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Abstract In practice, some bugs have more impact than others and thus deserve more immediate attention. Due to

tight schedule and limited human resources, developers may not have enough time to inspect all bugs. Thus, they often

concentrate on bugs that are highly impactful. In the literature, high-impact bugs are used to refer to the bugs which appear

at unexpected time or locations and bring more unexpected effects (i.e., surprise bugs), or break pre-existing functionalities

and destroy the user experience (i.e., breakage bugs). Unfortunately, identifying high-impact bugs from thousands of bug

reports in a bug tracking system is not an easy feat. Thus, an automated technique that can identify high-impact bug reports

can help developers to be aware of them early, rectify them quickly, and minimize the damages they cause. Considering

that only a small proportion of bugs are high-impact bugs, the identification of high-impact bug reports is a difficult task.

In this paper, we propose an approach to identify high-impact bug reports by leveraging imbalanced learning strategies.

We investigate the effectiveness of various variants, each of which combines one particular imbalanced learning strategy and

one particular classification algorithm. In particular, we choose four widely used strategies for dealing with imbalanced

data and four state-of-the-art text classification algorithms to conduct experiments on four datasets from four different

open source projects. We mainly perform an analytical study on two types of high-impact bugs, i.e., surprise bugs and

breakage bugs. The results show that different variants have different performances, and the best performing variants

SMOTE (synthetic minority over-sampling technique) + KNN (K-nearest neighbours) for surprise bug identification and

RUS (random under-sampling) + NB (naive Bayes) for breakage bug identification outperform the F1-scores of the two

state-of-the-art approaches by Thung et al. and Garcia and Shihab.

Keywords high-impact bug, imbalanced learning, bug report identification

1 Introduction

There have been many defect prediction studies,

which aim to help developers to reduce software qua-

lity assurance effort[1-5]. Although some of the studies

have shown promising performance results in terms of

correct defect prediction, their defect prediction models

are still not practical enough[6-8]. Actually, traditional

defect prediction models identify too much code to re-

view without distinguishing the impact of the defects[9].

Due to tight schedules and limited human resources, de-

velopers often do not have enough time to take care of

all bugs equally. Anvik et al. reported their personal

communication with a Mozilla triager who highlights:

“Everyday, almost 300 bugs appear that need triaging.

This is far too much for only the Mozilla programmers

to handle.”[10] Given the abundance of bugs and lim-

ited resources, developers often need to concentrate on

bugs which have high impact.
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In recent years, more and more research studies pay

close attention to high-impact bugs. Ohira et al. cre-

ated four datasets of high-impact bugs by manually re-

viewing 4 000 bug reports in four open source projects

(Ambari, Camel, Derby and Wicket)[11]. They intro-

duced six kinds of high-impact bugs, i.e., surprise bugs,

dormant bugs, blocker bugs, security bugs, performance

bugs and breakage bugs. Shihab et al. developed a

model to predict if a file contains a breakage or sur-

prise bug[9].

In this work, we consider a related but different

problem compared with the one considered by Shihab

et al.[9] Rather than predicting if a file contains a break-

age or surprise bug, we identify breakage and surprise

bug reports from a collection of bug reports. Since

Shihab et al.’s approach[9] has very low precision (i.e.,

4%∼6%), their approach is not a panacea for dealing

with high-impact bugs. Using their proposed approach,

it is hard for a developer to fix an unknown high-impact

bug given a large list of potentially buggy files with a

large number of false positives. This motivates us to

consider another direction to tackle the problem with

high-impact bugs.

Identifying high-impact bugs early on can help to

largely reduce or mitigate the damage caused by these

bugs. Unfortunately, considering a large number of bug

reports that are received daily by developers, it is of-

ten hard for developers to identify those that have high

impact. Bug reporters can set the value of the seve-

rity field of a bug report to indicate how serious the

bug is. Unfortunately, only a minority of bug reporters

use this field, and most bug reports have their severity

field set to the default value[12]. Moreover, the initial

severity fields of many bug reports are wrong and they

get corrected later on[13]. Thus, there is a need for an

automated technique to help developers identify high-

impact bug reports, which is the goal of this work.

