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STRONG CONSISTENCY OF SPECTRAL CLUSTERING
FOR STOCHASTIC BLOCK MODELS

By Liangjun Su∗ Wuyi Wang and Yichong Zhang

Singapore Management University

In this paper we prove the strong consistency of several methods
based on the spectral clustering techniques that are widely used to
study the community detection problem in stochastic block models
(SBMs). We show that under some weak conditions on the minimal
degree, the number of communities, and the eigenvalues of the prob-
ability block matrix, the K-means algorithm applied to the eigenvec-
tors of the graph Laplacian associated with its first few largest eigen-
values can classify all individuals into the true community uniformly
correctly almost surely. Extensions to both regularized spectral clus-
tering and degree-corrected SBMs are also considered. We illustrate
the performance of different methods on simulated networks.

1. Introduction. Community detection is one of the fundamental prob-
lems in network analysis, where communities are groups of nodes that are,
in some sense, more similar to each other than to the other nodes. The
stochastic block model (SBM) that was first proposed by [8] is a common
tool for model-based community detection that has been widely studied in
the statistics literature. Within the SBM framework, the most essential task
is to recover the community membership of the nodes from a single obser-
vation of the network. Various procedures have been proposed to solve this
problem in the last decade or so. These include modularity maximization
[15], likelihood methods [1, 2, 6, 23], method of moments [4], spectral clus-
tering [9, 12, 16, 17, 18], and spectral embedding [13, 19]. Among them,
spectral clustering is arguably one of the most widely used methods due to
its computational tractability.

[2] introduce the notion of strong consistency of community detection
as the number of nodes, n, grows.1 By strong consistency, they mean that
one can identify the members of the block model communities perfectly in

∗Su acknowledges the funding support provided by the Lee Kong Chian Fund for Ex-
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1[2] use the terminology “asymptotic consistency” in place of strong consistency.
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2 L. SU ET AL.

large samples. They give the necessary and sufficient conditions for strong
consistency based on the parameters of the block model, properties of the
modularities, and expected degree of the graph (λn). In particular, they
find that λn/ log(n) → ∞ is necessary for strong consistency. [23] define
weak consistency of community detection, which essentially means that the
number of misclassified nodes is of smaller order than the number of nodes.
[3] find that weak consistency requires that λn →∞ for the SBM. Similarly,
under the conditions that λn/ log(n) → ∞ (λn → ∞), [23] establish the
strong (weak) consistency under both standard SBMs and degree-corrected
SBMs.

It is well known that some methods like the modularity maximization of
[15] and the likelihood method of [2] yield strongly consistent community
recovery under some mild conditions on the growth of the node degrees,
but they either rely on combinatorial methods that are computationally de-
manding or are guaranteed to be successful only when the starting values
are well-chosen. Spectral clustering has been shown to enjoy weak consis-
tency under standard or degree-corrected SBMs by various researchers; see
[9], [12], [16], and [17]. For example, [12] establish the weak consistency for
spectral clustering in SBMs with expected degree as small as log(n). But to
the best of our knowledge, the strong consistency of spectral clustering has
not been formally established.

The aim of this paper is to formally establish the strong consistency of
spectral clustering for standard/regular SBMs under a set of conditions on
the minimal degree of nodes (µn), the number of communities (K), the
minimal value of the nonzero eigenvalue of the normalized block probabil-
ity matrix, and some other parameters of the block model. In the special
case where K is fixed and the normalized block probability matrix has min-
imal eigenvalue bounded away from zero in absolute value, we show that
µn/ log(n)→∞ is sufficient to ensure strong consistency.

As demonstrated by [1], the performance of spectral clustering can be
considerably improved via regularization. [9] provide an attempt at quanti-
fying this improvement through theoretical analysis and find that the typi-
cal minimal degree assumption for the consistency of spectral clustering can
potentially be removed with suitable regularization. In this paper we also
establish the strong consistency of regularized spectral clustering.

The SBM is limited by its assumption that all nodes within a community
are stochastically equivalent and thus provides a poor fit to real-world net-
works with hubs or highly varying node degrees within communities. For this
reason, [10] propose a degree-corrected SBM (DC-SBM) to allow variation
in node degrees within a community while preserving the overall block com-
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munity structure. The DC-SBM greatly enhances the flexibility of modeling
degree heterogeneity and enables us to fit network data with varying degree
distributions. We also prove the strong consistency of spectral clustering for
regularized DC-SBMs.

In the simulation, we consider both standard SBMs and DC-SBMs. For
standard SBMs, we adopt [9]’s regularization method and choose the tuning
parameter τ according to their recommendation. The results show that in
terms of classification, spectral clustering tends to outperform the uncondi-
tional pseudo-likelihood (UPL) method, which also has the strong consis-
tency property ([1]). In contrast, for the DC-SBMs our simulations suggest
that the regularized spectral clustering tends to slightly underperform the
conditional pseudo-likelihood (CPL) method even though both are strongly
consistent under some conditions. We also show that an adaptive procedure
helps the regularized spectral clustering to achieve much better performance
than the CPL method.

The rest of the paper is organized as follows. We study the strong con-
sistency of spectral clustering for the basic SBMs in Section 2. We con-
sider the extensions to regularized spectral clustering and degree-corrected
SBMs in Section 3. Section 4 reports the numerical performance of various
spectral-clustering-based methods for a range of simulated networks. Section
5 concludes. All proofs of the main results are relegated to the mathematical
appendix.

Notation. Throughout the paper, we write [M ]ij as the (i, j)-th entry of
matrix M . Without confusion, we sometimes simplify [M ]ij as Mij . In addi-
tion, we write [M ]i· as the i-th row of M . ‖M‖ and ‖M‖F denote the spec-
tral norm and Frobenius norm of M, respectively. Note that ‖M‖ = ‖M‖F
when M is a vector. We use 1 {·} to denote the indicator function which
takes value 1 when · holds and 0 otherwise. C, c, and c′ denote arbitrary
positive constants that are independent of n, but may not be the same in
different contexts.

2. Strong consistency of spectral clustering.

2.1. Basic setup. Let A ∈ {0, 1}n×n be the adjacency matrix. By con-
vention, we do not allow self-connection, i.e., Aii = 0. Let d̂i =

∑n
j=1Aij

denote the degree of node i, D = diag(d̂1, . . . , d̂n), and L = D−1/2AD−1/2 be
the graph Laplacian. The graph is generated from a SBM with K commu-
nities. We assume that K is known and potentially depends on the number
of nodes n. We omit the dependence of K on n for notation simplicity. If K
is unknown, it can be determined by either [11]’s sequential goodness-of-fit
testing procedure or the likelihood-based model selection method proposed
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by [20]. The communities, which represent a partition of the n nodes, are
assumed to be fixed beforehand. Denote these by C1, . . . , CK . Let nk, for
k = 1, . . . ,K, be the number of nodes belonging to each of the clusters.

Given the communities, the edge between nodes i and j are chosen in-
dependently with probability depending on the communities i and j belong
to. In particular, for nodes i and j belonging to cluster Ck1 and Ck2 , respec-
tively, the probability of edge between i and j is given by Pij = Bk1k2 , where
the block probability matrix B = {Bk1k2}, k1, k2 = 1, . . . ,K, is a symmetric
matrix with each entry between [0, 1]. The n × n edge probability matrix
P = {Pij} represents the population counterpart of the adjacency matrix
A. Frequently we suppress the dependence of matrices and their elements
on n.

Denote Z = {Zik} as the n×K binary matrix providing the cluster mem-
berships of each node, i.e., Zik = 1 if node i is in Ck and Zik = 0 otherwise.
Then we have P = ZBZT . Let D = diag(d1, . . . , dn) where di =

∑n
j=1 Pij .

The population version of the graph Laplacian is L = D−1/2PD−1/2. The
standard spectral clustering corresponds to classifying the eigenvectors of L
by K-means algorithm. In this paper, we focus on the strong consistency of
both the standard spectral clustering and its variant.

2.2. Identification of the group membership. Let πkn = nk/n, Wk =

[B]k·Z
T ιn/n =

∑K
l=1Bklπln,DB = diag(W1, . . . ,WK), andB0 = D−1/2B BD−1/2B ,

where ιn is a vector of ones in <n. We can view Wk as the weighted aver-
age of the k-th row of B with weights given by πkn. Similarly, B0 is a
normalized version of B. Note that B0 is symmetric as B is. Let Πn =
diag(π1n, . . . , πKn). Throughout the paper, we allow for the elements in the
block probability matrix B to depend on n and decay to zero as n grows,
which leads to a sparse graph.

Assumption 1. B0 has rank K∗ ≤ K and the spectral decomposition of

Π
1/2
n B0Π

1/2
n is SnΩnS

T
n , in which Sn is a K ×K∗ matrix such that STn Sn =

IK∗ and Ωn = diag(ω1n, . . . , ωK∗n) such that |ω1n| ≥ · · · ≥ |ωK∗n|.

Assumption 1 implies that B = D1/2
B Π

−1/2
n SnΩnS

T
nΠ
−1/2
n D1/2

B and B0 =

Π
−1/2
n SnΩnS

T
nΠ
−1/2
n . It is weaker than the full-rank assumption of [9] who

also assume that K is fixed as n → ∞. It also implies that L has rank K∗

and has the spectral decomposition:

L = UnΣnU
T
n = U1nΣ1nU

T
1n,

where Σn = diag(σ1n, . . . , σK∗n, 0, . . . , 0) is a n × n matrix that contains
the eigenvalues of L such that |σ1n| ≥ |σ2n| ≥ · · · ≥ |σK∗n| > 0, Σ1n =
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diag(σ1n, . . . , σK∗n), the columns of Un contain the eigenvectors of L asso-
ciated with the eigenvalues in Σn, Un = (U1n, U2n), and UTn Un = In. As
shown in Theorem 2.1 below, σkn = ωkn for k = 1, . . . ,K∗.

Assumption 2. There exist some constants C and c such that

∞ > C ≥ lim sup
n

sup
k
nkK/n ≥ lim inf

n
inf
k
nkK/n ≥ c > 0.

Assumption 2 implies that the network has balanced communities. It is
commonly assumed in the literature but can be relaxed at the cost of more
complicated notation.

Assumption 3. Let zTi = [Z]i· , the i-th row of Z. There exists a deter-
ministic sequence {ξn}n≥1 such that if zi 6= zj,

(n/K)1/2‖(zTi − zTj )(ZTZ)−1/2Sn‖ ≥ ξn > 0.

Assumption 3 imposes a condition on the matrix Sn. It is weak because
we have not specified any explicit condition on {ξn} . In fact, as Theorem
2.1 below shows, ξn is bounded below from zero if K∗ = K and the above
assumption can be ensured by imposing some restrictions on the rows of B0

when K∗ < K.

Theorem 2.1. If Assumptions 1 and 2 hold, then Ωn = Σn, U1n =
Z(ZTZ)−1/2Sn and

sup
1≤i≤n

(n/K)1/2‖zTi (ZTZ)−1/2Sn‖ = O(1).

In addition, if (i) K∗ = K, then Assumption 3 holds with lim infn ξn > 0;
(ii) if K∗ < K and there exists a deterministic sequence {ξ′n}n≥1 such that

inf
1≤k1<k2≤K

K−1‖[B0]k1· − [B0]k2·‖ ≥ ξ′n > 0,

then Assumption 3 holds with ξn ≥ cξ′n for some constant c > 0.

Noting that the ith row of U1n is given by zTi (ZTZ)−1/2Sn, Theorem 2.1
indicates that the rows of U1n contain the same community information as Z
for all nodes in the network. Therefore, we can infer each node’s community
membership based on the eigenvector matrix U1n if L is observed.

In practice, L is not observed. But we can estimate it by L. We show
below that the eigenvectors of L associated with its few largest eigenvalues
in absolute value consistently estimate those of L up to an orthogonal matrix
so that the rows of the eigenvector matrix of L also contains the useful
community information.
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2.3. Uniform consistency of the estimated eigenvectors. To study the
consistency of the eigenvectors of L associated with its K∗ largest eigenval-
ues, we add the following assumption.

Assumption 4. Let µn = mini di. Then log(n)KK∗

µn
→ 0, log(n)K∗

µn|σK∗n|
→ 0,

and log(n)
µnσ2

K∗n
→ 0.

If K is fixed and lim infn |σK∗n| is bounded away from zero, then Assump-
tion 4 reduces to the requirement that log(n)/µn → 0. That is, the minimal
expected degree should grow faster than log(n). As pointed out by [1], such
a condition is almost the minimal requirement for establishing the strong
consistency of the standard spectral clustering. [5], [9], [16], and [19] con-
sider the regularization of the graph Laplacian, which was proposed by [1],
and establish weak consistency under conditions weaker than Assumption
4. We will come back to the strong consistency of the regularized spectral
decomposition in Section 3.

Consider the spectral decomposition

L = ÛnΣ̂nÛ
T
n ,

where Σ̂n = diag(σ̂1n, . . . , σ̂nn) with |σ̂1n| ≥ |σ̂2n| ≥ · · · ≥ |σ̂nn| ≥ 0, and
Ûn is the corresponding eigenvectors. Let Σ̂1n = diag(σ̂1n, . . . , σ̂K∗n), Σ̂2n =
diag(σ̂K∗+1n, . . . , σ̂nn), and Ûn = (Û1n, Û2n), where Û1n contains the eigen-
vectors associated with eigenvalues σ̂1n, . . . , σ̂K∗n. Then, ÛT1nÛ1n = IK∗ ,

ÛT2nÛ1n = 0, and

L = Û1nΣ̂1nÛ
T
1n + Û2nΣ̂2nÛ

T
2n.

The following lemma indicates that L and Û1n are consistent estimates of
L and U1n in terms of spectral norm, respectively, and up to an orthogonal
matrix in the latter case.

Lemma 2.1. If Assumptions 1–4 hold, then there exist a positive constant
C sufficiently large and a K∗ ×K∗ orthogonal matrix On such that

‖L − L‖ ≤ C log1/2(n)µ−1/2n a.s.

and
‖Û1n − U1nOn‖ ≤ C log1/2(n)µ−1/2n |σ−1K∗n|(K

∗)1/2 a.s.

Two variants of Lemma 2.1 have been derived in [9] and [16] as special
cases. The key differences are two-fold. First, we obtain the almost sure
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bound for the objects of interest instead of the probability bound. Second,
U1n and Û1n are n×K∗ instead of n×K.

Let Λ̂ = LÛ1n = Û1nΣ̂1n, Λ = LU1nOn = U1nΣ1nOn, Λ̂i = ûT1iΣ̂1n,

and Λi = uT1iΣ1nOn, where ûT1i and uT1i are the i-th rows of Û1n and U1n,
respectively. In order to study the strong consistency, we have to derive the
uniform bound for ‖ûT1i − uT1iOn‖.

Theorem 2.2. Denote ρn = max(supk1k2 [B0]k1k2 , 1). If Assumptions 1–
4 hold, then

sup
i

√
n/K‖û1i −OTnu1i‖ ≤ C

(
log(n)K∗

µnK

)1/2(ρn +K1/2

σ2K∗n

)
a.s.

Note that ρn is a measure of heterogeneity of the normalized block prob-
ability matrix B0. If all the entries in B are of the same order of magnitude,
then ρn is bounded. In addition, by Assumption 2 and the fact that

(πk1nπk2n)1/2[B0]k1k2 =
(πk1nπk2n)1/2Bk1k2

(
∑K

l=1 πlnBk1l)
1/2(

∑K
l=1 πlnBk2l)

1/2
≤ 1,

we have ρn ≤ CK for some constant C > 0. Therefore, if the number of
blocks is fixed, then ρn is also bounded.

