshold cannot be set higher than the third threshold (Line

14).

2.4 Evaluation

2.4.1 Definition of Scenarios

In this section, we first describe the four scenarios in which we apply and evaluate

DRONE. We then describe the datasets that we use to investigate the effectiveness

of DRONE. Next, we present our experimental setting and evaluation measures.

Finally, we present our research questions followed by our findings.

The values of the various fields in a bug report can be changed while the bug

report is processed by triagers and developers. Fields can be changed for various

reasons. One reason is that the initial values of the fields are incorrect. Based on

this observation, we consider four different scenarios:

22

Last In this scenario, we predict the last value of the pri-

ority field given the last values of other fields in the

bug report. We evaluate the effectiveness of our ap-

proach when the values of all other fields have been

finalized.

Assigned In this scenario, we predict the value of the priority

field, given the values of other fields, at the time a

bug report status is changed to “Assigned”. When a

bug report is received, its status is typically “Uncon-

firmed” or “New”. After some checks, if it is valid,

following standard procedure, its status is eventually

changed to “Assigned” indicating that the bug report

has been assigned to a developer and the assigned

developer is working on the report. At this point, the

values of the bug report fields are likely to be more

reliable.

First In this scenario, we predict the first value of the prior-

ity field given the first values of other fields in a bug

report. This scenario is meant to evaluate how accu-

rate our approach is considering the noisy values of

initial bug report fields (i.e., they might get changed

later).

23

No-P3 This scenario is similar to scenario “Last”. The

only difference is that we remove all bug reports

whose priority levels are “P3” (i.e., the default pri-

ority level). Since P3 is the default value of the pri-

ority field, it might be the case that for P3 bug re-

ports, developers do not put much thought when set-

ting the priority level. However, most bug reports are

assigned P3. Thus, deleting these bug reports would

mean omitting the majority of bug reports. Due to

the pros and cons of excluding (or including) P3 bug

reports, we investigate both the “Last” and “No-P3”

scenarios.

2.4.2 Dataset Collection

We investigate the bug repository of Eclipse. Eclipse is an integrated development

platform to support various aspects of software development. It is a large open

source project that is supported and used by many developers around the world. In

the following paragraphs, we describe how we collect an Eclipse dataset for each of

the four scenarios described above.

Scenario “Last”

We consider the bug reports submitted from October 2001 to December 2007 and

download them from Bugzilla.1 We collect only defect reports and ignore those that

correspond to feature requests. Since these bug reports were submitted many years

back (6-12 years back), the values of various fields in the reports are unlikely to be

changed further. These reports contain the last values of the fields after modifica-

tions (if any).

1https://bugs.eclipse.org/bugs/

24

Table 2.4: Eclipse Dataset Details. Train.=Training Reports. Test.=Testing Reports.

Period REP− Train. DRONE Train. Test.
From To #Duplicate #All #All #All

2001-10-10 2007-12-14 200 3,312 87,649 87,648

We sort the bug reports in chronological order. We divide the dataset into three:

REP− training data, DRONE training data, and the test data. The REP− training

data is the first N reports containing 200 duplicate bug reports (c.f. [85]). This data

is used to train the parameters of REP− such that it is better able to distinguish

similar bug reports. We split the remaining data into DRONE training and testing

data. We use the first half of the bug reports (sorted in chronological order) for

training and keep the other half for testing. We separate training data and testing

data based on chronological order to simulate the real setting where our approach

would be used. This evaluation method is also used in many other research studies

that also analyze bug reports [24, 61, 75]. We show the distribution of bug reports

used for training and testing in Table 2.4.

Scenario “Assigned” and “First”

The datasets used for scenario “Assigned” and “First” are similar to the dataset

used for scenario “Last”. However, rather than using the last values of the various

fields in the bug reports, we need to reverse engineer the values of the fields when

the bug report status was changed to assigned (for Scenario “Assigned”) and the

values of the fields when the bug report was submitted (for Scenario “First”). In

order to obtain the values of the priority and other fields of bug reports for scenario

“First” and “Assigned”, we investigate the modification histories of bug reports.

A modification history of a bug report specifies for each modification: the person

who made the modification, the time when the modification was performed, the

fields whose values get modified, the values that get deleted, and the values that get

added.

An example of a modification history of a bug report is shown in Table 2.5.

25

Table 2.5: Modification History for Bug Report with Id 5110

Who When What Removed Added
James Moody 2001-

10-26
11:28:58
EDT

Assignee Kevin McGuire James Moody

James Moody 2001-
10-26
14:21:46
EDT

CC Kevin McGuire

James Moody 2001-
11-01
12:07:54
EST

Status NEW ASSIGNED

James Moody 2002-
01-03
16:42:56
EST

Priority P3 P5

Kevin McGuire 2002-
04-17
17:18:09
EDT

Status ASSIGNED RESOLVED

Resolution — FIXED
Kevin McGuire 2002-

05-23
21:20:40
EDT

Target
Mile-
stone

— 2.0 M6

The modification history specifies that five modifications have been performed. The

first modification was performed by James Moody at 11.28 am EDT on the 26th

of October 2001. James Moody changed the value of the assignee field to himself.

The third modification, on the 1st of November 2001, changed the status from new

to assigned indicating that he starts working on the bug report. Around two months

later, on the 3rd of January 2002, the priority is changed from P3 to P5. This

illustrates a bug report where the priority level considered by Scenario “Last” (i.e.,

P5) differs from the priority level considered by Scenario “Assigned” (i.e., P3).

Another example of a modification history of a bug report is shown in Table 2.6.

The modification history specifies that three modifications have been performed.

The first modification was performed by paules at 10.35 pm EDT on the 2nd of May

26

Table 2.6: Modification History for Bug Report with Id 185222

Who When What Removed Added
paules 2007-05-02

22:35:49
EDT

Status NEW ASSIGNED

Priority P3 P1
Target
Mile-
stone

— 4.4i3

paules 2007-05-03
08:08:19
EDT

Status ASSIGNED RESOLVED

Resolution — FIXED
jptoomey 2007-07-11

12:37:50
EDT

Status RESOLVED CLOSED

2007. The developer paules changed two fields: status, summary and target mile-

stone. The status was changed from new to assigned indicating that paules started

working on the problem. At the same time, paules changed the value of the priority

field from P3 to P1. Also, paules added a target milestone which is 4.4i3. This

illustrates a bug report where the priority level considered by Scenario “Last” and

“Assigned” (i.e., P1) differs from the priority level considered by Scenario “First”

(i.e., P3).

Scenario “No-P3”

The dataset used for scenario “No-P3” is similar to the dataset used for scenario

“Last”. However, we remove bug reports whose final priority levels are P3 from

original DRONE training and testing bug reports. The resulting dataset contains

23,830 bug reports, where 13,529 bug reports are used as training reports and 10,301

bug reports are used as testing reports.

27

2.4.3 Baseline Approaches

We compare our approach with an adapted version of Severis which was proposed

by Menzies and Marcus [56]. Severis predicts the severity of bug reports. In the

adapted Severis, we directly use it to predict the priority of bug reports. We use the

same feature sets and the same classification algorithm described in the Menzies

and Marcus’s paper. Following the experimental setting described in their paper,

we use the top 100 word token features (in terms of their information gain) as it has

been shown to perform best among the other options presented in their paper. We

refer to the updated Severis as SeverisPrio. We also add the severity label as an ad-

ditional feature to SeverisPrio and refer to the resulting solution as SeverisPrio+. We

compare SeverisPrio and SeverisPrio+ to our proposed framework DRONE. All ex-

periments are run on an Intel Xeon X5675 3.07GHz server, having 128.0GB RAM,

and running the Windows Server 2008 operating system.

2.4.4 Evaluation Measures

We use precision, recall, and F-measure, which are commonly used to measure the

accuracy of classification algorithms, to evaluate the effectiveness of DRONE and

our baseline approaches: SeverisPrio and SeverisPrio+. We evaluate the precision,

recall, and F-measure for each of the priority levels. This follows the experimental

setting of Menzies and Marcus to evaluate Severis [56]. The definitions of precision,

recall, and F-measure for a priority level P are given below:

prec(P) = Number of priority P reports correctly labeled
Number of reports labeled as of priority level P

recall(P) = Number of priority P reports correctly labeled
Number of priority P reports

F -measure(P) = 2× precision×recall
precision+recall

28

2.4.5 Research Questions

For the first scenario (Scenario “Last”), we consider four research questions:

RQ1 How accurate is our proposed approach as compared with

the baseline approaches SeverisPrio and SeverisPrio+?

RQ2 How efficient is our proposed approach as compared with the

baseline approaches SeverisPrio and SeverisPrio+?

RQ3 Which of the features are the most effective in discriminating

the priority levels?

RQ4 What are the effectivenesses of the various classification al-

gorithms in comparison with GRAY in predicting the priority

levels of bug reports?
For the other scenarios, since the answers to RQ2 to RQ4 are likely to be similar

to the answers for the first scenario, we only focus on answering RQ1.

2.5 Evaluation Results & Discussion

2.5.1 Results for Scenario “Last”

Here, we present the answers to the four research questions for scenario “Last”. The

first two compare DRONE with SeverisPrio and SeverisPrio+ on two dimensions:

accuracy and efficiency. The best approach must be accurate and yet be able to

complete training and prediction fast. Next, we zoom in to the various factors that

influence the effectiveness of DRONE. In particular, we inspect the features that

are most discriminative. We also replace the classification module of DRONE with

several other classifiers and investigate their effects on the accuracy of the resulting

approach.

RQ1: Accuracy of DRONE vs. Accuracy of Baselines

The results for DRONE are shown in Table 2.7. We note that we can predict the

P1, P2, P3, P4, and P5 priority levels with F-measures of 41.76%, 11.64%, 86.85%,

29

0.43%, and 8.01% respectively. The F-measures are better for the P1, P2, and P3

priority levels but are worse for the P4, and P5 priority levels.
Table 2.7: Precision, Recall, and F-Measure for DRONE (Scenario “Last”)

Priority Precision Recall F-Measure
P1 41.15% 42.39% 41.76%
P2 10.92% 12.46% 11.64%
P3 91.36% 82.77% 86.85%
P4 0.24% 1.77% 0.43%
P5 4.97% 20.72% 8.01%

Average 29.73% 32.02% 29.74%

Table 2.8: Precision, Recall, and F-Measure for SeverisPrio (Scenario “Last”)

Priority Precision Recall F-Measure
P1 0.00% 0.00% 0.00%
P2 0.00% 0.00% 0.00%
P3 88.25% 100.00% 93.76%
P4 0.00% 0.00% 0.00%
P5 0.00% 0.00% 0.00%

Average 17.65% 20.00% 18.75%

Table 2.9: Precision, Recall, and F-Measure for SeverisPrio+ (Scenario “Last”)

Priority Precision Recall F-Measure
P1 0.00% 0.00% 0.00%
P2 0.00% 0.00% 0.00%
P3 88.25% 100.00% 93.76%
P4 0.00% 0.00% 0.00%
P5 0.00% 0.00% 0.00%

Average 17.65% 20.00% 18.75%

The result for SeverisPrio is shown in Table 2.8. We note that SeverisPrio can

predict the P1, P2, P3, P4, and P5 priority levels by F-measures of 0.00%, 0.00%,

93.76%, 0.00%, and 0.00% respectively. The F-measures of SeverisPrio are zeros

for P1, P2, P4, and P5 as it does not assign any bug report correctly in any of these

priority levels. Comparing these with the result of DRONE (in Table 2.7), we note

that we can improve the average of the F-measures by a relative improvement of

58.61% (i.e., (29.74− 18.75)/18.75× 100%). Thus, clearly DRONE performs bet-

ter than SeverisPrio. We believe that in report prioritization higher accuracy for high

priority bugs (i.e., P1 and P2) is much more important than higher accuracy for low

30

priority bugs (i.e., P3, P4, and P5) because identifying them can help developers fix

the most important bug reports first. We also believe that higher accuracy for bug re-

ports with priority P4 and P5 is more important than higher accuracy for bug reports

with priority P3. This is the case since developers expected that they can safely set

bug reports with priority P4 and P5 aside (they are unimportant) and fix them when

time permits, which can improve the overall efficiency. On the other hand, since

the majority of bug reports are P3 reports, developers can neither prioritize them or

safely set them aside.

The results for SeverisPrio+ are shown in Table 2.9. We note that the results of

SeverisPrio+ are the same as the results of SeverisPrio. Thus, our proposed approach

DRONE also outperforms SeverisPrio+.

RQ2: Efficiency of DRONE vs. Efficiency of Baselines

We compare the runtime of DRONE with those of SeverisPrio and SeverisPrio+.

The results are shown in Table 2.10. The four columns refer to the average feature

extraction time (for training data), the model building time, the average feature ex-

traction time (for testing data), and the average model application time. We note

that the time for feature extraction is slower for DRONE than for the two variants

of Severis. Instead, DRONE utilizes more features than the two variants of Severis.

SeverisPrio only utilizes the textual features of bug reports. SeverisPrio+ only uti-

lizes the textual and severity features of bug reports. The time for model building,

however, is faster for DRONE than for the two variants of Severis. We compare the

efficiency of the approaches since the required running time determines the usability

of the system for triagers.

RQ3: Most Discriminative Features

Next, we would like to find the most discriminative features among the 20,000+

features that we have (including the word tokens). Information gain [54] and Fisher

score [19] are often used as discriminativeness measures. Since many of the features

are non-binary features, we use Fisher score as it captures the differences in the

31

Table 2.10: Efficiency of SeverisPrio, SeverisPrio+, and DRONE (Scenario “Last”).
FE = Average Feature Extraction Time. MB = Model Building Time. MA = Average
Model Application Time.

Approach Time (in seconds)
FE (Train) MB FE (Test) MA

SeverisPrio <0.01 812.18 <0.01 <0.01
SeverisPrio+ <0.01 773.62 <0.01 <0.01
DRONE 0.01 69.25 0.02 <0.01

Table 2.11: Top-10 Features in Terms of Fisher Score (Scenario “Last”)

Rank Feature Name Fisher Score
1 PRO5 0.142
2 PRO16 0.132
3 REP1 0.109
4 REP3 0.101
5 PRO18 0.092
6 PRO10 0.091
7 PRO21 0.088
8 PRO7 0.088
9 REP5 0.087
10 “1663” 0.079

distribution of the feature values across the classes (i.e., the priority levels).

At times, features that are only exhibited in a few data instances receive a high

Fisher score. This is true for the word tokens. However, these are not good features

as they appear too sparsely in the data. Thus we focus on features that appear in

at least 0.5% of the data. For these features, Table 2.11 shows the top-10 features

sorted according to their Fisher score (the higher the better). We notice that six of

them are features related to the product factor and three of them are features re-

lated to the related-report factor. These observations suggest that the product

a bug report is about and existing related reports influence the priority label assigned

to the report.

We notice that the 10th most discriminative feature is a word token “1663”. This

token comes from a line in various stack traces included in many bug reports which

is:

org.eclipse.ui.internal.Workbench.run(Workbench.java:1663)

It is discriminative as it appears in 15% of the bug reports assigned priority level

32

P5, while it only appears in 0.77%, 1.29%, 0.99%, and 0.00% of the bug reports

assigned priority level P1, P2, P3, and P4 respectively. It seems the inclusion of

stack traces that include the above line enables developers to identify P5 bugs better.

RQ4: Effectiveness of Various Classification Algorithms

The classification engine of our DRONE framework could be replaced with

other classification algorithms than GRAY. We experiment with several classifica-

tion algorithms (SVM-MultiClass [15], RIPPER [11], and Naive Bayes Multino-

mial [54]) and compare their F-measures across the five priority levels of those with

GRAY. We use the implementation of SVM-MultiClass available from [88]. We use

the implementations of RIPPER and Naive Bayes Multinomial in WEKA [106]. We

show the result in Table 2.12. We notice that in terms of average F-Measures GRAY

outperforms SVM-MultiClass by a relative improvement of 58.61%. Naive Bayes

Multinomial is unable to complete due to an out-of-memory exception although we

have allocated more than 9GB of RAM to the JVM in our server. RIPPER could

not complete after running for more than 8 hours.

Table 2.12: Comparisons of Average F-Measures of GRAY versus Other Classi-
fiers (Scenario “Last”). Class. = Classifiers. SM = SVM-MultiClass. NBM = Naive
Bayes Multinomial. OOM = Out-Of-Memory (more than 9GB). CC = Cannot Com-
plete In Time (more than 8 hours).

Class. F-Measures
P1 P2 P3 P4 P5 Ave.

GRAY 41.76% 11.64% 86.85% 0.43% 8.01% 29.74%
SM 0% 0% 93.76% 0% 0% 18.75%
RIPPER CC CC CC CC CC CC
NBM OOM OOM OOM OOM OOM OOM

2.5.2 Results for Scenario “Assigned”

Here, we present the answer to the first research question for the scenario “As-

signed”. The result of DRONE is shown in Table 2.13. We note that we can predict

the P1, P2, P3, P4, and P5 priority levels with F-measures of 34.34%, 17.13%,

86.20%, 6.19%, and 4.61% respectively. The F-measures are better for the P1, P2,

33

Table 2.13: Precision, Recall, and F-Measure for DRONE (Scenario “Assigned”)

Priority Precision Recall F-Measure
P1 36.24% 32.64% 34.34%
P2 13.58% 23.19% 17.13%
P3 90.55% 82.25% 86.20%
P4 3.72% 18.52% 6.19%
P5 3.21% 8.18% 4.61%

Average 29.46% 32.96% 29.69%

Table 2.14: Precision, Recall, and F-Measure for SeverisPrio (Scenario “Assigned”)

Priority Precision Recall F-Measure
P1 0% 0% 0%
P2 0% 0% 0%
P3 86.27% 99.86% 92.57%
P4 0% 0% 0%
P5 0% 0% 0%

Average 17.25% 19.97% 18.51%

Table 2.15: Precision, Recall, and F-Measure for SeverisPrio+ (Scenario “As-
signed”)

Priority Precision Recall F-Measure
P1 17.07% 0.63% 1.22%
P2 23.33 0.56% 1.09%
P3 86.31% 99.68% 92.51%
P4 0% 0% 0%
P5 0% 0% 0%

Average 25.34% 20.17% 18.96%

and P3 priority levels but are worse for the P4 and P5 priority levels.

The results for SeverisPrio are shown in Table 2.14. We note that SeverisPrio can

predict the P1, P2, P3, P4, and P5 priority levels by F-measures of 0%, 0%, 92.57%,

0%, and 0% respectively. Note that the F-measures of SeverisPrio are zeros for P1,

P2, P4, and P5 as SeverisPrio predicts most of these bug reports as P3 priority level.

Comparing these with the result of DRONE (in Table 2.13), we note that we can

improve the average of the F-measures by a relative improvement of 60.4%. Thus,

DRONE performs better than SeverisPrio.

The result for SeverisPrio+ is shown in Table 2.15. We note that the result of

SeverisPrio+ is a little better than SeverisPrio. But the performance of SeverisPrio+

is still worse than out proposed approach DRONE. DRONE can improve the average

34

F-measure by a relative improvement of 56.59%.

2.5.3 Results for Scenario “First”

Here, we present the answer to the first research question for the scenario “First”.

The results of DRONE are shown in Table 2.16. We note that we can predict the

P1, P2, P3, P4, and P5 priority levels by F-measures of 0%, 0%, 99.92%, 0%, and

0% respectively. The F-measures of DRONE for P1, P2, P4 and P5 are all zeros

because it predicts almost every bug report as being at the P3 priority level.

Table 2.16: Precision, Recall, and F-Measure for DRONE (Scenario “First”)

Priority Precision Recall F-Measure
P1 0% 0% 0%
P2 0% 0% 0%
P3 99.99% 99.85% 99.92%
P4 0% 0% 0%
P5 0% 0% 0%

Average 20.00% 19.97% 19.98%

Table 2.17: Precision, Recall, and F-Measure for SeverisPrio (Scenario “First”)

Priority Precision Recall F-Measure
P1 0% 0% 0%
P2 0% 0% 0%
P3 100% 100% 100%
P4 0% 0% 0%
P5 0% 0% 0%

Average 20% 20% 20%

Table 2.18: Precision, Recall, and F-Measure for SeverisPrio+ (Scenario “First”)

Priority Precision Recall F-Measure
P1 0% 0% 0%
P2 0% 0% 0%
P3 100% 100% 100%
P4 0% 0% 0%
P5 0% 0% 0%

Average 20% 20% 20%

The results for SeverisPrio and SeverisPrio+ are shown in Table 2.17 and Ta-

ble 2.18. We note that these two approaches have similar results as DRONE. They

35

can predict the P1, P2, P3, P4, and P5 priority levels by F-measures of 0%, 0%,

100%, 0%, and 0% respectively. One reason why the performance of all approaches

are worse for scenario “First” is that almost all of the bug reports are initialized with

priority P3, which is the default value.

2.5.4 Results for Scenario “No-P3”

Here, we present the answer to the first research questions for scenario “No-P3”.

The results of DRONE are shown in Table 2.19. We note that we can predict the

P1, P2, P4, and P5 priority levels with F-measures of 67.03%, 62.27%, 8.92%, and

54.96% respectively. The F-measures are better for P1, P2 than for P4 and P5.