Identifying high-impact bug reports is not an easy

task. Only a small percentage of bug reports are high-

impact ones (for example, in Ohira et al.’s dataset[11],

only less than 1% of Ambari bug reports are breakage

bugs). A bug report dataset is often imbalanced due

to the small amount of high-impact bugs in a project.

Thus, to identify high-impact bug reports, we leverage

a number of imbalanced learning algorithms for high-

impact bug prediction. In particular, we investigate

four widely used imbalanced learning strategies, i.e.,

random under-sampling (RUS), random over-sampling

(ROS), SMOTE and cost-matrix adjuster (CMA), and

four popular classification algorithms, i.e., naive Bayes

(NB), naive Bayes multinominal (NBM), support vec-

tor machine (SVM) and K-nearest neighbors (KNN),

which make totally 16 different combinations (i.e., vari-

ants).

We focus on two high-impact bugs, i.e., surprise

bugs and breakage bugs, which are first studied by Shi-

hab et al.[9] Surprise bugs are bugs which have high im-

pact on developers. These bugs appear in unexpected

timing (e.g., in post-release) or locations (e.g., in files

that are rarely changed before) and may bring more

unexpected effects, catching developers off-guard, and

disrupting their already-tight quality assurance sche-

dule and workflow. Breakage bugs are the bugs which

have high impact on the customers since these bugs

break pre-existing functionality and significantly dam-

age the user experience.

To evaluate our variants of our proposed approach,

we use four datasets provided by Ohira et al.[11],

which contain a total of 2 845 bug reports. To eval-

uate the performance of different algorithms, we use

precision, recall and F1-score as evaluation metrics,

which are widely used in many software engineering

studies[3,14-18]. F1-score is a summary measure that

combines both precision and recall. A higher F1-score

means a better performance. The results show that

different variants have different performances. We also

compare the best performing variants of our approach

against two state-of-the-art approaches of Thung et

al.[19] and Garcia and Shihab[20]. These two approaches

were originally proposed to categorize bug reports into

bug types and identify blocking bugs respectively, but

they can be used to identify surprise and breakage bugs

too. We find that the best performing variants of our

approach outperform these two approaches too.

This paper extends a preliminary study published

as a research paper in a conference[21]. The paper ex-

tends the preliminary study in various ways. 1) We add

one more type of bugs, i.e., breakage bugs. 2) We add

three more classic text classification algorithms, i.e.,

naive Bayes (NB), support vector machine (SVM) and

K-nearest neighbors (KNN). 3) We find the best per-

forming variants of our approach for both surprise bug

and breakage bug identification, and we also investigate

their effectiveness and stability.

The main contributions of this paper are as follows.

1) We propose a new problem of identifying sur-

prise and breakage bugs. This creates a related but

different line of work compared with the prior work by

Shihab et al. which predicts files that contain high-

impact bugs[9].
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2) We propose to use imbalanced learning strate-

gies to deal with the problem of identifying surprise

and breakage bugs.

3) We conduct an analytical study to investigate

the performance of four well-known imbalanced learn-

ing strategies built on top of four popular text classifi-

cation algorithms for high-impact bug prediction.

4) We perform experiments on four software

projects. The experimental results show that under-

sampling is the best imbalanced learning strategy

among the four, and naive Bayes multinominal is a bet-

ter classification algorithm for high-impact bug identi-

fication.

The rest of our paper is organized as follows. Sec-

tion 2 briefly presents high-impact bugs. Section 3

presents the overall framework of our study and elabo-

rates the techniques that we use in our approach. Sec-

tion 4 describes our experiments and the results. Sec-

tion 5 presents the threats to validity, and Section 6

discusses miscellaneous points about our work. Sec-

tion 7 presents related work. Conclusions and future

work are presented in Section 8.

2 Overview on High-Impact Bugs

As the name implies, high-impact bugs are bugs

that have high impact on developers and users. Based

on prior studies, Ohira et al. summarized six types

of high-impact bugs, i.e., surprise bugs, dormant bugs,

blocker bugs, security bugs, performance bugs and

breakage bugs[11]. The former three kinds of bugs are

in terms of process, while the latter three kinds of bugs

are in terms of products.

