
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

11-2017

Understanding inactive yet available assignees in
GitHub
Jing JIANG

David LO
Singapore Management University, davidlo@smu.edu.sg

Xinyu MA

Fuli FENG

Li ZHANG

DOI: https://doi.org/10.1016/j.infsof.2017.06.005

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Computer Engineering Commons, OS and Networks Commons, and the

Programming Languages and Compilers Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
JIANG, Jing; David LO; MA, Xinyu; FENG, Fuli; and ZHANG, Li. Understanding inactive yet available assignees in GitHub. (2017).
Information and Software Technology. 91, 44-55. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3785

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/111761699?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.infsof.2017.06.005
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3785&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3785&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3785&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3785&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Information and Software Technology 91 (2017) 44–55 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Understanding inactive yet available assignees in GitHub 

Jing Jiang 
a , David Lo 

b , Xinyu Ma 
a , Fuli Feng 

a , Li Zhang 
a , ∗

a State Key Laboratory of Software Development Environment, Beihang University, Beijing, China 
b School of Information Systems, Singapore Management University, Singapore 

a r t i c l e i n f o 

Article history: 
Received 29 June 2016 
Revised 10 June 2017 
Accepted 21 June 2017 
Available online 22 June 2017 

Keywords: 
Assignee 
Inactive 
GitHub 

a b s t r a c t 

Context: In GitHub, an issue or a pull request can be assigned to a specific assignee who is responsible 

for working on this issue or pull request. Due to the principle of voluntary participation, available as- 

signees may remain inactive in projects. If assignees ever participate in projects, they are active assignees ; 

otherwise, they are inactive yet available assignees (inactive assignees for short). 

Objective: Our objective in this paper is to provide a comprehensive analysis of inactive yet available 

assignees in GitHub. 

Method: We collect 2,374,474 records of activities in 37 popular projects, and 797,756 records of activities 

in 687 projects belonging to 8 organizations. We compute the percentage of inactive assignees in projects, 

and compare projects with and without inactive assignees. Then we analyze datasets to explore why 

some assignees are inactive. Finally, we send questionnaires to understand impacts of inactive assignees. 

Results: We find that some projects have high percentage of inactive yet available assignees. For exam- 

ple, 66.35% of assignees never participate in the project paperclip . The project paperclip belongs to the 

organization thoughtbot . In the organization thoughtbot , 84.4% of projects have more than 80% of inac- 

tive assignees. We further observe that the main reason for developers being inactive assignees is that 

developers work for organizations and automatically become available assignees of some projects in the 

organizations. However, these developers do not work on projects. 37.25% of developers that we have 

surveyed agree that inactive assignees affect open source software development (i.e., causing unresolved 

issues or pull requests, and delaying software development). 

Conclusion: Some organizations should improve team management, and carefully select developers to 

become assignees in projects. Future studies about assignees should be careful to perform data clean- 

ing, since some available assignees are added by virtue of their employment and do not really work on 

projects. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

GitHub 1 is a web-based hosting service for software develop- 

ment repositories and one of the largest and most popular open 

source communities in the world [1] . GitHub implements an in- 

house issue tracking system where developers file issues [2] . Issues 

are a great way to keep track of tasks, enhancements, and bugs for 

projects. GitHub supports the pull-based software development for 

code contribution [3,4] . Pull requests are submitted when develop- 

ers want to merge their code changes into original projects. 

In GitHub, an issue or a pull request can be assigned to a spe- 

cific assignee who is responsible for working on this issue or pull 

∗ Corresponding author. 

E-mail addresses: jiangjing@buaa.edu.cn (J. Jiang), davidlo@smu.edu.sg (D. Lo), 
sdxyzlc@126.com (X. Ma), fulifeng93@gmail.com (F. Feng), lily@buaa.edu.cn (L. 
Zhang). 

1 http://github.com. 

request 2 . Developers write issue reports to discuss bugs or feature 

requests [2] , while they open pull requests to submit code changes 

which they want to merge into original projects [5] . GitHub allows 

repositories to identify a set of developers who can be assigned to 

issues and pull requests. In this paper, we refer to this set of devel- 

opers as available assignees (assignees for short). OSS (open source 

software) teams tend to be self-organized, fluid and diverse, result- 

ing in high turnover [6] . Due to the principle of voluntary partic- 

ipation [7] , assignees have the freedom to decide their activities 

and even remain inactive in projects. If assignees ever participate 

in projects, they are active assignees ; otherwise, they are inactive 

yet available assignees (inactive assignees for short). 