Since both U1n and Û1n have orthonormal columns, they have a typical
element of order (n/K)−1/2. This explains why we need the normalization
constant (n/K)1/2 in Theorem 2.2. An important implication of Theorem 2.2
is that like U1n, the rows of Û1n also contain the community membership
information. Let β̃in = (n/K)1/2û1i. Let g0i ∈ {1, . . . ,K} denote the true
community that node i belongs to. Theorems 2.1 and 2.2 imply that there
exists βg0i n

= (n/K)1/2OTnu1i such that

‖β̃in − βg0i n‖ = Oa.s.

((
log(n)K∗

µnK

)1/2(ρn +K1/2

σ2K∗n

))
= oa.s. (1)

uniformly in i provided that

(
log(n)K∗

µnK

)1/2(
ρn+K1/2

σ2
K∗n

)
= o (1) . Then β̃in

serves as a consistent estimator of βg0i n
.

Example 2.1. Consider the four-parameter SBM studied in [17]. The
model is parametrized by K, s, r and p, where the K communities contain
s nodes each, and r and r+p denote the probability of a connection between
two nodes in two separate blocks and in the same block, respectively. For this
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model, K∗ = K, ρn = (p+r)K
p+rK , σKn = p

Kr+p , and µn = n(p+rK)
K − (p+ r).

Therefore, the probability bound of supi
√
n/K‖û1i −OTnu1i‖ is of order(

K log(n)(p+ rK)

n

)1/2((p+ r)K +K1/2(p+ rK)

p2

)
.

The last term is of o (1) if K3 log (n) /(np) → 0 and rK/p → c ∈ (0,∞),
or if K5 log (n) /(nr)→ 0 and r/p→ c ∈ (0,∞) . If we further restrict our
attention to the dense SBM with both r and p bounded away from zero, then
the last displayed item becomes o (1) as long as K5 log (n) /n→ 0.

2.4. Strong consistency of the K-means algorithm. Let β̂in be a generic
estimator of βg0i n

for i = 1, . . . , n. To recover the community membership

structure (i.e., to estimate g0i ), it is natural to apply the K-means clustering
algorithm to {β̂in}. Specifically, let A = {α1, . . . , αK} be a set of K arbitrary
K∗ × 1 vectors: α1, . . . , αK . Define

Q̂n(A) =
1

n

n∑
i=1

min
1≤l≤K

‖β̂in − αl‖2

and Ân = {α̂1, . . . , α̂K}, where Ân = arg minA Q̂n(A). Then, ĝi, the esti-
mated cluster identity, is computed as

ĝi = arg min
1≤l≤K

‖β̂in − α̂l‖,

in which if there are multiple l’s that achieve the minimum, ĝi takes value of
the smallest one. Next, we consider the case in which the estimates {β̂in}ni=1

and the true vector {βkn}Kk=1 satisfy the following restrictions.

Assumption 5. (i) There exists a constant C such that

lim sup
n

sup
1≤k≤K

‖βkn‖ ≤ C <∞.

(ii) There exist some deterministic sequences c1n and c2n such that supi ‖β̂in−
βg0i n
‖ = Oa.s.(c2n) and lim infn inf1≤k<k′≤K ‖βkn − βk′n‖ ≥ c1n > 0. (iii)

lim supn c2nc
−1
1n = 0 and lim supn c2nc

−2
1nK(K∗)1/2 = 0.

Let H(·, ·) denote the Hausdorff distance between two sets. Let Bn =
{β1n, . . . , βKn}. The following lemma shows that the K-means algorithm can

estimate the true centroids {βkn}Kk=1 up to the rate Oa.s.(c
1/2
2n K

1/2(K∗)1/4).
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Lemma 2.2. Suppose that Assumptions 2 and 5 hold. Then

H(Ân,Bn) = Oa.s.(c
1/2
2n K

1/2(K∗)1/4).

With Lemma 2.2, we can show the K-means classification is strongly con-
sistent.

Theorem 2.3. Suppose that Assumptions 2 and 5 hold. Then for suffi-
ciently large n we have

sup
1≤i≤n

1{ĝi 6= g0i } = 0 a.s.

That is, we can classify all nodes into the true community a.s. in large
samples. To apply the above theorem to β̃in, we add the following condition.

Assumption 6.

(
log(n)K∗K

µn

)1/2(
(K∗)1/2ρn+(K∗K)1/2

σ2
K∗nξ

2
n

)
→ 0 as n→∞.

Assumption 6 imposes the conditions for the strong consistency of the
spectral clustering under fairly general conditions. If both |σK∗n| and ξn are
bounded away from zero, and K∗ = K is fixed, then the above assumption
reduces to the requirement that µn/ log(n) → ∞ as n → ∞, which is the
minimal condition for the strong consistency discussed in [2].

Corollary 2.1. Suppose that Assumptions 1–4 and 6 hold and the K-
means algorithm is applied to β̂in = β̃in = (n/K)1/2û1i. Then,

sup
1≤i≤n

1{ĝi 6= g0i } = 0 a.s.

Corollary 2.1 shows that the spectral-clustering-based K-means algorithm
consistently recovers the community membership for all nodes almost surely
in large samples.

Example 2.1 (cont.) For the four-parameter model in Example 2.1,
Assumption 6 is equivalent to

(2.1)

(
K4 log(n)(p+ rK)

n

)1/2((p+ r)K +K1/2(p+ rK)

p2

)
→ 0,

If rK/p is bounded, then the above rate further reduces to K6 log(n)/ (np)→
0, which allows K = o((np/ log(n))1/6). As long as p decays to zero faster
than log(n)/n, Assumption 6 holds even when K grows slowly to infinity. On
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the other hand, if r/p → c ∈ (0,∞) , (2.1) reduces to K8 log(n)/ (nr) → 0.
In addition, if both p and r are bounded away from zero, then (2.1) requires
that K8 log(n)/n→ 0. In contrast, [2] find that when K = O

(
n1/4/ log (n)

)
and p is bounded away from 0, the number of misclassified nodes from the
K-means algorithm in the four-parameter SBM is of order o

(
K3 log2 (n)

)
=

o
(
n3/4

)
.

3. Extensions. In this section we consider two extensions of the above
results: regularized spectral clustering of the standard and degree-corrected
SBMs.

3.1. Regularized spectral clustering analysis for standard SBMs. The SBM
is the same as considered in the previous section. Following [1] and [9], we
regularize the adjacency matrix A to be Aτ = A + τn−1ιnι

T
n , where τ ≤ n

is the regularization parameter and ιn is the n× 1 vector of ones. Given the
regularized adjacency matrix, we can compute the regularized degree for
each node as d̂τi = d̂i + τ and Dτ = diag(d̂1 + τ, . . . , d̂n + τ). The regularized
version of P and D are denoted as Pτ and Dτ and defined as

Pτ = P + τn−1ιnι
T
n and Dτ = diag(d1 + τ, . . . , dn + τ),

respectively. Consequently, the regularized graph Laplacian and its popula-
tion counterpart are denoted as Lτ and Lτ and written as

Lτ = D−1/2τ AτD
−1/2
τ and Lτ = D−1/2τ PτD−1/2τ ,

respectively. Noting that ιn = ZιK , we have

Pτ = P + τn−1ιnι
T
n = ZBZT + τn−1ZιKι

T
KZ

T = ZBτZT ,

where Bτ = B + τn−1ιKι
T
K . Apparently, the block model structure is pre-

served after regularization. Given Bτ , we can define Bτ
0 , the normalized ver-

sion ofBτ as in the previous section. LetW τ
k = [Bτ ]k·Z

T ιn/n =
∑K

l=1[B
τ ]klπln,

DτB = diag(W τ
1 , . . . ,W

τ
K), and Bτ

0 = (DτB)−1/2Bτ (DτB)−1/2.
In order to follow the identification analysis in the previous section, we

need to modify Assumptions 1 and 3.

Assumption 7. (i) Bτ
0 has rank K∗ ≤ K and the spectral decomposition

of Π
1/2
n Bτ

0Π
1/2
n is SτnΩτ

n(Sτn)T , in which Sτn is a K × K∗ matrix such that
(Sτn)TSτn = IK∗ and Ωτ

n = diag(ωτ1n, . . . , ω
τ
K∗n) such that |ωτ1n| ≥ · · · ≥

|ωτK∗n|. (ii) There exists a deterministic sequence {ξτn}n≥1 such that if zi 6=
zj,

(n/K)1/2‖(zTi − zTj )(ZTZ)−1/2Sτn‖ ≥ ξτn > 0.



11

We consider the eigenvalue decomposition of Lτ as

Lτ = U τnΣτ
n(U τn)T = U τ1nΣτ

1n(U τ1n)T

where Στ
n = diag(στ1n, . . . , σ

τ
K∗n, 0, . . . , 0) is a n × n matrix that contains

the eigenvalues of Lτ such that |στ1n| ≥ |στ2n| ≥ · · · ≥ |στK∗n| > 0, Στ
1n =

diag(στ1n, . . . , σ
τ
K∗n), the columns of U τn contain the eigenvectors of Lτ asso-

ciated with the eigenvalues in Στ
n, U τn = (U τ1n, U

τ
2n), and (U τn)TU τn = In.

The following theorem parallels Theorem 2.1 in Section 2.2.

Theorem 3.1. If Assumptions 2 and 7 hold, then Ωτ
n = Στ

n, U τ1n =
Z(ZTZ)−1/2Sτn and

sup
1≤i≤n

(n/K)1/2‖zTi (ZTZ)−1/2Sτn‖ = O(1).

In addition, if (i) K∗ = K, then Assumption 7(ii) holds with lim infn ξ
τ
n > 0;

(ii) if K∗ < K but there exists a deterministic sequence {ξ′n}n≥1 such that

inf
1≤k1<k2≤K

K−1‖[Bτ
0 ]k1· − [Bτ

0 ]k2·‖ ≥ ξ′n > 0,

then Assumption 7(ii) holds with ξτn ≥ cξ′n for some constant c > 0.

Since Lτ = n−1ZBτ
0Z, the proof of Theorem 3.1 is exactly the same as

that of Theorem 2.1 with obvious modifications. Theorem 3.1 indicates that
we can infer each node’s community membership based on the eigenvector
matrix U τ1n if Lτ is observed.

As before, we consider the spectral decomposition of Lτ :

Lτ = Û τn Σ̂τ
n(Û τn)T = Û τ1nΣ̂τ

1n(Û τ1n)T + Û τ2nΣ̂τ
2n(Û τ2n)T .

where Σ̂τ
n = diag(σ̂τ1n, . . . , σ̂

τ
nn) = diag(Σ̂τ

1n, Σ̂
τ
2n) with |σ̂τ1n| ≥ |σ̂τ2n| ≥ · · · ≥

|σ̂τnn| ≥ 0, Σ̂τ
1n = diag(σ̂τ1n, . . . , σ̂

τ
K∗n), and Σ̂τ

2n = diag(σ̂τK∗+1,n, . . . , σ̂
τ
nn);

Û τn = (Û τ1n, Û
τ
2n) is the corresponding eigenvectors such that (Û τ1n)T Û1n =

IK∗ and ÛT2nÛ1n = 0. Note that Û τ1n contains the eigenvectors associated

with eigenvalues σ̂τ1n, . . . , σ̂
τ
K∗n. To study the asymptotic properties of Û τ1n,

we modify Assumption 4 and 6 as follows.

Assumption 8. Denote µτn = mini di+τ . Then log(n)KK∗

µτn
→ 0, log(n)K∗

µτn|στK∗n|
→

0, log(n)
µτn(σ

τ
K∗n)

2 → 0, and

(
log(n)K∗K

µτn

)1/2((K∗)1/2ρτn + (K∗K)1/2

(στK∗nξ
τ
n)2

)
→ 0.
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The above modification is natural because node i’s degree becomes di+ τ
after regularization. µτn can be interpreted as the effective minimum expected
degree after regularization.

Let (uτ1i)
T and (ûτ1i)

T be the i-th row of U τ1n and Û τ1n, respectively. The
following theorem parallels Theorem 2.2 and Corollary 2.1 in Section 2.3.

Theorem 3.2. Denote ρτn = max(supk1k2 [Bτ
0 ]k1k2 , 1). Suppose that As-

sumptions 2, 7, and 8 hold. Then there exists a K∗×K∗ orthonormal matrix
Oτn such that

sup
1≤i≤n

√
n/K‖ûτ1i−(Oτn)Tuτ1i‖ ≤ C

(
log(n)

µτnK

)1/2((K∗)1/2ρτn + (K∗K)1/2

(στK∗n)2

)
a.s.

If K-means algorithm defined in Section 2.4 is applied to β̂in =
√
n/Kûτ1i.

Then for sufficiently large n, we have

sup
1≤i≤n

1{ĝi 6= g0i } = 0 a.s.

Theorem 3.2 indicates that the regularized spectral clustering, in con-
junction with the K-means algorithm, consistently recovers the community
membership for all nodes almost surely in large samples.

To see the effect of regularization, in the simplified case when K∗ =
K, K is fixed and στKn is bounded away from zero, Assumption 8 boils
down to log(n)/µτn → 0. Even if mini di grows slower than log(n) or does
not grow to infinity at all, we can still choose τ with τ/ log(n) → ∞ such
that Assumption 8 holds. This implies we can obtain strong consistency for
some SBMs in which some nodes have very limited number of links. The
following is a non-trivial SBM which does not satisfy Assumption 4 but
satisfies Assumption 8.

Example 3.1. Consider a SBM with two groups such that n1 = n2 = n/2
and

B =

(
0.4 2/n
2/n 4/n

)
.

In this case, di = 0.4(n2 − 1) + 2
n ·

n
2 = 0.2n+ 0.6 for node i in cluster 1 and

di = 2
n ·

n
2 + 4

n(n2 −1) = 3− 4
n for node i in cluster 2. Therefore, Assumption

4 does not hold. However, for some τ such that τ/ log n→∞, we have

Bτ =

(
0.4 + τ/n (2 + τ)/n
(2 + τ)/n (4 + τ)/n

)
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and dτi = 0.2n+0.6+τ(1−n−1) for node i in cluster 1 and dτi = 3−4n−1+
τ(1 − n−1) for node i in cluster 2. Thus log(n)/µτn → 0. In addition, it is
easy to see that

Bτ
0 =

(
0.4+τn−1

0.2+(1+τ)n−1
2+τ

[0.2n+(1+τ)]1/2(3+τ)1/2
2+τ

[0.2n+(1+τ)]1/2(3+τ)1/2
4+τ
3+τ

)
→

 0.4+c0
0.2+c0

√
c0

0.2+c0√
c0

0.2+c0
1

 ,

when c0 = limn→∞ τ/n ∈ [0, 1). Apparently, Bτ
0 has full rank and Assump-

tion 8 holds. Therefore, the strong consistency of the regularized spectral
clustering still holds.

The previous example illustrates that the regularization works for the case
when one cluster has strong links and the other one has weak links. However,
if both clusters have weak links, it is hard to separate them. Consider the
above example with B replaced by

B =

(
4/n 2/n
2/n 4/n

)
,

and τ/ log(n)→∞. Then we can verify that

Bτ
0 =

(
(4 + τ)/(3 + τ) (2 + τ)/(3 + τ)
(2 + τ)/(3 + τ) (4 + τ)/(3 + τ)

)
such that Bτ

0 has two eigenvalues given by 2 and 2/ (3 + τ). But Assumption
8 cannot be satisfied in this case because µτn|στK∗n|4/ log(n) is converging to
zero at rate 1/(τ3 log(n)). Consequently, we cannot show that supi

√
n‖ûτ1i−

(Oτn)Tuτ1i‖ = oa.s.(1) or prove strong consistency in this case. In general, the
regularization may not work for the case in which we have multiple clusters
with weak links.

3.2. Regularized spectral clustering analysis for degree-corrected SBMs.
In this subsection, we extend our early analyses to the spectral clustering
for a degree-corrected stochastic block model (DC-SBM).