1) Surprise Bugs. Surprise bugs are the bugs which

appear in unexpected timings (e.g., in post-release) and

locations (e.g., in files that are rarely changed). Shihab

et al. showed that surprise bugs exist in only 2% of all

files[9]. However, surprise bugs may disturb developers’

task scheduling greatly.

2) Dormant Bugs. Dormant bugs are defined as

bugs that “were introduced in one version (e.g., Ver-

sion 1.1) of a system, yet they are NOT reported until

AFTER the next immediate version (i.e., a bug is re-

ported against Version 1.2 or later)”[22].

3) Blocker Bugs. Blocker bugs are the bugs that

block other bugs from being fixed[20]. Due to this rea-

son, blocker bugs have to be fixed early to not prevent

other bugs from getting fixed.

4) Security Bugs. Security bugs involve a compro-

mise of the system’s confidentiality, integrity, or availa-

bility. Thus, they should be fixed as soon as possible.

5) Performance Bugs. Performance bugs are bugs

that cause significant performance degradation. They

may lead to an unresponsive system, low throughput

and bad user experience.

6) Breakage Bugs. Breakage bugs are bugs that

break pre-existing functionality and significantly dam-

age the user experience[9].

Fig.1 and Fig.2 present two examples of high-impact

bug reports. In the first bug report (WICKET-5326),

the bug report describes a bug appearing in the class

CryptoMapper. Actually, CryptoMapper is rarely

changed and bugs rarely appear in CryptoMapper.

Therefore, the bug is categorized as a surprise bug since

the bug appears in an unexpected location. In the

second bug report (AMBARI-3279), “Job Track CPU

WIO” dashboard widget has strange behaviour. Job-

TrackCpu will ignore a fix of an old issue, which signifi-

cantly damages the user experience. Thus, the bug is

categorized as a breakage bug.

Note that it is possible for a bug to be both a brea-

kage bug and a surprise bug. In our work, we predict

for one specific type each time. For example, when we

identify surprise bugs, we only consider whether a bug

is a surprise bug or not, no matter if the bug is also of

the other types of high-impact bugs. To predict that a

bug is both a breakage bug and a surprise bug, we would

use two classifiers to predict that this is the case.

3 Methodology

In this section, we first present our overall frame-

work for high-impact bug identification, and then we

describe in detail the individual steps in the overall

framework.

3.1 Main Steps

Fig.3 presents the overall framework of our proposed

approach. The framework mainly contains two phases:

the model building phase and the prediction phase. In

the model building phase, we build a classifier (i.e., a

statistical model) from a training set of bug reports

which have been labeled as surprise (or breakage) bugs

or not. In the prediction phase, this classifier would be

used to identify if an unlabeled bug report would be a

surprise (or breakage) bug or not. We build one classi-

fier for surprise bugs, and another for breakage bugs.

Our framework first extracts a number of features

from the training bug reports (step 1). Features are var-

ious quantifiable characteristics of the bugs that could

potentially distinguish the surprise (or breakage) bugs
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Fig.1. Example of a surprise bug report in Wicket.

Fig.2. Example of a breakage bug report in Ambari.

from the others. In this paper, we use textual features,

which are pre-processed words extracted from the sum-

mary and description fields of a bug report (cf. Sub-

section 3.2). Next, we use some imbalanced learning

strategies to handle the class imbalance problem (step

2). We investigate different imbalanced learning strate-

gies (cf. Subsection 3.3) for this step. Finally, we build

a classifier based on the extracted features (step 3). We

also investigate different classification algorithms (cf.

Subsection 3.4) for this step.

Model Building Phrase Prediction Phrase

Unlabeled

Text Feature
Extraction

Training Bug
Reports

1

2

3

4

5

Text Feature
Extraction

Imbalanced
Algorithm

Classifier
Construction

Classifier
Application

Label (High
Impact or Not)

Classifier

Fig.3. Overall framework of our study.

In the prediction phase, we use the trained classifier

to identify whether a bug report with an unknown label

is a surprise (or breakage) bug or not. For each of such

bug reports, our framework first extracts features from

the words in the summary and description fields of the

report as we do in the model building phase (step 4).