Previous work found that assignees had more followers than re- 

porters who created issues [8] . Some studies designed approaches 

2 https://help.github.com/articles/assigning- issues- and- pull- requests- to- other- 
github-users/. 

http://dx.doi.org/10.1016/j.infsof.2017.06.005 
0950-5849/© 2017 Elsevier B.V. All rights reserved. 

Published in Information and Software Technology, 2017 November, Volume 91, Pages 44-55
http://doi.org/10.1016/j.infsof.2017.06.005

http://dx.doi.org/10.1016/j.infsof.2017.06.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.06.005&domain=pdf
mailto:jiangjing@buaa.edu.cn
mailto:davidlo@smu.edu.sg
mailto:sdxyzlc@126.com
mailto:fulifeng93@gmail.com
mailto:lily@buaa.edu.cn
http://github.com
https://help.github.com/articles/assigning-issues-and-pull-requests-to-other-github-users/
http://dx.doi.org/10.1016/j.infsof.2017.06.005


J. Jiang et al. / Information and Software Technology 91 (2017) 44–55 45 

to recommend reviewers who were responsible for working on pull 

requests [9–11] . However, no works have studied the activeness of 

all available assignees. It remains unknown whether assignees are 

inactive, why some available assignees are inactive, and how inac- 

tive assignees affect software development. It is important to pro- 

vide a comprehensive analysis of inactive yet available assignees in 

GitHub. 

In this work, we analyze inactive yet available assignees in 

GitHub. GitHub is a web-based hosting service for software de- 

velopment repositories. It is one of the world’s largest code host- 

ing sites. For our analysis, we use GitHub API to collect 2,374,474 

records of activities in 37 popular projects, and 797,756 records of 

activities in 687 projects belonging to 8 organizations ( Section 3 ). 

Then we analyze 37 popular projects, study the percentage of inac- 

tive assignees in projects, and compare projects with and without 

inactive assignees ( Section 4 ). Next, we study 17 projects with in- 

active assignees and 687 projects belonging to 8 organizations, and 

explore why some assignees are inactive but they become avail- 

able assignees ( Section 5 ). Finally, we study impacts of inactive as- 

signees on software development ( Section 6 ). Our study provides a 

number of insights into inactive assignees in GitHub. 

• Some projects have high percentage of inactive yet available 

assignees. For example, 66.35% of assignees never participate 

in project paperclip 3 . The project paperclip belongs to the or- 

ganization thoughtbot . In the organization thoughtbot , 84.4% of 

projects have more than 80% of inactive assignees. 

• The main reason for developers being inactive assignees is that 

developers work for organizations and automatically become 

available assignees of some projects in the organizations. How- 

ever, these developers do not work on projects. 

• 37.25% of developers that we have surveyed agree that inactive 

assignees affect open source software development (i.e., caus- 

ing unresolved issues or pull requests, and delaying software 

development). 

These findings imply that some organizations should improve 

team management, and carefully select developers to become as- 

signees in projects. In some organizations’ projects, available as- 

signees include developers who never participate in projects but 

work for the respective owner organizations. It causes the high 

percentage of inactive assignees, to whom issues or pull requests 

may be assigned. If issues or pull requests are assigned to inac- 

tive assignees, these issues or pull requests will not be handled by 

these assignees and remain open for a long time, which may dis- 

courage submitters of issues or pull requests. Reviewer recommen- 

dation should exclude inactive yet available assignees for pull re- 

quests in GitHub. Future studies about assignees should be careful 

to perform data cleaning, since some available assignees are added 

by virtue of their employment and do not really work on projects. 

2. Background and research questions 

In this section, we firstly provide background information about 

development activities in GitHub. Then we introduce research 

questions. 

2.1. Background 

GitHub is a web-based hosting service for software develop- 

ment projects. It has become one of the world’s largest open 

source communities. In GitHub, an issue or a pull request can be 

assigned to a specific developer who is responsible for working 

on this issue or pull request. Available assignees include project 

3 https://github.com/thoughtbot/paperclip. 

owner, collaborators on personal projects, or members of organi- 

zation with read permissions on the project. Assignees may partic- 

ipate in open source software projects through different ways. We 

introduce various kinds of activities as follow. 