3.2.1. Degree-corrected SBMs. Since [10], degree-corrected SBMs have
become widely used in communication detection. The major advantage of
a DC-SBM lies in the fact that it allows variation in node degrees within a
community while preserving the overall block community structure. Given
the K communities, the edge between nodes i and j are chosen indepen-
dently with probability depending on the communities that nodes i and j
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belong to. In particular, for nodes i and j belonging to clusters Ck1 and Ck2 ,
respectively, the probability of edge between i and j is given by

Pij = θiθjBk1k2 ,

where the block probability matrix B = {Bk1k2}, k1, k2 = 1, . . . ,K, is a
symmetric matrix with each entry between [0, 1]. The n×n edge probability
matrix P = {Pij} represents the population counterpart of the adjacency
matrix A. We continue to use Z = {Zik} to denote the cluster membership
matrix for all n nodes. Let Θ = diag(θ1, . . . , θn). Then we have

P = ΘZBZTΘT .

Note Θ and B are only identifiable up to scale. We adopt the following
normalization rule:

(3.1)
∑
i∈Ck

θi = nk, k = 1, . . . ,K.

Alternatively, one can follow the literature (e.g., [16, 23]) and apply the
following normalization

∑
i∈Ck θi = 1, k = 1, . . . ,K. We use the normal-

ization in (3.1) because it nests the standard SBM as a special case in which
θi = 1 for i = 1, . . . , n.

We first observe that, if we regularize both the adjacency matrix A and
the degree matrix D, we are unable to preserve the DC-SBM structure
unless Θ is homogeneous. To see this, note that when A is regularized to
Aτ = A+ τn−1ιnι

T
n , its population counterpart is

Pτ = P + τn−1ιnι
T
n = ΘZBZTΘ + τn−1Zιkι

T
kZ.

Since Θ does not have the block structure, we are unable to find a K ×K
matrix Bτ and a n× n diagonal matrix Θτ such that

Pτ = ΘτZBτZTΘτ .

For this reason, we follow the lead of [16] and only regularize the degree
matrix D as Dτ = D + τIn. To differentiate from the regularized graph
Laplacian Lτ considered in [9], we denote the new regularized graph Lapla-
cian as

L′τ = D−1/2τ AD−1/2τ ,

and its population counterpart as

L′τ = D−1/2τ PD−1/2τ ,

where P = ΘZBZTΘ, Dτ = D + τIn, and D = diag(d1, . . . , dn) with di =∑n
j=1 Pij .
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3.2.2. Identification of the group membership. Let πkn, Wk, DB and B0

be as defined in Section 2.2. To facilitate the asymptotic study, we now
strengthen Assumption 1 to:

Assumption 9. (i) There exists some sequence ρn such that ρn ≥ 1 and
B0 ≤ ρn element-wise. (ii) B0 has full rank K.

It is possible to relax Assumption 9(ii) as we have done in the previous
section. Here, we assume full rank of B0 for simplicity and clarity.

As before, we consider the spectral decomposition of L′τ :

L′τ = U1nΣnU
T
1n,

where Σn = diag(σ1n, . . . , σKn) is a K ×K matrix that contains the eigen-
values of Lτ such that |σ1n| ≥ |σ2n| ≥ · · · ≥ |σKn| > 0 and UT1nU1n = IK .
Note that we suppress the dependence of U1n and Σn on τ. Let Θτ =
diag(θτ1 , . . . , θ

τ
n) where θτi = θidi/(di+τ) for i = 1, . . . , n. Let nτk =

∑
i∈Ck θ

τ
i .

Theorem 3.3. Suppose Assumptions 9 holds and let g0i and uTi be the
node i’s true community identity and the i-th row of U1n, respectively. Then

(i) there exists a K ×K matrix Sτn such that U1n = Θ
1/2
τ Z(ZTΘτZ)−1/2Sτn,

(ii) (nτ
g0i

)1/2(θτi )−1/2‖uTi ‖ = 1, and (iii) if zi = zj, then ‖ ui
‖ui‖ −

uj
‖uj‖‖ = 0; if

zi 6= zj , then ‖ uTi
‖uTi ‖

− uTj
‖uTj ‖
‖ =
√

2.

Like Lemma 3.3 in [16], Theorem 3.3(iii) provides useful facts about the
rows of U1n. First, if two nodes i and j belong to the same cluster, then the
corresponding rows of U1n point to the same direction so that ui/‖ui‖ =
uj/‖uj‖. Second, if two nodes i and j belong to the different clusters, then
the corresponding rows of U1n are orthogonal to each other. As a result,
we can detect the community membership based on a feasible version of
{ui/‖ui‖}.

3.2.3. Uniform consistency of the estimated eigenvectors and strong con-
sistency of the spectral clustering. To proceed, we add the following as-
sumptions.

Assumption 10. There exist two constants C and c such that

∞ > C ≥ lim sup
n

sup
1≤i≤n

nτg0i
dτiK/(ndi) ≥ lim inf

n
inf

1≤i≤n
nτg0i

dτiK/(ndi) ≥ c > 0.
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Assumption 11. Denote µn = mini di, µ
τ
n = µn + τ , θ = maxi θi, and

θ = mini θi. Then (i)(
log1/2(n)K3/2

(µτn)1/2 |σKn|

)(
θ
1/4
ρ
1/2
n

θ1/4
+
ρn +K1/2

|σKn|

)
→ 0,

and (ii) there exists a positive constant c such that θ ≥ n−c.

Assumption 10 holds for the simplest case in which the degrees are homo-
geneous within the same cluster. Note in this case, nτ

g0i
= ng0i

di/d
τ
i , which

may be of smaller order of magnitude of n/K if di/τ → 0. However, As-
sumption 10 still holds because the factor di/d

τ
i is removed. In general,

Assumption 10 holds if di is of the same order of magnitude for all i in the
same cluster.

Assumption 11 specifies conditions on di, θi, and σKn. If 0 < θ ≤ θ <∞,
then Assumption 11(i) reduces to Assumption 6 with K∗ = K and ξn =

√
2.

If in addition, K is fixed and lim infn |σKn| > 0, then Assumption 11(i)
further boils down to log(n)/µτn → 0. This indicates that even if the minimal
degree µn is bounded, Assumption 11(i) still holds if τ/ log(n)→∞.

Consider the spectral decomposition

L′τ = ÛnΣ̂nÛ
T
n = Û1nΣ̂1nÛ

T
1n + Û2nΣ̂2nÛ

T
2n,

where Σ̂n = diag(σ̂n, . . . , σ̂nn) = diag(Σ̂1n, Σ̂2n) with |σ̂1n| ≥ |σ̂2n| ≥ · · · ≥
|σ̂nn| ≥ 0, Σ̂1n = diag(σ̂1n, . . . , σ̂Kn), Σ̂2n = diag(σ̂K+1,n, . . . , σ̂nn), and

Ûn = (Û1n, Û2n) is the corresponding eigenvectors such that ÛT1nÛ1n = IK
and ÛT2nÛ1n = 0.

The following lemma parallels Lemma 2.1.

Lemma 3.1. If Assumptions 9–11 hold, then there exist a positive con-
stant C sufficiently large and a K ×K orthogonal matrix On such that

‖L′τ − L′τ‖ ≤ C(log(n)/µτn)1/2 a.s.

and
‖Û1n − U1nOn‖ ≤ C(log(n)/µτn)1/2|σKn|−1K1/2 a.s.

Let Λ̂ = Lτ Û1n = Û1nΣ̂n, Λ = LτU1nOn = U1nΣnOn, Λ̂i = ûTi Σ̂n, and

Λi = uTi ΣnOn, where ûTi and uTi are the i-th rows of Û1n and U1n, re-
spectively. In order to obtain the strong consistency, we need to derive the
uniform bound for ‖ûTi − uTi On‖.
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Theorem 3.4. If Assumptions 9–11 hold, then

sup
i

(nτg0i
)1/2(θτi )−1/2‖ûi −OTnui‖ ≤ Cηn a.s.,

where ηn =

(
log1/2(n)

(µτn)
1/2|σKn|

)(
θ
1/4

ρ
1/2
n

θ1/4
+ ρn+K1/2

|σKn|

)
.

Theorem 3.4 is essential to establish the strong consistency result. As a
corollary, we have:

Corollary 3.1. If Assumptions 9–11 hold, then
(3.2)

sup
i

∥∥∥∥ ûi
‖ûi‖

− OTnui
‖OTnui‖

∥∥∥∥ ≤ ( log1/2(n)

(µτn)1/2 |σKn|

)(
θ
1/4
ρ
1/2
n

θ1/4
+
ρn +K1/2

|σKn|

)
a.s.

In addition, if the K-means algorithm is applied to β̂in = û1i/‖û1i‖, then

sup
1≤i≤n

1{ĝi 6= g0i } = 0 a.s.

Corollary 3.1 justifies the use of K-means algorithm on ûin/‖ûin‖ provided
the bound on the right hand side of (3.2) is o

(
1/K3/2

)
, which is ensured

by Assumption 11(i).

3.2.4. An adaptive procedure. Given the strong consistency of the spec-
tral clustering, it is possible to consistently estimate Θ by some estimator,
namely Θ̂. Built upon Θ̂, we propose an adaptive procedure by spectral clus-
tering a new regularized graph Laplacian denoted as L′′τ , which is defined
as

L′′τ = (D′′τ )−1/2A′′τ (D′′τ )−1/2,

where A′′τ = A+ τn−1Θ̂ιnι
T
n Θ̂ and D′′τ = diag(A′′τ ιn). The population coun-

terpart of L′′τ is denoted as L′′τ and defined as

L′′τ = (D′′τ )−1/2P ′′τ (D′′τ )−1/2,

where P ′′τ = P + τn−1Θιnι
T
nΘ = ΘZB′′τZ

TΘ, B′′τ = B + τn−1ιkι
T
k , and

D′′τ = diag(P ′′τ ιn) = D + τΘ.
Provided Θ̂ is consistent, we conjecture that one can show the adaptive

procedure is strongly consistent by applying the same proof strategy as used
in the derivation of strong consistency of the spectral clustering based on
Lτ and L′τ . We leave this important extension for future research. In the
following, we focus on establishing the consistency of Θ̂.
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Given the estimated group membership {ĝi}ni=1, we follow [21] and esti-
mate Θ by Θ̂ = diag(θ̂1, · · · , θ̂n), where

(3.3) θ̂i = n̂ĝi(
∑n

j=1
Aij)/(

∑
i′:ĝi′=ĝi

∑n

j=1
Ai′j)

and n̂k = #{i : ĝi = k}. Next, we show θ̂i → θi a.s. uniformly in i = 1, · · · , n.

Assumption 12. (i) lim supn θ <∞. (ii) sup1≤i≤n 1{ĝi 6= g0i } = 0 a.s.

Assumption 12(i) requires that the degree of heterogeneity is bounded,
which is common in practical applications. Assumption 12(ii) requires the
preliminary clustering is strongly consistent. For instance, this assumption
can be verified by Corollary 3.1. However, we also allow for any other
strongly consistent clustering methods, such as the conditional pseudo like-
lihood method proposed by [1].

Let mk =
∑n

j=1 θjBkg0j
and mn = infkmk. Note mk =

∑
i′∈Ck di′/nk is

the average degree of nodes in community k and mn is the minimal average
degree.

Theorem 3.5. If Assumption 12 holds, then sup1≤i≤n |θ̂i−θi| = Oa.s.(log(n)/mn).

In order for Θ̂ to be consistent, we need the average degree for each com-
munity to grow faster than log(n). In some cases, the average degree and
the minimal degree are of the same order of magnitude. Then we basically
need µn/ log(n) → ∞ for the consistency of Θ̂. In our simulation designs,
µn/ log(n) → 0, which is, in some sense, the worst case for the adaptive
procedure. However, even in this case, the performance of the adaptive pro-
cedure improves upon that of the spectral clustering based on L′τ .

4. Numerical Examples on Simulated Networks. In this section,
we consider the finite sample performance of spectral clustering with two
and three communities, i.e., K = 2 and K = 3. The corresponding numbers
of community members have ratio 1 : 1 and 1 : 1 : 1 for these two cases,
respectively. The number of nodes is given by 50 and 200 for each community,
which indicates n = 100 and 400 for the case of K = 2 and 150 and 600 for
the case of K = 3. We use four variants of graph Laplacian to conduct the
spectral clustering, namely, L, Lτ , L′τ , and L′′τ defined in Sections 2 and 3.

1. L = D−1/2AD−1/2 where D = diag(Aιn). It is possible that for some
realizations, the minimum degree is 0, yielding singular D.



19

2. Lτ = D
−1/2
τ AτD

−1/2
τ where Aτ = A + τJn, Dτ = diag(Aτ ιn), and

Jn = n−1ιnι
T
n .

3. L′τ = D
−1/2
τ AD

−1/2
τ where Dτ = D + τIn and In is an n× n identity

matrix.
4. L′′τ = (D′′τ )−1/2A′′τ (D′′τ )−1/2 where A′′τ = A + τn−1Θ̂ιnι

T
n Θ̂ and D′′τ =

diag(A′′τ ιn).

The theoretical results in Sections 2 and 3 suggest the strong consis-
tency of the spectral clustering with Lτ and L′τ for the standard SBM and
DC-SBM, respectively under some conditions. In Sections 4.1 and 4.2, we
consider these two cases. In addition, for the DC-SBM, we will also consider
the adaptive procedure introduced in Subsection 3.2.4. Additional simula-
tion results of spectral clustering with L and L′τ for the standard SBM and
L and Lτ for the DC-SBM can be found in the supplementary Appendix D.

For the standard SBM, after obtaining the eigenvectors corresponding to
the largest K eigenvalues of the graph Laplacian (L, Lτ , L′τ , or L′′τ ), we
classify them based on K-means algorithm (Matlab “kmedoids” function,
which is more robust to noise and outliers than “kmeans” function, with
default options). For the DC-SBM, before classification, we normalize each
row of the n×K eigenvectors so that its L2 norm equals 1. For comparison,
we apply the unconditional pseudo-likelihood method (UPL) and conditional
pseudo-likelihood method (CPL) proposed by [1] to detect the communities
in the SBM and the DC-SBM, respectively.2 To evaluate the classification
performance, we consider two criteria: the Correct Classification Proportion
(CCP) and the Normalized Mutual Information (NMI).

4.1. The standard SBM. We consider two data generating processes (DGPs).
DGP 1: Let K = 2. Each community has n/2 nodes. The matrix B is set
as

B =
2

n

(
log2(n) 0.2 log(n)

0.2 log(n) 0.8 log(n)

)
.

The expected degrees are of order log2(n) and log(n) respectively for com-
munities 1 and 2.
DGP 2: Let K = 3. Each community has n/3 nodes. The matrix B is set

2As [1] remark, the UPL and CPL are correctly fitting the SBM and the DC-SBM,
respectively. In both UPL and CPL, the initial classification is generated by spectral
clustering with perturbations (SCP). The SCP is spectral clustering based on Lτ with
τ = d̄/4 and d̄ being the average degree.
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as

B =
3

n

 n1/2 0.1 log5/6(n) 0.1 log5/6(n)

0.1 log5/6(n) log3/2(n) 0.1 log5/6(n)

0.1 log5/6(n) 0.1 log5/6(n) 0.8 log5/6(n)

 .

The expected degrees are of order n1/2, log3/2(n) and log5/6(n) respectively
for communities 1, 2 and 3.

We follow [9] and select the regularizer τ that minimizes a feasible version
of

‖Lτ − Lτ‖/|στKn|.