We then input the features to the constructed classifier

(step 5). The classifier would output the prediction re-

sult which is one of the following labels: surprise (or

breakage) bug or not (step 6).

3.2 Feature Extraction

In a bug report, summary and description fields

contain most of the useful information for prediction.

Therefore, we extract features from these two fields.

We first extract all the terms (i.e., words) from the

summary and description fields in a bug report. Then,

we remove the stop words, numbers and punctuation

marks since they provide little information. For the re-

maining terms, we use Iterated Lovins Stemmer[23] to

transform them to their root forms (e.g., “reading” and

“reads” are reduced to “read”). We do this stemming

step to reduce the feature dimension and to unify simi-

lar words into a common representation. Finally, we
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calculate the term frequency for each stemmed term.

After these steps, a bug report BR is represented as a

term frequency vector, i.e., BR = (t1, t2, ..., tn), where

ti denotes the times the i-th term appears in the bug

report BR. Also, we remove terms which only appear

once in one bug report to reduce noise. Table 1 presents

the lengths of the term frequency vectors of the four

datasets, i.e., Ambari, Camel, Derby, Wicket, after the

preprocessing.

Table 1. Lengths of Term Frequency Vectors of the Four

Datasets Used in Our Study
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finds its K-nearest neighbours (data points) belonging

to Smin and links x with each of these k points to form

k line segments (in a multidimensional feature space).

Then, SMOTE randomly picks a data point on each

line segment. The k new data points can be assumed

as belonging to the minority class and be added into

Smin. Therefore, if there are initially n data points in

Smin, SMOTE will create k × n artificial data points

and add them to Smin. By default, k is set to 5.

3.3.4 Cost-Matrix Adjuster

Cost-matrix adjuster is a popular cost-sensitive

method to deal with the data imbalance problem[26-27].

Different from the previous three methods, it does not

delete or add any data point to Smaj or Smin. Instead,

it changes the cost of misclassifying different training

instances belonging to different classes. It makes the

cost of misclassifying instances in Smin larger than that

of Smaj so that the classifier will value Smin more than

Smaj.

By default, the cost matrix of many classifiers is:

(

0 1

1 0

)

.

The above cost matrix means that the costs of mis-

classifying training instances of both classes are the

same (i.e., 1), and the costs of correct classification are

none (i.e., 0). Cost-matrix adjuster adjusts the cost

matrix to achieve better classification performance. For

example, when the cost matrix is:

(

0 1

2 0

)

.

it means that the cost of misclassifying instances of Smin

is double compared with that of Smaj. In this way, the

classifier values the correct classification of instances

Smin more than that of Smaj.

In our study, given the ratio of the majority and

the minority class as x : y, we set the cost matrix as

follows:

(

0 y

x 0

)

.

3.4 Classification Algorithms

We investigate four popular classification algo-

rithms, i.e., naive Bayes (NB), naive Bayes multino-

minal (NBM), support vector machine (SVM) and K-

nearest neighbors (KNN). All of them are classic al-

gorithms which work well in many text classification

tasks[19-20,29]. In addition, the four algorithms are di-

verse. First, although both NB and NBM are based

on Bayes theorem, they represent features in different

ways. Second, SVM is a supervised learning model

based on structural risk minimization principle. Unlike

NB or NBM, SVM is a non-probabilistic binary linear

classifier. At last, KNN is a distance-based classifica-

tion algorithm, which is different from NB and NBM.

Also, unlike SVM, KNN does not require a training

phase.

3.4.1 Naive Bayes

Naive Bayes (NB) is a probabilistic model based on

Bayes theorem for conditional probabilities[26,30]. Naive

Bayes assumes that features are independent from one

another. Also, all the features are binominal. That is,

each feature only has two values of 0 and 1 (in our case,

representing whether a word exists in a bug report or

not).

Based on the above assumptions, given a bug report

BR = (t1, t2, ..., tn) (ti represents a term in the bug re-

port) and a label cj (in our case: surprise (or breakage)

or not), the probability of BR given the label cj is:

p(BR|C = cj) =
n
∏

i=1

p(ti|C = cj).