Issue Herzig et al. observed that some issues described new 

feature requests, rather than bugs [12] . Developers also write is- 

sue reports to identify bugs, document software codes, and en- 

hance the software via feature requests in GitHub [2] . We consider 

all issues, and do not distinguish issues by their functions. This is 

because activities in any kinds of issues all show the activeness 

of assignees. An issue can be assigned to a specific assignee who 

is responsible for working on the issue. Assignees may exchange 

comments, provide feedback, or discuss problems mentioned in is- 

sues. Assignees may also report issues and give suggestions for the 

improvement of projects. 

Pull request Contributors fork projects and make changes to 

implement new features or fix bugs. Contributors submit pull re- 

quests when they want to merge code changes into the main 

project. Pull requests may be assigned to specific assignees. As- 

signees inspect code changes, evaluate potential contributions, and 

decide whether to accept pull requests or not [3] . Assignees some- 

times ask contributors to make updates and submit new com- 

mits for re-evaluation. Assignees and other interested users ex- 

change comments, perhaps to suggest improvements or negotiate 

over code changes. Assignees may also create pull requests to sub- 

mit codes. 

Commit Some pull requests may be assigned to specific as- 

signees. Assignees evaluate code changes submitted by pull re- 

quests, and merge satisfactory code changes into projects. As- 

signees may commit changes which originate from other develop- 

ers. Assignees may also exchange comments and discuss commits. 

GitHub displays developers’ contributions in their profiles, 

which mainly considers their activities in issues, pull requests and 

commits 4 . In this paper, we also mainly study assignees’ activi- 

ties in pull requests, issues and commits. Assignees are considered 

as active, if assignees participate in issues, pull requests or commits; 

otherwise, assignees are considered as inactive. Issues, pull requests 

and commits are directly associated with the development of OSS 

projects. Other activities are not considered in this work. For ex- 

ample, assignees may watch projects and receive real-time updates 

of project activities [13] ; assignees may follow project owners and 

listen to their activities [14,15] . Watching and following activities 

show assignees’ interests in projects, but do make real contribu- 

tions for the project development. 

GitHub offers two types of project owners, including personal 

account and organization. Personal account is intended for an in- 

dividual developer, while organization is intended for a company 

or a non-profit organization, such as Google and Facebook. 

In GitHub, any developers can participate in OSS projects by 

various ways, such as opening pull requests or submitting issues. 

However, only a set of developers are chosen by project admin- 

istrators, and become assignees who are working on issues or 

pull requests. Personal accounts and organizations have different 

ways to choose assignees. Personal accounts usually manage a few 

projects, and they choose assignees for every project owned by 

them. Organizations often manage many more projects than per- 

sonal accounts, and it is inconvenient to choose assignees for one 

project at a time. Organizations simplify management of many 

projects by teams 5 . Organizations build teams, and give teams 

special permissions to specific projects. Team members automat- 

ically become assignees of these projects. Teams allow organiza- 

4 https://help.github.com/articles/viewing- contributions- on- your- profile- page/. 
5 https://github.com/blog/674- introducing- organizations. 

https://github.com/thoughtbot/paperclip
https://help.github.com/articles/viewing-contributions-on-your-profile-page/
https://github.com/blog/674-introducing-organizations


46 J. Jiang et al. / Information and Software Technology 91 (2017) 44–55 

tions to add a group of developers as available assignees for several 

projects at once. 

2.2. Research questions 

We are interested in the following three research questions. 

RQ1 Do assignees really participate in projects? 

In GitHub, an issue or a pull request can be assigned to a spe- 

cific assignee. No works have studied the activeness of available as- 

signees. It remains unknown whether assignees are inactive or not. 

To the best of our knowledge, we take a first look at the existence 

of inactive yet available assignees. Based on 37 popular projects, 

we study the percentage of inactive assignees in projects, and com- 

pare projects with and without inactive assignees. 

RQ2 Why do projects select inactive developers to become as- 

signees? 

In Section 4 , we find that some projects have high percentage of 

inactive yet available assignees. GitHub allows projects to identify a 

set of developers who can be assigned to issues and pull requests. 