Table 2.19: Precision, Recall, and F-Measure for DRONE (Scenario “No-P3”)

Priority Precision Recall F-Measure
P1 69.78% 64.49% 67.03%
P2 61.04% 63.56% 62.27%
P4 10.88% 7.56% 8.92%
P5 46.98% 66.21% 54.96%

Average 47.17% 50.46% 48.30%

Table 2.20: Precision, Recall, and F-Measure for SeverisPrio (Scenario “No-P3”)

Priority Precision Recall F-Measure
P1 54.17% 0.60% 1.18%
P2 43.93% 99.42% 60.94%
P4 12.50% 0.16% 0.32%
P5 0% 0% 0%

Average 27.65% 25.04% 15.61%

Table 2.21: Precision, Recall, and F-Measure for SeverisPrio+ (Scenario “No-P3”)

Priority Precision Recall F-Measure
P1 74.33% 26.20% 38.75%
P2 48.76% 90.39% 63.35%
P4 51.87% 31.19% 38.96%
P5 77.78% 0.86% 1.7%

Average 63.18% 37.16% 35.69%

The results for SeverisPrio are shown in Table 2.20. We note that SeverisPrio can

predict the P1, P2, P4, and P5 priority levels with F-measures of 1.18%, 60.94%,

36

0.32%, and 0% respectively. Comparing these with the results of DRONE (in Ta-

ble 2.19), we note that DRONE improves the average F-measure by a relative im-

provement of 209%. Thus, clearly DRONE performs better than SeverisPrio.

The result for SeverisPrio+ is shown in Table 2.21. We note that the result of

SeverisPrio+ is much better than that of SeverisPrio. SeverisPrio+ can predict the

P1, P2, P4 and P5 priority levels by F-measures of 38.75%, 63.35%, 38.96%, and

1.7% respectively. We note that our approach DRONE still performs better than

SeverisPrio+, with a relative improvement of 35%.

2.5.5 Threats to Validity

Threats to construct validity relate to the suitability of our evaluation measures. We

use precision, recall, and F-measure, which are standard metrics used for evaluating

classification algorithms. Also, these measures are used by Menzies and Marcus to

evaluate Severis [56].

Threats to internal validity relate to experimental errors. We have checked our

implementation and results. Still, there could be some errors that we did not notice.

Threats to external validity refer to the generalizability of our findings. We con-

sider the repository of Eclipse, which contains more than a hundred thousand bugs

that are reported in a period of more than 6 years. Still, we have only analyzed bug

reports from one software system. We have excluded some other Bugzilla datasets

from two other software systems that we have, as most of the reports there do not

contain information in the priority field. In the future, we plan to extend our study

by considering more programs and bug reports. In addition, the learned model may

not be able to prioritize bug reports from other projects, i.e., the proposed approach

does not deal with the cold-start situation where there is little training data for a new

project. We will consider using a transfer learning technique in the future work for

cross project bug prioritization.

37

2.6 Chapter Conclusion

In this chapter, we have proposed a framework named DRONE to predict the pri-

ority levels of bug reports in Bugzilla. We consider multiple factors including:

temporal, textual, author, related-report, severity and product. These features are

then fed to a classification engine named GRAY built by combining linear regres-

sion with a thresholding approach to address the issue with imbalanced data and to

assign priority labels to bug reports. We have compared our approach with several

baselines based on the state-of-the art study on bug severity prediction by Menzies

and Marcus (2008). The result on a dataset consisting of more than 100,000 bug

reports from Eclipse shows that our approach outperforms the baselines in terms of

average F-measure by a relative improvement of up to 209% (Scenario “No-P3”).

38

Chapter 3

Learning-to-Rank for Automatic Bug

Assignment

3.1 Introduction

To improve bug triage efficiency and effectiveness, researchers have proposed nu-

merous approaches to automatically assign bug reports to developers, through un-

derstanding and extracting useful information from historical bug reports and source

code [4, 26, 50, 60, 82, 89]. Shokripour et al. categorized this prior work into

two groups, based on their underlying mechanism: activity-based approaches, and

location-based approaches [82]. Activity-based approaches [4, 60, 89] identify po-

tentially appropriate developers based on their activities (e.g., previously fixed bugs)

within the project, across various project artifacts. By contrast, location-based ap-

proaches [26, 50, 82] recommend a bug report assignment by localizing the bug to a

set of potential source code locations and then identifying which developers touched

the implicated code. Each approach has its pros and cons. For instance, location-

based approaches are highly reliant on the performance of bug localization, which

might not be high (c.f. [44, 58, 102, 107]); activity-based approaches might be inap-

propriately biased by the previous activities of a given developer. We discuss these

limitations in more detail in Section 3.2. Importantly, none of the previous work has

39

combined the two types of information, which motivates our study.

In this chapter, we propose a unified model based on the learning to rank ma-

chine learning technique that combines information from both developers’ previous

activities and suspicious program locations associated with a bug report in the form

of similarity features. Learning to rank is a machine learning technique widely ap-

plied in applications like document retrieval. We choose learning to rank because

we can map the assignee recommendation task to a document retrieval task by treat-

ing the bug report as the query, and developers’ profiles (previously fixed bugs and

committed source code) as documents to be returned. To incorporate location in-

formation, the query can be enriched with the potential locations where the bug

may reside. This reduces the task to ranking documents (developers) based on the

similarity between a query (bug report) and each document (developer profile).

To capture the similarity between a bug report and developer profile, we pro-

pose 16 features, considering both the potential location of the bug (location-based

features) and previously fixed bugs by each developer (activity-based features). To

evaluate our approach, we collect more than 11,000 bug reports together with com-

mitted source code from three open source projects: Eclipse JDT, Eclipse SWT and

ArgoUML. Our experiments show that combining these two types of features im-

proves the performance of learning to rank model as compared to one that uses only

one type of feature. The experiments also show that our unified model achieves

better results as compared to a location-based baseline by Anvik et al. [4] and an

activity-based baseline by Shokripour et al. [82]. Our key contributions are thus:

1. A novel unified model based on learning to rank machine learning algorithm.

This unified model can leverage information from both developers’ activities

and the result of bug report localization task. This integrates activity-based

and location-based bug assignee recommendation approaches.

2. 16 features to capture the degree to which a developer matches a bug report.

3. Experimental results on more than 11,000 bugs from three open source

40

projects. The results show that combining location-based features and

activity-based features through the learning to rank technique can improve

the performance as compared to using only one type of feature.

3.2 Background

In this section, we first introduce basic background on the bug assignee recommen-

dation task. Next, we summarize the two types of automatic bug assignee recom-

mendation approaches that have been considered in prior work. To illustrate this

discussion, consider the sample bug report taken from the Bugzilla report database

for Eclipse (ID 424772), shown in Figure 3.1. Bugzilla provides several fields to

help describe and manage a bug. In Figure 3.1, we list six fields of particular inter-

est to the bug assignee recommendation task: bug Status, the Product in which the

bug appears, the time at which the bug was Reported, the developer to whom the

bug was assigned (Assigned To), and both a short Summary and a long Descrip-

tion to provide details and describe steps for reproduction. This report in particular

describes a typing related bug under text component of JDT. We also know that this

bug was fixed by a developer named Noopur Gupta through a commit, ID of which

starts with “8d013d”.

When a bug report like this arrives in the system, it usually does not have an

assigned developer (like Noopur Gupta). It is the task of the triager or project main-

tainers to analyze such a report, establish its validity and uniqueness, and then iden-

tify the appropriate person or team to address it. This process is manual and time-

consuming, given the hundreds of reports a large project receives daily. Our goal

in this work is to automate the process of identifying the appropriate developer to

whom such a new, valid report should be assigned. The approaches in previous work

extract information from such a report and associated project activity recorded in a

bug tracking or source control system to construct predictive models. They can be

categorized according to the type of information they use: activity-based approaches

41

Figure 3.1: Bug report #424772 from Eclipse JDT.

(see Section 3.2.1) rely on developer activities across various artifacts, linked pri-

marily to textual features in the bug report, while location-based approaches (see

Section 3.2.2) use the bug report to locate potentially defective source code files,

to identify the developers strongly associated with that code (e.g., developers who

created the file, developers who modified the file, developers who modified similar

files, etc.).

3.2.1 Activity-based Bug Assignee Recommendation

Activity-based approaches recommend a developer for a particular bug report based

on how well the developer’s expertise is predicted to match with the given bug re-

port. Developer expertise is inferred from developer activities during previous bug

triage processes [4, 89] and then linked to the words that appear in a new bug report.

Consider the bug report shown in Figure 3.1. The text in the summary and descrip-

tion fields indicates that the problem lies in the JDT Text component, using words

like “Indentation”, “typing”, “braces”, “position”. Searching the bug database for

the JDT project for the keyword “Indentation” reveals several previously fixed bugs

related to this concept, and find that many of them were fixed by/assigned to Noopur,

42

the developer that addressed this new bug. For example, Noopur was also assigned

to Bug #404821,1 which reported that the “Code Indentation” feature of the JDT

did not work. This illustrates that a report’s description and summary can provide

useful textual information to suggest developers with expertise in a given problem

or concept, based on previously fixed bugs.

Previous researchers leveraged this insight in several ways. For instance, Anvik

et al. [4] treat the developer as a class label, and the bug assignee recommendation

task as a multi-class classification problem. They extract features from a set of bug

reports, i.e., words that appear in the description and summary field of bug report,

and represent each bug report as a feature vector. The value of a feature is the num-

ber of times a particular word appears in the report. These feature vectors, together

with a set of known assignees drawn from previously-addressed bugs, are used as in-

put to learn a predictive model using a classification algorithm (e.g., Support Vector

Machine, Naive Bayes Classifiers, Decision Tree). When a new bug report arrives,

a similar feature extraction process is applied, and the trained predictive model can

be applied on the new feature vector to predict who should fix it.

Although activity-based bug assignee recommendation approaches have been

shown to achieve acceptable results, they ignore a valuable source of information,

namely the link between bug reports and source code files. This information is

leveraged by location based bug assignee recommendation.

3.2.2 Location-based Bug Assignee Recommendation

The underlying idea behind location-based bug assignee recommendation approach

is to identify potential developer expertise on the bug report through the source code

itself [26, 50, 82]. The basic assumption is that developers who have recently fixed

a bug in a given source code file are more likely to have the required expertise to

fix a new bug in the same location than other developers. Under this assumption, a

1https://bugs.eclipse.org/bugs/show_bug.cgi?id=404821

43

https://bugs.eclipse.org/bugs/show_bug.cgi?id=404821

developer, even one who has been less active in previous bug fixing activities, has

substantial expertise in recently-touched or modified code in the repository.

Generally, these approaches consistent of two phases: (1) bug report localiza-

tion, followed by (2) bug assignee recommendation. For each of the phases, re-

searchers have proposed various approaches. Hossen et al. apply an information

retrieval technique, i.e, latent semantic indexing (LSI) [17] to compute the similar-

ity between a given source file and a bug report [26]. They consider words appearing

in identifiers and comments extracted from a source code file as an input document

and words appearing in the summary and description field of a bug report as a query.

Different from Hossen et al., Shokripour et al. compute a relevance score between

a bug report and a source code file by summing the weights of each noun that is

common between the bug report and file [82]. The weight of a noun is determined

based on the number of times the noun appears in a bug report, a commit mes-

sage, a source code comment and an identifier. For instance, to fix the sample bug

shown in Figure 3.1, Noopur committed several source files including one named

“/eclipse/jdt/internal/ui/text/JavaIndenter.java”. When Shokripour et al. compute

the similarity between the sample bug and file “JavaIndenter.java”, the word “in-

dentation” has a weight of 3, because it appeared in three information sources, the

commit message, the identifiers in the file, and the bug report.

Although location-based approaches consider similarities between bug reports

and source code files, which activity based approaches ignore, they have drawbacks:

• High dependence on an underlying bug localization technique. Finding

the relevant source code files given a bug report is the initial and one of the

most important steps for location-based bug assignee recommendation ap-

proaches. Therefore, the performance of the bug localization approach used

highly impact the performance of a location-based bug assignee recommen-

dation approach. However, bug localization based on a human written report

is a hard problem in and of itself, with common accuracy around 30% for

44

predicting the most suspicious source file, e.g., [111].

• Ignore rich information contained in historical bug reports. Many loca-

tion based approaches do not consider the textual information inside previ-

ously fixed bug report, which often contain useful information to determine

the expertise of a developer.

To summarize, both activity-based and location-based bug assignee recommen-

dation approaches have advantages and disadvantages. In this work, we combine

the two to build a unified bug assignee recommendation model that improves on the

performance of the previous approaches.

3.3 Approach

In this section, we detail our proposed bug assignee recommendation approach. We

first introduce the overall framework of our approach (Section 3.3.1). We then intro-

duce the features that we use to capture the degree of match between a developer and

a bug report, which include those derived from activity information (Section 3.3.3)

and location-based information (Section 3.3.4). We also describe the process of

extracting these features.

3.3.1 Overall Framework

We apply learning to rank to train a ranking model that uses both activity infor-

mation and location information as features to identify appropriate developers to

address a particular bug report. Learning to rank is a popular machine learning

technique for training a model to solve a ranking problem. It has been widely used

in various applications, such as document retrieval [51, 72]. Document retrieval is

a task that takes as input a query, and retrieves and ranks documents based on their

degrees of match with the query. This problem is similar to our assignee recom-

mendation problem, where a new bug report is the query, and the profiles built from

45

developers’ activity information form the documents. To incorporate location infor-

mation, the query would be enriched with the potential locations where the bug may

reside. In this way, we can naturally apply learning to rank to build ranking models

for the bug assignee recommendation problem.

Figure 3.2 shows the general process of our approach. The recommendation sys-

tem maintains profiles for all available developers, which we refer to asD1, . . . , DN .

The main task of this recommendation system is to train a ranking model f(Bri, Dj)

that accurately captures the degree to which a given bug report Bri matches a given

developer j’s profile (Dj). To train f(Bri, Dj), this system requires a set of pre-

viously fixed bug reports for which we know the developers to whom they were

ultimately assigned. Thus, for a set of M training bug reports Br1 . . . BrM and

associated developers D1, . . . , DN the system collects a set of features to represent

the degree of match (or similarity) between each bug report and developer. For in-

stance, d1,1 represents the similarity between Br1 and D1. This information is then

used to train the ranking model f(Bri, Dj) using an off-the-shelf implementation

of a learning to rank algorithm. Then, when a new bug report arrives, the trained

model calculates the similarity between it and all the potential developers, produc-

ing dM+1,1, dM+1,2, . . . , dM+1,N . The output of the whole system for this bug report

is a ranked list of developers, where developers at the top of the list have higher sim-

ilarity scores with the given bug report and are thus more likely to be good choices

for addressing the defect.

The ranking model f(BrM , DN) is represented as a weighted sum of k features,

where each feature φi(BrM , DN) captures an element of the similarity between the

bug report M and developer N :

f(BrM , DN) =
k∑

i=1

wi ∗ φi(BrM , DN)

The model parameters wi are learned from the training set by the learning-to-

rank algorithm. The learning-to-rank algorithm employs an optimization procedure

46

Figure 3.2: Overall Ranking Process

that seeks a set of parameters that results in a function that correctly ranks the de-

veloper profiles that are known to be assigned to the bug reports in the training set,

at the top of the lists for those bug reports.

In the following sub-sections, we introduce the 16 features, i.e.,

φ1(BrM , DN) . . . φ16(BrM , DN) that we use to measure the degree of match

(or similarity) between a bug report and a developers’ profile. These features are

derived from developers’ bug-fixing activities (see Section 3.3.3) and estimated

bug locations in the source code (see Section 3.3.4). Table 3.1 summarizes these 16

features.

3.3.2 Dataset Collection and Text Pre-processing

In this work, we consider two kinds of resources to build a developer profile that

captures expertise: (1) bug reports that have been fixed by the developer, and (2) the

corresponding committed source code files. Here, corresponding files refer to the

files containing code that has been added, modified, or deleted over the course of

fixing corresponding bugs. To complete this task, we first collect a set of fixed bug

reports and their links to source files committed to a source control system. In this

work, we consider three datasets from the projects Eclipse JDT, Eclipse SWT, and

ArgoUML. For Eclipse JDT and SWT, we use the same benchmark dataset provided

47

Table 3.1: Sixteen Activity-Based and Location-Based Features Characterizing a
Bug Report-Developer Pair.

Category ID Dimension Description

Activity-
Based

φ1−5 Bug Report-Code Simi-
larity

Similarity between source
files related to the developer
and bug report.

φ6−10 Bug Report-Bug Re-
port Similarity

Similarity between previous
bug reports related to the de-
veloper and bug report.

φ11 Developer Bug Fixing
Frequency

How frequently the developer
fixes bugs.

φ12 Developer Bug Fixing
Recency

How recently the developer
fixes bugs.

Location-
Based

φ13−14 Potential Buggy Code-
Related Code Similar-
ity

Similarity between potential
buggy files corresponding to
the bug report and source files
related to the developer.

φ15 Touched Potential
Buggy Files

Whether the potential buggy
files have been touched by the
developer.

φ16 Touched Mentioned
Files

Whether classes mentioned
explicitly in bug reports have
been touched by the devel-
oper.

by Ye et al. [111], where bug reports are already linked with their corresponding bug

fixing commits. For ArgoUML, we apply the heuristic approach proposed by Bach-

mann and Bernstein [5] to link bug reports with commits. Following this approach,

we first scan commit logs to find patterns, such as “issue 180”, that could identify

bug fixing commits. We then check if the bug reports corresponding to the iden-

tifiers exist in the bug tracking system with their status marked as fixed. We also

check whether the time the source code files were committed is later than the time

the bug report was reported.

After collecting the bug reports and source code files, we extract words appear-

ing in the comments and identifiers of each source code file, and words appearing

in the summary and description fields of each bug report. Next, we process the

extracted textual information following general textual pre-precessing steps, i.e.,

48

tokenization, stop-word removal, and stemming. A token is a string of characters,

and includes no delimiters such as spaces, punctuation marks, and so forth. Tok-

enization is the process of parsing a character stream into a sequence of tokens by

splitting the stream at delimiters. Stop words are non-descriptive words carrying

little useful information for retrieval tasks. These include verbs such as “is”, “am”

and “are”, pronouns such as “I”, “he” and “it”, etc. Our stop word list contains

30 stop words, and also common contractions such as “I’m”, “that’s”, “we’ll”, etc.

Stemming is a technique to normalize words to their ground forms. For example,

a stemmer can reduce both “working” and “worked” to “work”. We use the Porter

stemming algorithm [31] to perform this step.

3.3.3 Extraction of Activity-Based Features

This subsection describes the features mined from developers’ bug fixing activities.

Bug Report-Code Similarity This dimension (φ1−5) captures the textual similar-

ity between a bug report Br and previous files containing source code committed

by a developer D to fix prior bugs. We combine the summary and description fields

in a bug report into one document per report. We consider a source file that a devel-

oper has touched (i.e., added, deleted, or modified) as a document. We also create a

merged document that contains all files a developer has touched. We consider two

metrics to measure document similarity: cosine and BM25 similarity scores.

To compute the cosine similarity (i.e., φ1(Br,D)) between a bug reportBr and a

developer D, we first define a function Cosine(r, s) that calculates the cosine simi-

larity between two documents (in our case, a document could be a bug report, a code

file or a merged code file) r and s. Function Cosine first transforms pre-processed

words in document r and s into two vectors of weights. Each word is mapped to

an element of the vector. The weight of a word term in a vector corresponding to a

document doc is computed as:

49

wterm,doc = TFterm,doc × IDFterm

In the above equation, TFterm,doc is the number of times word term appears in

doc. IDFterm = log N
DFterm

, where DFterm is the number of documents that contain

word term, given a document corpus. TF-IDF (term frequency - inverse document

frequency) is a popular way to assign weights in information retrieval [54]. The vec-

tor representations of two documents are then compared by computing their cosine

similarity as follows:

Cosine(r, s) =
−→r · −→s
‖−→r ‖‖−→s ‖

(3.1)

In the above equation, −→r and −→s are the vector representations of the bug report

and the set of patches, · is the dot production of the two vectors, and ‖−→v ‖ is the size

of vector −→v .

BM25 is another way to compute similarity between documents [74]. Given a

query q (e.g., a bug report) and a document s (e.g., a document that contains all

source code files touched by developer D to fix prior bugs), BM25(q, s) computes a

similarity score as follows:

BM25(q, s) =
n∑

i=1

Idfqi ·
f(qi, s) · (k1 + 1)

f(qi, s) + k1 · ((1− b+ b · |s|
avgdl

))
(3.2)

In the above equation, qi is the ith word in the query q, f(qi, s) is number of

times qi appears in document s, |s| is the length of the document (i.e., number

of words in the document), and avgdl is the average document length in the text

collection from which documents are drawn (i.e., average number of words in the

documents containing touched source code files of different developers). k1 and b

are free parameters. In our experiment, we set k1 and b as 1.2 and 0.75, as suggested

by Manning et al. [54].

Based on these two types of similarity metrics, we define the following five

50

features:

φ1(Br,D) = max(Cosine(Br,m)|m ∈ DCodeCorpus)

φ2(Br,D) = avg(Cosine(Br,m)|m ∈ DCodeCorpus)

φ3(Br,D) = sum(Cosine(Br,m)|m ∈ DCodeCorpus)

φ4(Br,D) = Cosine(Br,DMergedCode)

φ5(Br,D) = BM25(Br,DMergedCode)

In the above equations, Br is the target bug report. DCodeCorpus is the set of

source files touched by developer D to fix previous bugs. For φ1−3, we consider

each source file (m), as a document, and compute their similarity with the bug

report. We then use the maximum value, mean, and sum of these similarity scores

as the values of the features. For φ4−5, we merge all source files to create a larger

document DMergedCode for developer D, and compute its similarity with bug report

Br using cosine similarity and BM25.