With Bayes theorem, we can compute the proba-

bility of a label cj given BR as follows:

p(C = cj |BR) =
p(C = cj)×

∏n

i=1 p(ti|C = cj)
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not restricted to 0 or 1, and it can be any non-negative

number (in our case, representing the frequency of a

word in a bug report). Since NBM can capture more

information, it often outperforms NB.

3.4.3 Support Vector Machine

Given training bug reports, support vector machine

(SVM)[26,30] first maps each bug report to a point in a

high-dimensional space, in which each feature (in our

case: a pre-processed word) represents a dimension.

Then, SVM selects the points which have big impact

for classification as support vectors. Next, it creates a

separating hyperplane as a decision boundary to clas-

sify two classes. The separating hyperplane created by

SVM has a maximum margin, i.e., it separates the sup-

port vectors belonging to the two classes as far as pos-

sible. When an unlabeled data instance (in our case: a

bug report) needs to be classified, SVM can assign it a

label according to the decision boundary.

3.4.4 K-Nearest Neighbors

K-nearest neighbors (KNN) is an instance-based

classifier[26,30]. Its principle is intuitive: similar in-

stances have similar class labels. In our setting, KNN

mainly contains three steps. First, similar to SVM,

KNN maps all the training bug reports to points in

a high-dimensional space. Then, for an unlabeled bug

report BR, we find K nearest points to it based on

a specific distance metric. In this paper, we use the

Euclidean distance as the metric. Euclidean distance

between two points is the length of the line segment

connecting them. Finally, we determine the label ofBR

by the labels of the majority of its K nearest neighbors.

4 Experiments

In our study, the platform is Java, and the classi-

fication algorithms we use are built in Weka. We first

present our experimental setting and evaluation metrics

in Subsection 4.1∼Subsection 4.3. We then present four

research questions and our experimental results that

answer these questions in Subsection 4.4.

4.1 Datasets

We perform experiments on four datasets from four

Apache open source projects, which are Ambari 1○,

Camel 2○, Derby 3○, and Wicket 4○. The projects are se-

lected based on three criteria[11]. First, all the projects

have a large number of reported issues, which is essen-

tial for a good research in the topic. Second, all the

projects use JIRA 5○ as an issue tracking system, which

leads to an easier manual labeling process. Third, the

projects are different from one another in the applica-

tion domain, which is essential for a general investiga-

tion since the distribution of high-impact bugs can be

very different in different application domains.

The four datasets contain a total of 2 845 bug re-

ports. Ohira et al. collected and manually categorized

them[11]. The labels are generated by four graduate

students and four faculty members, in which each pair

of graduate student and faculty member are responsible

for a single dataset and reach an agreement for the la-

beling of all the bug reports. In addition, we also man-

ually check the labeling of several samples randomly

before performing our experiments and find them to be

reasonable.

Table 2 summarizes the statistics of each dataset,

containing the total number of bug reports (BRs), the

number of surprise BRs, the number of breakage BRs,

the corresponding ratios of the two kinds of BRs and

the time periods of the BRs. We can see that all the

datasets are imbalanced, especially for the breakage

class, whose proportions are less than 10% in three out

of the four datasets. In Ambari, the ratio of breakage

BRs is even less than 1%.

4.2 Experimental Settings

In our study, we investigate the effectiveness of our

approach using four imbalanced learning strategies pre-

sented in Subsection 3.3, and the four popular classi-

fication algorithms for test classification presented in

Subsection 3.4. In the experiments, we use the de-

fault values of these imbalanced learning strategies and

classification algorithms. We first compare the effec-

tiveness of various variants of our proposed approach

(using various classification algorithms and imbalanced
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Table 2. Statistics of Datasets Used in Our Study
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Results. Table 3 and Table 4 present the F1-score

values of the top-3 best performing variants for surprise

bug and breakage bug identification respectively. The

detailed results (i.e., precision, recall and F1-score val-

ues) are shown in Table 18∼Table 23 in “result.pdf”

at “https://github.com/goddding/JCST”. From these

tables, we can conclude several points.