It is strange that some developers are chosen as assignees, but they 

never participate in projects. We study 17 projects with inactive 

assignees and 687 projects belonging to 8 organizations. We ex- 

plore why some assignees are inactive but they become available 

assignees. We collect company information of inactive assignees 

from GitHub or LinkedIn, and then judge whether these inactive 

assignees work for organizations. We further discuss how organi- 

zation management results in inactive yet available assignees. 

RQ3 Do inactive assignees impact software development? 

Developers’ active participation is important for the sustain- 

able development of OSS projects [16,17] . Assignees are responsible 

for working on some issues or pull requests. It remains unknown 

whether inactive assignees affect development of OSS projects. We 

randomly select some active developers in projects with inactive 

assignees. Then we send them questionnaires, and understand im- 

pacts of inactive assignees on software development. 

3. Data collection 

In this section, we firstly describe how we select projects for 

our research. Then we introduce how datasets are collected. 

3.1. Project selection 

We obtain 90 projects from MSR 2014 Mining Challenge 

dataset 6 . This dataset includes top-10 starred software projects for 

the top programming languages in GitHub. We focus on popular 

and active projects, because they may need assignees. In addition, 

small projects often have few assignees, and their project owners 

can manage projects by themselves. 

Next, we collected basic information of 90 projects in January 

2015. Then the following criteria is applied to select projects from 

the initial selection: 

• Projects should have at least one event of activities within 1 

month prior to data collection (January 2015), so as to avoid 

inactive projects. 

• Projects should be created at least two years prior to data col- 

lection. It ensures that projects have more than two years of 

historical information. We are interested to explore how their 

assignees behave as time goes on. 

• Projects should have at least 300 pull requests. In the pull- 

based software development, evaluating pull requests is an im- 

portant task for assignees [18] . We choose projects which use 

pull requests to evaluate code contributions in GitHub. 

6 http://2014.msrconf.org/challenge.php. 

After selection, our sample includes 37 projects. We introduce 

basic information of projects in Table 1 . 13 projects were cre- 

ated earlier than December 2009, and have histories longer than 

5 years; 29 projects have histories longer than 4 years, and 36 

projects have histories longer than 3 years. Since GitHub was 

founded in April 2008 7 , these projects have long histories in 

GitHub and provide great opportunities to explore their assignees. 

Our dataset includes projects written in representative program- 

ming languages, such as PHP, Ruby, Python, C, C ++ , JavaScript and 

Scala [13] . In GitHub, staring allows users to keep track of projects 

in which they are interested. The number of stars shows the pop- 

ularity of the project. In our dataset, all projects have more than 

1900 star, and 20 projects have more than 50 0 0 stars. These re- 

sults show that projects in our dataset are popular and active. 

The third column in Table 1 describes types of project own- 

ers. GitHub offers two types of project owners, including personal 

account and organization. Personal account is intended for an in- 

dividual developer, while organization is intended for a company 

or a non-profit organization, such as Google and Facebook. In our 

dataset, 27 projects owners are organizations, and 10 project own- 

ers are individual developers. 

3.2. Data collection 

GitHub provides access to its internal data through an API 8 . It 

allows us to access the rich collection of OSS projects, and provides 

valuable opportunities for research. We gather information through 

GitHub API and create datasets of projects and assignees. 

According to the Section 2 , we mainly collected activities in is- 

sues, pull requests and commits. We sent queries to GitHub API, 

received its replies, and extracted datasets since project creation 

time. For each issue, we crawled its ID, the developer who sub- 

mitted it, the creation time and the close time. We also col- 

lected events related to this issue. Each issue had different types 

of events, and detailed description could be found in GitHub API 9 . 

The issue’s comments were collected too, including submission 

time and commenters. For each pull request, we crawled its ID, the 

contributor, the creation time, the close time, related events and 

comments. For each commit, we collected its ID, the committer, 

the author, the commit time and comments. In GitHub, the author 

and the committer may be different. The author may be an ordi- 

nary developer, who submits modified codes through pull requests. 

The committer merges modified codes into the repository. Finally, 

we collected assignees through the issue assignee API 10 . This API 

returned all the available assignees to which issues or pull requests 

might be assigned. 

We collected pull requests, issues, commits and assignees for 37 

projects in January 2015. Table 2 shows basic statistics of projects. 