Bug Report-Bug Report Similarity This dimension (φ6−10) captures the textual

similarity between a bug report Br and all previous bug reports fixed by a devel-

oper D. The underlying idea is that words appearing in the bug reports that have

been fixed by a developer might capture the expertise of this developer along dif-

ferent aspects. Similar to φ1−5, we consider five kinds of similarity metrics in this

dimension, given a bug report Br and a developer D:

φ6(Br,D) = max(Cosine(Br,m)|m ∈ DBugCorpus)

φ7(Br,D) = avg(Cosine(Br,m)|m ∈ DBugCorpus)

φ8(Br,D) = sum(Cosine(Br,m)|m ∈ DBugCorpus)

51

φ9(Br,D) = Cosine(Br,DMergedBugs)

φ10(Br,D) = BM25(Br,DMergedBugs)

In the above equations, function Cosine and BM25 are the same as defined in

Equations 3.1 and 3.2 respectively. For the feature φ6−8, DBugCorpus is the set of

bug reports to which developer D was assigned before Br was reported. For the

latter two features, we merge all documents in DBugCorpus as one document, i.e.,

DMergedBugs, and then compute the similarities between two documents.

Developer Bug Fixing Frequency A developer who has fixed a lot of bugs for a

project generally has more expertise on the project compared with other developers.

Based on this assumption, we consider the number of bugs that have been fixed

by a developer over a period of time (one year, in our experiments) as one of the

activity-based features. It is defined as:

φ11(Br,D) = |brOneyear(Br,D)|

In the equation above, brOneyear(Br,D) is the set of bugs that developer D has

fixed within one year prior to the reporting of Br.

Developer Bug Fixing Recency Similar to the intuition captured by φ11, we spec-

ulate that a developer who has recently fixed bugs might more likely to fix a new bug

than another developer who has not fixed any bugs in a long time. Let br(Br,D)

be the set of bug reports for which developer D has fixed before bug report Br was

reported. Let last(Br,D) be the most recently fixed bug in br(Br,D). Also, for

any bug report Br, let Br.date denote the date when the bug report was created.

We then define the bug-fixing recency feature φ12 to be the inverse of the distance

(in months) between Br and last(Br,D):

φ12(Br,D) = (diffMTH(Br.date, last(Br,D).date) + 1)
−1

52

In the equation above, diffMTH(Br.date, last(Br,D).date) denotes the differ-

ence between the dates Br and last(Br,D) were rounded to the nearest number of

months.

3.3.4 Extraction of Location-Based Features

Potential Buggy Code-Related Code Similarity To compute these features, we

perform two steps: (1) given a bug report, generate a list of source code files that

are most likely to be relevant to the bug report using the bug report localization

technique proposed by Ye et al. [111], (2) generate features φ13−15, to capture the

degree of relevance between a developer and a bug report by analyzing the potential

location of the bug. We consider the approach proposed by Ye et al. because it is

reported to be the state-of-the-art bug report localization technique so far.

φ13 and φ14 correspond to the cosine and BM25 similarity scores between the

top-k most likely source code files to contain the bug and a document containing

all source code files that are touched by a developer to fix prior bugs. They are

mathematically defined below:

φ13(Br,D) =MAXCi∈TopK(Cosine(Ci, DMergedCode))

φ14(Br,D) = AV GCi∈TopK(BM25(Ci, DMergedCode))

In the equation above, TopK refers to a list of top-k files that are most likely to

contained the bug described in Br as outputted by Ye et al.’s technique [111]. In the

experiment, we set K to 10. DMergedCode is a document that contains all code files

touched by D to fix prior bugs.

Touched Potential Buggy Files φ15 measures whether the developer has touched

a file that is potentially buggy when fixing prior bugs. We identify a list of top-K

potentially buggy files in a similar way as when we compute φ13 and φ14. In the

experiment, we set K to 10 by default.

53

φ15(Br,D) =

1, if developer D has touched Ci ∈ TopK

0, otherwise
(3.3)

Touched Mentioned Files For some of the reported bugs, developers mention the

names of some classes (i.e., source code files) in the description of a bug report [37].

These files are likely to be the buggy ones. Thus, we define another feature as

follows:

φ16(Br,D) = |Br.files
⋂

DCodeCorpus|

In the equation above,Br.files corresponds to the set of source code files whose

names appear in Br and DCodeCorpus corresponds to a set of source code files that

are touched by D to fix prior bugs.

3.4 Evaluation

In this section, we first present the research questions that we consider in this Chap-

ter. Next, we describe the datasets that we use in this study, followed by our ex-

perimental settings. We then present the measures used to evaluate the approaches,

followed by our results. Finally, we also mention some threats to validity.

3.4.1 Research Questions

Our core hypothesis is that activity-based and location-based information provide

complementary information that can be used to more accurately assign bug reports

to developers in a software project. We therefore investigate the following three

research questions:

RQ1: Does a bug assignee prediction model that combines activity-based

features and location-based features achieve better performance than a model

that uses only one type of feature?

54

RQ2: Does our unified approach outperform existing activity-based or

location-based approaches?

RQ3: Which features are the most important to the accuracy of our model?

For RQ1, we compare three results: the results of our unified model using only

activity-based features (i.e., φ1−12), using only location-based features (i.e., φ13−16),

and using all features. We use the learning to rank tool named rankSVM 2 provided

by Lee and Kuo to train our unified model.

For RQ2, we consider two baselines:

1. Activity-baseline: We use the activity-based approach proposed by Anvik

et al. that takes words from the summary and description of bug reports as

features and applies the Support Vector Machine (SVM) classifier [4]. Note

that this method only returns one label (that is, a single developer) for each

bug report.

2. Location-baseline: We use the location-based approach proposed by

Shokripour et al. [82]. This baseline first uses the weighted sum of common

words appearing in bug report and source code file to locate potential files

that are related to a bug report. It then recommends a ranked list of assignees

based on their recent activity on the potential buggy files.

For the activity-baseline, we use the SVM package in Weka [106] to train SVM

classifiers from training data and test it on testing data. For the location-baseline,

we write Java code to implement their approach.

For RQ3, we estimate the importance of each features (i.e., φ1−16) by consider-

ing its corresponding weightwi (defined in Section 3.3.1), averaged over all training

folds.
2https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/#large_scale_

ranksvm

55

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#large_scale_ranksvm
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#large_scale_ranksvm

3.4.2 Dataset

We use bug reports from several open source projects: Eclipse JDT,3 Eclipse SWT,4

and ArgoUML.5. For the first two datasets, we consider the same set of bug reports

as Ye et al. in their paper [111]. These bug reports have been linked to commits

that fix them. For ArgoUML, we manually download the bug reports and link them

to their corresponding bug fixing commits following the heuristics described by

Bachmann and Bernstein [5]. Note that we only consider bug reports with status

“fixed” for training and testing. Overall, we consider a total of 11,887 bug reports.

Table 3.2 describes the details of the three datasets.

Table 3.2: Datasets: Eclipse JDT, Eclipse SWT, ArgoUML

Project Time Range # Bug Reports
JDT 2001-10-10 - 2014-01-14 6,274
SWT 2002-02-19 - 2014-01-17 4,151

ArgoUML 2000-02-01 - 2012-12-13 1,462

3.4.3 Experiment Setup and Evaluation Metrics

As described in Section 3.3, our ranking model f(BrM , DN) is based on a weighted

combination of features that capture domain dependent relationships between a bug

report BrM and a developer DN . We train the model parameters wi using the

learning-to-rank approach implemented in the rankSVM package [47].

To mitigate the risk of overfitting, we create disjoint training and test data by

sorting the bug reports from each benchmark dataset chronologically by reporting

timestamp, because temporal order matters in this data. For instance, we need to

make sure that features are extracted from source code and bug reports generated

before recommending developers. For all projects, the sorted bug reports are then

split into 10 equally sized folds {fold1, fold2, . . . , fold10}, where fold1 contains the

3http://www.eclipse.org/jdt
4http://www.eclipse.org/swt
5http://argouml.tigris.org/

56

http://www.eclipse.org/jdt
http://www.eclipse.org/swt
http://argouml.tigris.org/

oldest bug reports while fold10 consists of the most recently reported bugs. The

ranking model is trained on foldk − fold(k+5) and tested on fold(k+6), for all 1 ≤

k ≤ 5. In this way, we collect 5 results for each dataset. Since the folds are

arranged chronologically, this means that we always train on the previous existing

bug reports. For each bug report in a test fold, testing the model means computing

the weighted scoring function f(r, s) for each source code file using the learned

weights, and ranking all the files in descending order of their scores. We then check

if the correct developer (that is, the developer who actually ultimately repaired the

bug in question) appears highly ranked in the output list of developers.

Similar to previous work [82, 89], we use Accuracy@K as an evaluation metric.

This metric corresponds to the proportion of top-K recommendations that contain

the ground truth developer who assigned to the bug report (as recorded in the bug

tracking system). We consider K = 1,2,3,4,5, and 10. For instance, if an assignee

recommendation system could successfully identify 30 actual assignees for 100 bug

reports at top-1 recommendation, then the value of Accuracy@1 would be 0.3.

3.5 Evaluation Results & Discussion

In this section, we present the results of our experiments in form of answers to

research questions 1, 2 and 3. We then discuss threats to validity.

3.5.1 Activity-Based Features vs. Location-Based Features vs.

All Features.

In the first research question, we evaluate the efficacy of our unified model for the

bug report assignee problem and compare it to models built with each of two types

of features alone. The results of our three unified models trained with different sets

of features are shown in Table 3.3 and 3.4. From the tables, we note that we can

achieve an Accuracy@1 of up to 42%, 45%, and 30% on the JDT, SWT, and Ar-

57

goUML datasets, respectively. The unified model (with all features) outperforms the

other split models in all cases, supporting our claim that there is value in combining

activity-based and location-based features in this domain. For Accuracy@1, using

all features improves on the results of using activity-based features alone by 12.5%-

31.2%, and the results of using location-based features alone by 15.4%-25.0%.

Table 3.3: Results of Our Unified Model Trained with Various Features on Eclipse
JDT, Eclipse SWT, and ArgoUML Data

Project Feature Acc@1 Acc@2 Acc@3
Activity Only 32% 58% 72%

JDT Location Only 35% 57% 69%
All 42% 65% 79%

Activity Only 40% 62% 77%
SWT Location Only 39% 60% 73%

All 45% 66% 80%
Activity Only 26% 29% 32%

ArgoUML Location Only 24% 27% 30%
All 30% 35% 41%

Table 3.4: Results of Our Unified Model Trained with Various Features on Eclipse
JDT, Eclipse SWT, and ArgoUML Data (Continue)

Project Feature Acc@4 Acc@5 Acc@10
Activity Only 85% 90% 96%

JDT Location Only 78% 83% 89%
All 89% 93% 97%

Activity Only 89% 92% 97%
SWT Location Only 81% 86% 92%

All 90% 94% 98%
Activity Only 38% 41% 52%

ArgoUML Location Only 36% 39% 44%
All 45% 50% 56%

3.5.2 Our Unified Model Vs Baselines

In the second research question, we compare our unified model to state-of-the-

art techniques that use activity- vs. location-based features alone. The results of

58

our model and two selected baselines on the three datasets are shown in Table 3.5

and 3.6. From the tables, we note that in most of the cases, our unified model with all

features achieves the best results. The activity baseline consistently performs worst

in all cases. The location baseline performs better than our model in two cases, i.e.,

Accuracy@3 on JDT and SWT dataset, and Accuracy@4 on ArgoUML dataset. For

Accuracy@1, our unified model can outperform the activity-based baseline by An-

vik and Murphy by 50.0%-100.0%, and the location-based baseline by Shokripour

et al. by 11.1%-27.0%.

Table 3.5: Results of Our Approach and Baselines on Eclipse JDT, Eclipse SWT,
ArgoUML

Project Feature Acc@1 Acc@2 Acc@3
Activity Baseline 28%

JDT Location Baseline 33% 57% 82%
All 42% 65% 79%

Activity Baseline 25%
SWT Location Baseline 36% 60% 81%

All 45% 66% 80%
Activity Baseline 15%

ArgoUML Location Baseline 27% 30% 39%
All 30% 35% 41%

Table 3.6: Results of Our Approach and Baselines on Eclipse JDT, Eclipse SWT,
ArgoUML (Continue)

Project Feature Acc@4 Acc@5 Acc@10
Activity Baseline

JDT Location Baseline 88% 89% 92%
All 89% 93% 97%

Activity Baseline
SWT Location Baseline 88% 91% 93%

All 90% 94% 98%
Activity Baseline

ArgoUML Location Baseline 47% 50% 52%
All 45% 50% 56%

59

3.5.3 Importance of Features

In our third research question, we analyze our model to identify which features are

most helpful to the assignee recommendation process. For each dataset, we consider

the average weight of each feature returned by rankSVM tool when building the

prediction model. We select the top-5 features for each dataset; they are shown in

Table 3.7.

The top-5 features consist of both location-based features and activity-based

features. Feature φ15 (whether a developer has touched a potential buggy file) con-

sistently ranks the first among all features on the three data sets. On the contrary,

φ16, which refers to how many times a developer has touched a source file directly

mentioned in the bug report, does not appear in any top-5 list. Other features, such

as φ3 (i.e., sum of bug report-code cosine similarities) and φ12 (i.e., developer bug

fixing recency) also rank highly when considering the three datasets. Comparing

bug report-bug report similarity features (φ6−10) and bug report-source code simi-

larity features (φ1−5), the latter are slightly more important with slightly more fea-

tures appearing in the top-5 lists. Overall, we note that the models built for all three

datasets include features from both types of data included in the approach.

Table 3.7: Top-5 Most Important Features

JDT SWT ArgoUML
Top-1 φ15 φ15 φ15

Top-2 φ12 φ3 φ3

Top-3 φ3 φ12 φ7

Top-4 φ7 φ11 φ12

Top-5 φ14 φ7 φ1

3.5.4 Threats to Validity

Threats to construct validity relate to the suitability of our evaluation metrics. Like

previous work [82, 60, 4, 89, 50, 26], we consider the developer who has fixed

60

the bug report as the correct assignee for each testing bug report. We consider

Accuracy@K as the metric, which is commonly used in previous work in this

space [82, 89] and attempts to capture the degree to which our model achieves their

stated goals (accurate prediction of which developer should tackle a given report).

Threats to internal validity relate to potential errors in our experiments. We have

checked our code, but there might still be errors that we did not notice. Threats to

external validity refer to the generalizability of our findings. In our experiments,

we consider more than 11,000 bug reports from Eclipse JDT, Eclipse SWT, and Ar-

goUML. Experiments on these datasets show that our unified model performs better

when it combines both activity-based and location-based information. It also out-

performs two exiting baselines. To further mitigate these threats to external validity,

we plan to experiment with more bug reports from more projects in the future.

3.6 Chapter Conclusion

In this chapter, we propose a unified model based on the learning to rank technique

to automatically recommend developers to address particular bug reports. The uni-

fied model naturally combines location-based information and activity-based infor-

mation extracted from historical bug reports and source code for more accurate rec-

ommendation. We propose 16 similarity features to capture the similarity between

a bug report and a developer profile. We evaluate our unified model on a set of more

than 11,000 bug reports from several open source projects: Eclipse JDT, Eclipse

SWT and ArgoUML. Our experiments show that combining the two types of fea-

tures (activity-based and location-based) improves the performance of our unified

model as compared to when only one type of features is used. The experiments

also show that our unified model performs the best when compared to a location-

based baseline by Anvik et al. [4] and an activity-based baseline by Shokripour et

al. [82]. Among the 16 features we proposed, we find that feature φ15 (whether a

developer has touched a potential buggy file) is the most important feature in our

61

unified model on all of the three data sets. Feature φ3 (i.e., sum of bug report-code

cosine similarities) and φ12 (i.e., developer bug fixing recency) are the second and

third most important features.

62

Chapter 4

Identifying Linux Bug Fixing Patches

4.1 Introduction

For an operating system, reliability and continuous evolution to support new fea-

tures are two key criteria governing its success. However, achieving one is likely

to adversely affect the other, as supporting new features entails adding new code,

which can introduce bugs. In the context of Linux development, these issues are re-

solved by regularly releasing versions that include new features, while periodically

fixing some versions for longterm support. The primary development is carried out

on the most recent version, and relevant bug fixes are backported to the longterm

code.

A critical element of the maintenance of the longterm versions is thus the iden-

tification of bug fixing patches. In the Linux development process, contributors

submit patches to subsystem maintainers, who approve the submissions and initiate

the process of integrating the patch into the coming release. Such a maintainer may

also forward the patch to the maintainers of the longterm versions, if the patch sat-

isfies various guidelines, such as fixing a real bug, and making only a small number

of changes to the code. This process, however, puts an extra burden on the subsys-

tem maintainers and thus necessary bug fixing patches could be missed. Thus, a

technique that could automatically label a commit as a bug fixing patch would be

63

valuable.

In the literature, there are furthermore many studies that require the identifica-

tion of links between commits and bugs. These include work on empirical study of

software changes [57, 83], bug prediction [35, 62], bug localization [16, 52, 55, 73],

and many more. All of these studies employ a keyword-based approach to infer

commits that correspond to bug fixes, typically relying on the occurrence of key-

words such as “bug” or “fix” in the commit log. Some studies also try to link

software repositories with a Bugzilla by the detection of a Bugzilla number in the

commit log. Unfortunately these approaches are not sufficient for our setting be-

cause:

1. Not all bug fixing commit messages include the words “bug” or “fix”; indeed,

commit messages are written by the initial contributor of a patch, and there

are few guidelines as to their contents.

2. Linux development is mostly oriented around mailing lists, and thus many

bugs are found and resolved without passing through Bugzilla.

Some of these limitations have also been observed by Bird et al. [6] who per-

formed an empirical study that show bias could be introduced due to missing link-

ages between commits and bugs. In view of the above limitations, there is a need

for a more refined approach to automatically identify bug fixing patches.

In this chapter, we perform a dedicated study on bug fixing patch identification

in the context of the Linux kernel. The results of our study can also potentially ben-

efit studies that require the identification of bug fixes from commits. We propose a

combination of text analysis of the commit log and code analysis of the code change

to identify bug fixing patches. We use an analysis plus classification framework that

consists of: 1) the extraction of basic “facts” from the text and code that are then

composed into features; 2) The learning of an appropriate model using machine

learning and its application to the detection of bug fixing commits.

64

A challenge for our approach is to obtain appropriately labeled training data. For

positive data, i.e., bug fixing patches, we can use the patches that have been applied

to previous Linux longterm versions, as well as patches that have been developed

based on the results of bug-finding tools. There is, however, no corresponding set

of independently labeled negative data, i.e., non bug fixing patches. To address

this problem, we propose a new approach that integrates two learning algorithms

via ranking and classification. We have tested our approach on commits from the

Linux kernel code repository, and compare our results with those of the keyword-

based approach employed in the literature. We can achieve similar precision with

improved recall; our approach’s precision and recall are 0.601 and 0.875 while those

of the key-word based approach are 0.613 and 0.603. Our contributions are as

follows:

1. We identify the new problem of finding bug fixing patches to be integrated

into a Linux “longterm” release.

2. We propose a new approach to identifying bug fixing patches by leveraging

both textual and code features. We also develop a suitable machine learning

approach that performs ranking and classification to address the problem of

unavailability of a clean negative dataset (i.e., non bug fixing patches).

3. We have evaluated our approach on commits in Linux and show that our ap-

proach can improve on the keyword-based approach by up to 45.11% recall

while maintaining similar precision.

4.2 Background

Linux is an open-source operating system that is widely used across the computing

spectrum, from embedded systems, to desktop machines, to servers. From its first

release in 1994 until the release of Linux 2.6.0 in 2003, two versions of the Linux

kernel were essentially maintained in parallel: stable versions for users, receiving

65

only bug-fixing patches over a number of years, and development versions, for de-

velopers only, receiving both bug fixes and new features. Since the release of Linux

2.6.0, there has been only a single version, which we refer to as the mainline kernel,

targeting both users and developers, which includes both bug fixes and new features

as they become available. Since 2005, the rate of these releases has been roughly

one every three months.

The current frequent release model is an advantage for both Linux developers

and Linux users because new features become quickly available and can be tested

by the community. Nevertheless, some kinds of users value stability over support

for new functionalities. Nontechnical users may prefer to avoid frequent changes

in their working environment, while companies may have a substantial investment

in software that is tuned for the properties of a specific kernel, and may require the

degree of security and reliability that a well-tested kernel provides. Accordingly,

Linux distributions often do not include the latest kernel version. For end users,

the current stable Debian distribution (squeeze) and the current Ubuntu Long Term

Support distribution (lucid) rely on the Linux 2.6.32 kernel, released in December

2009. For industrial users, the same kernel is at the basis of the current versions of

Suse Enterprise Linux, Red Hat Enterprise Linux and Oracle Unbreakable Linux.

In recognition of the need for a stable kernel, the Linux development community

maintains a “stable” kernel in parallel with the development of the next version, and

a number of “longterm” kernels that are maintained over a number of years. For

simplicity, in the rest of this Chapter, we refer to both of these as stable kernels.