Table 3. F1-Scores of Top-3 Best Performing Variants for

Surprise Bug Identification
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the F1-scores by 42% and 55% respectively, which is a

substantial improvement.

Table 5. F1-Scores of the Best Performing Variant and the

Two Baselines for Surprise Bug Identification
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Approach. For the previous research questions, we

perform 10-fold cross-validations, which means that

90% of data are used for training and 10% of data

are used for testing. In this research question, we per-

form 2-fold∼10-fold cross-validations on the datasets.

We plot two curves on one chart showing the F1-score

of surprise bug and breakage bug identification respec-

tively, using 2-fold∼10-fold cross-validations.

Results. Fig.4 presents the F1-score of surprise bug

(blue dashed line) and breakage bug (red solid line)

identification using different k-fold cross-validations. In

the figure, the curves are very stable. In terms of F1-

score, the biggest fluctuation is less than 0.03. For

the biggest fluctuation, RUS+NB has the lowest F1-

score of 0.21 using the 2-fold cross-validation, while it

has the highest F1-score of 0.24 using the 6-fold cross-

validation for breakage bug identification in Wicket.

Therefore, we can conclude that the best performing

variants of our approach have a good stability and can

work well with a wide range of training data.

Summary. The best performing variants of our ap-

proach (i.e., SMOTE+KNN for surprise bug identifica-

tion and RUS+NB for breakage bug identification) are

stable and able to work well for the reduced amount of

training data.

4.4.4 RQ4: Does Our Approach Work for High-

Impact Bug Report Identification in the Cross-

Project Setting?

Motivation. We have shown that the best perform-

ing variants of our approach work well for high-impact

bug report identification in the within-project setting.

We want to further investigate whether our approach

can work for high-impact bug report identification in

the cross-project setting.

Approach. To construct the cross-project setting,

among the four datasets, we use one as the train-

ing dataset and another as the testing dataset. We

use the best performing variants of our approach

(SMOTE+KNN for surprise bug identification and

RUS+NB for breakage bug identification) and record

F1-score to see whether our approach can work in the

cross-project setting.

Results. Table 10 presents the F1-scores of surprise

bug and breakage bug identification in the cross-project

setting. From the table, we can see that in most cases,

the F1-scores achieved by our approach in the cross-

project setting are only a bit worse than those achieved

in the within-project setting. In addition, an interesting

observation is that in some cases, the F1-scores in the

cross-project setting are even better than those in the

within-project setting. For example, considering the

2

0.5

0.4

0.3

0.2

0.1

0.0
3 4 5 6

(a)

F
1
-
S
c
o
re

0.7

0.6

0.5

0.4

0.3

0.2

F
1
-
S
c
o
re

0.6

0.5

0.4

0.3

0.2

0.1

F
1
-
S
c
o
re

0.6

0.5

0.4

0.3

0.2

F
1
-
S
c
o
re

Number of Folds

7 8 9 10

Surprise Bug Breakage Bug

2 3 4 5 6

(b)

Number of Folds

7 8 9 10

2 3 4 5 6

(c)

Number of Folds

7 8 9 10 2 3 4 5 6

(d)

Number of Folds

7 8 9 10
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performance of our approach in the dataset Ambari,

in the within-project setting the F1-score is less than

0.02, while in the cross-project setting the F1-score is

over 0.15. Therefore, we conclude that our approach

can work for high-impact bug report identification in

the cross-project setting.

Table 10. F1-Scores for Surprise Bug and Breakage Bug

Identification in the Cross-Project Setting
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being faulty in bug reports and using incorrectly as-

signed component field may have negative impact on

the effectiveness of our approach. Third, 10-fold cross-

validation may not mimic how our tool would be used in

practice. To address this threat, we also use time-based

validation to evaluate the effectiveness of our approach,

and show that results achieved by time-based validation

and 10-fold cross-validations are similar.

Threats to external validity relate to the generaliza-

bility of our results. We have evaluated our approach on

2 845 bug reports from four open source projects. We

believe the datasets are large enough for an analytical

study.