In total, we collected 2,374,474 records of activities and 1073 as- 

signees for 37 projects. In the Section 4 , we find projects zipkin, pa- 

perclip and libuv have high percentage of inactive assignees. These 

project owners are twitter, thoughtbot and joyent , which are large 

organizations. In Section 5.2 , we explore whether other projects 

belonging to these owners also have high ratios of inactive as- 

signees. Therefore, we collected datasets for 486 projects belonging 

to owners twitter, thoughtbot and joyent in April 2015. We further 

collected datasets for 201 projects belonging to owners divio, zurb, 

plataformatec, libgit2 and SignalR in March 2017. Table 7 shows that 

we collected 797,756 records of activities for these 687 projects. 

7 https://github.com/blog/40- we- launched. 
8 http://developer.github.com/v3/. 
9 https://developer.github.com/v3/issues/events/. 

10 https://developer.github.com/v3/issues/assignees/. 

http://2014.msrconf.org/challenge.php
https://github.com/blog/40-we-launched
http://developer.github.com/v3/
https://developer.github.com/v3/issues/events/
https://developer.github.com/v3/issues/assignees/


J. Jiang et al. / Information and Software Technology 91 (2017) 44–55 47 

Table 1 
Basic information of projects. 

Owner Project Owner Language Creation # Stars 
Type time 

twitter zipkin Org. Scala 2012/6/6 1957 
thoughtbot paperclip Org. Ruby 2008/4/10 6246 
joyent libuv Org. C 2011/3/29 3055 
divio django-cms Org. Python 2009/3/5 2918 
elasticsearch elasticsearch Org. Java 2010/2/8 8067 
zurb foundation Org. CSS 2011/10/13 17,697 
joyent node Org. JavaScript 2009/5/27 29,852 
plataformatec devise Org. Ruby 2009/9/16 11,185 
libgit2 libgit2 Org. C 2010/9/10 4607 
SignalR SignalR Org. C# 2011/7/22 4403 
reddit reddit Org. Python 2008/6/18 6087 
boto boto Org. Python 2010/7/12 4036 
openframe openFrame Org. C 2009/10/21 2985 
-works -works 
sbt sbt Org. Scala 2009/8/17 1927 
akka akka Org. Scala 2009/2/16 2874 
TrinityCore TrinityCore Org. C ++ 2010/12/28 2536 
xbmc xbmc Org. C ++ 2011/1/3 3312 
antirez redis User C 2009/3/21 10,135 
ariya phantomjs User C ++ 2010/12/27 11,070 
bitcoin bitcoin Org. TypeScript 2010/12/19 5002 
cakephp cakephp Org. PHP 2010/5/8 5058 
codeguy Slim User PHP 2010/9/21 3904 
diaspora diaspora Org. Ruby 2010/9/15 9345 
ginatrapani ThinkUp User PHP 2009/6/6 2787 
gitlabhq gitlabhq Org. Ruby 2011/10/2 12,653 
h5bp html5 Org. JavaScript 2010/1/24 26,416 

-boilerplate 
imathis octopress User Ruby 2009/10/18 8216 
kennethreitz requests User Python 2011/2/13 10,759 
mbostock d3 User JavaScript 2010/9/27 29,383 
mitsuhiko flask User Python 2010/4/6 10,591 
mrdoob three.js User JavaScript 2010/3/23 16,158 
netty netty Org. Java 2010/11/9 3402 
rails rails Org. Ruby 2008/4/11 22,969 
scala scala Org. Scala 2011/12/1 2800 
sebastian phpunit User PHP 2009/12/24 3855 
-bergmann 
symfony symfony Org. PHP 2010/1/4 8785 
zendframework zf2 Org. PHP 2010/6/4 4829 

4. Basic analysis of inactive assignees 

In this section, we study activities of assignees, and analyze 

the percentage of inactive assignees in projects. Then we com- 

pare characteristics of projects with inactive assignees and projects 

without inactive assignees. 