In particular, for a given τ , we can obtain the community identities Ẑ based
on the spectral clustering of Lτ . Given Ẑ, we can estimate the block proba-
bility matrix B by the fraction of links between the estimated communities,
which is denoted as B̂. Let P̂ = ẐB̂ẐT , P̂τ = P̂ + τJn, D̂τ = diag(P̂τ ιn),

L̂τ = D̂−1/2τ P̂τ D̂−1/2τ , and σ̂τKn be the K-th largest in absolute value eigen-

value of L̂τ . Then we can compute

Q(τ) = ‖Lτ − L̂τ‖/σ̂τKn.

We search for some τJY that minimizes Q(τ) over a grid of 20 points, τj ,
on the interval [τmin, τmax] , where j = 1, . . . , 20, τmin = 10−4 and τmax is set
to be the expected average degree. We set τ1 = τmin, τ2 = 1, and τj+2 =
(τmax)j/18 for j = 1, . . . , 18. [16] suggested choosing τ as the average degree
of nodes, which is approximately equal to the expected average degree.

All results reported here are based on 500 replications. For DGPs 1 and 2,

we report the classification results based on Lτ = D
−1/2
τ AτD

−1/2
τ in Figures

1 and 2. The results based on L and L′τ are relegated to the supplementary
Appendix D.

In Figures 1 and 2, the first and second rows correspond to the results with
n = 100 and n = 400, respectively. For each replication, we can compute the
feasible τJY as mentioned above. Their averages across all replications are
reported in each subplot of Figures 1 and 2. In particular, the green dashed
line represents τJY, which can be easily compared with the expected average
degree, the rightmost vertical border.

We summarize our findings from Figures 1 and 2. First, despite the fact
that the minimal degrees for neither DGP satisfies Assumption 4 so that the
standard spectral clustering may not be consistent, the regularized spectral
clustering performs quite well in both DGPs. This confirms our theoretical
finding that the regularization can help to relax the requirement on the
minimal degree and to achieve the strong consistency. In addition, when a
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proper τ is used, the spectral clustering based on Lτ outperforms the UPL
method of [1]. Both results are in line with the theoretical analysis by [9].
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Fig 1: Classification results for K-means for DGP 1 (K = 2) based on

Lτ = D
−1/2
τ AτD

−1/2
τ and for UPL method. The x-axis marks τ values, and

the y-axis is either CCP (left column) or NMI (right column). The green
vertical line in each subplot indicates the estimated τ value by using the
method of [9]. The first and second rows correspond to n/K = 50 and 200,
respectively.
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Fig 2: Classification results for DGP 2 (K = 3) based on Lτ =

D
−1/2
τ AτD

−1/2
τ . (See the explanations in Figure 1.)
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4.2. The DC-SBM. The next two DGPs consider the degree-corrected
SBM.
DGP 3: This DGP is the same as DGP 1 except that here P = ΘZBZTΘT ,
where Θ is a diagonal matrix with each diagonal element taking a value from
{0.5, 1.5} with equal probability.
DGP 4: This one is the same as DGP 2 except that here P = ΘZBZTΘT

and Θ is generated as in DGP 3.
To compute the feasible regularizer for the DC-SBM, we modify the previ-

ous procedure to incorporate the degree heterogeneity. In particular, given τ ,
by spectral clustering L′τ , we can obtain a classification Ẑ = (Ẑ1, . . . , Ẑn)T ,
where Ẑi is a K by 1 vector with its ĝith entry being 1 and the rest
being 0 and ĝi is an estimator of node i’s community membership. Let
n̂k = #{i : ĝi = k}. Then we can estimate the block probability matrix
B and Θ by B̂ = [B̂kl]1≤k,l≤K and Θ̂ = diag(θ̂1, . . . , θ̂n), where θ̂i is de-

fined in (3.3) and B̂kl = (
∑

(i,j):ĝi=k,ĝj=l
Aij)/(n̂kn̂l). Let P̂ = Θ̂ẐB̂ẐT Θ̂T ,

D̂τ = diag(P̂ ιn) + τIn, and L̂′τ = D̂−1/2τ P̂ D̂−1/2τ . Let σ̂′τKn denote the K-th

largest eigenvalue of L̂′τ (in absolute value). Let

Q′(τ) = ‖L′τ − L̂′τ‖/σ̂′τKn.

We search for some τ ′JY that minimizes Q′(τ) over the same aforementioned
grid.

For DGPs 3 and 4, we report the classification results based on L′τ =

D
−1/2
τ AD

−1/2
τ as the orange lines in Figures 3 and 4. For each subplot, the

rightmost border line and the red vertical line represent the averages of d̄ and
τ ′JY, respectively. Figures 3 and 4 show the regularized spectral clustering
based on L′τ is slightly outperformed by CPL in DC-SBMs. However, τ ′JY

has the close-to-optimal performance in terms of both CCP and NMI over
a range of values for τ .

Table 1 reports the classification results for the spectral clustering with
τ = τJY for DGPs 1–2 (or τ ′JY for DGPs 3–4) and d̄ in comparison with
those for the UPL (or CPL for DGPs 3–4) method over 500 replications. In
general, the spectral clustering with τ = τJY outperforms the UPL method
in DGPs 1–2 but slightly underperforms the CPL method for DGPs 3 and
4. In all cases, we observe that the increase of the probability of correct
classification as n increases. This is consistent with the theory because both
the UPL/CPL method and our regularized spectral clustering method are
strongly consistent.
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Fig 3: Classification results for DGP 3 (K = 2, degree-corrected) based on

L′τ = D
−1/2
τ AD

−1/2
τ and L′′τ = D

−1/2
τ AτD

−1/2
τ . The red and black vertical

lines correspond to the optimal regularizers τ ′JY and τ ′′JY, respectively. (See
Figure 1 for the explanation of other features of the figure.)
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Fig 4: Classification results for DGP 4 (K = 3, degree-corrected) based on

L′τ = D
−1/2
τ AD

−1/2
τ and L′′τ = D

−1/2
τ AτD

−1/2
τ . The red and black vertical

lines correspond to the optimal regularizers τ ′JY and τ ′′JY, respectively. (See
Figure 1 for the explanation of other features of the figure.)
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Table 1
Comparison of classification results based on spectral clustering with τ set to τJY or d̄,

and the UPL/CPL method

CCP NMI

Spectral clustering UPL/CPL Spectral clustering UPL/CPL

DGP K n/K d̄ τJY/τ ′JY d̄ τJY/τ ′JY

1 2 50 0.9999 0.9999 0.9977 0.9990 0.9990 0.9843
2 200 1.0000 1.0000 0.9994 1.0000 1.0000 0.9949

2 3 50 0.9905 0.9957 0.9943 0.9693 0.9820 0.9760
3 200 0.9945 0.9994 0.9980 0.9847 0.9968 0.9893

3 2 50 0.9592 0.9619 0.9625 0.7918 0.7942 0.8136
2 200 0.9756 0.9779 0.9770 0.8531 0.8690 0.8667

4 3 50 0.9468 0.9534 0.9603 0.8320 0.8414 0.8678
3 200 0.9640 0.9702 0.9745 0.8710 0.8898 0.9023

4.3. The adaptive procedure. Next we consider the adaptive procedure for
DC-SBM. The procedure contains two steps:

1. Following [1], we adopt the SCP to get a preliminary estimate of the com-
munity structure. Based on this preliminary estimate, we estimate Θ by Θ̂
as in (3.3).

2. With the estimated Θ̂ from the previous step, we construct A′′τ = A +
τΘ̂JnΘ̂T , D′′τ = diag(A′′τ ιn), and L′′τ = (D′′τ )−1/2A′′τ (D′′τ )−1/2.3 For a given τ ,
by spectral clustering L′′τ , we can obtain a new classification Ẑ = (Ẑ1, . . . , Ẑn)T ,
where Ẑi is a K by 1 vector with its ĝith entry being 1 and the rest be-
ing 0 and ĝi is an estimator of node i’s community membership. Let n̂k =
#{i : ĝi = k}. Then, based on the new classification, we can estimate the
block probability matrix B and Θ by B̂kl = (

∑
(i,j):ĝi=k,ĝj=l

Aij)/(n̂kn̂l)

and θ̂i = n̂ĝi(
∑n
j=1Aij)/(

∑
i′:ĝi′=ĝi

∑n
j=1Ai′j). Given B̂ = [B̂kl]1≤k,l≤K and

Θ̂1 = diag(θ̂1, . . . , θ̂n), we compute P̂ = Θ̂1ẐB̂Ẑ
T Θ̂T

1 , P̂ ′′τ = P̂ + τΘ̂JnΘ̂T ,

D̂τ = diag(P̂ ′′τ ιn), and L̂′′τ = D̂−1/2τ P̂ ′′τ D̂
−1/2
τ . Let σ̂′′τKn denote theK-th largest

eigenvalue of L̂′′τ (in absolute value). Let

Q′′(τ) = ‖L′′τ − L̂′′τ‖/σ̂′′τKn.

We search for some τ ′′JY that minimizes Q′′(τ) over the aforementioned grid.

Figures 3 and 4 also report the classification results based on L′′τ , which are
shown as the dark lines. We find the performance of spectral clustering based on
L′′τ is better than those using the CPL method. In addition, our choice of τ ′′JY,
marked as the dark vertical line in each subplot, performs well in both DGPs 3 and
4.

3In practice, we let A′′τ = A+τΘ̂JnΘ̂T +10−8Jn to overcome the computation problem
incurred by 0 degree nodes.
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5. Conclusion. In this paper we study the strong consistency of spectral
clustering for stochastic block models (SBMs). We first consider the standard SBMs
and show that under some conditions on the minimal degree (µn), the number of
communities (K), and the eigenvalues of the probability block matrix, the K-means
algorithm applied to the eigenvectors of the graph Laplacian associated with its
first few largest eigenvalues can classify all individuals into the true community
uniformly correctly almost surely in large samples. In the special case where K is
fixed and the probability block matrix has minimal eigenvalue bounded away from
zero, the strong consistency essentially requires that µn/ log (n) → ∞ as n → ∞,
which is the minimal condition for the strong consistency discussed in [2]. We
also consider the regularized spectral clustering for the standard SBMs and show
that the regularization can greatly relax the above conditions and it only requires
(µn + τ) / log (n)→∞ as n→∞ in the aforementioned special case, where τ is the
regularization parameter. The extension to the regularized spectral clustering for a
degree-corrected SBM is also studied and we show that strong clustering can also
be achieved in this case. Our simulations indicate that an adaptive procedure helps
to improve the finite sample performance of the regularized spectral clustering for
a degree-corrected SBM.

APPENDIX A: PROOFS OF THE RESULTS IN SECTION 2

In this appendix we prove the results in Section 2. We will apply some technical
lemmas whose proofs are relegated to the supplement.

Proof of Theorem 2.1. By the proof of Rohe et al. [17, Lemma 3.1], we have
L = n−1ZB0Z

T . Therefore, L2 = n−1ZB0(ZTZ/n)B0Z
T . Let Πn = ZTZ/n =

diag(π1n, . . . , πKn). By the spectral decomposition in Assumption 1, we have

(A.1) Π1/2
n B0ΠnB0Π1/2

n = SnΩ2
nS

T
n ,

where Ωn = diag(ω1n, . . . , ωK∗n) such that |ω1n| ≥ |ω2n| ≥ · · · ≥ |ωK∗n| > 0 and
Sn is a K ×K∗ matrix such that STn Sn = IK∗ . Let U∗1n = Z(ZTZ)−1/2Sn. Then,
we have

(A.2) U∗1nΩ2
nU
∗T
1n = L2 = U1nΣ2

1nU
T
1n.

In addition, U∗T1n U
∗
1n = STn Sn = IK∗ . Therefore the columns of U∗1n are the eigen-

vectors of L associated with eigenvalues σ1n, . . . , σK∗n, up to sign normalization.
W.l.o.g., we can take U∗1n = U1n and Ωn = Σ1n.

In addition, if node i is in cluster Ck1 , then zTi (ZTZ)−1/2Sn = n
−1/2
k1

[Sn]k1·,
where [Sn]k· denotes the k-th row of Sn. Therefore, by Assumption 2 and the fact
that ‖[Sn]k1·‖ ≤ 1,

(n/K)1/2‖zTi (ZTZ)−1/2Sn‖ ≤ c−1/2‖[Sn]k1·‖ ≤ c−1/2.

Taking supi on both sides establishes the first desired result.
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Now, let ξn = min1≤i<j≤n( nK )1/2‖(zi − zj)(ZTZ)−1/2Sn‖. Let nodes i and j be
in communities k1 and k2, respectively, where k1 6= k2. If K∗ = K, ‖[Sn]k·‖ = 1 for
k = 1, . . . ,K and [Sn]Tk1·[Sn]k2· = 0. Then noting that

n

K
‖(zi − zj)(ZTZ)−1/2Sn‖2 =

n

Knk1
+

n

Knk2
≥ 2

C
,

we have ξn ≥
√

2
C > 0. This concludes part (i) in the second claim. For part (ii), by

(A.1), (ZTZ)−1/2SnΩ2
nS

T
n (ZTZ)−1/2 = n−1B0πnB0.Noting that zTi (ZTZ)−1/2Sn =

n
−1/2
k1

[Sn]k1· and zTj (ZTZ)−1/2Sn = n
−1/2
k2

[Sn]k2·, this implies that

K∗∑
k∗=1

ω2
k∗n

(
n
−1/2
k1

[Sn]k1k∗

)(
n
−1/2
k2

[Sn]k2k∗

)

= zTi (ZTZ)−1/2SnΩnS
T
n (ZTZ)−1/2zj = n−1

K∑
k3=1

πk3n[B0]k1k3 [B0]k2k3 ,

K∗∑
k∗=1

ω2
k∗n

(
n
−1/2
k1

[Sn]k1k∗

)2

= n−1
K∑

k3=1

πk3n[B0]2k1k3 ,

and
K∗∑
k∗=1

ω2
k∗n

(
n
−1/2
k2

[Sn]k2k∗

)2

= n−1
K∑

k3=1

πk3n[B0]2k2k3 .

It follows that
(A.3)
K∗∑
k∗=1

ω2
k∗n

(
n
−1/2
k1

[Sn]k1k∗ − n
−1/2
k2

[Sn]k2k∗

)2

= n−1
K∑

k3=1

πk3n([B0]k1k3 − [B0]k2k3)2.

By (A.2), ω2
1n = ‖L2‖. In addition, ‖L‖ ≤ 1, and by Lemma 2.1 below which

does not use the result in this theorem, ‖L − L‖ = oa.s.(1). This implies |ω1n| ≤ 2.
Then, by Assumption 1(ii) and (A.3),

4ξ2n = 4 min
1≤k1<k2≤n

n

K

K∗∑
k∗=1

(
n
−1/2
k1

[Sn]k1k∗ − n
−1/2
k2

[Sn]k2k∗

)2

≥ min
1≤k1<k2≤n

n

K

K∗∑
k∗=1

ω2
k∗n

(
n
−1/2
k1

[Sn]k1k∗ − n
−1/2
k2

[Sn]k2k∗

)2

= min
1≤k1<k2≤n

1

K2

K∑
k3=1

(πk3nK)([B0]k1k3 − [B0]k2k3)2

≥ min
1≤k1<k2≤n

c

K2
‖[B0]k1· − [B0]k2·‖2 ≥ c(ξ′n)2,

Then ξn ≥ c′ξ′n with c′ =
√
c/2 and the conclusion in part (ii) of the second claim

follows.
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The proof of Lemma 2.1 is similar to the ones in [9] and [16]. We include it
just for completeness. We will use the following Bernstein inequality of the matrix
derived by [14].

Lemma A.1. Consider an independent sequence (Yk)k≥1 of real symmetric d×d
random matrices that satisfy EYk = 0 and ‖Yk‖ ≤ R for each index k. Then, for
all t ≥ 0 and σ2 = ‖

∑
k≥1 EY 2

k ‖,

P (‖
∑
k≥1

Yk‖ ≥ t) ≤ d exp

(
−t2

3σ2 + 2Rt

)
.