Stable kernels only integrate patches that represent bug fixes or new device identi-

fiers, but no large changes or additions of new functionalities.1 Such a strategy is

possible because each patch is required to perform only one kind of change.2 De-

velopers and maintainers may identify patches that should be included in the stable

kernels by forwarding the patches to a dedicated email address. These patches are

1linux-2.6.39/Documentation/stable kernel rules.txt
2linux-2.6.39/Documentation/SubmittingPatches.txt

66

Figure 4.1: Various kinds of patches applied to the stable kernels 2.6.20 and 2.6.27
and to the mainline kernel in the same time period.

then reviewed by the maintainers of the stable kernels before being integrated into

the code base.

A comparison, shown in Figure 5.5 of the patches accepted into the mainline

kernel with those accepted into the stable kernels Linux 2.6.20, maintained between

February 2007 and August 2007, and Linux 2.6.27, maintained between October

2008 and December 2010, shows a gap between the set of bug fixing patches ac-

cepted into the mainline as compared to the stable kernels. Specifically, we con-

sider the mainline patches that mention Bugzilla, or that mention a bug finding tool

(Coccinelle [63], Smatch 3 or Coverity 4). We also include the number of patches

mentioning Bugzilla that are included in the stable kernel. These amount to at best

around half of the Bugzilla patches. Fewer than 5 patches for each of the considered

bug finding tools were included in the stable kernel in each of the considered time

periods. While it is ultimately the stable kernel maintainers who decide whether it

is worth including a bug-fixing patch in a stable kernel, the very low rate of propa-

gation of the considered types of bug-fixing patches from the mainline kernel to the

stable kernels suggests that automatic identification of bug fixing patches could be

useful.
3http://smatch.sourceforge.net/
4http://coverity.com/

67

4.3 Approach

Our approach is composed of the following steps: data acquisition, feature extrac-

tion, model learning, and bug-fixing patch identification. These steps are shown in

Figure 4.2.

Figure 4.2: Overall Framework

The data acquisition step extracts commits from Linux code repository. Some of

these commits represent bug fixing patches while others do not. Not all bug fixing

patches are well marked in Linux code. Furthermore, many of these bug fixes are not

recorded in Bugzilla. Thus, they are hidden in the mass of many other commits that

do not perform bug fixing. There are a variety of non bug fixing commits including

those that perform: code cleaning, feature addition, performance enhancement, etc.

The feature extraction component then reduces the dataset into some potentially

important facets. Each commit contains a textual description along with code el-

ements that are changed by the commit. The textual description can provide hints

whether a particular commit is fixing a bugs or is it only trying to clean up some

bad coding style or poor programming practice. Code features also can help a lot.

Many bug fixes involve a single location change, boolean operators in if and loop

expressions, etc. Many non-bug fixing commits involve substantially many lines

of code, etc. To obtain a good collective discriminative features we would need to

leverage both text and code based features.

Next, the extracted features are provided to a model learning algorithm that ana-

lyzes the features corresponding to bug fixing patches and tries to build a model that

discriminates bug fixing patches from other patches. Various algorithms have been

68

proposed to learn a model given a sample of its behavior. We consider some pop-

ular classification algorithms (supervised and semi-supervised) and propose a new

framework that merges several algorithms together. The final step is the application

of our model on the unlabeled data to obtain a set of bug fixing patches.

A challenge in our work is to obtain adequate training data, consisting of known

bug fixing patches and known non bug fixing patches. As representatives of bug

fixing patches, we may use the patches that have already been applied to Linux

stable versions, as well as patches that are known to be bug fixing patches, such as

those that are derived from the use of bug finding tools or that refer to Bugzilla. But

there is no comparable source of labeled non bug fixing patches. Accordingly, we

propose a hybrid machine learning algorithm, that first uses a ranking algorithm to

identify a set of patches that appear to be quite distant from the set of bug fixing

patches. These patches can then be considered to be a set of known non bug fixing

patches. We then use a supervised classification algorithm to infer a model that can

discriminate bug fixing from non bug fixing patches in the unlabeled data.

We describe the details of our framework in the following two subsections.

4.3.1 Data Acquisition

Linux development is managed using the version control system git.5 Git makes

available the history of changes that have been made to the managed code in the

form of a series of patches. A patch is a description of a complete code change,

reflecting the modifications that a developer has made to the source code at the time

of a commit. An example is shown in Figure 4.3. A patch consists of two sections:

a log message, followed by a description of the code changes. Our data acquisition

tool collects information from both of these sections. The collected information is

represented using XML, to facilitate subsequent processing.

The log message of a patch, as illustrated by lines 1-16 of Figure 4.3, consists

5http://git-scm.com

69

Figure 4.3: A bug fixing patch, applied to stable kernel Linux 2.6.27

of a commit number (SHA-1 code), author and date information, a description of

the purpose of the patch, and a list of names and emails of people who have been

informed of or have approved of the patch. The data acquisition tool collects all of

this information.

The code change of a patch, as illustrated by lines 17-29 of Figure 4.3, appears in

the format generated by the command diff, using the “unified context” notation [53].

A change may affect multiple files, and multiple code fragments within each file.

For each modified file the diff output first indicates the file name (lines 17-20 of

Figure 4.3) and then contains a series of hunks describing the changes (lines 21-29

of Figure 4.3). A hunk begins with an indication of the affected line numbers, in the

old and new versions of the file, which is followed by a fragment of code. This code

fragment contains context lines, which appear in both the old and new versions,

removed lines, which are preceded by a - and appear only in the old version, and

added lines, which are preceded by a + and appear only in the new version. A

hunk typically begins with three lines of context code, which are followed by a

sequence of zero or more removed lines and then the added lines, if any, that replace

them. A hunk then ends with three more lines of context code. If changes occur

70

close together, multiple hunks may be combined into a single one. The example in

Figure 4.3 contains only a single hunk, with one line of removed code and one line

of added code.

Given the different information in a patch, our data acquisition tool records the

boundaries between the information for the different files and the different hunks.

Within each hunk, it distinguishes between context, removed, and added code. It

does not record file names or hunk line numbers.

A commit log message describes the purpose of the change, and thus can poten-

tially provide valuable information as to whether a commit represents a bug fix. To

mechanically extract information from the commit logs, we represent each commit

log as a bag of words. For each of these bags of words, we perform stop-word re-

moval and stemming [76]. Stop words, such as, is, are, am, would, etc, are used very

frequently in almost all documents thus they provide little power in discriminating

if a commit is a bug fixing patches or not. Stemming reduces a word to its root; for

example, eating, ate, and eaten, are all reduced to the root word eat. Stemming is

employed to group together words that have the same meaning but only differ due

to some grammatical variations. This process can potentially increase the discrimi-

native power of root words that are good at differentiating bug fixing patches from

other commits, as more commits with logs containing the root word and its variants

can potentially be identified and associated together after stemming is performed.

At the end of this analysis, we represent each commit as a bag of words, where

each word is a root word and not a stop word. We call this information the textual

facts that represent the commit.

To better understand the effect of a patch, we have incorporated a parser of

patches into our data acquisition tool [64]. Parsing patch code is challenging, be-

cause a patch often does not represent a complete, top-level program unit, and in-

deed portions of the affected statements and expressions may be missing, if they ex-

tend beyond the three lines of context information. Thus, the parsing is necessarily

approximate. The parser is independent of the line-based - and + annotations, only

71

focusing on the terms that have changed. In the common case of changes in func-

tion calls, it furthermore detects arguments that have not changed, counting these

separately and ignoring their subterms. For example, in the patch in Figure 4.3, the

change is detected to involve a function call, i.e. the call to kmalloc, which is re-

placed by a call to kzalloc. The initialization of extra is not included in the change,

and the arguments to kmalloc and kzalloc are detected to be identical.

Based on the results of the parser, we collect the numbers of various kinds of

constructs such as function headers, loops, conditionals, and function calls that in-

clude removed or added code. We call these the code facts that represent the com-

mit.

4.3.2 Feature Extraction

Based on the textual and code facts extracted as described above, we pick interest-

ing features that are compositions of several facts (e.g., the difference between the

number of lines changed in the minus and plus hunks, etc.).

Table 4.1 presents some features that we form based on the facts. Features F1 to

F52 are those extracted from code facts. The other features (i.e., features F53 to F55

and features W1 to Wn) are those extracted from textual facts.

For code features, we consider various program units changed during a commit

including, files, hunks, loops, ifs, contiguous code segments, lines, boolean opera-

tors, etc. For many of these program units, we consider the number of times they are

added or removed; and also, the sum and difference of these numbers. Often bug fix-

ing patches, and other commits (e.g., feature additions, performance enhancements,

etc) have different value distributions for these code features.

For text features, we consider stemmed non-stop words appearing in the logs

as features. For each feature corresponding to a word, we take its frequency or the

number of times it appears in a commit log as its corresponding feature value. We

also consider two composite families of words each conveying a similar meaning:

72

Table 4.1: Extracted Features

ID Feature
F1 Number of files changed in a commit
F2 Number of hunks in a commit
F3 #Loops Added
F4 #Loops Removed
F5 |F3 − F4|
F6 F3 + F4

F7 F13 > F14

F8 − F12 Similar to F3 to F7 for #Ifs
F13 − F17 Similar to F3 to F7 for #Contiguous code

segments
F18F22 Similar to F3 to F7 for #Lines
F23F27 Similar to F3 to F7 for #Character literals
F28F32 Similar to F3 to F7 for #Paranthesized ex-

pressions
F33F37 Similar to F3 to F7 for #Expressions
F38F42 Similar to F3 to F7 for #Boolean opera-

tors
F43F47 Similar to F3 to F7 for #Assignments
F48F52 Similar to F3 to F7 for #Function calls
F53 One of these words exists in the commit

log robust, unnecessary, improve, future,
anticipation, superfluous, remove unused

F54 One of these words exists in the commit
log must, needs to, has to, dont, fault,
need to, error, have to, remove

F55 The word “warning” exists in the commit
log

W1 −Wn Each feature represents a stemmed non-
stop word in the commit log. Each feature
has a value corresponding to the number
of times the word appears in the commit
(i.e., term frequency).

73

one contains words that are likely to relate to performance improvement, feature

addition, and clean up; another contains words that are likely to relate to a necessity

to fix an error. We also consider the word “warning” (not stemmed) as a separate

textual feature.

4.3.3 Model Learning

We propose a solution that integrates two classification algorithms: Learning

from Positive and Unlabeled Examples (LPU) [48]6 and Support Vector Machine

(SVM) [13].7 These learning algorithms take in two datasets: training and testing,

where each dataset consists of many data points. The algorithms each learn a model

from the training data and apply the model to the test data. We first describe the

differences between these two algorithms.

LPU performs semi-supervised classification. Given a positive dataset and an

unlabelled dataset, LPU builds a model that can discriminate positive from negative

data points. The learned model can then be used to label data with unknown labels.

For each data point, the model outputs a score indicating the likelihood that the

unlabeled data is positive. We can rank the unlabeled data points based on this

score.

SVM on the other hand performs supervised classification. Given a positive

dataset and a negative dataset, SVM builds a model that can discriminate between

them. While LPU only requires the availability of datasets with positive labels,

SVM requires the availability of datasets with both positive and negative labels.

LPU tends to learn a weaker discriminative model than SVM. This is because

LPU takes in only positive and unlabeled data, while SVM is able to compare and

contrast positive and negative data. To be able to classify well, we propose a combi-

nation of LPU and SVM. First, we use LPU to rank how far an unlabeled data point

6http:
www.cs.uic.edu/ liub/LPU/LPU-download.html

7http://svmlight.joachims.org

74

is from the positive training data (in descending order). For this, we sort the data

points based on their LPU scores, indicating the likelihood of a data point being

positive. The bottom k data points, where k is a user-defined parameter, are then

taken as a proxy for the negative data. These negative data along with the positive

data are then used as the input to SVM. The sequence of steps in our model learning

process is shown in Figure 4.4.

Figure 4.4: Model Learning

In the problem of identifying bug fixing patches, each data point is a commit. We

have a set of positive data points, i.e., bug fixing patches, and a set of unlabeled data

points, i.e., arbitrary commits. We first apply LPU to sort commits such that bug

fixing patches are listed first and other patches, which may correspond to innocuous

changes, performance improvements or feature additions, are listed later. According

to this ordering, the bottom k commits are likely to be non-bug fixing patches. We

then take the bottom k commits to be a proxy of a dataset containing non-bug fixing

patches. We use the original bug fixing patch dataset and this data to create a model

using SVM.

4.3.4 Bug Fix Identification

For bug fix identification, we apply the same feature extraction process to a test

dataset with unknown labels. We then represent this test dataset by a set of fea-

75

ture values. These feature values are then fed to the learned model as described in

Section 4.3.3. Based on these features, the model then assigns either one of the fol-

lowing two labels to a particular commit: bug-fixing patch or non bug-fixing patch.

8

4.4 Evaluation

4.4.1 Dataset

Our algorithm requires as input “black” data that is known to represent bug-fixing

patches and “grey” data that may or may not represent bug-fixing patches. The

“grey” data may contain both “black” data and “white” data (i.e., non bug-fixing

patches).

As there is no a priori definition of what is a bug-fixing patch in Linux, we have

created a selection of black data sets from varying sources. One source of black data

is the patches that have been applied to existing stable versions. We have considered

the patches applied to the stable versions Linux 2.6.20,9 released in February 2007

and maintained until August 2007, and Linux 2.6.27,10 released in October 2008

and maintained until December 2010. We have taken only those patches that refer

somewhere to C code, and where the code is not in the Documentation section of the

kernel source tree. Another source of black data is the patches that have been created

based on the use of bug finding tools. We consider uses of the commercial tool

Coverity,11 which was most actively used prior to 2009, and the open source tools

Coccinelle [63] and Smatch,12 which have been most actively used since 2008 and

2009, respectively [65]. The Coverity patches are collected by searching for patches

that mention Coverity in the log message. The Coccinelle and Smatch patches are

8We use the analogy of black, white and grey in the remaining parts of the paper
9http://www.kernel.org/pub/scm/linux/kernel/git/stable/linux-2.6.20.y

10http://www.kernel.org/pub/scm/linux/kernel/git/stable/linux-2.6.27.y
11http://www.coverity.com
12http://smatch.sourceforge.net

76

Table 4.2: Properties of the considered black datasets. LOC refers to the complete
patch size, including both the log and the changed code

Source Dates # Patches LOC
Stable 2.6.20 02.2007 - 08.2007 409 29K
Stable 2.6.27 10.2008 - 12.2010 1534 116K
Coverity 05.2005 - 06.2011 478 22K
Coccinelle 11.2007 - 08.2011 825 54K
Smatch 12.2006 - 08.2011 721 31K
Bugzilla 08.2005 - 08.2011 2568 275K

Table 4.3: Properties of the considered grey dataset, broken down by Linux version.
LOC refers to the complete patch size, including both the log and the changed code.

Source Dates # Patches
2.6.20-2.6.21 02.2007-04.2007 3415
2.6.21-2.6.22 04.2007-07.2007 3635
2.6.22-2.6.23 07.2007-10.2007 3338
2.6.23-2.6.24 10.2007-01.2008 4639
2.6.24-2.6.25 01.2008-04.2008 6110
2.6.25-2.6.26 04.2008-07.2008 5069

collected by searching for patches from the principal users of these tools, which are

the second author of this paper and Dan Carpenter, respectively. The Coccinelle

data is somewhat impure, in that it contains some patches that also represent simple

refactorings, as Coccinelle targets such changes as well as bug fixes. The Coverity

and Smatch patches should contain only bug fixes. All three data sets are taken

from the complete set of patches between April 2005 and August 2011. Our final

source of black data is the set of patches that mention Bugzilla. These are also taken

from the complete set of patches between April 2005 and August 2011. Table 4.2

summarizes various properties of these data sets.

The grey data is taken as the complete set of patches that have been applied

to the Linux kernel between version 2.6.20 and 2.6.26. To reduce the size of the

dataset, we take only those patches that can apply without conflicts to the Linux

2.6.20 code base. Table 4.3 summarizes various properties of the data sets.

77

4.4.2 Research Questions & Evaluation Metrics

In our study, we address the following four research questions (RQ1-RQ4). In RQ1,

we investigate the effectiveness of our approach. Factors that influence our effec-

tiveness are investigated in RQ2 and RQ3. Finally, RQ4 investigates the benefit of

our hybrid classification model.

RQ1: Is our approach effective in identifying bug fixing patches as compared to

the existing keyword-based method?

We evaluate the effectiveness of our approach as compared with existing

keyword-based method. We consider the following two criteria:

Criteria 1: Precision and Recall on Sampled Data. We randomly sample

500 commits and manually assign labels to them, i.e., each commit is labeled as

being either a bug fixing patch or not. We compare human assigned labels with the

labels assigned by each bug fix identification approach, and compute the associated

precision and recall to evaluate the effectiveness of the approach [76].

Criteria 2: Accuracy on Known Black Data. We take commits that have been

identified by Linux developers as bug fixing patches. We split this dataset into ten

equal sized groups. We train on 9 groups and use one group to test. We evaluate

how many of the bug fixing patches are correctly labeled. The process is iterated

10 times. For each iteration we compute the number of bug fixing patches that

are correctly identified (we refer to this as accuracyBlack) and report the average

accuracy.

In the first criteria, our goal is to estimate the accuracy of our approach on some

sampled data points. One of the authors is an expert on Linux development and has

contributed many patches to Linux code base. This author manually assigned labels

to these sampled data points. In the second criteria, we would like to address the

experimenter bias existing in the first criteria. Unfortunately, we only have known

black data. Thus, we evaluate our approach in terms of its accuracy in labeling black

data as such.

78

RQ2: What is the effect of varying the parameter k on the results?

Our algorithm takes in one parameter k, which specifies the number of bot-

tom ranked commits that we take as a proxy of a dataset containing non-bug fixing

patches. As a default value in our experiments, we fix this value k to be 0.9 × the

number of “black” data that are known bug fixing patches. We would like to vary

this number and investigate its impact on the performance.

RQ3: What are the best features for discriminating if a commit is a bug fixing

patches?

Aside from producing a model that can identify bug fixing patches, we are also

interested in finding discriminative features that could help in distinguishing bug

fixing patches and other commits. We would like to identify these features out of

the many textual and code features that we extract from commits.

We create a clean dataset containing all the known black data, the manually

labeled black data, and the manually labeled white data. We then compute the

Fisher score [14] of all the features that we have. A variant of Fisher score reported

in [10] and implemented in LibSVM13 is computed. Fisher score and its variants

have been frequently used to identify important features [9].

RQ4: Is our hybrid approach (i.e., ranking + supervised classification using

LPU+SVM) more effective than a simple semi-supervised approach (i.e., LPU)?

Our dataset only contains positively labeled data points (i.e., bug fixing patches).

To solve this problem, researchers in the machine learning community have inves-

tigated semi-supervised learning solutions. Many of these techniques still required

a number of negatively labeled data points. However, LPU [48], which is one of

the few semi-supervised classification algorithms with an implementation available

online, only requires positively labeled and unlabeled data points.

Our proposed solution includes a ranking and a supervised classification compo-

nent. The ranking component makes use of LPU. Thus, it is interesting to investigate

if the result of using LPU alone is sufficient or whether our hybrid approach could

13http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

79

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Table 4.4: Precision and Recall Comparison

Approach Precision Recall
Ours 0.601 0.875
Keyword 0.613 0.603

improve the results of LPU.

4.5 Evaluation Results & Discussion

We present our experimental results as answers to the four research questions: RQ1-

RQ4.

4.5.1 Effectiveness of Our Approach

We compare our approach to the keyword-based approach used in the literature [35,

57]. The result of the comparisons using the two criteria are discussed below.

Precision and Recall on Sampled Data. The precision and recall of our ap-

proach as compared to those of the keyword-based approach are shown in Table 4.4.

We notice that our precision is comparable with that of the keyword-based approach.

On the other hand, we increase the recall of the keyword-based approach from 0.603

to 0.875; this is a relative improvement of 45.11%.

To combine precision and recall, we also compute the F-measure [76], which is

a harmonic mean of precision and recall. The F-measure is often used as a unified

measure to evaluate whether an improvement in recall outweighs the reduction in

precision (and vice versa). The F-measure has a parameter β that measures the

importance of precision over recall. The formula is:

(β2 + 1)× precision× recall
(β2 × precision) + recall

In the case that precision and recall are equally important β is set to one. This

would compute what is known as F1. If β is set higher than 1 then recall is preferred

80

Table 4.5: F-Measures Comparison

Approach F1 F2 F3 F5
Ours 0.712 0.802 0.837 0.860
Keyword 0.608 0.605 0.604 0.600
Rel.Improvement 17.11% 32.56% 38.58% 43.33%

Table 4.6: Comparison of AccuracyBlack Scores

Approach AccuracyBlack

Ours 0.945
Keyword 0.772

over precision; similarly, if β is set lower than 1 then precision is preferred over

recall.

In the setting of bug fixing patch identification, recall (i.e., not missing any bug

fixing patch) is more important than precision (i.e., not reporting wrong bug fixing

patch). This is the case as missing bug fixing patch could potentially cause system

errors and even expose security holes. There are also other studies that recommend

setting β equal to 2, e.g. [84].

In Table 4.6 we also compute the different F-measures using different values of

β. We notice that for all values of β our approach has better results as compared to

those of keyword-based approach. The F1, F2, F3, and F5 scores are improved by

17.11%, 31.56%, 38.58%, and 43.33% respectively.