Based on datasets, we judge whether assignees ever participate 

in issues, pull requests or commits. For each project, we classify 

assignees into 2 kinds, namely active assignees and inactive as- 

signees. Then we compute the percentage of inactive assignees, 

and plot results in Table 2 . The project zipkin has the highest 

percentage of inactive assignees: Only 3.32% (9) of assignees ac- 

tually participate in the project, while other 96.68% (262) of as- 

signees never participate in the project. The percentage of inactive 

assignees is 66.35% in project paperclip , and the percentage of in- 

active assignees is 61.54% in project libuv . Issues or pull requests 

can be assigned to specific assignees. It is surprising that these 

projects have the percentage of inactive assignees higher than 60%. 

7 projects have the percentage of inactive assignees between 20% 

and 40%, and 7 projects have the percentage of inactive assignees 

between 1% and 20%. It shows that inactive assignees are common 

in some projects. 

Table 2 shows that inactive assignees exist in 17 projects, and 

20 projects do not have any inactive assignees. We classify projects 

into 2 groups, including projects without inactive assignees, and 

projects with inactive assignees. In the following part, we compare 

characteristics of the 2 groups. 

There are two types of project owners in GitHub, including 

personal owners and organizational owners. Personal account is 

intended for an individual developer, while organization account 

is intended for a company or a non-profit organization, such as 

Google and Facebook. In Table 3 , we compare the owner type of 

projects with and without inactive assignees. For projects without 

inactive assignees, 10 projects belong to personal owners, and 10 

projects belong to organizational owners. For projects with inac- 

tive assignees, 100% of projects belong to organizational owners. It 

shows that the owner type is an important factor of the activeness 

of assignees. In our datasets, all assignees are active in projects be- 

longing to personal owners, and inactive assignees only appear in 

projects belonging to organizational owners. 

The choice of programming languages reflects preference to- 

wards some kinds of tasks [13] . For example, PHP is applied in the 

development of web applications. We compare main programming 

languages used to implement projects with and without inactive 

assignees, and plot results in Table 4 . Results show that projects 

with and without inactive assignees both use programming lan- 

guages C, C++, Java, JavaScript, Python, Ruby and Scala. However, 

programming language PHP is used in 6 projects without inactive 

assignees, but it is used in 0 projects with inactive assignees. If a 

project uses programming language PHP, it is likely to be a project 

without inactive assignees. 



48 J. Jiang et al. / Information and Software Technology 91 (2017) 44–55 

Table 2 
Statistics of assignees. 

Project # # Active # Active # All # Inactive 
Activities developers assignees assignees assignees 

zipkin 3772 104 9 271 262 (96.68%) 
paperclip 15,805 2384 35 104 69 (66.35%) 
libuv 20,624 813 10 26 16 (61.54%) 
django-cms 39,463 1130 19 42 23 (54.76%) 
elasticsearch 111,411 3905 58 100 42 (42%) 
foundation 56,693 5375 22 36 14 (38.89%) 
node 112,962 5534 25 37 12 (32.43%) 
devise 27,830 3462 15 21 6 (28.57%) 
libgit2 41,336 615 29 39 10 (25.64%) 
SignalR 35,872 1457 12 15 3 (20%) 
reddit 13,037 882 15 18 3 (16.67%) 
boto 26,133 1782 9 10 1 (10%) 
openFrame 50,399 700 19 21 2 (9.52%) 
-works 
sbt 21,738 834 11 12 1 (8.33%) 
akka 89,885 491 13 14 1 (7.14%) 
TrinityCore 166,534 2996 25 26 1 (3.85%) 
xbmc 138,639 1328 73 75 2 (2.67%) 
redis 23,692 1956 3 3 0 (0%) 
phantomjs 23,642 3412 5 5 0 (0%) 
bitcoin 86,950 1696 5 5 0 (0%) 
cakephp 90,694 1084 19 19 0 (0%) 
Slim 7778 601 2 2 0 (0%) 
diaspora 74,445 1783 25 25 0 (0%) 
ThinkUp 15,492 463 4 4 0 (0%) 
gitlabhq 110,716 6134 13 13 0 (0%) 
html5 22,435 1736 6 6 0 (0%) 
-boilerplate 
octopress 15,061 1603 3 3 0 (0%) 
requests 34,267 1789 4 4 0 (0%) 
d3 18,365 1267 2 2 0 (0%) 
flask 11,834 1094 7 7 0 (0%) 
three.js 65,711 3022 1 1 0 (0%) 
netty 64,740 1046 18 18 0 (0%) 
rails 320,155 11,867 45 45 0 (0%) 
scala 97,970 463 18 18 0 (0%) 
phpunit 18,771 1352 3 3 0 (0%) 
symfony 196,419 4678 10 10 0 (0%) 
zf2 103,204 1883 13 13 0 (0%) 

Table 3 
Comparison of owner type. 