Proof of Lemma 2.1. Let L̃ = D−1/2AD−1/2. Then

‖L − L‖ ≤ ‖L − L̃‖+ ‖L− L̃‖ =: I + II.

Let Yij = (didj)
−1/2(Aij − Pij)(eie

T
j + eje

T
i ) for 1 ≤ i < j ≤ n and Yii =

−d−1i Piieie
T
i , where ei is the n × 1 vector with its i-th coordinate being 1 and

the rest being 0. Then, {Yij}1≤i≤j≤n is a sequence of independent symmetric ran-
dom matrices such that EYij = 0,

L̃− L+ diag(L) =
∑

1≤i<j≤n

Yij and diag(L) =

n∑
i=1

Yii.

In addition, we note that sup1≤i<j≤n ‖Yij‖ ≤
√

2/µn and

σ2 = ‖
∑

1≤i<j≤n

EY 2
ij‖ = ‖diag(

∑
j 6=1

p1j(1− p1j)/(d1dj), . . . ,
∑
j 6=n

pnj(1− pnj)/(dndj))‖

≤ µ−1n max
1≤i≤n

n∑
j=1

pij(1− pij)/di ≤ µ−1n .

Therefore, by Lemma A.1 and Assumption 4, there exist some constant C > 2 and
some integer n0 sufficiently large, such that for n > n0

P (‖L̃− L+ diag(L)‖ ≥ C(log(n)/µn)1/2) = P (‖
∑

1≤i<j≤n

Yij‖ ≥ C(log(n)/µn)1/2)

≤ n exp

(
−C2 log(n)/µn

3µ−1n + 2
√

2C(log(n)/µn)1/2µ−1n

)
≤ Cn1−C .(A.4)

This implies that

∞∑
n=1

P (‖L̃− L+ diag(L)‖ ≥ C log1/2(n)µ−1/2n ) <∞,
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or equivalently, ‖L̃−L+diag(L)‖ ≤ C log1/2(n)µ
−1/2
n a.s. In addition, ‖diag(L)‖ ≤

µ−1n = o(log1/2(n)µ
−1/2
n ). Therefore,

I ≤ ‖L̃− L+ diag(L)‖+ ‖diag(L)‖ ≤ C log1/2(n)µ−1/2n a.s.

Now we turn to II. By Bernstein inequality for independent bounded random
variables, for some C > 2, we have,

P (sup
i
|d̂i − di|/di ≥ C(log(n)/µn)1/2) ≤ 2

n∑
i=1

exp

(
−C2d2i log(n)/µn

2di + 2C(log(n)/µn)1/2di/3

)
≤ Cn1−C ,

where the second line follows from the fact that mini di = µn and log(n)/µn → 0

under Assumption 4. Therefore, supi |d̂i − di|/di ≤ C(log(n)/µn)1/2 a.s., and we
have

‖D−1/2D1/2−I‖ = max
i
|(d̂i/di)1/2−1| ≤ max

i
|(d̂i/di)−1| ≤ C(log(n)/µn)1/2 a.s.

Then by the triangle inequality and the fact that ‖L‖ ≤ 1,

‖L̃− L‖ = ‖L−D−1/2D1/2LD1/2D−1/2‖
≤ ‖D−1/2D1/2L−D−1/2D1/2LD1/2D−1/2‖+ ‖L−D−1/2D1/2L‖
≤ ‖D−1/2D1/2 − I‖‖D−1/2D1/2‖+ ‖D−1/2D1/2 − I‖ ≤ C(log(n)/µn)1/2 a.s.

This concludes the first part of the proof. For the second part, by the Davis-Kahan
Theorem (e.g., Yu et al. [22, Theorem 2]), we have

‖Û1n − U1nOn‖ ≤
C(K∗)1/2‖L− L‖

|σK∗n|
≤ C log1/2(n)(K∗)1/2µ−1/2n |σ−1K∗n| a.s.

To prove Theorem 2.2, we need the following three lemmas.

Lemma A.2. Let ρn = max(supk1,k2 [B0]k1k2 , 1). Then Pij ≤ ρnn−1(didj)
1/2.

Lemma A.3. Let V1n be some n×K∗ (random) matrix and vT1i be the i-th row of
V1n. Assume there exist two deterministic sequences {φ1n}n≥1 and {φ2n}n≥1 such
that ‖V1n‖ ≤ φ1n and supi ‖v1i‖ ≤ φ2n almost surely. In addition, if Assumptions
1–4 hold, then there exists some positive constant C sufficiently large such that

sup
i

(
d
−1/2
i ‖([A]i·−[P]i·)D−1/2V1n‖

)
≤ 2C

[
φ2n log(n)K∗

µn
∨
(

log(n)φ21nρnK
∗

nµn

)1/2]
a.s.
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Lemma A.4. Assume there exists a deterministic sequence {ψn}n≥1 such that
supj ‖û1j‖ ≤ ψn almost surely. If Assumptions 1–4 hold, then there exists some
positive constant C sufficiently large such that

‖Λ̂− Λ‖ ≤ C log1/2(n)(K∗)1/2µ−1/2n |σ−1K∗n| a.s.

and

sup
i
‖Λ̂i − Λi‖ ≤ C log(n)K∗µ−1n ψn + C(log(n)K∗)1/2ρn(nµn)−1/2|σ−1K∗n| a.s.

Proof of Theorem 2.2. First, by the Weilandt-Hoffman inequality and Lemma
2.1,

(A.5) ‖Σ̂1n − Σ1n‖ ≤ ‖L− L‖ ≤ C log1/2(n)µ−1/2n a.s.

Then, by Lemmas A.4 and 2.1,

C(log(n)K∗)1/2µ−1/2n |σ−1K∗n|

≥‖Λ̂− Λ‖

=‖Û1nΣ̂1n − U1nΣ1nOn‖

≥‖U1n(OnΣ1n − Σ1nOn)‖ − ‖(Û1n − U1nOn)Σ1n‖ − ‖Û1n(Σ̂1n − Σ1n)‖

=‖OnΣ1n − Σ1nOn‖ − C ′ log1/2(n)µ−1/2n |σ−1K∗n|(K
∗)1/2 a.s.

Therefore,

(A.6) ‖OnΣ1n − Σ1nOn‖ ≤ C log1/2(n)µ−1/2n |σ−1K∗n|(K
∗)1/2 a.s.

In addition,

‖Λ̂i − Λi‖ = ‖ûT1iΣ̂1n − uT1iΣ1nOn‖

≥ ‖(ûT1i − uT1iOn)Σ1n‖ − ‖ûT1i(Σ̂1n − Σ1n)‖ − ‖uT1i(Σ1nOn −OnΣ1n)‖
=: I − II − III.

Next, we bound the three terms on the right hand side (RHS) of the above display.
First, since Σ1n = diag(σ1n, . . . , σK∗n),

I ≥ |σK∗n|‖ûT1i − uT1iOn‖ a.s.

Denote Γn = supi ‖ûT1i − uT1iOn‖. By Theorem 2.1 and (A.5)

II ≤ (sup
i
‖ûT1i − uT1iOn‖+ sup

i
‖uT1i‖)‖Σ̂1n − Σ1n‖

≤ C log1/2(n)µ−1/2n Γn + C log1/2(n)(nµn)−1/2K1/2 a.s.

Similarly, by (A.6) and Theorem 2.1,

III ≤ C log1/2(n)(nµn)−1/2|σ−1K∗n|(KK
∗)1/2 a.s.
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Therefore, we have

sup
i
‖Λ̂i−Λi‖ ≥ (|σK∗n|−C log1/2(n)µ−1/2n )Γn−C log1/2(n)(nµn)−1/2|σ−1K∗n|(KK

∗)1/2.

On the other hand, if Γn ≤ δ(0)n a.s. for some deterministic sequence {δ(0)n }n≥1, then

sup
i
‖û1i‖ ≤ C(δ(0)n + (n/K)−1/2) a.s.

Applying Lemma A.4 with ψn = C(δ
(0)
n + (n/K)−1/2) and Assumption 4, we have

Cµ−1n log(n)δ(0)n K∗ + C(log(n)K∗)1/2ρn(nµn)−1/2|σ−1K∗n|

≥ sup
i
‖Λ̂i − Λi‖

≥ (|σK∗n| − C log1/2(n)µ−1/2n )Γn − C log1/2(n)(nµn)−1/2|σ−1K∗n|(KK
∗)1/2.

Since log(n)µ−1n |σ−2K∗n| → 0 under Assumption 4, we can choose n0 sufficiently large
such that for n ≥ n0,

|σK∗n| > C log1/2(n)µ−1/2n .

Then, by combining and rearranging terms, we have,

Γn ≤
Cµ−1n |σ−1K∗n| log(n)K∗

(1− C log1/2(n)µ
−1/2
n |σ−1K∗n|)

δ(0)n +
C(log(n)K∗)1/2(nµn)−1/2σ−2K∗n(ρn +K1/2)

(1− C log1/2(n)µ
−1/2
n |σ−1K∗n|)

.

Again, since log(n)K∗

µnσK∗n
→ 0 under Assumption 4, we can choose n1 > n0 sufficiently

large such that for any n ≥ n1,

Cµ−1n log(n)|σ−1K∗n|K∗

(1− C log1/2(n)µ
−1/2
n |σ−1K∗n|)

≤ 1

2

and
C

(1− C log1/2(n)µ
−1/2
n |σ−1K∗n|)

≤ 2C.

Therefore, for n ≥ n1,

δ(1)n =:
1

2
δ(0)n + ηn ≥ Γn,

where ηn = 2C(log(n)K∗)1/2(nµn)−1/2σ−2K∗n(ρn +K1/2). We iterate the above cal-
culation t ≥ 1 times for some arbitrary integer t, and obtain that, for n ≥ n1,

Γn ≤ δ(t)n , δ(t)n =:
1

2
δ(t−1)n + ηn.

This implies δ
(t)
n = ( 1

2 )t
[
δ
(0)
n − 2ηn

]
+ 2ηn.

Because supi ‖û1i‖2 ≤ ‖Û1n‖2F = K∗, we have supi ‖û1i‖ ≤ (K∗)1/2. Then, we

set δ
(0)
n = (K∗)1/2 and choose n2 > n1 sufficiently large and t = n such that for

n ≥ n2,
Γn ≤ δ(n)n ≤ 2−n(K∗)1/2 + 2ηn ≤ 3ηn.

This concludes the proof.
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Proof of Lemma 2.2. Let Qn(A) =
∑K
k=1 min1≤l≤K ‖βkn −αl‖2πkn. We first

derive the convergence rate of Q̂n(A)−Qn(A) uniformly overA ∈M = {(α1, . . . , αK) :

sup1≤k≤K ‖αk‖ ≤M} for some constant M independent of n. Let Rn = supi ‖β̂in−
βg0i n‖. Then, by Assumption 5(iii),

(A.7) Rn = Oa.s.(c2n).

In addition,

‖β̂in − αl‖2 ≤ ‖βg0i n − αl‖
2 + 2|(βg0i n − β̂in)T (βg0i n − αl)|+ ‖βg0i n − β̂in‖

2

≤ ‖βg0i n − αl‖
2 + 2‖βg0i n − β̂in‖1‖βg0i n − αl‖∞ +R2

n

≤ ‖βg0i n − αl‖
2 + 2

√
K∗Rn‖βg0i n − αl‖+R2

n

≤ ‖βg0i n − αl‖
2 + 2

√
K∗Rn(‖βg0i n‖+ ‖αl‖) +R2

n.

Taking min1≤l≤K on both sides and averaging over i, we have

Q̂n(A) ≤ Qn(A) + C
√
K∗Rn.

Similarly, we have Q̂n(A) ≥ Qn(A)− C
√
K∗Rn. By (A.7),

R̆n ≡ sup
A∈M

|Q̂n(A)−Qn(A)| = Oa.s.(c2n
√
K∗).

Next, we show Ân ∈ M. Denote Ân = {α̂1, . . . , α̂K}. By Assumption 5(i), we
can choose ∞ > M > 0 such that

sup
i
‖β̂in‖ ≤ Rn + sup

1≤k≤K
‖βkn‖ ≤M.

Denote In(k) = {i : k = arg min1≤l≤K ‖β̂in − α̂l‖} for some k ≤ K. If ‖α̂k‖ > M
and In(k) = ∅, then we can choose

Â′n = {α̂1, . . . , α̂k−1, α̂
′
k, α̂k+1, . . . , α̂K},

where α̂′k = β̂in for some arbitrary i ≤ n. Therefore, we have ‖α̂′k‖ ≤ M < ‖α̂k‖
and Q̂n(Â′n) < Q̂n(Ân), which is a contradiction. On the other hand, if ‖α̂k‖ > M
and In(k) 6= ∅, then we can choose

Â′n = {α̂1, . . . , α̂k−1, α̂
′
k, α̂k+1, . . . , α̂K},

where α̂′k = 1
|In(k)|

∑
i∈In β̂in and |In(k)| is the cardinality of In(k). This means

‖α̂′k‖ ≤M < ‖α̂k‖ and Q̂n(Â′n) < Q̂n(Ân), which is a contradiction too. Therefore,

‖α̂k‖ ≤M . Since k is arbitrary, Ân ∈M.
Third, we show for any C1 > 0, there exists a constant C independent of n such

that,
inf

A:H(A,Bn)>C1

Qn(A) ≥ C min(C2
1/K, c

2
1n/K),
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where Bn = {β1n, . . . , βKn}. If there exist some l0 ∈ {1, . . . ,K} and two indices k1
and k2 such that

l0 = arg min
1≤l≤K

‖βk1n − αl‖ = arg min
1≤l≤K

‖βk2n − αl‖,

then by Assumption 5(ii)

Qn(A) ≥ πk1n‖βk1n − αl0‖2 + πk2n‖βk2n − αl0‖2

≥ C

K
(‖βk1n − αl0‖+ ‖βk2n − αl0‖)2 ≥

C

K
‖βk1n − βk2,n‖2 ≥ Cc21n/K.

On the other hand, if there does not exist such an l0, then there is a one-to-one
mapping h : {1, . . . ,K} 7→ {1, . . . ,K} such that

h(k) = arg min
1≤l≤K

‖βkn − αl‖.

Therefore,

Qn(A) =

K∑
k=1

πkn‖βkn − αh(k)‖2 ≥ (inf
k
πkn)H2(A,Bn) ≥ CC2

1/K.

Last, we show H(Ân,Bn) = Oa.s.(c
1/2
2n K

1/2(K∗)1/4). For any ε > 0 and suffi-
ciently large C2,

P (H(Ân,Bn) ≥ C2c
1/2
2n K

1/2(K∗)1/4 i.o.)

= P (H(Ân,Bn) ≥ C2c
1/2
2n K

1/2(K∗)1/4, Qn(Ân) ≥ Qn(Bn)

+ C min(C2
2c2n(K∗)1/2, c21n/K) i.o.)

≤ P (Q̂n(Ân) + R̆n ≥ Q̂n(Bn)− R̆n + C min(C2
2c2n(K∗)1/2, c21n/K) i.o.)

= P (2R̆n ≥ Q̂n(Bn)− Q̂n(Ân) + C min(C2
2c2n(K∗)1/2, c21n/K) i.o.)

≤ P (2R̆n ≥ C min(C2
2c2n(K∗)1/2, c21n/K) i.o.)→ 0,

where the last inequality because Q̂n(Bn)− Q̂n(Ân) ≥ 0 and the last equality holds
because R̆n = Oa.s.(c2n(K∗)1/2) and lim supn c2nc

−2
1n (K∗)1/2K → 0. This concludes

the proof.