From the 500 randomly sampled commits, we notice that a very small number of

commits that are bug fixing patches contains a reference to Bugzilla. Thus, identify-

ing bug fixing patches is not trivial. Also, as shown in Table 4.4, about 40% of bug

fixing patches do not contain the keywords considered in previous work [57, 35].

Accuracy on Known Black Data. Table 4.6 shows the AccuracyBlack score of

our approach as compared to that of keyword-based approach.

From the result, we note that our approach can increase AccuracyBlack from

0.772 to 0.945, a 22.4% increase. The above results show that our approach is effec-

tive in identifying bug fixing patches as compared to the keyword-based approach

used in existing studies.

81

Table 4.7: Effect of Varying k on Performance. TP = True Positive, FN = False
Negative, FP = False Positive, TN = True Negative.

k TP FN FP Prec. Recall F2
0.75 176 8 186 0.486 0.957 0.801
0.80 172 12 166 0.509 0.935 0.801
0.85 168 16 146 0.535 0.913 0.800
0.90 161 23 107 0.601 0.875 0.802
0.95 133 51 68 0.662 0.723 0.710

The known black data is unbiased as we do not label it ourselves. However, we

can not compute the number of false positives, as all our test data are black.

The high accuracy of the keyword-based approach is due to the large number

of Bugzilla patches in our bug fixing patch dataset. In practice, however, most bug

fixing patches are not in Bugzilla. These bug fixing patches are hidden in the mass

of other non bug fixing related commits.

4.5.2 Effects of Varying Parameter k

When we vary the parameter k (as a proportion of the number of “black” data), the

number of false positives and false negatives changes. The results of our experi-

ments with varying values for k is shown in Table 4.7.

We notice that as we increase the value of k the number of false negatives (FN)

increases, while the number of false positives (FP) decreases. As we increase the

value of k, the “pseudo-white” data (i.e., the bottom k commits in the sorted list after

ranking using LPU) gets “dirtier” as more “black” data are likely to be mixed with

“white” data in it. Thus, more and more “black” data are wrongly labeled as “white”

(i.e., an increase in false negatives). However, the white data are still closer to the

“dirty” “pseudo-white” data than to the black data. Also, more and more borderline

“white” data are “closer” to the “dirtier” “pseudo-white” data than before. This

would reduce the number of cases where “white” data are labeled “black” (i.e., a

reduction in false positives). We illustrate this in Figure 4.5.

82

Figure 4.5: Effect of Varying K. The pseudo white data is the bottom k commits
that we treat as a proxy to non bug fixing patches. The three boxes corresponding to
pseudo white (2 of them) and black represent the aggregate features of the respec-
tive pseudo-white and black data in our training set respectively. The squares and
triangles represent test data points whose labels (i.e., bug fixing patches or not) are
to be predicted.

4.5.3 Best Features

We report the top 20 features sorted based on their Fisher scores in Table 4.8. We

note that among the top-20 features there are both textual and code features. This

highlight the usefulness of combining both textual features in commit logs and code

features in changed code to predict bug fixing patches. We notice however that the

Fisher score is low (the highest possible value is 1), which highlights that one feature

alone is not sufficient to discriminate positive from negative datasets (i.e., bug fixing

patches versus other commits).

Some keywords used in previous approaches [57, 35, 83], e.g., fix, bugzilla, etc.,

are also included in the top-20 features. Due to tokenization some of these features

are split into multiple features, e.g., http, bug.cgi, and bugzilla.kernel.org.

Many other features in the list are code features; these include the number of

times different program elements are changed by a commit. The most discriminative

code element is the number of lines of code being deleted (ranked 7th). Next include

features such as the number of lines added and deleted (ranked 11th), the number of

83

Table 4.8: Top-20 Most Discriminative Features Based on Fisher Score

Rank Feature Desc. Fisher Score
1 http 0.030
2 blackfin 0.023
3 bug.cgi 0.021
4 show 0.019
5 fix 0.015
6 bugzilla.kernel.org 0.014
7 F18 (i.e., # lines removed) 0.014
8 commit 0.013
9 upstream 0.012

10 unifi 0.012
11 F20 (i.e., # lines added & removed) 0.011
12 id 0.011
13 F38 (i.e., # boolean operators removed) 0.011
14 checkpatch 0.011
15 F44 (i.e., # assignments removed) 0.010
16 spell 0.010
17 F46 (i.e., # assign. removed & added) 0.009
18 F37 (i.e., # boolean operators added) 0.009
19 F6 (i.e., # loops added & removed) 0.009
20 F48 (i.e., # function calls added) 0.008

boolean operators added (ranked 13th), the number of assignments removed (ranked

15th), the number of assignments added and removed (ranked 17th), the number of

boolean operators added (ranked 18th), the number of loops added and removed

(ranked 19th), and the number of function calls made (ranked 20th).

4.5.4 Our Approach versus LPU

We have run LPU on our dataset and found that the results of using LPU alone are

not good. The comparison of our results and LPU alone is shown in Table 4.9.

We notice that the precision of LPU is slightly higher than that of our approach;

however, the reported recall is much less than ours. Our approach can increase the

recall by more than 3 times (i.e., 200% improvement). When we trade off precision

and recall using F-measure, we notice that for all β our approach is better than LPU

by 78%, 151.4%, 179.0%, and 197.6% for F1, F2, F3, and F5 respectively.

The accuracyBlack of our approach and that of LPU alone is comparable. Notice

84

Table 4.9: Comparisons with LPU

Approach Precision Recall F1
Ours 0.601 0.875 0.712
LPU Only 0.650 0.283 0.400
Rel.Improvement -7.5% 209.2% 78%

Approach F2 F3 F5 AccuracyBlack

Ours 0.802 0.837 0.860 0.944
LPU Only 0.319 0.300 0.289 0.942

Rel.Improvement 151.4% 179.0% 197.6% 0.2%

that the black data in accuracyBlack are similar to one another, with many having

the terms Bugzilla, http, etc. The black data in the 500 random sample is more

challenging and better reflect the black data that are often hidden in the mass of

other commits.

The above highlights the benefit of our hybrid approach of combining ranking

and supervised classification to address the problem of unavailability of negative

data points (i.e., the non bug fixing patches) as compared to a simple application

of a standard semi-supervised classification approach. In our approach, LPU is

used for ranking to get a pseudo-negative dataset and SVM is used to learn the

discriminative model.

4.5.5 Threats to Validity

Threats to internal validity relate to the relationship between the independent and

dependent variables in the study. One relevant threat to internal validity in our study

is experimenter bias. In the study, we have personally labeled each commits as a

bug fixing patch or as a non bug fixing patch. This labeling might introduce some

experimenter bias. However, we have tried to ensure that we label the commits

correctly, according to our substantial experience with Linux code [43, 63, 64].

Also, we have labeled the commits before seeing the results of our identification

approach, to minimize this bias.

Threats to external validity relate to the generalizability of the result. We have

85

manually checked the effectiveness of our approach over 500 commits. Although

500 is not a very large number, we believe it is still a good sample size. We plan

to reduce this threat to external validity in the future by investigating an even larger

number of manually labeled commits. We have also only investigated patches in

Linux. We believe our approach can be easily applied to identify bug fixing patches

in other systems. We leave the investigation as to whether our approach remains

effective for other systems as future work.

Threats to construct validity relate to the appropriateness of the evaluation crite-

ria. We use the standard measures precision, recall, and F-measure [54] to evaluate

the effectiveness of our approach. Thus, we believe there is little threat to construct

validity.

4.6 Chapter Conclusion

Linux developers periodically designate a release as being subject to longterm sup-

port. During the support period, bug fixes applied to the mainline kernel need to

back ported to these longterm releases. This task is not trivial as developers do not

necessarily make explicit which commits are bug fixes, and which of them need to

be applied to the longterm releases. To address this problem, we propose an auto-

mated approach to infer commits that represent bug fixing patches. To do so, we

first extract features from the commits that describe those code changes and com-

mit logs that can potentially distinguish bug fixing patches from regular commits. A

machine learning approach involving ranking and classification is employed. Exper-

iments on Linux commits show that we can improve on the existing keyword-based

approach, obtaining similar precision and improved recall, with a relative improve-

ment of 45.11%.

86

Chapter 5

Identifying Patches for Linux Stable

Versions: Could Convolutional

Neural Networks Do Better?

5.1 Introduction

The Linux kernel follows a two-tiered release model in which a mainline version,

accepting bug fixes and feature enhancements, is paralleled by a series of stable ver-

sions that accept only bug fixes. The mainline serves the needs of users who want

to take advantage of the latest features, while the stable versions serve the needs of

users who value stability, or cannot upgrade their kernel due to hardware and soft-

ware dependencies. To ensure that there is as much review as possible of the bug

fixing patches and to ensure the highest quality of the mainline itself, the Linux ker-

nel requires that all patches applied to the stable versions pass through the mainline

first. A mainline subsystem maintainer may identify a patch as a bug fixing patch

appropriate for stable kernels and add to the commit log a “Cc stable” tag.1 Stable

kernel maintainers then extract such annotated commits from the mainline commit

history and apply the resulting patches to the stable versions that are affected by the

1The exact tag is Cc: stable@vger.kernel.org.

87

bug.

The quality of the stable kernels critically relies on the effort that the subsystem

maintainers put into labeling patches as relevant to the stable kernels, i.e., identi-

fying stable patches. This manual effort represents a potential weak point in the

development process – subsystem maintainers could forget to label some relevant

patches, and different subsystem maintainers could apply different criteria for se-

lecting them. While the stable maintainers can themselves additionally pick up

relevant patches from the mainline commits, there are hundreds of such commits

per day, making it likely that many will slip pass. This task can thus benefit from

automated assistance.

Previous work presented in Chapter 4 has presented an LPU (Learning from Pos-

itive and Unlabeled Examples) and SVM (Support Vector Machine) based approach

to automatically identify bug fixing patches (for stable versions). This LPU+SVM

based approach relies on 55 features extracted from code changes and thousands

of word features extracted from the commit logs. All of the code features are de-

fined manually to characterize how likely it is that a given patch is a bug fixing

patch. However, the manual creation of features might overlook good features that

could help developers identify bug fixing patches. In addition, relationships between

words are ignored, as the LPU+SVM approach considers a bag-of-word represen-

tation of text.2 Thus, a richer feature representation of a patch that can naturally

capture its inherent and relevant properties by considering both its commit log and

corresponding code changes is needed.

Inspired by recent applications of deep learning techniques in software engineer-

ing, we propose a Convolution Neural Network (CNN) based approach to automat-

ically learn features from the commit log and code changes inside a patch for iden-

tifying stable (related) patches. To investigate whether the CNN-based approach

could perform better than the LPU+SVM based approach, we ask the maintainers

of Linux stable versions to help us evaluate the performance of two approaches on

2Bag-of-words represents a text as the multi-set of the words that appear in it.

88

recent Linux patches.

Considering that code is different from natural language content, our CNN-

based approach processes code changes separately from the commit log by taking

program structure into consideration. The processed code changes and commit log

are merged to form a document. Documents generated from a set of training patches

are then fed into a Convolution Neural Network based model. The CNN-based

model learns network parameters, as well as a classifier, from the training patches.

For a new patch, the trained CNN will map the patch into a set of feature-value pairs

and predict whether the patch is a bug fixing patch by applying the learned classifier.

Our evaluation shows that both the LPU+SVM based and the CNN-based approach

have the potential of catching patches that should be considered for stable verions,

but have been missed by the maintainers. However, despite the huge benefit of us-

ing CNN on some tasks in the Natural Language Processing and Computer Vision

domains, our evaluation finds that the CNN-based approach only achieves perfor-

mance similar to the previous LPU+SVM approach, although it does not require

any hand-crafted features.

The main contributions of this work include:

1. We propose a new Convolutional Neural Network (CNN) based approach to

identify patches that should be moved to Linux stable versions. Our approach

treats the commit log and code changes separately. While we adopt standard

natural language processing strategies for representing the commit log, we

propose a novel representation of code that incorporates high and low level

aspects of the code structure.

2. We take a closer look at the manual process of identifying patches for Linux

stable versions. We have summarized the challenges faced by all machine

learning approaches in the automation of this manual process.

3. Our experiments are done on a new dataset that contains 48,920 (training and

testing) recent Linux patches. We ask the real practitioners, i.e., the maintain-

89

ers of the Linux stable versions, to evaluate the performance of the new CNN-

based approach and the previous LPU+SVM approach. Feedback from the

Linux stable kernel maintainers on 199 unique Linux patches shows that the

CNN-based approach can achieve a similar performance as the LPU+SVM

based approach. Both of these approaches could thus potentially help main-

tainers find missing patches for stable versions. We also find that these two

approaches do show some complementarity, which sheds light on the benefit

of combining two approaches.

5.2 Background

In this section, we first present some background information about the mainte-

nance of Linux kernel stable versions, and some challenges that the maintenance of

Linux kernel stable versions poses for automation via machine learning. We then

present the convolution neural network (CNN) that is considered in our CNN-based

approach.

5.2.1 Context

Linux kernel development is carried out according to a hierarchical model, with

Linus Torvalds at the root, who has ultimate authority about which patches are ac-

cepted into the kernel, and patch authors at the leaves. A patch author is anyone who

wishes to make a contribution to the kernel, to fix a bug, add a new functionality,

or improve the coding style. Authors submit their patches by email to maintainers,

who commit the changes to their git trees and submit pull requests up the hierarchy.

In this Chapter, we are most concerned with the maintainers, who have the respon-

sibility of assessing the correctness and usefulness of the patches that they receive.

Part of this responsibility involves determining whether a patch is stable-relevant,

and annotating it accordingly.

The Linux kernel provides a number of guidelines to help maintainers determine

90

whether a patch should be annotated for propagation to stable kernels. These are

summarized as follows (slightly condensed for space reasons):3

• It must be obviously correct and tested.

• It cannot be bigger than 100 lines, with context.

• It must fix only one thing.

• It must fix a real bug that bothers people.

• It must fix a problem that causes a build error, an oops, a hang, data corrup-

tion, a real security issue, or some “oh, that’s not good” issue.

• Serious issues as reported by a user of a distribution kernel may also be con-

sidered if they fix a notable performance or interactivity issue.

• New device IDs and quirks are also accepted.

• No “theoretical race condition” issues.

• It cannot contain any “trivial” fixes.

• It must follow the submittingpatches rules.

• It or an equivalent fix must already exist in Linus’ tree (upstream).

These criteria may be simple, but are open to interpretation. For example, even

the criterion about patch size, which seems completely unambiguous, is only sat-

isfied by 93% of the patches applied to the stable versions based on Linux v3.0

to v4.7, as of April 16, 2017,4 with other patches ranging up to 2754 change and

context lines. More generally, different developers may have different strategies for

choosing and propagating patches to stable kernels. Figure 5.1 shows the rate of

propagation of patches from the various subsystems, where a subsystems is approx-

imated as a subdirectory of drivers (device drivers), arch (architecture specific
3Documentation/process/stable-kernel-rules.rst
4Duplicates are possible, as a single patch may be applied to multiple stable versions.

91

Figure 5.1: Rate at which the patches applied to a given subsystem end up in a stable
kernel. Subsystems are ordered by increasing propagation rate.

support), or fs (file systems), or any other toplevel subdirectory of the Linux ker-

nel source tree. While the median rate is 6%, for some subsystems the rate is much

higher, raising the possibility that the median is too low and some stable-relevant

patches are getting overlooked. If this is the case, part of the problem may be the sta-

ble propagation strategies of the individual maintainers. Indeed, as shown in Figure

5.2, the rate at which a given maintainer’s commits that end up in a stable version

are annotated with Cc stable covers the full range from 0-100%. While alternative

submission options, e.g., via email or via a pull request in the case of network-

ing code, are listed in the stable kernel documentation, Cc: stable is advantageous

because it is uniform and thus easy for developers to create tools against.

5.2.2 Challenges for Machine Learning

Stable patch identification poses some unique challenges for machine learning.

These include the kind of information available in a Linux kernel patch and the

diversity in the reasons why patches are or are not selected for application to stable

kernels.

First, Linux kernel commit logs are written free-form. While maintainers are

asked to add a Cc: stable@vger.kernel.org tag to commits that should

be propagated to stable versions, our goal is to identify stable-relevant commits

for which adding this tag has been overlooked, and thus we ignore this information.

92

Figure 5.2: Rate at which a maintainer’s commits that end up in a stable kernel are
annotated with Cc stable. 406 is the median number of commits per maintainer.
Maintainers are ordered by increasing Cc stable rate.

Patches also contain a combination of text, represented by the commit log, and code,

represented by the enumeration of the changed lines. Code is structured differently

than text, and thus we need to choose a representation that enables the machine

learning algorithm to detect relevant properties.

Second, there are some patches that are applied to stable kernels that are not bug-

fixing patches. The stable documentation itself stipulates that patches adding new

device identifiers are also acceptable. Such patches represent a very simple form

of new functionality, implemented as an array element initialization, but they are

allowed in stable kernels because they are unlikely to cause problems for users of

stable kernels and may enable the use of the stable kernel with new device variants.

These patches have a common structure and are easily recognized, and thus should

not pose a significant challenge for machine learning. Another reason that a non-

bug fixing patch may be introduced into a stable kernel is that a subsequent bug

fixing patch depends on it. These non-bug fixing patches, which typically perform

refactorings, should satisfy the criteria of being small and obviously correct, but

may have other properties that differ from those of bug-fixing patches. They may

thus introduce apparent inconsistency into the machine learning process.

93

Finally, some patches may perform bug fixes, but may not be propagated to

stable. One reason is that some parts of the code change so rapidly that the patch

does not apply cleanly to any stable version. Another reason is that the bug was

introduced since the most recent mainline release, and thus does not appear in any

stable version.

As the decision of whether to apply a patch to a stable kernel depends in part

on factors external to the patch itself, we cannot hope to achieve a perfect solution

based on applying machine learning to patches alone. Still, stable-kernel maintain-

ers have reported to us that they are able to check likely stable-relevant patches

quickly (e.g., 32 in around 20 minutes).5 Therefore, we believe that we can ef-

fectively complement existing practice by orienting stable-kernel maintainers to-

wards likely stable-relevant commits that they may have overlooked, even though

the above issues introduce the risk of some false negatives and false positives.

5.2.3 Convolutional Neural Networks for Sentence Classifica-

tion

In this Chapter, we leverage a convolutional neural network (CNN) to automatically

learn features for stable related patch identification. In this section, we present

background knowledge about how CNN is applied to automatically learn features

for sentence classification task. We look at sentence classification tasks because the

stable patch identification task could be modeled as a sentence classification task

where each sentence contains all the information inside a patch.

In recent years, research and application of neural network based models have

grown dramatically. Such models have achieved remarkable results in areas such

as computer vision [38], speech recognition [22], and natural language process-

ing (NLP) [67]. Many types of neural networks have been proposed, including

Deep Belief Networks (DBN), Recurrent Neural Networks (RNN), Recursive Neu-

5Greg Kroah Hartman, private communication, April 28, 2017

94

Figure 5.3: Convolutional Neural Networks for Sentence Classification

ral Networks (RNN), Convolutional Neural Networks (CNN), etc. In this work, we

consider CNN, which utilize layers with convolving filters that are applied to local

features [46]. CNN were originally designed for computer vision, and then have

subsequently been shown to be effective for traditional NLP tasks, such as query re-

trieval [81], sentence modeling [32], and many more. Besides CNN’s effectiveness

in representing textual information, CNN are usually easier to train and have many

fewer parameters than fully connected networks with the same number of hidden

units.6

Figure 5.3 shows the architecture of the Convolutional Neural Network used in

our approach. As shown in the figure, the input layer is a sentence (e.g, “clear tf

bit in fault on single-stepping”) comprised of concatenated word embeddings (i.e.,

representations of words using vectors). Each word is mapped to a vector of a

fixed length (e.g., 5 in Figure 5.3). The input layer is followed by a convolutional

layer with multiple filters, then a max-pooling layer, and finally a softmax classifier.

This architecture is as the same as the CNN model proposed by Kim for sentence

classification [36], except that it learns the word embeddings from the dataset itself

rather than using any other pre-trained word vectors, based our hypothesis that word

6http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/

95

embeddings trained on any other domain or task might not be applicable to this

software engineering specific task.

Convolution Layer & Max Pooling: Let xi ∈ Rk be the k-dimensional word

vector corresponding to the i-th word in the sentence. A sentence of length n is

represented as

x1:n = x1 ⊕ x2 ⊕ ...⊕ xn

where⊕ is the concatenation operator. Sentences are padded such that they all have

the same length as the maximum length sentence in the document. More generally,

xi:i+j refers to the concatenation of words xi,xi+1, ...,xi+j . A convolution opera-

tion involves a filter w ∈ Rhk that is applied to a window of h words to produce a

new feature. For example, a feature ci is generated from a window of words xi:i+h−1

by

ci = f(w · xi:i+h−1 + b)

where b ∈ R is a bias term and f is a non-linear function, e.g., the hyperbolic

tangent, i.e., tanh in this CNN. This filter is applied to each possible window of

words in the sentence {x1:h,x2:h+2, . . .xnh+1:n} to produce a feature map

c = [c1, c2, ..., cn−h+1]

with c ∈ Rnh+1. Next, a max pooling operation [12] is applied over the feature

map and takes the maximum value ĉ = max{c} as the feature corresponding to

this particular filter. The max pooling operation is designed to capture the most

important feature, i.e., the one with the highest value, for each feature map.