Projects without Projects with 
inactive assignees inactive assignees 

Projects belonging to 10 0 
personal owners 
Projects belonging to 10 17 
organizational owners 

Table 4 
Comparison of programming languages. 

Programming Projects without Projects with 
language inactive assignees inactive assignees 

C 1 3 
C# 0 1 
C ++ 1 2 
CSS 0 1 
Java 1 1 
JavaScript 3 1 
PHP 6 0 
Python 2 3 
Ruby 4 2 
Scala 1 3 
TypeScript 1 0 

We further explore whether projects with inactive assignees 

tend to be older or younger. The age of a project is defined as 

the number of months between its creation and the month of data 

Fig. 1. Comparison of age. 

collection. In Fig. 1 , we plot the age distribution of projects with 

and without inactive assignees. The median value of the age of 

projects without inactive assignees is smaller than that of projects 

with inactive assignees. The Mann-Whitney-Wilcoxon (MWW) test 

is a non-parametric statistical test that assesses the statistical sig- 

nificance of the difference between two distributions [19] . Using 

the MWW test, we find that the difference between two groups 

of projects is not significant at 0.05 significance level. Therefore, 

the age cannot be used to distinguish between projects with and 

without inactive assignees. 



J. Jiang et al. / Information and Software Technology 91 (2017) 44–55 49 

Fig. 2. Comparison of the number of stars. 

Table 5 
Feature importance. 

Feature Mean decrease accuracy (%) 

Owner type 16.59 
Programming language 9.82 
Age −1.51 
Number of stars 5.56 

In GitHub, staring allows users to keep track of projects in 

which they are interested. Fig. 2 plots the distribution of the num- 

ber of stars for projects with and without inactive assignees. The 

median value of the star amount of projects without inactive as- 

signees is higher than that of projects with inactive assignees. We 

also use the MWW test and get a p -value of 0.03548. The differ- 

ence between two groups of projects is statistically significant at 

0.05 significance level. This means that projects without inactive 

assignees have statistically significantly more stars than projects 

with inactive assignees. The number of stars shows the project 

popularity [20] . Projects without inactive assignees are more popu- 

lar than projects with inactive assignees. In the survey of Section 6 , 

we find that 37.25% of respondents describe that inactive assignees 

affect open source software development (i.e., causing unresolved 

issues or pull requests, and delaying software development). These 

negative impacts of inactive assignees may cause developers to 

lose interests in projects and decrease the project popularity. It is 

important to understand reasons of inactive assignees, and provide 

suggestions for projects to reduce inactive assignees and keep de- 

velopers’ interests. 

Random forests are an ensemble learning method for regres- 

sion, classification, and other tasks. Random forests construct a 

multitude of decision trees at training time and output the class 

that is mean prediction of trees. In order to further understand fea- 

ture importance, we use random forests to compute mean decrease 

accuracy of features. Mean decrease accuracy reflects how much 

the average prediction accuracy decreases when randomly shuffled 

values are used for a particular feature in the testing phase [21] . 

A higher mean decrease accuracy value represents higher feature 

importance. Table 5 shows the mean decrease accuracy of features. 

Mean decrease accuracy is 16.59 for owner type. It means that us- 

ing shuffled values for owner type affects the prediction accuracy 

by more than 16.59% relative to the performance with the correct 

values for this feature. Owner type is the most important feature 

in predicting whether a project has inactive assignees or not. Pro- 

gramming language and number of stars have mean decrease ac- 

curacies bigger than 0, and they are also useful to distinguish be- 

tween projects with and without inactive assignees. Mean decrease 

accuracy is −1.51 for age, and age cannot be used to distinguish 

between projects with and without inactive assignees. Table 5 fur- 

ther proves results in Tables 3, 4, Figs. 1 and 2 . 

RQ1: Some projects have high percentage of inactive as- 

signees. 

5. Reasons for assignees being inactive 

In this section, we firstly explore reasons for assignees being 

inactive. Table 2 shows that some projects have high percentage of 

inactive assignees. We study whether other projects belonging to 

the same owners also have high percentage of inactive assignees. 