Proof of Theorem 2.3. By Lemma 2.2 and Assumption 5(ii) and (iii), for each
n, there is a one-to-one mapping µn : {1, . . . ,K} 7→ {1, . . . ,K}, such that

sup
k
‖α̂kn − βµn(k)n‖ = Oa.s.(c

1/2
2n K

1/2(K∗)1/4).

W.l.o.g., we can assume µn(k) = k such that

(A.8) R̃n ≡ sup
k
‖α̂kn − βkn‖ = Oa.s.(c

1/2
2n K

1/2(K∗)1/4).
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If ĝi 6= g0i , then ‖β̂in− α̂ĝin‖ ≤ ‖β̂in− α̂g0i n‖. This, in conjunction with the triangle
inequality, implies that

‖α̂ĝin − α̂g0i n‖ − ‖β̂in − α̂g0i n‖ ≤ ‖β̂in − α̂ĝin‖ ≤ ‖β̂in − α̂g0i n‖.

It follows that

‖β̂in − α̂g0i n‖ ≥
1

2
‖α̂ĝin − α̂g0i n‖.

By (A.7), (A.8), and the repeated use of the triangle inequality, we have

Rn + R̃n ≥ ‖β̂in − βg0i n‖+ ‖βg0i n − α̂g0i n‖

≥ ‖β̂in − α̂g0i n‖ ≥
1

2
‖α̂ĝin − α̂g0i n‖

=
1

2
‖(βĝin − βg0i n) + (α̂ĝin − βĝin) + (βg0i n − α̂g0i n)‖

≥ 1

2
‖βĝin − βg0i n‖ − R̃n ≥ c1n/2− R̃n.

This implies
1{ĝi 6= g0i } ≤ 1{Rn + 2R̃n ≥ c1n/2}.

Noting that the RHS of the above display is independent of i, we have

P (sup
i

1{ĝi 6= g0i } > 0 i.o.) ≤ P (Rn + 2R̃n ≥ c1n/2 i.o.)

= P (Oa.s.(c2n) +Oa.s.(c
1/2
2n K

1/2(K∗)1/4) ≥ c1n/2 i.o.)

= 0 under Assumption 5(iii).

This concludes the proof.

Proof of Corollary 2.1. We note that Theorems 2.1-2.2 and Assumption 6

verify Assumptions 5(i) and (ii) and Assumption 5(iii), with βkn = π
−1/2
kn [SnOn]k·,

β̂in = n1/2ûT1i, c2n = ξ2n, and c1n = ξn. Then the corollary follows from Theorem
2.3.

APPENDIX B: PROOFS OF THE TECHNICAL LEMMAS IN
APPENDIX A

Proof of Lemma A.2. Definition of ρn, [B0]k1k2 ≤ ρn for any k1, k2 = 1, . . . ,K.
Consider the case nodes i and j are in Ck1 and Ck2 , respectively. Then

Pij = Bk1k2 = n−1(nWk1)1/2[B0]k1k2(nWk2)1/2

= n−1[B0]k1k2(didj)
1/2 ≤ ρnn−1(didj)

1/2.
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Proof of Lemma A.3. Let rn =

[
φ2n log(n)K∗

µn
∨
(

log(n)φ2
1nρnK

∗

nµn

)1/2]
, SK

∗−1 =

{g ∈ <K∗ : ‖g‖ = 1}, and Gn = {g1, . . . , gMn
} ⊂ SK

∗−1 such that for any g′ ∈
SK

∗−1,
‖g′ − f(g′)‖ ≤ n−1,

where f(g′) = arg ming∈Gn ‖g
′ − g‖. Then, we have Mn ≤ CnK

∗−1 and

P

(
sup
i
d
−1/2
i ‖([A]i· − [P ]i·)D−1/2V1n‖ ≥ 2Crn

)
≤

n∑
i=1

P

(
sup

g∈SK∗−1

d
−1/2
i |([A]i· − [P ]i·)D−1/2V1n(g − f(g))| ≥ Crn

)

+

n∑
i=1

P

(
sup
g∈Gn

d
−1/2
i |([A]i· − [P ]i·)D−1/2V1ng| ≥ Crn

)
:= In + IIn.(B.1)

Note that d
−1/2
i ‖([A]i·−[P ]i·)D−1/2‖ ≤ n1/2µ−1n almost surely, supg∈SK∗−1 ‖V1n(g−

f(g))‖ ≤ φ1nn−1 and rn ≥ C φ1n

(nµn)1/2
. Therefore,

In ≤
n∑
i=1

P

(
φ1nn

−1‖d−1/2i ([A]i· − [P ]i·)D−1/2‖ ≥ Cφ1n(nµn)−1/2
)

≤
n∑
i=1

P

(
1 ≥ C(µn)1/2

)
= 0.(B.2)

Now we turn to IIn. Let

H = {h ∈ <n : ‖h‖ ≤ φ1n and sup
j
|hj | ≤ φ2n},

where hj is the j-th element of h. Note, for any g ∈ SK∗−1, ‖V1ng‖ = ‖V1n‖ ≤ φ1n
and |[V1ng]j·| ≤ ‖v1j‖ ≤ φ2n almost surely. Thus, {V1ng : g ∈ SK

∗−1} ⊂ H. In
addition, for any h ∈ H, |(Aij − Pij)(didj)−1/2hj | ≤ φ2n/µn and by Lemma A.2,

σ2 :=
∑
j 6=i

E(Aij − Pij)2(didj)
−1h2j ≤

n∑
j=1

Pij(didj)
−1h2j ≤ ρn(nµn)−1φ21n

and
|Aii − Pii|d−1i |hi| = Pii(di)

−1|hi| ≤ φ2nµ−1n ≤ Crn/2.
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Then, by the Bernstein inequality,

IIn ≤
n∑
i=1

CnK
∗−1 sup

g∈SK∗−1

P

(
d
−1/2
i |([A]i· − [P ]i·)D−1/2V1ng| ≥ Crn

)

≤
n∑
i=1

CnK
∗−1 sup

h∈H
P

(
Crn/2 + |

∑
j 6=i

(Aij − Pij)(didj)−1/2hj | ≥ Crn
)

≤ CnK
∗

exp

(
−(C/2)2r2n

Crnφ2n

3µn
+

2ρnφ2
1n

nµn

)
.(B.3)

Note that φ2n/µn ≤ rn/(log(n)K∗) and ρnφ
2
1n/(nµn) ≤ r2n/(log(n)K∗) by the

definition of rn Therefore for a sufficiently large constant C,

the RHS of (B.3) ≤ Cn[K
∗− (C/2)2K∗

C/3+2
] ≤ Cn−2.

Combining (B.1), (B.2), and (B.3), we have,

∞∑
n=1

P

(
sup
i

(
d
−1/2
i ‖([A]i· − [P]i·)D−1/2V1n‖

)
≥ 2Crn

)
<∞.

This leads to the desired result by the Borel-Cantelli lemma.

Proof of Lemma A.4. Note ‖L‖ ≤ 1. Then, by Lemma 2.1,

‖Λ̂− Λ‖ = ‖LÛ1n − LU1nOn‖

≤ ‖L(Û1n − U1nOn)‖+ ‖(L− L)U1nOn‖

≤ ‖Û1n − U1nOn‖+ ‖L− L‖

≤ C log1/2(n)(K∗)1/2µ−1/2n |σ−1K∗n| a.s.

For the second result, denote Λ̃ = D−1/2PD−1/2U1nOn and Λ̃i = d̂
−1/2
i [P ]i·D

−1/2U1nOn
as the i-th row of Λ̃. Then we have

(B.4) sup
i
‖Λ̂i − Λi‖ ≤ sup

i
‖Λi − Λ̃i‖+ sup

i
‖Λ̂i − Λ̃i‖ := I + II.

For I, we have

I = sup
i
‖(d̂−1/2i [P ]i·D

−1/2 − d−1/2i [P ]i·D−1/2)U1nOn‖

≤ sup
i
‖d̂−1/2i [P ]i·D

−1/2 − d−1/2i [P ]i·D−1/2‖

≤ sup
i
‖d̂−1/2i [P ]i·D−1/2(D1/2D−1/2 − I)‖+ ‖(d̂−1/2i − d−1/2i )[P ]i·D−1/2‖

≤ sup
i
d̂
−1/2
i ‖[P ]i·D−1/2‖‖D1/2D−1/2 − I‖+ sup

i
|d̂−1/2i − d−1/2i |‖[P ]i·D−1/2‖

:= I1 + I2.
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By Lemma A.2,

(B.5) ‖[P ]i·D−1/2‖ = (

n∑
j=1

P 2
ijd
−1
j )1/2 ≤ ρn(di/n)1/2.

In addition, by the proof of Lemma 2.1,

(B.6) sup
i
|d̂−1/2i d

1/2
i − 1| ≤ C(log(n)/µn)1/2 a.s.

and

(B.7) ‖D1/2D−1/2 − I‖ ≤ C(log(n)/µn)1/2 a.s.

Therefore,

I1 ≤ C sup
i
d
−1/2
i (di/n)1/2(log(n)/µn)1/2ρn ≤ C log1/2(n)(nµn)−1/2ρn a.s.,

I2 ≤ C sup
i
d
−1/2
i (log(n)/µn)1/2(di/n)1/2ρn ≤ C log1/2(n)(nµn)−1/2ρn a.s.,

and

(B.8) I ≤ C log1/2(n)(nµn)−1/2ρn a.s.

For II, we have

sup
i
‖Λ̂i − Λ̃i‖

= sup
i
‖d̂−1/2i [A]i·D

−1/2Û1n − d̂−1/2i [P ]i·D
−1/2U1nOn‖

≤ sup
i
d̂
−1/2
i ‖[P ]i·D

−1/2(Û1n − U1nOn)‖+ sup
i
d̂
−1/2
i ‖([A]i· − [P ]i·)D

−1/2U1nOn‖

+ sup
i
d̂
−1/2
i ‖([A]i· − [P ]i·)D

−1/2(Û1n − U1nOn)‖

:=II1 + II2 + II3.
(B.9)

By Lemma 2.1, (B.5), and (B.6),

II1 ≤ C sup
i
d
−1/2
i ρn(di/n)1/2(log(n)/µn)1/2|σ−1K∗n|(K

∗)1/2

≤ Cρn(log(n)K∗)1/2(nµn)−1/2|σ−1K∗n| a.s.(B.10)

By (B.6), we have

II2 ≤ C sup
i
d
−1/2
i ‖([A]i· − [P ]i·)D−1/2D1/2D−1/2U1nOn‖.

Denote V1n = D1/2D−1/2U1nOn. Then, by (B.7), Theorem 2.1, and the fact that
On = Oa.s.(1), we have φ1n = ‖V1n‖ ≤ C and φ2n = sup1≤i≤n ‖v1i‖ ≤ C(n/K)−1/2
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almost surely. Therefore, by Lemma A.3 and the fact that ρn ≥ 1 andK∗K log(n)/µn →
0 under Assumption 4, we have

(B.11) II2 ≤ C log1/2(n)(nµn)−1/2(ρnK
∗)1/2 a.s.

Similarly, we have

II3 ≤ Cd−1/2i ‖([A]i· − [P ]i·)D−1/2D1/2D−1/2(Û1n − U1nOn)‖.

Let V1n = D1/2D−1/2(Û1n − U1nOn). Then, by (B.7), Lemma 2.1, and Theorem
2.1, we have

φ1n = ‖V1n‖ ≤ C‖Û1n − U1nOn‖ ≤ C(log(n)K∗/µn)1/2|σ−1K∗n| a.s.

and

φ2n = sup
1≤i≤n

‖v1i‖ ≤ C sup
1≤i≤n

‖ûT1i − uT1iOn‖ ≤ ψn + C(n/K)−1/2 a.s.

Then, by Lemma A.3, we have

(B.12) II3 ≤ C log(n)µ−1n ψnK
∗ + C log(n)µ−1n n−1/2K∗(K1/2 + ρ1/2n |σ−1K∗n|).

Combining (B.4) and (B.8)–(B.12) with the fact that log(n)KK∗

µn
→ 0, |σK∗n| ≤

|σ1n| ≤ 1 and ρn ≥ 1, we find the bound of II1 and the first term of the bound of
II3 dominate the rest, which leads to the desired result.

APPENDIX C: PROOFS OF THE RESULTS IN SECTION 3

Proof of Theorem 3.1. Since Lτ = n−1ZBτ0Z, the proof follows that of The-
orem 2.1 with A, B0, and Sn replaced by Aτ , B

τ
0 , and Sτn, respectively.

Proof of Theorem 3.2. The proof of part (i) is analogous to that of Theorem
2.2. The main difference is that we need to use Theorem 3.1 in place of Theorem
2.1.

Theorem 3.1 and the first part of Theorem 3.2 verify Assumptions 5(i) and

(ii) and Assumption 5(iii), respectively, with βkn = π
−1/2
kn [SτnO

τ
n]k· and β̂in =

n1/2(ûτ1i)
T . Assumption 2 is maintained. Then part (ii) follows from Theorem 2.3.

Proof of Theorem 3.3. Let g0i ∈ {1, . . . ,K} denote node i’s membership.
Similar to Qin and Rohe [16, Lemma 3.2], we have by (3.1)
(C.1)

di =

n∑
j=1

Pij = θi

n∑
j=1

θjBg0i g0j = θi

K∑
k=1

∑
j∈Ck

θjBg0i k = nθi

K∑
k=1

πknBg0i k = nθiWg0i
.
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Therefore,

[L′τ ]ij = Pij((di + τ)(dj + τ))−1/2 = Bg0i g0j (θiθj)((di + τ)(dj + τ))−1/2

= Bg0i g0j (θτi θ
τ
j )1/2(θiθj)

1/2(didj)
−1/2

= n−1Bg0i g0j (θτi θ
τ
j )1/2(Wg0i

Wg0j
)−1/2

= n−1[Θ1/2
τ ZD−1/2B BD−1/2B ZTΘ1/2

τ ]ij

= n−1[Θ1/2
τ ZB0Z

TΘ1/2
τ ]ij .

That is, L′τ = n−1Θ
1/2
τ ZB0Z

TΘ
1/2
τ . Then

(L′τ )2 = n−1Θ1/2
τ ZB0(ZTΘτZ/n)B0Z

TΘ1/2
τ = n−1Θ1/2

τ ZB0Πτ
nB0Z

TΘ1/2
τ ,

where Πτ
n = ZTΘτZ/n = diag(πτ1n, . . . , π

τ
Kn), and πτkn = nτk/n =

∑
i∈Ck θ

τ
i /n. By

the spectral decomposition, we have

(C.2) (Πτ
n)1/2B0Πτ

nB0(Πτ
n)1/2 = SτnΩn(Sτn)T ,

where Ωn = diag(ωn, . . . , ωKn) such that ωn ≥ ω2n ≥ · · · ≥ ωKn > 0 and Sn is a

K ×K matrix such that (Sτn)TSτn = IK . Let U∗1n = Θ
1/2
τ Z(ZTΘτZ)−1/2Sτn. Then,

we have
U∗1nΩnU

∗T
1n = (L′τ )2 = U1nΣ2

nU
T
1n.

In addition, U∗T1n U
∗
1n = (Sτn)TSτn = IK . Therefore the columns of U∗1n are the eigen-

vectors of L′τ associated with eigenvalues σn, . . . , σKn, up to sign normalization.
W.l.o.g., we can take U1n = U∗1n to obtain the first result.

Now we turn to the second result. If node i is in cluster Ck1 , then

uTi = (θτi )1/2zTi (ZTΘτZ)−1/2Sτn = (θτi )1/2(nτk1)−1/2[Sτn]k1·,

where [Sτn]k· denotes the k-th row of Sτn. Therefore,

(nτk1)1/2(θτi )−1/2‖uTi ‖ = ‖[Sτn]k1·‖ = 1.