The above process describes how a feature is extracted from one filter. CNN

uses multiple filters (with varying window sizes) to obtain multiple features. These

features then form the penultimate layer and are passed to a fully connected soft-

max layer whose output is the probability distribution over two classes (i.e., stable-

relevant and non stable-relevant fixing).

96

Figure 5.4: Sample Bug Fixing Patch

Regularization: A critical problem when applying machine learning algorithms is

how to make algorithms consistently perform well on both training data and new

data (testing data). Many methods have been proposed to modify algorithms to

reduce their generalization error but not their training error. These methods are

known collectively as regularization. The CNN considered in this Chapter adopts

a regularization method called dropout, to prevent overfitting the learned neural

network to the training data. A dropout layer stochastically disables a fraction of its

neurons, which prevents neurons from co-adapting and forces them to individually

learn useful features [25].

5.3 Approach

In this work, we leverage the model introduced in Section 5.2.3 to generate fea-

tures and learn a classification model from the training patches. Figure 5.4 shows

a sample patch that has been applied to the stable version derived from Linux v4.5

97

as the patch fixes user-visible bugs and improves error handling and stability. As

illustrated in Figure 5.4, a patch contains not only a textual commit message but

also a set of diff code elements, i.e., changes that are applied on the buggy file.

Figure 5.5 illustrates the framework of our approach. Our approach is composed

of three steps: collecting the dataset, processing patches, and learning the model &

performing prediction. In the first step, we collect a set of recent stable and non-

stable patches from the commit repository of the Linux kernel, and annotate them

as the stable-relevant patches (i.e., positive instances) and the non stable-relevant

patches (i.e., negative instances), respectively. In the second step, we transform each

collected patch into a document that a CNN could take as input. Note that as code is

different from natural language, we process the commit message and the diff code

elements separately and merge them into one document (see “Processed Patches”

in Figure 5.5). In the last step, features/representations of training patches as well

as a classifier (based on the learned features) are trained. The trained Convolutional

Neural Network is able to convert any new patch into a set of feature-value vectors

(see “Extracted Feature Vector (New Patch)” in Figure 5.5) and make a prediction

by applying the trained classifier. We elaborate the details of each step in the rest of

this section.

5.3.1 Collecting the Data Set

Similar to work presented in Chapter 4, we need to collect a set of stable patches

(bug-fixing patches) as well as a set of non stable patches. For each patch, we

collect the following information: commit id, author name, date on which the author

provided the patch, committer name, date on which the committer committed the

patch, the subject line, back link information (stable patches only), number of lines

of changed code and context code (by default, typically the three lines before and

after each hunk of contiguous removed and added lines). A back link is the reference

to the same patch in the mainline Linux kernel. Next, we describe in more detail

98

Figure 5.5: Framework of Convolutional Neural Network Based Stable-Relevant
Patch Identification

how we collect the data set.

1) Collecting Stable Patches: The main challenge in the processing of stable

patches is to link them to the corresponding patches in the mainline. Indeed, all

patches accepted into a stable version must have previously been applied in the

mainline. Some stable patches contain an explicit link back to the corresponding

mainline commit. For others, we rely on the author name and the subject line. Sub-

ject lines typically contain information about both the change made and the name

of the file or directory in which the change is made, and thus should be relatively

unique. Accordingly, the collection of stable patches also collects a mapping of

back link information such as a fixes tag to the commit identifier that contains the

link and a mapping of a pair of an author email address and a patch subject to a

commit identifier.

Following the stable patch rules, presented in Section 5.2.1, we keep only stable

patches having at most 100 lines of changed and context code. Discarding the larger

patches means that our approach may not be able to learn to recognize them, but we

99

consider that such patches are anomalous, and treat special situations that may not

generalize.

2) Collecting Mainline Patches: The collection of mainline patches is essentially

the same as the collection of stable patches, except that no back links are collected.

As for the stable patches, we limit mainline patches to those of at most 100 lines,

to prevent the CNN from creating a model based only on patch size. A mainline

patch is recognized as being a stable patch if a stable patch has the same author

and subject as the mainline patch or if there is a back link in the stable patch to

the mainline patch, according to the mappings collected during the stable patch

collection process.

3) Constructing the training and testing datasets: From the set of mainline

patches, we collect three sets of patches: 1) the complete set of stable patches,

2) a set of patches that are not recognized as being in any stable version, referred

to as non-stable, to be used for training, and 3) a set of non-stable patches that are

to be used for testing. For the first set, we use the complete set of stable patches

for training, to have the most possible information to learn from. As our initial

experiments with CNN showed that training works best when the data is balanced,

we then extract the same number of non-stable patches for the second set as there

are stable patches available for the first set. Finally, as our motivation is to help sta-

ble maintainers identify stable-relevant patches that would otherwise be overlooked,

our testing data contains only non-stable patches as well. In addition to fitting with

our objectives, this strategy has the benefit of allowing us to use the entire set of

stable patches in the training data. We take a statistically significant subset of the

set of non-stable patches of size at most 100 lines of changed and context code.

5.3.2 Patch Preprocessing

In this step, our approach takes patches collected in the first step as input and pro-

cesses each one into a document. Each document contains a sequence of tokens

100

that represent the patch. As mentioned before, our approach treats code changes

separately from the commit log and combines them in the end to form a document.

We describe in detail the methodology below.

1) Extract Atomic Statement Level Difference: Diff code elements may have

many shapes and sizes - a single word, part of a line, an entire line, multiple lines,

multiple lines separated by unchanged code, etc. To describe changes in terms

of meaningful syntactic units and in particular to provide some context for very

small changes, we collect differences at roughly the granularity of atomic state-

ments. These may be, e.g., simple assignment statements, but also if headers, for-

loop headers, function headers, etc. We also distinguish changes in error checking

code (code to detect whether an error has occurred) and in error handling code (code

to clean up after an error has occurred) from changes in other code. Error checking

code and error handling code are indeed very common in the Linux kernel, which

must be robust, but are disjoint in structure and purpose from the implementation of

the main functionality.

For a given commit, the first step is to extract the names of the affected files and

to extract the state of those files before and after the commit. For each before and

after file instance, we remove comments (taking care to preserve line numbers) and

the contents of strings, as changes in comments and within strings are not likely to

be stable-relevant. For a given pair of before and after files, we then compute the

difference using the command “git diff -U0 old new”. For each − or + line in the

diff output, we then collect a record indicating the sign, the hunk number, the line

number in the old or new version, respectively, and the starting and ending columns

of the non-space changes on the line.

The previous step gives the differences, but the granularity may be below that of

our atomic statements. For example, if a function call extends over multiple lines,

the change could be in a single argument, on a line by itself. We thus then work on

the old or new file individually, to map the changed lines to their enclosing atomic

statements, as defined above. This process is performed using Coccinelle [63]. It is

101

limited to the set of patterns supported by the Coccinelle script, and fails, causing

the patch to be ignored, if there is any changed token that is not taken into account

by these patterns or if Coccinelle is not able to parse the code.

As an example of the processing of code changes, consider the code snippets

shown in Figure 5.6. In the before code, the if test expression is found to intersect

with a changed line, so part of the result is the information about the if header, i.e.,

if (x < 0). The return statement is also found to intersect with a changed

line, so another part of the result is return -1;. Similar information is obtained

for the after code. Due to the return in the if branch, the changed if headers are an-

notated as coming from error checking code, and the changed return statements are

annotated as coming from error handling code. All of these changes are additionally

annotated as coming from the same hunk.

Before: After:
if (x<0) if (y<0)
return -1; return -2;

Figure 5.6: Code Example

2) Combining Statement Differences into a Code Representation: As a result of

this phase, each hunk is represented as a sequence of tokens for the removed atomic

statements followed by a sequence of tokens for the added atomic statements, at

most one of which can be empty. We could simply concatenate these. To obtain

a more precise view of the changes, we instead compute a word-level diff of the

two sequences, using the command git diff --word-diff=porcelain,

where the option porcelain produces the result in a format that eases subsequent

processing. The result is a sequence of context (unchanged) tokens, intersprinkled

with word-level hunks containing sequences of removed and added tokens. Rather

than using word diff, we could alternatively have used tree differencing [20] to

obtain fine-grained differences that would respect the programming language’s syn-

tactic structure. Word diff, however, is faster than tree differencing, because there

102

is no need for parsing the source code, and thus we use word diff in the current

approach.

In the result, we could treat the tokens in the diff code elements of a patch

like words in the commit message. For example, Figure 5.4 could be treated as

a document: “—a/fs/btrfs/disk-io.c +++ b/fs/btrfs/disk-io.c @@ -302,7...” How-

ever, developers may chose unique identifiers, such as “db1200 mmc led”,

“db1200 mmc0 dev”, “au1200 lcd res”, “au1200 lcd dev”, across dif-

ferent files and functions, even when the identifiers act similarly in the source code.

Thus, if we consider all the tokens appearing in the diff code elements, the vo-

cabulary size will be very large. The data will also be very sparse, because these

identifiers might appear very few times across the data set. Thus, the extra infor-

mation will provide little benefit for the learning process. To address this issue,

the preprocessing of a patch ultimately drops the specific names of all identifiers,

instead representing them all as a single “Ident” token.

3) Combine Code Representation with Commit Log: For each processed patch,

we then combine the processed commit message and the diff code elements into a

one-line document (with the symbol “##” as the line separator) so that the Convo-

lutional Neural Network introduced in Section 5.2.3 can process it. We then use

the VocabularyProcessor object from TFLearn 7 to map documents to sequences of

numbers, where each number represents one word.

5.3.3 Learning Model & Performing Identification

In the last step, documents preprocessed from the training commits are used as input

for training a convolutional neural network (CNN). The structure of this CNN is as

the same as the one introduced in Section 5.2.3. As a CNN contains many input

parameters, such as the number of filters, size of a filter, etc., we further split out a

part of the data from the training data set to form a validation set. When we train

7A deep learning library featuring a higher level API for Tensorflow http://tflearn.org/.

103

http://tflearn.org/

a model from the rest of training data, we periodically test the performance (i.e.,

F-measure of all classes) of the latest model on the validation set. We stop training

once the performance on the validation data starts to degrade, suggesting overfitting

of the data. We then use the saved trained model to predict labels for unseen patches.

5.4 Evaluation

In this section, we first describe the dataset that is collected for the evaluation. Next,

we describe the experimental settings for our CNN-based approach and the baseline

approach. In the end, we describe our evaluation methodology and evaluation met-

ric.

5.4.1 Dataset

To evaluate our approach, we target mainline versions 3.0 to 4.7. The stable versions

build on mainline versions 3.0 to 4.6.8 Given the fact that there are many more non

stable patches existing in the mainline, for the training and evaluation purpose, we

randomly collect a significant sample set from all non stable patches. For training,

we have collected 16,265 stable patches, and a randomly sampled 14,688 non-stable

patches. For evaluation, we again collected another randomly sampled 17,967 non-

stable patches. In total, we considered 48,920 patches from Linux. All selected

patches have at most 100 lines of change and context code, as stipulated in the

stable kernel rules (see Section 5.2.1).

5.4.2 Model Settings

From all the training patches, we use 90% of them for training the CNN, while

the remaining 10% are used to tune input parameters for the CNN. Our experiment

code is written in Python and built on top of the TensorFlow Python library [1]. A

8The stable version building on e.g., mainline version 4.6 is maintained in parallel with the prepa-
ration for version 4.7, and potentially onward.

104

Convolutional Neural Network contains multiple parameters. In this experiment,

we choose to embed each token in the document that is processed from a patch into

a vector of length 16. We consider filters of two different window sizes, i.e., 4 and

5. The number of filters is set to 32. During training, the dropout ratio is set to 0.5,

which means that 50% of the units will be dropped out randomly during training.

The values of these input parameters were chosen in two steps. We first considered

values that were found to be good in prior studies [27, 36]. We then heuristically

tuned the input parameters based on the performance of the corresponding models

on the validation set.

5.4.3 Baseline Approach

We take the LPU+SVM based approach proposed in Chapter 4 as the baseline ap-

proach. The LPU+SVM based approach extracts features from both code changes

and commit logs that can potentially distinguish bug fixing patches from regular

commits. We predefined the features. The input to the LPU+SVM based approach

is a set of bug fixing patches (for stable versions) and unlabeled patches. In our

experiments, we currently treat the non stable patches as the unlabeled patches for

the baseline approach.

5.4.4 Evaluation Methodology & Metrics

Evaluation Methodology: We evaluate the performance of the two stable patch

identification approaches on the testing data, which is a significant sample set that

is randomly selected from the non-stable patches. To avoid the bias that may be

introduced by self labeling, we ask the Linux kernel stable version maintainers,

Greg Kroah-Hartman and Sasha Levin, to help us evaluate the results. To save their

time in labeling, we prepare two datasets for them to label:

105

Option 1 For each approach, we rank all the testing patches (currently not in the

stable tree) based on their probability of being stable, i.e., top patches are considered

by the classifier to be most likely to be stable. We then take the top-50 patches for

each approach and create a set that covers all these patches. We sent these patches

to Greg Kroah-Hartman to label.

Option 2 We randomly select 100 patches that are currently not applied to any

considered stable version and send them to Sasha Levin to label.

Note that to avoid bias, we told both developers that the patches were randomly

selected from those not in the stable versions. Thus option 1 and option 2 are treated

equally.

Evaluation Metrics: Our goal in evaluation option 1 is to compare the ground

truth labels provided by the maintainers with the ranking of the patches within the

top 50 results produced by each classifier. We thus use two common ranking-based

evaluation metrics that evaluate the quality of a ranked list:

• Accuracy@N: this metric calculates the ratio of real stable patches in the

top-N list provided by each approach.

• Average precision (AP)@N: The average precision of a ranked list of poten-

tial stable patches is computed as:

AP =
M∑
k=1

P (k)× pos(k)
number of stable patches

where k is a rank in the returned ranked patches, M is the number of ranked

patches, and pos(k) indicates whether the kth patch is stable or not. P (k) is

the precision at a given top k and is computed as follows:

P (k) =
#stable patches top k

k

• Normalized Discounted Cumulative Gain (NDCG)@N NDCG measures

106

the performance of a recommendation system based on the graded relevance

of the recommended entities. It varies from 0.0 to 1.0, with 1.0 representing

the ideal ranking of the entities. This metric is commonly used in information

retrieval and to evaluate the performance of web search engines.

For evaluation option 2, we calculate commonly used evaluation metrics for

classification tasks, i.e., precision, recall, and F-measure, for both approaches.

5.5 Evaluation Results & Discussion

5.5.1 CNN-based Approach vs. LPU+SVM based Approach

Evaluation option 1: Applying the CNN-model and the baseline to the testing

data, which are all non-stable patches, the CNN-model identified 4,710 (26.2%)

of them to be stable, while the baseline identified 4,341 (24.2%) of them to be

stable. After we rank all the testing non stable patches according to their probability

of being stable for both approaches, we find that there is only one commit that

overlaps between the top-50 lists of the two approaches.9 With his labels, Greg

Kroah-Hartman noted “Overall, very nice work in finding lots of patches that are

relevant.”10

Table 5.1 shows the Accuracy@N and AP@N of the CNN-based approach and

the LPU+SVM based approach. These metrics show that both approaches can cap-

ture missing stable patches if we consider the top-50 patches as the most likely

stable ones. And in most of the cases (2/5 for Accuracy@N, 4/5 for Average Pre-

cision@N, and all NDCG@N), the CNN-based approach performs better than the

LPU+SVM based approach, which means the probability returned by the CNN-

based approach could help generate a better ranking of the top-50 results. However

we also notice that the difference between two approaches is minor.

95c2e08231b68a3c8082716a7ed4e972dde406e4a
10Private communication, May 12, 2017.

107

Evaluation option 2: The precision, recall and F-measure of the CNN-based ap-

proach and the LPU+SVM approach are shown in Table 5.2. We notice that the po-

tential of capturing stable patches (i.e., recall) are equal for the two approaches. On

the other hand, the CNN-based approach is more aggressive in predicting a patch as

a stable one, and thus is has a lower (i.e., 7.7%) precision than the LPU+SVM based

approach. Similar to the results based on the first evaluation option, the difference

between two approaches is minor.

Table 5.1: Accuracy@N, Average Precision (AP)@N, Normalized Discounted Cu-
mulative Gain (NDCG)@N: CNN vs. LPU+SVM

Approach Acc@10 Acc@20 Acc@30 Acc@40 Acc@50
LPU+SVM 0.9 0.85 0.9 0.9 0.9
CNN-based 1 0.9 0.83 0.825 0.84
Difference +11% +5.9% -7.8% -8.3% -6.7%

AP@10 AP@20 AP@30 AP@40 AP@50
LPU+SVM 0.976 0.925 0.909 0.909 0.909
CNN-based 1 0.979 0.948 0.922 0.905
Difference +2.4% +5.8% +4.3% +1.4% -0.4%

NDCG@10 NDCG@20 NDCG@30 NDCG@40 NDCG@50
LPU+SVM 0.99 0.98 0.975 0.975 0.975
CNN-based 1 0.995 0.988 0.982 0.979
Difference +1% +1.5% +1.3% +0.7% +0.4%

Table 5.2: Precision, Recall, F-measure: CNN vs. LPU+SVM

Approach Recall Precision F-measure
LPU+SVM based 0.545 0.75 0.631
CNN-based 0.545 0.692 0.610
Difference 0% -7.7% -3.3%

5.5.2 Potential of Combining the CNN-based and LPU+SVM-

based Approaches

By checking the top-50 patches returned by the two approaches for evaluation op-

tion 1, we find that although most of the patches in the top-50 are stable patches,

108

out of the total 100 patches, 99 of them are unique. Thus, there maybe some com-

plementarity between the approaches We then investigate the results obtained by

the two approaches in further detail, to gain insight into the potential of combining

them.

We evaluate the agreement of two approaches in two ways: 1) by considering

the ranked lists provided by the two approaches on the whole testing dataset; 2)

by comparing their classification results on the 199 manual labeled patches (see

Section 5.4.4 for the creation of this set of 199 patches).

Correlation between Ranked Lists: We test the correlation between two ranked

lists provided by the CNN-based approach and the LPU+SVM based approach us-

ing Kendall’s τ coefficient [2]. The input for calculating the Kendall τ coefficient is

(x1, y1), (x2, y2),. . . , (xn, yn) - a set of observations of the joint random variables X

and Y respectively. All the values of xi and yi are unique. The Kendall τ coefficient

is defined as:

τ =
(number of concordant pairs)− (number of discordant pairs)

n(n− 1)/2

For any pair of observations (xi, yi) and (xj, yj), where i 6= j, are said to be

concordant if the ranks for both elements agree, e.g., if both xi > xj and yi > yj ,

or if both xi < xj and yi < yj . The pair is discordant if xi > xj and yi < yj , or

if xi < xj and yi > yj . If xi = xj or yi = yj , the pair is neither concordant nor

discordant.

Kendall’s τ coefficient ranges between -1 and 1, with -1 indicating that the rank-

ings are completely different, 0 indicating no correlation, and 1 indicating that the

results are correlated.

We find that Kendall’s τ coefficient between the ranked lists provided by CNN

and that provide by LPU+SVM is 0.482, which indicates a moderate correlation be-

tween the two ranked lists. The moderately correlation shows consistency between

109

the two approaches, i.e., they have similar judgments (probability of being stable)

on many patches. However, there are inconsistencies on some cases as well, which

might be further investigated for a potential combination of the two approaches.

Correlation between the Classification Results: In this setting, we focus on the

prediction results (i.e., stable or not) of the CNN-based and the LPU+SVM based

approach, instead of the detailed ranking position of each testing patch.

Table 5.3 shows the predictions of two approaches on the complete set of 17,967

testing patches. The results show that the CNN based approach predicted more

patches as stable ones, with 26.2% of test patches are identified as stable, while the

LPU+SVM based approach identified 24.2% of test patches as stable. We also find

that many (65.6%) patches are identified as non stable patches by both approaches.

Beside the patches identified by both approaches as stable, there are 3,325 (i.e.,

1,847 + 1,478) patches that are labeled as stable by one but not the other. If there

are some missing stable patches in these 3,325 patches, then combining the two

approaches might help find more missing stable patches.

Table 5.3: Predictions of CNN and LPU+SVM on 17,967 Testing Patches

(a) #Stable Patches identified by both Classifiers. 2,863
(b) #Stable Patches identified only by CNN 1,847
(c) #Stable Patches identified only by LPU+SVM 1,478
(d) #Non Stable Patches identified by both 11,779

Table 5.4 and Table 5.5 shows the performance of two approaches on the 199

unique labeled patches for two evaluation options. We find that although the top-

50 patches overlap in only one case for the two approaches, still both approaches

annotate many of the same top-50 patches as stable, with a different ranking. Indeed,

Table 5.4 shows that out of the 99 unique patches in the two top-50 lists, 86 are

actually stable and 79 of these 86 are predicted to stable by both approaches. But

if we look at the performance of the two approaches on the randomly sampled 99

patches in Table 5.5, there is a potential benefit of combining two approach, to get

20 (i.e., 9 + 11) more correctly predicted patches.