6 Discussion

6.1 Time-Based Validation

In our work, we use 10-fold cross-validation to eval-

uate the effectiveness of our approach. Ten-fold cross-

validation is a popular method that has been used in

many past studies[31-32]. However, in practice, when

developers use our approach to identify high-impact

bugs, they need to train models from historical bug re-

ports. Therefore, we also investigate another validation

method named time-based validation. In time-based

validation, we sort bug reports based on the time they

are submitted. We then use the first half of the data

as training data and the last half of the data as test-

ing data. We use the best performing variants of our

approach (SMOTE+KNN for surprise bug identifica-

tion and RUS+NB for breakage bug identification) and

record F1-scores to see whether our approach can work

at least as well in this validation setting as the 10-fold

cross-validation setting.

Table 13 presents the F1-scores of surprise bug and

breakage bug identification using time-based validation.

Compared with Table 5 and Table 6, we can see that the

average F1-scores achieved by our approach using time-

based validation are a bit higher than those achieved us-

ing 10-fold cross-validation. Specifically, the F1-scores

achieved using time-based validation are lower than

those achieved using 10-fold cross-validation in only

three cases (Ambari and Derby for surprise bug identifi-

cation and Wicket for breakage bug identification). For

the other five cases, the F1-scores achieved using time-

based validation are higher than those achieved using

10-fold cross-validation. Therefore, we can conclude

that the results achieved using 10-fold cross-validation

do not overestimate the results achieved using time-

based validation.

Table 13. F1-Scores for Surprise Bug and Breakage Bug

Identification Using Time-Based Validation
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Table 15. F1-Scores of the Best Performing Variant and the

Two Baselines for Blocker Bug Identification
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impacted by the first three kinds of bugs, while user

experience and satisfaction with software products will

be affected by the last three kinds of bugs. Shihab et al.

developed prediction models to identify if a file contains

a breakage or surprise bug[9]. In this work, we investi-

gate the usage of text mining and imbalanced learning

strategies to identify high-impact bug reports in a col-

lection of bug reports. This is a related but different

problem compared with the one considered by Shihab

et al.[9] Rather than predicting if a file contains a break-

age or surprise bug, we identify breakage and surprise

bug reports from a collection of bug reports.

Aside from the two studies highlighted above, there

are also other studies that are about high-impact

bugs[20,36-37]. Zaman et al. conducted a case study on

the Firefox project to demonstrate the difference be-

tween performance and security bugs[36]. Nistor et al.

studied performance and non-performance bugs from

three popular code bases[37]. Garcia and Shihab studied

blocking bugs in six open source projects and proposed

a model to identify them[20].

In this paper, we propose an approach that can iden-

tify bug reports that correspond to surprise and break-

age bugs. We evaluate many variants of our approach

using four datasets created by Ohira et al.[11] We have

shown that the best variant of our approach outper-

forms the state-of-the-art high-impact bug report iden-

tification approach by Garcia and Shihab[20].

7.2 Bug Report Management

Aside from studies on high-impact bugs highlighted

in Subsection 7.1, there are many other studies that

propose ways to improve how bug reports are handled.

These studies typically try to automate some existing

manual tasks, or to provide additional insights to help

developers better resolve bug reports. These studies

can be grouped into several categories; in this subsec-

tion, we highlight four categories: bug categorization,

bug assignment, reopened bug prediction, and severity

prediction.

Bug Categorization. A number of studies propose

techniques that categorize bug reports[19,38]. Huang et

al. proposed a novel orthogonal defect classification

(ODC) system by integrating experts’ experience and

domain knowledge[38]. Thung et al. proposed a text

mining solution that can categorize bugs into various

types[19]. They compared six classic classification al-

gorithms and concluded that SVM achieves the best

performance for automatic bug categorization. In this

paper, we have compared our work against a state-of-

the-art study that automatically categorizes bugs, i.e.,

[19]. Our experiments demonstrate that the best per-

forming variant of our approach which leverages under

sampling outperforms that work.