Last, we note that
uTi
‖uTi ‖

= [Sτn]g0i ·. Therefore, if zi 6= zj , then g0i 6= g0j and∥∥∥∥ uTi
‖uTi ‖

−
uT1j
‖uT1j‖

∥∥∥∥ = ‖[Sτn]g0i · − [Sτn]g0j ·‖ =
√

2.

Similarly, if zi = zj , then g0i = g0j and
uTi
‖uTi ‖

=
uT1j
‖uT1j‖

.

Proof of Lemma 3.1. Let L̃τ = D−1/2τ AD−1/2τ . Then

‖L′τ − L′τ‖ ≤ ‖L′τ − L̃τ‖+ ‖L′τ − L̃τ‖ := I + II.

Let dτi = di + τ , Yij = (dτi d
τ
j )−1/2(Aij − Pij)(eieTj + eje

T
i ) for 1 ≤ i < j ≤ n, and

Yii = −(dτi )−1Piieie
T
i , where ei is the n× 1 vector with its i-th coordinate being 1
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and the rest being 0. Then {Yij}1≤i<j≤n is a sequence of independent symmetric
random matrices such that EYij = 0,

L̃τ − L′τ + diag(L′τ ) =
∑

1≤i<j≤n

Yij , and diag(L′τ ) =

n∑
i=1

Yii.

In addition, we note that sup1≤i<j≤n ‖Yij‖ ≤
√

2/µτn and

σ2 = ‖
∑

1≤i<j≤n

EY 2
ij‖ = ‖diag(

∑
j 6=1

p1j(1− p1j)/(dτ1dτj ), . . . ,
∑
j 6=n

pnj(1− pnj)/(dτndτj ))‖

≤ (µτn)−1 max
1≤i≤n

n∑
j=1

pij(1− pij)/dτi ≤ (µτn)−1.

By Lemma A.1, there exist some constant C > 2 and some integer n0 sufficiently
large, such that for n > n0

P (‖L̃τ − L′τ + diag(L′τ )‖ ≥ C(log(n)/µτn)1/2)

= P (‖
∑

1≤i<j≤n

Yij‖ ≥ C(log(n)/µτn)1/2)

≤ n exp

(
−C2 log(n)/µτn

3(µτn)−1 + 2
√

2C(log(n)/µτn)1/2(µτn)−1

)
≤ Cn1−C .(C.3)

This implies

∞∑
n=1

P (‖L̃τ − L′τ + diag(L′τ )‖ ≥ C(log(n)/µτn)1/2) <∞,

or equivalently, ‖L̃τ − L′τ + diag(L′τ )‖ ≤ C(log(n)/µτn)1/2 a.s. In addition, As-
sumption 11 implies log(n)/µτn → 0. Therefore,

‖diag(L′τ )‖ ≤ (µτn)−1 ≤ C(log(n)/µτn)1/2.

Therefore,

I ≤ ‖L̃τ − L′τ + diag(L′τ )‖+ ‖diag(L′τ )‖ ≤ C(log n/µτn)1/2 a.s.

Now we turn to II. Let d̂τi = d̂i + τ . By Bernstein inequality, for some C > 2,
we have,

P (sup
i
|d̂τi − dτi |/dτi ≥ C(log(n)/µτn)1/2) ≤ 2

n∑
i=1

exp

(
−C2(dτi )2 log(n)/µτn

2dτi + 2C(log n/µτn)1/2dτi /3

)
≤ Cn1−C .
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Therefore, supi |d̂τi − dτi |/dτi ≤ C(log(n)/µτn)1/2 a.s., and thus,

‖D−1/2τ D1/2
τ −I‖ = max

i
|(d̂τi /dτi )1/2−1| ≤ max

i
|(d̂τi /dτi )−1| ≤ C(log(n)/µτn)1/2 a.s.

In addition, by Chung [7, Lemma 1.7], ‖L′τ‖ ≤ ‖L‖ ≤ 1. Therefore,

‖L̃τ − L′τ‖ = ‖L′τ −D−1/2τ D1/2
τ LτD

1/2
τ D−1/2τ ‖

≤ ‖D−1/2τ D1/2
τ L′τ −D−1/2τ D1/2

τ L′τD
1/2
τ D−1/2τ ‖+ ‖L′τ −D−1/2τ D1/2

τ L′τ‖
≤ ‖D−1/2τ D1/2

τ − I‖‖D−1/2τ D1/2
τ ‖+ ‖D−1/2τ D1/2

τ − I‖ ≤ C(log(n)/µτn)1/2 a.s.

This concludes the first part of the proof. Then by the Davis-Kahan Theorem (e.g.,
Yu et al. [22, Theorem 2]),

‖Û1n − U1nOn‖ ≤
CK1/2‖L′τ − L′τ‖

|σKn|
≤ C(log(n)/µτn)1/2|σKn|−1K1/2 a.s.

To prove Theorem 3.4, we need the following three lemmas.

Lemma C.1. If Assumption 9 holds, then Pij ≤ ρnn−1(θiθj)
1/2(didj)

1/2.

Proof. Consider the case in which nodes i and j are in Ck1 and Ck2 , respec-
tively. Then by the definition of B0 and (C.1)

Pij = θiθjBk1k2 = n−1θiθj(nWk1)1/2[B0]k1k2(nWk2)1/2

= n−1(θiθj)
1/2[B0]k1k2(didj)

1/2 ≤ ρnn−1(θiθj)
1/2(didj)

1/2.

Lemma C.2. Let Vn be some n×K (random) matrix and vTi be the i-th row of
Vn. Assume there exist two deterministic sequences {φ1n}n≥1 and {φ2n}n≥1 such
that ‖Vn‖ ≤ φ1n and supi ‖vi‖ ≤ φ2n almost surely. In addition, if Assumptions
9–11 hold, then there exists some positive constant C sufficiently large such that

sup
i

(
(nτg0i

)1/2(θτi )−1/2(dτi )−1/2‖([A]i· − [P]i·)D−1/2τ Vn‖
)

≤ 2C

[
φ2n log(n)(nK)1/2

µτnθ
1/2

∨
(

log(n)ρnφ
2
1nθ

1/2

µτnθ
1/2

)1/2]
a.s.

Proof. The proof is analogous to that of Lemma A.3. We include it for com-

pleteness. Let rn =

[
φ2n log(n)(nK)1/2

µτnθ
1/2 ∨

(
log(n)ρnφ

2
1nθ

1/2

µτnθ
1/2

)1/2]
, SK−1 = {g ∈ <K :

‖g‖ = 1}, and Gn = {g1, . . . , gMn
} ⊂ SK−1 such that for any g′ ∈ SK−1,

‖g′ − f(g′)‖ ≤ n−1θ1/4,
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where f(g′) = arg ming∈Gn ‖g
′−g‖. Then, we have Mn ≤ CnC

′K for some constant
C ′ > 0 and

P

(
sup
i

(nτg0i
)1/2(θτi )−1/2(dτi )−1/2‖([A]i· − [P ]i·)D−1/2τ Vn‖ ≥ 2Crn

)
≤

n∑
i=1

P

(
sup

g∈SK−1

(nτg0i
)1/2(θτi )−1/2(dτi )−1/2|([A]i· − [P ]i·)D−1/2τ Vn(g − f(g))| ≥ Crn

)

+

n∑
i=1

P

(
sup
g∈Gn

(nτg0i
)1/2(θτi )−1/2(dτi )−1/2|([A]i· − [P ]i·)D−1/2τ Vng| ≥ Crn

)

:= In + IIn.
(C.4)

By Assumption 10,

(nτg0i
)1/2(θτi )−1/2(dτi )−1/2‖([A]i· − [P ]i·)D−1/2τ ‖ ≤ nθ−1/2(µτn)−1 a.s.

In addition, supg∈SK−1 ‖Vn(g − f(g))‖ ≤ φ1nn
−1θ1/4 and Crn ≥ C φ1n log1/2(n)

(µτn)
1/2θ1/4

.

Therefore,

In ≤
n∑
i=1

P

(
φ1nn

−1θ1/4‖(nτg0i )1/2(θτi )−1/2(dτi )−1/2([A]i· − [P ]i·)D−1/2τ ‖ ≥ Crn
)

≤
n∑
i=1

P

(
1 ≥ C log1/2(n)(µτn)1/2

)
= 0.

(C.5)

Now we turn to IIn. Let

H = {h ∈ <n : ‖h‖ ≤ φ1n and sup
j
|hj | ≤ φ2n},

where hj is the j-th element of h. Note that for any g ∈ SK−1, ‖Vng‖ = ‖Vn‖ ≤ φ1n
and |[Vng]j·| ≤ ‖vj‖ ≤ φ2n almost surely. Thus, {Vng : g ∈ SK−1} ⊂ H. For any
h ∈ H,

(nτg0i
)1/2(θτi )−1/2|(Aij − Pij)(dτi dτj )−1/2hj | ≤ φ2nn1/2(θK)−1/2(µτn)−1.

In addition, by Lemma C.1,

∑
j 6=i

nτg0i
(θτi )−1E(Aij−Pij)2(dτi d

τ
j )−1h2j ≤

n∑
j=1

nτg0i
(θτi )−1Pij(d

τ
i d
τ
j )−1h2j ≤ ρnθ

1/2
θ−1/2K−1(µτn)−1φ21n

and

(nτg0i
)1/2(θτi )−1/2|Aii − Pii|(dτi )−1|hi| ≤ φ2nn1/2(Kθ)−1/2(µτn)−1 ≤ Crn/2.
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Then, by the Bernstein inequality with C sufficiently large,

IIn ≤
n∑
i=1

CnC
′K sup

g∈SK−1

P

(
(nτg0i

)1/2(θτi )−1/2(dτi )−1/2|([A]i· − [P ]i·)D−1/2τ Vng| ≥ Crn
)

≤
n∑
i=1

CnC
′K sup

h∈H
P

(
Crn/2 + (nτg0i

)1/2(θτi )−1/2|
∑
j 6=i

(Aij − Pij)(didj)−1/2hj | ≥ Crn
)

≤ CnC
′K+1 exp

(
−(C/2)2r2n

Crnφ2nn1/2

3µτn(Kθ)
1/2 +

2ρnφ2
1nθ

1/2

Kµτnθ
1/2

)

≤ CnC
′K+1 exp

(
−(C/2)2r2n

(C/3 + 2)r2n/(log(n)K)

)
≤ Cn−2.

(C.6)

Combining (C.4), (C.5), and (C.6), we have,

∞∑
n=1

P

(
sup
i

(nτg0i
)1/2(θτi )−1/2

(
(dτi )−1/2‖([A]i· − [P]i·)D−1/2τ Vn‖

)
≥ 2Crn

)
<∞.

This leads to the desired result by the Borel-Cantelli lemma.

Lemma C.3. Assume there exists a deterministic sequence {ψn}n≥1 such that

sup
j

(nτg0j
)1/2(θτj )−1/2‖ûj‖ ≤ ψn

almost surely. If Assumptions 9–11 hold, then there exists some positive constant
C sufficiently large such that

‖Λ̂− Λ‖ ≤ C(log(n)K/µτn)1/2|σKn|−1 a.s.

and

sup
i

(nτg0i
)1/2(θτi )−1/2‖Λ̂i−Λi‖ ≤ C

[
log(n)θ

1/2
K

µτnθ
1/2

ψn+
ρn log1/2(n)

(µτn)1/2|σKn|
+

log1/2(n)θ
1/4
ρ
1/2
n

(µτn)1/2θ1/4

]
a.s.

Proof. By Chung [7, Lemma 1.7], ‖L′τ‖ ≤ ‖L‖ ≤ 1. Then, by Lemma 3.1

‖Λ̂− Λ‖ = ‖L′τ Û1n − L′τU1nOn‖

≤ ‖L′τ (Û1n − U1nOn)‖+ ‖(L′τ − L′τ )U1nOn‖

≤ ‖Û1n − U1nOn‖+ ‖L′τ − L′τ‖
≤ C(log(n)/µτn)1/2|σKn|−1K1/2 a.s.

This proves the first result.
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For the second result, denote Λ̃ = D
−1/2
τ PD

−1/2
τ U1nOn and Λ̃i = (d̂τi )−1/2[P ]i·D

−1/2
τ U1nOn

as the i-th row of Λ̃. Then we have

sup
i

(nτg0i
)1/2(θτi )−1/2‖Λ̂i − Λi‖ ≤ sup

i
(nτg0i

)1/2(θτi )−1/2‖Λi − Λ̃i‖+ sup
i

(nτg0i
)1/2(θτi )−1/2‖Λ̂i − Λ̃i‖

:= I + II.(C.7)

For I, we have

I ≤ sup
i
‖(nτg0i )1/2(θτi )−1/2((d̂τi )−1/2[P ]i·D

−1/2
τ − (dτi )−1/2[P ]i·D−1/2τ )U1nOn‖

≤ sup
i

(nτg0i
)1/2(θτi )−1/2‖(d̂τi )−1/2[P ]i·D

−1/2
τ − (dτi )−1/2[P ]i·D−1/2τ ‖

≤ sup
i

(nτg0i
)1/2(θτi )−1/2(d̂τi )−1/2‖[P ]i·D−1/2τ ‖‖D1/2D−1/2τ − I‖

+ sup
i

(nτg0i
)1/2(θτi )−1/2|(d̂τi )−1/2 − (dτi )−1/2|‖[P ]i·D−1/2τ ‖

:= I1 + I2.

By Assumption 10 and Lemma C.1,
(C.8)

(nτg0i
)1/2(θτi )−1/2‖[P ]i·D−1/2τ ‖ = (nτg0i

)1/2(θτi )−1/2(

n∑
j=1

P 2
ij(d

τ
j )−1)1/2 ≤ Cρn(di/K)1/2.

In addition, by the proof of Lemma 3.1,

(C.9) sup
i
|(d̂τi )−1/2(dτi )1/2 − 1| ≤ C(log(n)/µτn)1/2 a.s.

and

(C.10) ‖D1/2
τ D−1/2τ − I‖ ≤ C(log(n)/µτn)1/2 a.s.

Therefore,

I1 ≤ C sup
i

(dτi )−1/2(di/K)1/2ρn(log(n)/µτn)1/2 ≤ C log1/2(n)(Kµτn)−1/2ρn a.s.,

I2 ≤ C sup
i

(dτi )−1/2(log(n)/µτn)1/2(di/K)1/2ρn ≤ C log1/2(n)(Kµτn)−1/2ρn a.s.,

and

(C.11) I ≤ C log1/2(n)(Kµτn)−1/2ρn a.s.
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For II, we have

sup
i

(nτg0i
)1/2(θτi )−1/2‖Λ̂i − Λ̃i‖

= sup
i

(nτg0i
)1/2(θτi )−1/2‖(d̂τi )−1/2[A]i·D

−1/2
τ Û1n − (d̂τi )−1/2[P ]i·D

−1/2
τ U1nOn‖

≤ sup
i

(nτg0i
)1/2(θτi )−1/2(d̂τi )−1/2‖[P ]i·D

−1/2
τ (Û1n − U1nOn)‖

+ sup
i

(nτg0i
)1/2(θτi )−1/2(d̂τi )−1/2‖([A]i· − [P ]i·)D

−1/2
τ U1nOn‖

+ sup
i

(nτg0i
)1/2(θτi )−1/2(d̂τi )−1/2‖([A]i· − [P ]i·)D

−1/2
τ (Û1n − U1nOn)‖

:= II1 + II2 + II3.
(C.12)

By Lemma 3.1, (C.8), and (C.9),
(C.13)

II1 ≤ C sup
i

(dτi )−1/2(di/K)1/2ρn(log(n)K/µτn)1/2|σKn|−1 ≤ Cρn log1/2(n)(µτn)−1/2|σKn|−1 a.s.