110

Table 5.4: Performance of CNN and LPU+SVM on 99 Patches (Option 1)

(a) #Stable Patches found by both Classifiers. 79
(b) #Stable Patches found only by CNN 6
(c) #Stable Patches found only by LPU+SVM 1

Table 5.5: Performance of CNN and LPU+SVM on 100 Patches (Option 2)

(a) #Patches correctly identified by both 66
(b) #Patches correctly identified only by CNN 9
(c) #Patches correctly identified only by LPU+SVM 11
(d) #Patches wrongly identified by both 14

5.5.3 Threats to Validity

In Chapter 4, we manually checked the labels of 500 sampled patches to establish

the ground truth, which might introduce experiment bias. Thus, in this work, we

instead regard all the labels already been assigned by the Linux maintainers as the

ground truth. However in reality, Linux maintainers might also make mistakes,

particularly, they might miss some bug fixing patches. We plan to mitigate such

threats by asking some Linux maintainers to label parts of the evaluation data set

again in the future.

In Chapter 4, we randomly selected 500 commits and use them to evaluate our

prediction model. This time, we ask the real practitioners to evaluate the two ap-

proaches. Similar to the evaluation in Chapter 4, we only investigated patches from

the Linux project, although the CNN based approach can be easily applied to iden-

tify bug fixing patches in other systems. In the future, we would like to consider

more projects.

The selection of evaluation metrics might introduce threats to construct validity.

To mitigate such threats, we consider the standard measures, i.e., precision, recall,

F-measure, and accuracy [54] to evaluate the effectiveness of a bug fixing patch

identifier.

111

5.6 Chapter Conclusion

In this chapter, we have revisited the problem of identifying stable related patches

(proposed in Chapter 4) with a new Convolutional Neural Networks (CNN) based

approach. The new approach takes both the commit log and preprocessed patch

code as input and automatically learns representations/features from the patch for

better classification.

We collect a new set of stable and non stable patches from recent Linux main-

line versions and stable versions. This new dataset contains 48,920 patches. To

investigate the potential benefit of using CNN, we compare the performance of the

CNN-based approach and the LPU+SVM based approach proposed in Chapter 4 by

asking maintainers of Linux stable versions to label our results. Our results show

that the CNN-based approach performs similar to the LPU+SVM approach, and it

does not require any hand-crafted features. This comparison indicates that future

customization of the current CNN-based approach might be considered by other

researchers for better identification of stable related patches.

112

Chapter 6

Related Work

In this chapter, we introduce related studies on mining software repositories for bug

management and applying deep learning techniques on software engineering tasks.

We also describe how these studies are related to the work presented in this thesis.

6.1 Duplicate Bug Report Detection

A number of approaches have been proposed to detect duplicate bug reports. Many

of these approaches rely on a good similarity measure to find bug reports that are

close to one another. These include work by Runeson et al. [75], Wang et al. [105],

Jalbert and Weimer [29], Sun et al. [85, 86], and many more.

These studies represent a bug report as a vector of feature values extracted from

the various fields of the bug report. These vectors of feature values are then com-

pared with one another and a similarity score is computed. All of these studies

consider the textual description available in bug reports. Many of them make use

of the concepts of term frequency and inverse document frequency to determine

the importance of the word tokens appearing in bug reports. The work by Wang

et al. [105] considers execution traces in addition to words in the bug reports; they

have shown that execution traces, if present in bug reports, could be used to detect

duplicate bug reports accurately. The work by Jalbert and Weimer [29] and Sun et

113

al. [85] consider other non-textual fields in a bug report, e.g., the product that is

impacted by the bug, etc., to measure the similarity of two bug reports.

Users of software systems may report bugs that are already present in the bug

tracking system, since bug reporting is an uncoordinated and distributed process.

These duplicates need to be manually labeled as such during the bug triage process,

which takes considerable human effort and time. A number of automated duplicate

bug report detection approaches have thus been proposed [75, 85, 86, 105]. Given a

new bug report, these approaches return a list of previously reported bugs which are

similar to the new report. Runeson et al. extract words from the bug report descrip-

tion and summary fields and use cosine, dice, and jaccard similarity to measure the

similarity of reports [75]. Sun et al. consider not only text in bug reports, but also

many other non-textual fields in the bug reports, e.g., product, etc., to capture degree

of relevance between two bug reports [85, 86]. They propose a machine learning

approach and extend a variant of BM25 to retrieve duplicate reports. Wang et al. en-

rich textual information from bug reports with execution traces to more accurately

detect duplicate bug reports [105].

Relation to this thesis: In our automated bug prioritization approach (proposed in

Chapter 2), we analyze multiple factors that might impact the priority level of a

bug report, which include the priority levels of similar bugs, i.e., the related-report

factor. For the related-report factor, we capture the mean and median priority of the

top-k reports as measure using REP−. REP− is a bug report similarity measure

adapted from the studies by Sun et al. [85] – described in Section 2.2.

6.2 Bug Severity and Priority Prediction

Menzies and Marcus were the first to predict the severity of bug reports [56]. They

analyze the severity labels of various bugs reported in NASA. They propose a tech-

nique that analyzes the textual contents of bug reports and outputs fine-grained

severity levels – one of the 5 severity labels used in NASA. Their approach extracts

114

word tokens from the description of the bug reports. These word tokens are then

pre-processed by removing stop words and performing stemming. Important word

tokens are then selected based on their information gain. Top-k tokens are then used

as features to characterize each bug report. The set of feature vectors from the train-

ing data is then fed into a classification algorithm named RIPPER [11]. RIPPER

learns a set of rules that are then used to classify future bug reports with unknown

severity labels.

Lamkanfi et al. extend the work by Menzies and Marcus to predict severity

levels of reports in open source bug repositories [41]. Their technique predicts if

a bug report is severe or not. Bugzilla has six severity labels including blocker,

critical, major, normal, minor, and trivial. They drop bug reports

belonging to the category normal because normal is the default severity level.

The remaining five categories are grouped into two groups – severe and non-severe.

The severe group includes blocker, critical and major. The non-severe

group includes minor and trivial. Thus, they focus on the prediction of coarse-

grained severity labels.

Extending their prior work, Lamkanfi et al. also try out various classification

algorithms and investigate their effectiveness in predicting the severity of bug re-

ports [42]. They tried a number of classifiers, including Naive Bayes, Naive Bayes

Multinomial, 1-Nearest Neighbor, and SVM. They find that Naive Bayes Multino-

mial perform the best among the four algorithms on a dataset consisting of 29,204

bug reports.

Recently, Tian et al. also predict the severity of bug reports by utilizing a nearest

neighbor approach to predict fine-grained bug report labels [97]. Different from the

work by Menzies and Marcus which analyzes a collection of bug reports in NASA,

Tian et al. apply the solution on a larger collection of bug reports consisting of more

than 65,000 Bugzilla reports.

Khomh et al. automatically assign priorities to Firefox crash reports in Mozilla

Socorro server based on the frequency and entropy of the crashes [34]. A crash

115

report is automatically submitted to the Socorro server when Firefox fails and it

contains a stack trace and information about the environment to help developers

debug the crash.

Relation to this thesis: In Chapter 2, we proposed an automated bug prioritiza-

tion approach for bug reports that are manually submitted by users. Different from

a crash report, a bug report contains natural language descriptions of a bug and

might not contain any stack trace or environment information. Thus, different from

Khomh et al.s approach, we employ a text mining based solution to assign prior-

ities to bug reports. Bug prioritization is orthogonal to the above studies on bug

severity label prediction. Severity labels are reported by users, while priority levels

are assigned by developers. Severity labels correspond to the impact of the bug on

the software system as perceived by users while priority levels correspond to the

importance “a developer places on fixing the bug” in the view of other bug reports

that are received (Eclipse 2012).

6.3 Bug Report Assignee Recommendation

Studies on bug assignee recommendation can be categorized into two groups based

on their underlying mechanism: activity-based [4, 60] and location-based ap-

proaches [26, 50, 82].

A number of activity-based bug assignee recommendation approaches have been

presented in the literature. For example, Cubranic and Murphy collect features

from the description and summary fields of bug report and build a Naive Bayes

classifier for determining the similarity between the expertise of a developer and a

new bug report [60]. Later, Anvik and Murphy compare the performance of various

machine learning techniques for automatic bug report assignee recommendation

task [4], and show that the Support Vector Machine (SVM) classifier performs the

best among several commonly-used classifiers. Most of these approaches use term-

weighting techniques, such as term frequency-inverse document frequency (tf-idf),

116

to determine the value of word features.

Similarly, a number of location-based bug assignee recommendation approaches

have been presented in the literature. For example, Linares-Vasquez et al. used La-

tent Semantic Indexing (LSI) to first locate potential source files related to a change

request and then recommend developers using authorship information in the corre-

sponding source files [50]. Later, Hossen et al. extend Linares-Vasquez et al.’s work

by adding more information, i.e., maintainers of relevant source code and change

proneness of source code [26]. Shokripour et al. propose a two-phase location-based

approach to leverage multiple information sources including identifiers and com-

ments in source code files, commit messages, and previous fixed bug reports [82].

Relation to this thesis: Both activity-based and location-based bug assignee recom-

mendation approaches have advantages and disadvantages. In this thesis, we com-

bine the two to build a unified bug assignee recommendation model. This model is

presented in Chapter 3. Our experimental results also show that our unified model

performs the best when compared to a location-based baseline by Anvik et al. [4]

and an activity-based baseline by Shokripour et al. [82].

6.4 IR-based Bug Localization

Bug localization, which locates source files potentially responsible for the bugs re-

ported in bug reports, is an important but costly activity in software maintenance.

Most existing approaches treat the source files as documents and formalize the bug

localization problem as a document retrieval problem. Various models have been

constructed to compute the similarity or relevancy between the bug reports and the

source files. Many information retrieval based bug localization methods have been

proposed [21, 52, 69, 111, 112].

Poshyvanyk et al. propose a feature location model to mine buggy files based

on a Latent Semantic Indexing (LSI) model, which can identify the relationship

between reports and terms based on Singular Value Decomposition (SVD) [69].

117

Lukins et al. apply a generative probabilistic model, i.e., the Latent Dirichlet Al-

location (LDA) model, to model how source code files are generated from words

through topics [52]. Given a bug report, their approach applies the LDA model

learned from source code to calculate the probability of generating the bug report

from a source code file. The code files that are more likely to generate the bug

report are returned as the buggy files. Gay et al. [21] employ the Vector Space

Model (VSM) based on concept localization to represent bug reports and source

code files as feature vectors, which are used to measure the similarity between bug

reports and source files. Zhou et al. [112] propose BugLocator using a revised Vec-

tor Space Model (rVSM), which is based on document length and similar bugs that

have been resolved before as new features. Lam et al. [40] employ auto encoder to

learn features that correlate the frequently occurred terms in bug reports and source

files in order to enhance the bag-of-words features. Recently, Ye et al. propose an

approach that combines multiple ranking features leveraging learning-to-rank tech-

nique [111]. These features include surface lexical similarity, API-enriched lexical

similarity, collaborative filtering, class name similarity, etc.

Concern localization is another line of work that is related to IR-based bug lo-

calization [18, 45, 103]. Many concern localization approaches could be applied

for locating bug reports, as their fundamental assumption is the same as that of IR-

based bug localization, i.e., treating concern localization as an information retrieval

task.

Relation to this thesis: In our automated bug assignment approach (proposed in

Chapter 3), we consider four location-based features. These features are calculated

based on the output of a bug localization approach. And we take the latest approach

proposed by Ye at al. [111]. Similar to Ye et al., our automated bug assignment

approach also adopts the learning-to-rank technique, as it could nicely combine

various metrics for measuring the similarity between a bug and a developer.

118

6.5 Identification of Bug Fixing Patches

Bird et al. have observed that the lack of clearly identified bug fixing patches it-

self has caused potential bias in many prior studies [6]. A number of studies have

searched for keywords such as “bug” and “fix” in log messages to identify bug fixing

commits [16, 35, 57, 83].

There are two other studies that are related to bug fixing patches identification.

Wu et al. propose ReLink which links bug reports to their associated commits [108].

ReLink only captures tracked bugs; bugs described only in mailing lists, etc. are

mentioned as future work. Our work considers a different problem and does not

require the availability of bug reports, which may be absent or incomplete. Bird et

al. propose Linkster which integrates information from various sources to support

manual link recovery [7].

Relate to this thesis: In Chapter 4, we mention that keyword based approaches are

not sufficient because not all bug fixing commit messages include the pre-defined

keywords. Our approach in Chapter 4 addresses such limitation by automatically

inferring keywords that are good at discriminating bug fixing patches from other

commits. Furthermore, we consider not only commit logs, but also some features

extracted from the changes made to the source code. We then built a discriminative

machine learning model (i.e., LPU+SVM based approach) that is used to classify

commits as either bug fixing or not. In Chapter 5, we propose another convolutional

neural network (CNN) based approach to identify bug fixing patches that should be

considered in the Linux stable versions. Beside the new approach, we invited real

practitioners to evaluate the performance of both our CNN-based and LPU+SVM

based approaches. Such evaluation setting is never considered in any prior related

studies.

119

6.6 Deep Learning in Software Engineering

Deep learning, as a powerful representation learning technique, after finding success

in Natural Language Processing (NLP) and Computer Vision (CV) field, has been

recently applied to solve software engineering tasks. These tasks including defect

prediction [101], bug localization [33], program representation learning [66, 59],

summarizing code using natural language [28], program synthesis [49], program

inductions [23, 39]. In these applications, the authors either leverage standard types

of neural networks or design their own neural networks for specific tasks.

Relation to this thesis: Similar to the above approaches, we leverage a convolu-

tional neural network to learn a better representation of a patch that could contribute

to the identification of bug fixing patch in Chapter 5. Such an application has not

been done by any prior work.

120

Chapter 7

Conclusion and Future Work

7.1 Conclusion and Contributions

Due to system complexity and inadequate testing, modern software systems are of-

ten released with bugs. The bug resolving process plays an important role in the

development and evolution of software systems, so as to improve the quality of

software systems until the next release. Every day developers could collect a con-

siderable number of bugs from users and testers. To help developers effectively

address and manage these bugs, bug tracking systems such as Bugzilla and JIRA

are adopted to manage the life cycle of a bug through bug report. These bug reposi-

tories, and their linked code corpus, contain a wealth of valuable information. Such

information could be mined to automate bug management process and thus save

developers time and effort.

This thesis focuses on two stages in the life of a bug, i.e., the bug triaging stage

before developer starts fixing a bug, and the patch backporting stage after a bug

has been fixed by a developer through a patch. We aim to automate two specific

tasks happen in the bug triaging stage, i.e., bug prioritization and bug assignment.

Detailed proposed approaches were presented in Chapters 2 and 3, respectively. For

the patch backporting stage, we aim to automate one task, i.e., bug fixing patch

identification for stable versions. We propose two approaches, one is based on

121

LPU (Learning from Positive and Unlabeled Examples) +SVM (Support Vector

Machine) and hand-crafted features, and the other is based on Convolutional Neural

Networks (CNN). The corresponding approaches are presented in Chapter 4 and 5,

respectively.

The contributions of this thesis are:

1. We propose the new problem of predicting the priority of a bug given its

report. Past studies on bug report analysis have only considered the problem

of predicting the severity of bug reports, which is an orthogonal problem.

2. We predict priority by proposing a new machine learning framework, named

DRONE. DRONE considers various factors (i.e., temporal, textual,

author, related-report, severity, and product) that potentially

affect the priority level of a bug report. DRONE also contains a new classifi-

cation engine, named GRAY, that enhances linear regression with threshold-

ing to handle imbalanced data. We have experimented with our solution on

more than a hundred thousand bug reports from Eclipse to evaluate its ability

to support developers in assigning priority levels to bug reports. The results

show that DRONE can outperform a baseline approach, built by adapting a

bug report severity prediction algorithm, in terms of average F-measure, by a

relative improvement of up to 209%.

3. We propose a unified model to predict the assignee of a new bug report based

on the learning to rank machine learning algorithm. This unified model lever-

ages information from both developers’ activities and the result of bug report

localization, thus the model integrates activity-based and location-based bug

assignee recommendation approaches. Experimental results on more than

11,000 bugs from three open source projects show that combining location-

based features and activity-based features through the learning to rank tech-

nique can improve the performance over using only one type of feature.

122

4. We identify the new problem of finding bug fixing patches to be integrated

into a Linux “longterm” release.

5. We propose a LPU+SVM based approach to identifying bug fixing patches

leveraging both textual and hand-crafted code features. The approach is based

on two machine learning techniques, LPU and SVM. We combine these tech-

niques to address the problem of unavailability of a clean negative dataset

(i.e., non bug fixing patches). We have evaluated our approach on commits

in Linux and show that our approach can improve on the keyword-based ap-

proach by up to 45.11% recall while maintaining similar precision.

6. We propose a Convolutional Neural Network (CNN) based approach to auto-

matically identify patches for stable versions. The CNN-based approach does

not require hand-crafted features. We compare the performance of the CNN-

based approach with the LPU+SVM based approach on a larger set of recent

Linux patches. The evaluation is under the help of maintainers of Linux sta-

ble versions. Our experimental results show that new CNN-based approach

achieves a similar performance compared to the LPU+SVM based approach.

7.2 Future Work

7.2.1 As Completion of Previous Studies

Bug Prioritization

Our approach (see Chapter 2) might suffer from the cold start problem when ap-

plied on new/small projects because it might be hard to collect enough training

data for learning an effective prediction model. To mitigate this cold start prob-

lem, I would like to apply transfer learning techniques, which allow the domains,

tasks, and distributions used in training and testing to be different, thus general fea-

tures/knowledge could be learned from large project and contribute to prediction

123

on new/small projects. A similar idea has been applied to predict defects among

multiple projects [109].

Bug Assignment

Our approach (see Chapter 3) takes output from the bug localization task as input

for extracting location-based features. However, bug localization techniques keep

evolving and their performance might impact the result of our unified model. Thus,

as a future work, I would like to investigate impact of bug localization technique

on our model and possibility of integrating code authorship and bug localization

information directly in the bug assignment model.

Identification of Stable Release Related Patches

We have tried both hand-crafted features with a modified classifier (LPU+SVM, see

Chapter 4) and a Convolutional Neural Network (CNN) based approach (see Chap-

ter 5) to retrieve patches for Linux stable versions. Our results show the potential of

catching missing stable patches by both approaches, based on our evaluation with

real practitioners. We also find that the CNN-based approach could not improve on

the performance of the LPU+SVM based approach. In the future, we plan to design

a more complex representation for a patch. We plan to start by asking practitioners

questions such as “what do you look for when manually identifying stable related

patches?”.

7.2.2 Others

A Joint Model for Automated Bug Management

In this thesis, we have automated three bug management tasks individually. How-

ever, in practice, some of the bug management tasks could be considered together.

For instance, a more general goal is, given a bug report with some fields are known,

automatically recommend values for the other fields for facilitating developers in

reproducing/fixing the bug. To achieve this goal, a joint model for bug field value

generating process could be learned from historical bug reports. Ideally, this joint

124

model could simultaneously provide predictions/recommendations to multiple la-

bels of a bug, such as duplicate, assignee, and priority, given various information,

such as the description of the bug and other available information, when the bug is

reported.

Automated Bug Management Outside Bug Tracking System

In this thesis, we mine information mostly from bug tracking systems. However,

many bug management processes do not exist in bug tracking systems. For instance,

many Github projects encourage contribution of a bug-fix using GitHub’s Pull Re-

quest work flow. In other case, discussion about bugs maybe stored in the archives

of mailing lists. In such cases, how to better manage bugs is a new challenge fac-

ing developers, especially open source project developers Thus, we are considering

how to adapt our automation techniques to other types of bug repositories besides

traditional bug tracking systems.

Mining Bug Fixing Behavior

In this thesis, we mine software repositories to automate software engineering tasks.

But mining software repositories, especially bug tracking system, could also im-

prove software quality by supporting developers in the bug fixing process. Such

support for bug fixing could have various forms, such as summarizing the bug fix-

ing process given a resolved bug. The summarization could include the linkage

between the bug symptom and the bug cause, as well as the linkage between the

bug cause and the bug fix pattern.

125

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[2] H. Abdi. The kendall rank correlation coefficient. Encyclopedia of Measurement and
Statistics. Sage, Thousand Oaks, CA, pages 508–510, 2007.

[3] P. Achananuparp, I. N. Lubis, Y. Tian, D. Lo, and E.-P. Lim. Observatory of trends
in software related microblogs. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pages 334–337. ACM, 2012.

[4] J. Anvik and G. C. Murphy. Reducing the effort of bug report triage: Recommenders
for development-oriented decisions. ACM Transactions on Software Engineering and
Methodology (TOSEM), 20(3):10, 2011.

[5] A. Bachmann and A. Bernstein. Software process data quality and characteristics: a
historical view on open and closed source projects. In Proceedings of the joint inter-
national and annual ERCIM workshops on Principles of software evolution (IWPSE)
and software evolution (Evol) workshops, pages 119–128, 2009.

[6] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and P. Devanbu.
Fair and balanced?: bias in bug-fix datasets. In Proceedings of the the 7th joint
meeting of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pages 121–130. ACM, 2009.

[7] C. Bird, A. Bachmann, F. Rahman, and A. Bernstein. Linkster: enabling efficient
manual inspection and annotation of mined data. In Proceedings of the eighteenth
ACM SIGSOFT international symposium on Foundations of software engineering,
pages 369–370. ACM, 2010.

[8] C. Cadar, D. Dunbar, D. R. Engler, et al. Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In OSDI, volume 8, pages
209–224, 2008.