Bug Assignment. There are many studies that pro-

pose automated techniques that assign developers to

bug reports[29,39-40]. Jeong et al. introduced a graph

model based on Markov chains, which captures bug

tossing history, to improve bug triage[39]. The model

reveals developer network and can help better assign de-

velopers to bug reports. Anvik and Murphy presented

a machine learning approach to create recommenders

that assist with a variety of decisions aimed at reduc-

ing the effort of bug report triage[29]. Bhattacharya

et al. employed a comprehensive set of machine learn-

ing tools and a probabilistic graph-based model (bug

tossing graphs) to assign bug reports to developers[40].

They performed an ablative analysis by unilaterally

varying classifiers, features, and learning model to show

their relative importance on bug assignment accuracy,

and also proposed optimization techniques.

Reopened Bug Report Prediction. There are a num-

ber of studies that propose automated approaches that

can predict if a bug report would be reopened after

it has been closed[33,41-42]. Shihab et al. studied re-

opened bugs on three projects and proposed prediction

models based on decision trees[33]. They used sampling

methods to handle the imbalanced datasets. Xia et

al. investigated the performance of different supervised

learning algorithms for re-opened bug prediction[41].

They found bagging of decision tree achieves the best

performance. In later work, they proposed a novel ap-

proach ReopenPredictor which extracts more textual

features from the bug reports[42]. The approach auto-

matically estimates thresholds to maximize the predic-

tion performance.

Severity Prediction. There are several studies that

predict the severity of bug reports to help developers

prioritize bug reports[12,34,43]. Menzies andMarcus pro-

posed a novel automated method called SEVERIS[34].

The method is based on text mining and machine learn-

ing techniques and it is applied to predict the severity of

bug reports from NASA. Lamkanfi et al. investigated

whether the severity of a reported bug can be accu-

rately predicted by analyzing its textual description us-

ing text mining algorithms[12]. Different from Menzies

and Marcus, Lamkanfi et al. focused on coarse-grained

severity levels (i.e., severe and not-severe) rather than

fine-grained ones. In later work, they went further to
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compare four well-known text mining algorithms to ac-

curately predict the severity of bug reports[43].

Similar to the above studies, the goal of this work

is also to help developers better manage bug reports,

which are often too many for developers to deal with[10].

We consider an orthogonal concern compared with the

above studies though, namely the identification of high-

impact bug reports.

7.3 Imbalanced Learning Strategies

There are a number of software engineering studies

which leverage imbalanced learning strategies[24,44-45].

Kamei et al. investigated the effectiveness of over-

and under-sampling strategies on fault-prone module

detection[24]. They evaluated the performance of four

sampling methods applied to four fault-prone detec-

tion models. They concluded that all the four sam-

pling methods can improve the prediction performance.

Wang and Yao used class imbalance learning for soft-

ware defect prediction[44]. They investigated different

types of imbalanced learning strategies and proposed a

dynamic version of AdaBoost.NC, which is an ensemble

learning method that automatically adjusts its parame-

ters during training. Pelayo and Dick evaluated the ef-

fectiveness of SMOTE sampling technique for software

defect prediction[45]. Their results show that SMOTE

can improve the average performance by at least 23%

on four benchmark datasets.

Similar to the above approaches, we also employ

imbalanced learning algorithms, while we consider a

different problem, namely the identification of high-

impact bug reports in a collection of bug reports.

8 Conclusions

In this paper, we leveraged imbalanced learn-

ing strategies to identify high-impact bug reports 6○.

We investigated four widely used imbalanced learn-

ing strategies (i.e., random under-sampling, random

over-sampling, SMOTE and cost-matrix adjuster) and

four popular text classification algorithms (i.e., naive

Bayes, naive Bayes multinominal, support vector ma-

chine andK-nearest neighbors) to perform experiments

on datasets from four different open source projects.

We focused on two types of high-impact bugs, i.e., sur-

prise bugs and breakage bugs, which are first studied

by Shihab et al.[9] The results showed that different

variants have different performances, and the best per-

forming variants outperform the F1-scores of the two

baseline approaches by Thung et al.[19] and Garcia and

Shihab[20], respectively. In addition, we investigated

the stability of the best performing variants.

In the future, we plan to continue improving the

F1-score of our proposed approach by introducing addi-

tional technical contributions. We also plan to perform

experiments on more datasets to reduce the threats to

external validity.
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