By (B.6), we have

II2 ≤ C sup
i

(nτg0i
)1/2(θτi )−1/2(dτi )−1/2‖([A]i· − [P ]i·)D−1/2τ D1/2

τ D−1/2τ U1nOn‖.

Denote Vn = D1/2
τ D

−1/2
τ U1nOn with i-th row given by vTi . Then, by (C.10), Theo-

rem 3.3, and the fact that On = Oa.s.(1), we have ‖Vn‖ ≤ C and

sup
1≤i≤n

‖vTi ‖ = sup
1≤i≤n

‖(θτi )1/2(dτi )1/2(d̂τi )−1/2(nτg0i
)−1/2[Sτn]g0i ·On‖ ≤ C(θK)1/2n−1/2 a.s.

In addition, Assumption 11(i) implies θ
1/2

log(n)K2

µτnθ
1/2ρn

→ 0. Therefore, by Lemma

C.2, we have

(C.14) II2 ≤ C(log(n)θ
1/2
ρn)1/2(µτnθ

1/2)−1/2 a.s.

Similarly, we have

II3 ≤ C sup
i

(nτg0i
)1/2(θτi )−1/2(dτi )−1/2‖([A]i·−[P ]i·)D−1/2τ D1/2D−1/2τ (Û1n−U1nOn)‖.

Let Vn = D1/2
τ D

−1/2
τ (Û1n − U1nOn) with i-th row given by vTi . Then, by (B.7),

Lemma 3.1, and Theorem 3.3, we have

sup
i
‖vTi ‖ = sup

1≤i≤n
‖(dτi )1/2(d̂τi )−1/2(ûTi − uTi On)‖

≤ C sup
1≤i≤n

‖(nτg0i )−1/2(θτi )1/2[(nτg0i
)1/2(θτi )−1/2(ûTi − uTi On)]‖ ≤ C(Kθ/n)1/2(ψn + 1)

and
‖Vn‖ ≤ C‖Û1n − U1nOn‖ ≤ C(log(n)K/µτn)1/2|σKn|−1 a.s.
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Then, by Lemma C.2, we have

(C.15) II3 ≤ C
[

log(n)θ
1/2
K

µτnθ
1/2

ψn +
log(n)θ

1/2
K

µτnθ
1/2

+
log(n)θ

1/4
(Kρn)1/2

µτn|σKn|θ
1/4

]
.

Again, by Assumption 11(i), θ
1/2

log(n)K2

µτnθ
1/2ρn

→ 0. Therefore, the bounds for II1 and

II2 dominate the bounds for the second and third term of II3. In addition, the
bound for term I is dominated by the bound for term II1. Combining (C.7), (C.11)–
(C.15), we have the desired result.

Proof of Theorem 3.4. First, by Weilandt-Hoffman inequality and Lemma
3.1

(C.16) ‖Σ̂n − Σn‖ ≤ ‖L′τ − L′τ‖ ≤ C(log(n)/µτn)1/2 a.s.

Then, by Lemmas C.3 and 3.1,

C(log(n)K/µτn)1/2|σKn|−1 ≥ ‖Λ̂− Λ‖

= ‖Û1nΣ̂n − U1nΣnOn‖

≥ ‖U1n(OnΣn − ΣnOn)‖ − ‖(Û1n − U1nOn)Σn‖ − ‖Û1n(Σ̂n − Σn)‖
= ‖OnΣn − ΣnOn‖ − C ′(log(n)K/µτn)1/2|σKn|−1 a.s.

Therefore,

(C.17) ‖OnΣn − ΣnOn‖ ≤ C(log(n)K/µτn)1/2|σKn|−1 a.s.

In addition,

(nτg0i
)1/2(θτi )−1/2‖Λ̂i − Λi‖ = (nτg0i

)1/2(θτi )−1/2‖ûTi Σ̂n − uTi ΣnOn‖

≥ (nτg0i
)1/2(θτi )−1/2‖(ûTi − uTi On)Σn‖ − (nτg0i

)1/2(θτi )−1/2‖ûTi (Σ̂n − Σn)‖

− (nτg0i
)1/2(θτi )−1/2‖uTi (ΣnOn −OnΣn)‖

:= I − II − III.

Next, we bound the three terms on the RHS of the above display. For the first term,
we have

I ≥ |σKn|(nτg0i )1/2(θτi )−1/2‖ûTi − uTi On‖ a.s.

Denote Γn = supi(n
τ
g0i

)1/2(θτi )−1/2‖ûTi − uTi On‖. By Theorem 3.3 and (C.16),

II ≤ (sup
i

(nτg0i
)1/2(θτi )−1/2‖ûTi − uTi On‖+ sup

i
(nτg0i

)1/2(θτi )−1/2‖uTi ‖)‖Σ̂n − Σn‖

≤ C(log(n)/µτn)1/2(Γn + 1) a.s.
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Similarly, by (C.17) and Theorem 3.3,

III ≤ C(log(n)K/µτn)1/2|σKn|−1 a.s.

Therefore, we have

sup
i

(nτg0i
)1/2(θτi )−1/2‖Λ̂i−Λi‖ ≥ (|σKn|−C(log(n)/µτn)1/2)Γn−C(log(n)K/µτn)1/2|σ−1Kn|.

On the other hand, if Γn ≤ δ(0)n a.s. for some deterministic sequence {δ(0)n }n≥1, then
by Theorem 3.3

sup
i

(nτg0i
)1/2(θτi )−1/2‖ûi‖ ≤ C(δ(0)n + 1) a.s.

Applying Lemma C.3 with ψn = C(δ
(0)
n + 1), we have

C

[
log(n)θ

1/2
K

µτnθ
1/2

δ(0)n +
ρn log1/2(n)

(µτn)1/2|σKn|
+

log1/2(n)θ
1/4
ρ
1/2
n

(µτn)1/2θ1/4

]
≥ sup

i
(nτg0i

)1/2(θτi )−1/2‖Λ̂i − Λi‖

≥ (|σKn| − C(log(n)/µτn)1/2)Γn − C(log(n)K/µτn)1/2|σ−1Kn|.

Since log(n)/(µτnσ
2
Kn)→ 0 by Assumption 11(i), we can choose n0 sufficiently large

such that for n ≥ n0,
|σKn| > C(log(n)/µτn)1/2.

Then, by combining and rearranging terms, we have,

C log(n)Kθ
1/2

(µτn)−1θ−1/2|σKn|−1

(1− C(log(n)/µτn)1/2|σKn|−1)
δ(0)n +

Cηn
(1− C(log(n)/µτn)1/2|σKn|−1)

≥ Γn,

where

ηn =

(
log1/2(n)

(µτn)
1/2 |σKn|

)(
θ
1/4
ρ
1/2
n

θ1/4
+
ρn +K1/2

|σKn|

)
.

Again, since C log(n)Kθ
1/2

(µτn)−1θ−1/2|σKn|−1 → 0 by Assumption 11(i), we
can choose n1 > n0 sufficiently large such that for any n ≥ n1,

C log(n)Kθ
1/2

(µτn)−1θ−1/2|σKn|−1

(1− C(log(n)/µτn)1/2|σKn|−1)
≤ 1

2

and
C

1− C(log(n)/µτn)1/2|σKn|−1
≤ 2C.

Then, for n ≥ n1,

δ(1)n ≡ 1

2
δ(0)n + 2Cηn ≥ Γn.
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We iterate the above calculation t times for some arbitrary integer t, and obtain
that, for n ≥ n1,

Γn ≤ δ(t)n , δ(t)n =
1

2
δ(t−1)n + 2Cηn.

This implies

δ(t)n = (
1

2
)t
[
δ(0)n − 4Cηn

]
+ 4Cηn.

In addition, because supi n
τ
g0i

(θτi )−1‖ûi‖2 ≤ nθ−1‖Û1n‖2F /K = nθ−1, we have

sup
i

(nτg0i
)1/2(θτi )−1/2‖ûi‖ ≤ n1/2θ−1/2.

Therefore, we can set δ
(0)
n = n1/2θ−1/2 and choose n2 > n1 sufficiently large and

t = n such that for n ≥ n2,

Γn ≤ δ(n)n ≤ 2−nn1/2θ−1/2 + 4Cηn ≤ 5Cηn,

where the last inequality holds because ηn decays at most polynomially. This con-
cludes the proof.

Proof of Corollary 3.1. By the triangle inequality and Theorem 3.4,

sup
i

∥∥∥∥ ûTi
‖ûTi ‖

− uTi On
‖uTi On‖

∥∥∥∥ ≤ sup
i

∥∥∥∥ ûTi
‖ûTi ‖

− ûTi
‖uTi On‖

∥∥∥∥+ C sup
i
n
1/2

g0i
(θτi )−1/2‖ûTi − uTi On‖

≤ 2C sup
i
n
1/2

g0i
(θτi )−1/2‖ûTi − uTi On‖

≤
(

log1/2(n)

(µτn)
1/4 |σKn|

)(
θ
1/4
ρ
1/2
n

µ
1/4
n θ1/4

+
ρn +K1/2

|σKn| (µτn)
1/4

)
a.s.

The second result follows Theorem 2.3 with K∗ = K.

Proof of Theorem 3.5. Let εn = C log(n)/mn, for some positive constant C
which is sufficiently large.

P

(
sup

1≤i≤n
|θ̂i − θi| ≥ εn i.o.

)
≤P
(

sup
1≤i≤n

|θ̂i − θi| ≥ εn i.o., sup
1≤i≤n

1{ĝi 6= g0i } = 0

)
+ P

(
sup

1≤i≤n
1{ĝi 6= g0i } > 0 i.o.

)
≤P
(

sup
1≤i≤n

|ng0i (
∑n

j=1
Aij)/(

∑
i′:g0

i′=g
0
i

∑n

j=1
Ai′j)− θi| ≥ εn i.o.

)
.

where the last inequality holds by Assumption 12(ii). In order to show the RHS of
the above equation is zero, it suffices to show

(C.18)

∞∑
n=1

n∑
i=1

P

(
|ng0i (

∑n

j=1
Aij)/(

∑
i′:g0

i′=g
0
i

∑n

j=1
Ai′j)− θi| ≥ εn

)
<∞.
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For the simplicity of notation, from now on, we assume g0i = k. Then, we have

|ng0i (
∑n

j=1
Aij)/(

∑
i′:g0

i′=g
0
i

∑n

j=1
Ai′j)− θi| =

∑n
j=1(Aijnk −

∑
i′∈Ck Ai′jθi)∑n

j=1

∑
i′∈Ck Ai′j

.

For the denominator, note that E
∑n
j=1

∑
i′∈Ck Ai′j = mknk, E

∑n
j=1

∑
i′∈Ck A

2
i′j ≤

mknk. Then, by Bernstein inequality, for any λ > 0,

P

(
|
∑n
j=1

∑
i′∈Ck Ai′j

mknk
−1| ≥ λ

)
≤ 2 exp

(
−

1
2λ

2m2
kn

2
k

mknk + 1
3λmknk

)
= 2 exp(−Cλmknk),

where Cλ = 3λ2

6+2λ . Similarly, for the numerator, we note that |Aijnk−
∑
i′∈Ck Ai′jθi| ≤

nk(θi+ 1) and
∑n
j=1 E(Aijnk−

∑
i′∈Ck Ai′jθi)

2 ≤ n2k− θ2imknk. Then, by Assump-
tion 12(i) and Bernstein inequality,

P (|
∑n
j=1(Aijnk −

∑
i′∈Ck Ai′jθi)

mknk
| ≥ εn) ≤2 exp

(
−

1
2ε

2
nm

2
kn

2
k

n2k − θ2imknk + 1
3εnmkn2k(θi + 1)

)
≤C exp(−C ′εnmk).

Therefore,

P

(
|
∑n
j=1(Aijnk −

∑
i′∈Ck Ai′jθi)∑n

j=1

∑
i′∈Ck Ai′j

| ≥ εn
)

≤P
(
|
∑n
j=1(Aijnk −

∑
i′∈Ck Ai′jθi)

mknk
| ≥ εn(1− λ)

)
+ 2 exp(−Cλmknk)

≤C exp(−C ′εn(1− λ)mn) + 2 exp(−Cλmnnk).

By construction, εnmn = C log(n) for C sufficiently large. Therefore, (C.18) holds,
which concludes the proof.

APPENDIX D: ADDITIONAL SIMULATION RESULTS

In this section, we report some additional simulation results for DGPs 1-4 studied
in the paper.

Table 2 reports the classification results based on the eigenvectors corresponding
to the largest K eigenvalues of L = D−1/2AD−1/2. Given an adjacency matrix
A, D is not invertible when there exists a node which has degree 0. We also re-
port the percentage of replications which generate A with strictly positive degrees
for each node in the table, denoted as Ratio. For these realizations, we report the
classification results. In Table 2, “CCP” indicates the Correct Classification Pro-
portion criterion; “NMI” means the Normalized Mutual Information criterion, and
“kmeans” correspond to the classification methods K-means with default options
(Matlab “kmedoids”). We summarize some important findings from Table 2. First,
we have a fair large probability to obtain zero degree for some nodes in DGPs 1–4
because we allow the minimum degree to diverge to infinity at a very slow rate,
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namely at rate-log(n) in DGPs 1 and 3 and rate-log5/6(n) in DGPs 2 and 4. Second,
the performance of the spectral classification based on L is not as satisfactory as
that based on its regularized version studied in the paper. This is especially true
when n/K is small.

Table 2
Classification results based on L = D−1/2AD−1/2

DGP K n/K Ratio CCP NMI

1 2 50 0.650 0.9696 0.7863
2 200 0.632 0.9917 0.9361

2 3 50 0.368 0.9600 0.8330
3 200 0.170 0.9870 0.9245

3 2 50 0.102 0.9647 0.7543
2 200 0.002 0.9773 0.8042

4 3 50 0.040 0.9810 0.7482
3 200 0.000 – –

Figures 5–8 report the classification results based on L′τ = D
−1/2
τ AD

−1/2
τ and

Lτ = D
−1/2
τ AτD

−1/2
τ for DGPs 1–2 and DGPs 3–4, respectively. As in the paper,

the left column uses the CCP criterion and the right column uses the NMI crite-
rion to evaluate the classification performance. The x-axis marks the τ values, i.e.,
[10−4, (τmax)0, (τmax)1/18, . . . , (τmax)18/18], where τmax is the expected average de-
gree. There are two curves in each subplots. As marked in the legend and explained
in the paper, they represent classification results by using different classification
methods. In each subplot, the green dashed line is the pseudo τ value as defined in
[9]. We summarize some findings from Figures 5–8. First, the spectral classification
results first improve and then deteriorate as τ increases. Second, as Figures 5 and

6 suggest, the spectral clustering based on L′τ = D
−1/2
τ AD

−1/2
τ based on either

τ = d̄ or τJY is slightly worse than the UPL method. Third, as Figures 7 and 8
suggest, the method of [9] tends to select too large a regularization parameter, but
still yields classification results that are much better than those of CPL.
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Fig 5: Classification results for CPL and K-means for DGP 1 (K = 2) based

on L′τ = D
−1/2
τ AD

−1/2
τ . The the x-axis marks the τ values and the y-axis is

either CCP (left column) or NMI (right column). The green dashed vertical
line in each subplot indicated the estimated τJY value by using the method of
[9]. The first and second rows correspond to n/K = 50 and 200, respectively.
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Fig 6: Classification results for DGP 2 (K = 3) based on L′τ =

D
−1/2
τ AD

−1/2
τ . (See Figure 5 for explanations.)
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Fig 7: Classification results for DGP 3 (K = 2, degree-corrected) based on

Lτ = D
−1/2
τ AτD

−1/2
τ . (See Figure 5 for explanations.)
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Fig 8: Classification results for DGP 4 (K = 3, degree-corrected) based on

Lτ = D
−1/2
τ AτD

−1/2
τ . (See Figure 5 for explanations.)
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