[9] Y.-W. Chang and C.-J. Lin. Feature ranking using linear svm. In WCCI Causation
and Prediction Challenge, pages 53–64, 2008.

[10] Y.-W. Chen and C.-J. Lin. Combining svms with various feature selection strategies.
In Feature extraction, pages 315–324. Springer, 2006.

126

[11] W. W. Cohen. Fast effective rule induction. In ICML, 1995.

[12] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Nat-
ural language processing (almost) from scratch. Journal of Machine Learning Re-
search, 12(Aug):2493–2537, 2011.

[13] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–
297, 1995.

[14] T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley & Sons,
2012.

[15] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research, 2, 2001.

[16] V. Dallmeier and T. Zimmermann. Extraction of bug localization benchmarks from
history. In Proceedings of the twenty-second IEEE/ACM international conference on
Automated software engineering, pages 433–436. ACM, 2007.

[17] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. In-
dexing by latent semantic analysis. Journal of the American society for information
science, 41(6):391, 1990.

[18] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature location in source code:
a taxonomy and survey. Journal of Software: Evolution and Process, 25(1):53–95,
2013.

[19] R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley Interscience, 2000.

[20] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus. Fine-grained
and accurate source code differencing. In Proceedings of the 29th ACM/IEEE in-
ternational conference on Automated software engineering, pages 313–324. ACM,
2014.

[21] G. Gay, S. Haiduc, A. Marcus, and T. Menzies. On the use of relevance feedback
in ir-based concept location. In Software Maintenance, 2009. ICSM 2009. IEEE
International Conference on, pages 351–360. IEEE, 2009.

[22] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent
neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee
international conference on, pages 6645–6649. IEEE, 2013.

[23] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

[24] L. Hiew. Assisted detection of duplicate bug reports. PhD thesis, The University Of
British Columbia, 2006.

[25] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580, 2012.

[26] M. K. Hossen, H. Kagdi, and D. Poshyvanyk. Amalgamating source code authors,
maintainers, and change proneness to triage change requests. In Proceedings of the
22nd International Conference on Program Comprehension, pages 130–141, 2014.

127

[27] X. Huo, M. Li, and Z. Zhou. Learning unified features from natural and program-
ming languages for locating buggy source code. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY,
USA, 9-15 July 2016, pages 1606–1612, 2016.

[28] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer. Summarizing source code using a
neural attention model. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics, volume 1, pages 2073–2083.

[29] N. Jalbert and W. Weimer. Automated duplicate detection for bug tracking systems.
In DSN, 2008.

[30] W. Jin and A. Orso. F3: fault localization for field failures. In Proceedings of the
2013 International Symposium on Software Testing and Analysis, pages 213–223.
ACM, 2013.

[31] K. S. Jones. Readings in information retrieval. Morgan Kaufmann, 1997.

[32] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A convolutional neural network
for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.

[33] S. Kambhampati, editor. Proceedings of the Twenty-Fifth International Joint Con-
ference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016.
IJCAI/AAAI Press, 2016.

[34] F. Khomh, B. Chan, Y. Zou, and A. E. Hassan. An entropy evaluation approach for
triaging field crashes: A case study of mozilla firefox. In WCRE, 2011.

[35] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller. Predicting faults from
cached history. In Proceedings of the 29th international conference on Software
Engineering, pages 489–498. IEEE Computer Society, 2007.

[36] Y. Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

[37] P. S. Kochhar, Y. Tian, and D. Lo. Potential biases in bug localization: Do they mat-
ter? In Proceedings of the 29th ACM/IEEE international conference on Automated
software engineering, pages 803–814, 2014.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

[39] K. Kurach, M. Andrychowicz, and I. Sutskever. Neural random-access machines.
arXiv preprint arXiv:1511.06392, 2015.

[40] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. Combining deep learn-
ing with information retrieval to localize buggy files for bug reports (n). In Auto-
mated Software Engineering (ASE), 2015 30th IEEE/ACM International Conference
on, pages 476–481. IEEE, 2015.

[41] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals. Predicting the severity of a
reported bug. In MSR, 2010.

[42] A. Lamkanfi, S. Demeyer, Q. Soetens, and T. Verdonck. Comparing mining algo-
rithms for predicting the severity of a reported bug. In CSMR, 2011.

128

[43] J. L. Lawall, J. Brunel, N. Palix, R. R. Hansen, H. Stuart, and G. Muller. Wysiwib:
A declarative approach to finding api protocols and bugs in linux code. In 2009
IEEE/IFIP International Conference on Dependable Systems & Networks, pages 43–
52. IEEE, 2009.

[44] T. B. Le, R. J. Oentaryo, and D. Lo. Information retrieval and spectrum based bug lo-
calization: better together. In Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - Septem-
ber 4, 2015, pages 579–590, 2015.

[45] T.-D. B. Le, S. Wang, and D. Lo. Multi-abstraction concern localization. In Software
Maintenance (ICSM), 2013 29th IEEE International Conference on, pages 364–367.
IEEE, 2013.

[46] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[47] C.-P. Lee and C.-b. Lin. Large-scale linear ranksvm. Neural computation, 26(4):781–
817, 2014.

[48] X. Li and B. Liu. Learning to classify texts using positive and unlabeled data. In
IJCAI, volume 3, pages 587–592, 2003.

[49] X. V. Lin, C. Wang, D. Pang, K. Vu, L. Zettlemoyer, and M. D. Ernst. Program
synthesis from natural language using recurrent neural networks. Technical Report
UW-CSE-17-03-01, University of Washington Department of Computer Science and
Engineering, Seattle, WA, USA, Mar. 2017.

[50] M. Linares-Vásquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and D. Poshy-
vanyk. Triaging incoming change requests: Bug or commit history, or code author-
ship? In Software Maintenance (ICSM), 2012 28th IEEE International Conference
on, 2012.

[51] T.-Y. Liu. Learning to rank for information retrieval. Foundations and Trends in
Information Retrieval, 3(3):225–331, 2009.

[52] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Source code retrieval for bug localiza-
tion using latent dirichlet allocation. In 2008 15th Working Conference on Reverse
Engineering, pages 155–164. IEEE, 2008.

[53] D. MacKenzie, P. Eggert, and R. Stallman. Comparing and Merging Files with GNU
diff and patch. Network Theory Ltd., 2003.

[54] C. D. Manning, P. Raghavan, and H. Schtze. Introduction to Information Retrieval.
Cambridge University Press, 2008.

[55] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An information retrieval ap-
proach to concept location in source code. In Reverse Engineering, 2004. Proceed-
ings. 11th Working Conference on, pages 214–223. IEEE, 2004.

[56] T. Menzies and A. Marcus. Automated severity assessment of software defect re-
ports. In ICSM, 2008.

[57] A. Mockus and L. G. Votta. Identifying reasons for software changes using historic
databases. In Software Maintenance, 2000. Proceedings. International Conference
on, pages 120–130. IEEE, 2000.

129

[58] L. Moreno, J. J. Treadway, A. Marcus, and W. Shen. On the use of stack traces to
improve text retrieval-based bug localization. In 30th IEEE International Confer-
ence on Software Maintenance and Evolution, Victoria, BC, Canada, September 29
- October 3, 2014, pages 151–160, 2014.

[59] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin. Convolutional neural networks over
tree structures for programming language processing. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, pages 1287–1293. AAAI Press, 2016.

[60] G. Murphy and D. Cubranic. Automatic bug triage using text categorization. In
Proceedings of the Sixteenth International Conference on Software Engineering &
Knowledge Engineering. Citeseer, 2004.

[61] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun. Duplicate bug report
detection with a combination of information retrieval and topic modeling. In ASE,
2012.

[62] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N. Nguyen. Recur-
ring bug fixes in object-oriented programs. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1, pages 315–324. ACM,
2010.

[63] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Documenting and automating
collateral evolutions in linux device drivers. In ACM SIGOPS Operating Systems
Review, volume 42, pages 247–260. ACM, 2008.

[64] Y. Padioleau, J. L. Lawall, and G. Muller. Understanding collateral evolution in
linux device drivers. In ACM SIGOPS Operating Systems Review, volume 40, pages
59–71. ACM, 2006.

[65] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller. Faults in linux:
ten years later. In ACM SIGPLAN Notices, volume 46, pages 305–318. ACM, 2011.

[66] H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang, and Z. Jin. Building program vector rep-
resentations for deep learning. In International Conference on Knowledge Science,
Engineering and Management, pages 547–553. Springer, 2015.

[67] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word repre-
sentation. In EMNLP, volume 14, pages 1532–1543, 2014.

[68] 2011. www.ils.unc.edu/∼keyeg/java/porter/PorterStemmer.java.

[69] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich. Feature
location using probabilistic ranking of methods based on execution scenarios and
information retrieval. IEEE Transactions on Software Engineering, 33(6):420–432,
2007.

[70] M. Pradel and T. R. Gross. Leveraging test generation and specification mining for
automated bug detection without false positives. In 2012 34th International Confer-
ence on Software Engineering (ICSE), pages 288–298. IEEE, 2012.

[71] P. K. Prasetyo, D. Lo, P. Achananuparp, Y. Tian, and E.-P. Lim. Automatic classifi-
cation of software related microblogs. In Software Maintenance (ICSM), 2012 28th
IEEE International Conference on, pages 596–599. IEEE, 2012.

130

[72] T. Qin, T.-Y. Liu, X.-D. Zhang, D.-S. Wang, W.-Y. Xiong, and H. Li. Learning to
rank relational objects and its application to web search. In Proceedings of the 17th
international conference on World Wide Web, pages 407–416, 2008.

[73] S. Rao and A. Kak. Retrieval from software libraries for bug localization: a compar-
ative study of generic and composite text models. In Proceedings of the 8th Working
Conference on Mining Software Repositories, pages 43–52. ACM, 2011.

[74] S. Robertson, H. Zaragoza, and M. Taylor. Simple bm25 extension to multiple
weighted fields. In Proceedings of the thirteenth ACM international conference on
Information and knowledge management, pages 42–49, 2004.

[75] P. Runeson, M. Alexandersson, and O. Nyholm. Detection of duplicate defect reports
using natural language processing. In Software Engineering, 2007. ICSE 2007. 29th
International Conference on, pages 499–510, 2007.

[76] H. Schütze. Introduction to information retrieval. In Proceedings of the international
communication of association for computing machinery conference, 2008.

[77] K. Sen. Dart: Directed automated random testing. In Haifa Verification Conference,
volume 6405, page 4, 2009.

[78] A. Sharma, Y. Tian, and D. Lo. Nirmal: Automatic identification of software relevant
tweets leveraging language model. In Software Analysis, Evolution and Reengineer-
ing (SANER), 2015 IEEE 22nd International Conference on, pages 449–458. IEEE,
2015.

[79] A. Sharma, Y. Tian, and D. Lo. What’s hot in software engineering twitter space? In
Software Maintenance and Evolution (ICSME), 2015 IEEE International Conference
on, pages 541–545. IEEE, 2015.

[80] A. Sharma, Y. Tian, A. Sulistya, D. Lo, and A. F. Yamashita. Harnessing twitter to
support serendipitous learning of developers. In Software Analysis, Evolution and
Reengineering (SANER), 2017 IEEE 24th International Conference on, pages 387–
391. IEEE, 2017.

[81] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. Learning semantic representations
using convolutional neural networks for web search. In Proceedings of the 23rd
International Conference on World Wide Web, pages 373–374. ACM, 2014.

[82] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani. Why so complicated? simple
term filtering and weighting for location-based bug report assignment recommenda-
tion. In Proceedings of the 10th Working Conference on Mining Software Reposito-
ries, pages 2–11, 2013.

[83] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes? In ACM
sigsoft software engineering notes, volume 30, pages 1–5. ACM, 2005.

[84] K. Small, B. Wallace, T. Trikalinos, and C. E. Brodley. The constrained weight
space svm: learning with ranked features. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages 865–872, 2011.

[85] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang. Towards more accurate retrieval of duplicate
bug reports. In Proceedings of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, pages 253–262, 2011.

131

[86] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo. A discriminative model approach
for accurate duplicate bug report retrieval. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1, pages 45–54, 2010.

[87] D. Surian, Y. Tian, D. Lo, H. Cheng, and E.-P. Lim. Predicting project outcome lever-
aging socio-technical network patterns. In Software Maintenance and Reengineering
(CSMR), 2013 17th European Conference on, pages 47–56. IEEE, 2013.

[88] 2011. http://svmlight.joachims.org/svm multiclass.html.

[89] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen. Fuzzy set and cache-
based approach for bug triaging. In Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software engineering,
pages 365–375, 2011.

[90] Y. Tian, P. Achananuparp, I. N. Lubis, D. Lo, and E.-P. Lim. What does software
engineering community microblog about? In Mining Software Repositories (MSR),
2012 9th IEEE Working Conference on, pages 247–250. IEEE, 2012.

[91] Y. Tian, N. Ali, D. Lo, and A. E. Hassan. On the unreliability of bug severity data.
Empirical Software Engineering, 21(6):2298–2323, 2016.

[92] Y. Tian, P. S. Kochhar, and D. Lo. An exploratory study of functionality and learning
resources of web apis on programmableweb. In International Conference Evaluation
and Assessment in Software Engineering, 2017.

[93] Y. Tian and D. Lo. Leveraging web 2.0 for software evolution. In Evolving Software
Systems, pages 163–197. Springer, 2014.

[94] Y. Tian and D. Lo. A comparative study on the effectiveness of part-of-speech tag-
ging techniques on bug reports. In Software Analysis, Evolution and Reengineer-
ing (SANER), 2015 IEEE 22nd International Conference on, pages 570–574. IEEE,
2015.

[95] Y. Tian, D. Lo, and J. Lawall. Automated construction of a software-specific word
similarity database. In Software Maintenance, Reengineering and Reverse Engineer-
ing (CSMR-WCRE), 2014 Software Evolution Week-IEEE Conference on, pages 44–
53. IEEE, 2014.

[96] Y. Tian, D. Lo, and J. Lawall. Sewordsim: Software-specific word similarity
database. In Companion Proceedings of the 36th International Conference on Soft-
ware Engineering, pages 568–571. ACM, 2014.

[97] Y. Tian, D. Lo, and C. Sun. Information retrieval based nearest neighbor classification
for fine-grained bug severity prediction. In WCRE, 2012.

[98] Y. Tian, M. Nagappan, D. Lo, and A. E. Hassan. What are the characteristics of high-
rated apps? a case study on free android applications. In Software Maintenance and
Evolution (ICSME), 2015 IEEE International Conference on, pages 301–310. IEEE,
2015.

[99] Y. Tian, C. Sun, and D. Lo. Improved duplicate bug report identification. In Software
Maintenance and Reengineering (CSMR), 2012 16th European Conference on, pages
385–390. IEEE, 2012.

132

[100] J.-M. Torres-Moreno. Automatic text summarization. John Wiley & Sons, 2014.

[101] S. Wang, T. Liu, and L. Tan. Automatically learning semantic features for defect
prediction. In Proceedings of the 38th International Conference on Software Engi-
neering, pages 297–308. ACM, 2016.

[102] S. Wang, D. Lo, and J. Lawall. Compositional vector space models for improved bug
localization. In 30th IEEE International Conference on Software Maintenance and
Evolution, Victoria, BC, Canada, September 29 - October 3, 2014, pages 171–180,
2014.

[103] S. Wang, D. Lo, Z. Xing, and L. Jiang. Concern localization using information
retrieval: An empirical study on linux kernel. In 2011 18th Working Conference on
Reverse Engineering, pages 92–96. IEEE, 2011.

[104] X. Wang, D. Lo, X. Xia, X. Wang, P. S. Kochhar, Y. Tian, X. Yang, S. Li, J. Sun,
and B. Zhou. Boat: an experimental platform for researchers to comparatively and
reproducibly evaluate bug localization techniques. In Companion Proceedings of
the 36th International Conference on Software Engineering, pages 572–575. ACM,
2014.

[105] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach to detecting duplicate
bug reports using natural language and execution information. In Proceedings of the
30th international conference on Software engineering, pages 461–470, 2008.

[106] http://www.cs.waikato.ac.nz/ml/weka/. Weka 3: Data Mining Software, 2011.

[107] C. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei. Boosting bug-
report-oriented fault localization with segmentation and stack-trace analysis. In 30th
IEEE International Conference on Software Maintenance and Evolution, Victoria,
BC, Canada, September 29 - October 3, 2014, pages 181–190, 2014.

[108] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung. Relink: recovering links between bugs
and changes. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, pages 15–25, 2011.

[109] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang. Hydra: Massively compo-
sitional model for cross-project defect prediction. IEEE Transactions on Software
Engineering, 42(10):977–998, 2016.

[110] X. Xuan, D. Lo, X. Xia, and Y. Tian. Evaluating defect prediction approaches using a
massive set of metrics: An empirical study. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing, pages 1644–1647. ACM, 2015.

[111] X. Ye, R. C. Bunescu, and C. Liu. Learning to rank relevant files for bug reports
using domain knowledge. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, (FSE-22), Hong Kong, China,
November 16 - 22, 2014, pages 689–699, 2014.

[112] J. Zhou, H. Zhang, and D. Lo. Where should the bugs be fixed? more accurate
information retrieval-based bug localization based on bug reports. In 2012 34th In-
ternational Conference on Software Engineering (ICSE), pages 14–24. IEEE, 2012.

133

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	5-2017

	Mining software repositories for automatic software bug management from bug triaging to patch backporting
	Yuan TIAN
	Citation

	1 Introduction and Overview
	1.1 The Life Cycle of a Bug
	1.2 Mining Software Repositories
	1.3 Outline and Overview
	1.4 Acknowledgment of Published Work

	2 Automated Bug Prioritization via Multi-Factor Analysis
	2.1 Introduction
	2.2 Background
	2.2.1 Text Pre-processing
	2.2.2 Measuring the Similarity of Bug Reports

	2.3 Problem Definition & Approach
	2.3.1 Problem Definition
	2.3.2 Approach: Overall Framework
	2.3.3 Feature Extraction Module
	2.3.4 Classification Module

	2.4 Evaluation
	2.4.1 Definition of Scenarios
	2.4.2 Dataset Collection
	2.4.3 Baseline Approaches
	2.4.4 Evaluation Measures
	2.4.5 Research Questions

	2.5 Evaluation Results & Discussion
	2.5.1 Results for Scenario ``Last''
	2.5.2 Results for Scenario ``Assigned''
	2.5.3 Results for Scenario ``First''
	2.5.4 Results for Scenario ``No-P3''
	2.5.5 Threats to Validity

	2.6 Chapter Conclusion

	3 Learning-to-Rank for Automatic Bug Assignment
	3.1 Introduction
	3.2 Background
	3.2.1 Activity-based Bug Assignee Recommendation
	3.2.2 Location-based Bug Assignee Recommendation

	3.3 Approach
	3.3.1 Overall Framework
	3.3.2 Dataset Collection and Text Pre-processing
	3.3.3 Extraction of Activity-Based Features
	3.3.4 Extraction of Location-Based Features

	3.4 Evaluation
	3.4.1 Research Questions
	3.4.2 Dataset
	3.4.3 Experiment Setup and Evaluation Metrics

	3.5 Evaluation Results & Discussion
	3.5.1 Activity-Based Features vs. Location-Based Features vs. All Features.
	3.5.2 Our Unified Model Vs Baselines
	3.5.3 Importance of Features
	3.5.4 Threats to Validity

	3.6 Chapter Conclusion

	4 Identifying Linux Bug Fixing Patches
	4.1 Introduction
	4.2 Background
	4.3 Approach
	4.3.1 Data Acquisition
	4.3.2 Feature Extraction
	4.3.3 Model Learning
	4.3.4 Bug Fix Identification

	4.4 Evaluation
	4.4.1 Dataset
	4.4.2 Research Questions & Evaluation Metrics

	4.5 Evaluation Results & Discussion
	4.5.1 Effectiveness of Our Approach
	4.5.2 Effects of Varying Parameter k
	4.5.3 Best Features
	4.5.4 Our Approach versus LPU
	4.5.5 Threats to Validity

	4.6 Chapter Conclusion

	5 Identifying Patches for Linux Stable Versions: Could Convolutional Neural Networks Do Better?
	5.1 Introduction
	5.2 Background
	5.2.1 Context
	5.2.2 Challenges for Machine Learning
	5.2.3 Convolutional Neural Networks for Sentence Classification

	5.3 Approach
	5.3.1 Collecting the Data Set
	5.3.2 Patch Preprocessing
	5.3.3 Learning Model & Performing Identification

	5.4 Evaluation
	5.4.1 Dataset
	5.4.2 Model Settings
	5.4.3 Baseline Approach
	5.4.4 Evaluation Methodology & Metrics

	5.5 Evaluation Results & Discussion
	5.5.1 CNN-based Approach vs. LPU+SVM based Approach
	5.5.2 Potential of Combining the CNN-based and LPU+SVM-based Approaches
	5.5.3 Threats to Validity

	5.6 Chapter Conclusion

	6 Related Work
	6.1 Duplicate Bug Report Detection
	6.2 Bug Severity and Priority Prediction
	6.3 Bug Report Assignee Recommendation
	6.4 IR-based Bug Localization
	6.5 Identification of Bug Fixing Patches
	6.6 Deep Learning in Software Engineering

	7 Conclusion and Future Work
	7.1 Conclusion and Contributions
	7.2 Future Work
	7.2.1 As Completion of Previous Studies
	7.2.2 Others