5.1. Company identification results 

In GitHub, personal accounts are intended for individual devel- 

opers. Personal owners promote developers as assignees for spe- 

cific projects, and allow them to work on issues or pull requests. 

Organizations are used for creating distinct groups of users within 

companies, such as divisions or groups working on similar projects. 

Since organizations sometimes have many projects, they use teams 

to manage developers. Teams give organizations the ability to cre- 

ate groups of members and manage access permissions to projects. 

Once a team has been created, organization administrators give 

the team special permissions to specific projects. Then develop- 

ers are added to the team, and have corresponding permissions to 

projects. Teams can map to physical teams within companies, but 

they can also represent areas of interest or expertise. 

Table 3 also shows that inactive assignees only exist in projects 

belonging to organizational owners, and all assignees are active in 

projects belonging to personal owners. We doubt that inactive as- 

signees may be caused by organizations. Some developers in com- 

panies may be added to organizations, and automatically become 

assignees of projects managed by some teams in organizations. 

However, these developers may never participate in some projects, 

and become inactive assignees. 

In the following part, we explore whether inactive assignees 

work for organizations, and automatically become assignees. We 

obtain company names of organizations, collect company informa- 

tion of inactive assignees from GitHub or LinkedIn, and then judge 

whether these inactive assignees work for organizations. 

In GitHub, the organization is intended for a company or a 

non-profit organization, such as Google and Facebook. Organization 

names are usually company names. For example, the organization 

twitter belongs to the company Twitter . However, there are some 

exceptions. For example, the organization SignalR belongs to the 

company Microsoft . We browse profiles of organizations in Table 1 , 

and manually obtain their company names. 

We collect company information of developers from GitHub. We 

send queries to GitHub API, and try to obtain company informa- 

tion of inactive assignees. Then we determine whether inactive as- 

signees work in companies which projects belong to. For exam- 

ple, the developer andypiper works for the company Twitter . The 

project zipkin also belongs to the organization twitter , namely the 

company Twitter . Therefore, we decide that the developer andyp- 

iper becomes an inactive assignee of the project zipkin , because he 

works for the organization twitter . We obtain company informa- 

tion of 330 inactive assignees through GitHub API, and successfully 

confirm that 296 inactive assignees indeed work for the respective 

organizations which own the respective projects. 

LinkedIn is a professional social networking site, where people 

build their professional identities online [22,23] . Though some de- 

velopers do not fill in their companies in GitHub, they may write 

their companies in LinkedIn. In Table 2 , we find 468 inactive as- 

signees in 17 projects. We collect company information of 330 in- 

active assignees through GitHub API, and fail to obtain company 

information of other 138 inactive assignees. We try to find these 



50 J. Jiang et al. / Information and Software Technology 91 (2017) 44–55 

Table 6 
Statistics of inactive assignees who are confirmed to work for the respective 
owner organizations. 

Project # Inactive Inactive assignees who are 
assignees confirmed to work for the organization 

zipkin 262 228 / 87.02% 
paperclip 69 51 / 73.91% 
libuv 16 14 / 87.5% 
django-cms 23 12 / 52.17% 
elasticsearch 42 27 / 64.29% 
foundation 14 5 / 35.71% 
node 12 9 / 75% 
devise 6 6 / 100% 
libgit2 10 9 / 90% 
SignalR 3 3 / 100% 
reddit 3 1 / 33.33% 
boto 1 1 / 100% 
openFrameworks 2 0 / 0% 
sbt 1 1 / 100% 
akka 1 1 / 100% 
TrinityCore 1 1 / 100% 
xbmc 2 0 / 0% 

138 inactive assignees’ company information from LinkedIn, and 

check whether they work in companies of projects. 

In the advanced search of LinkedIn, we enter the name of an as- 

signee and the company of the project. If the advanced search re- 

turns no results, we fail to find this inactive assignee in LinkedIn. 

If the advanced search returns any user, this user has the same 

name with the inactive assignee, and works in the company of the 

project in which this assignee is inactive. We further compare the 

returned user’s photo in LinkedIn and the inactive assignee’s photo 

in GitHub. If two profile photos are similar, we consider that the 

returned user in LinkedIn is the inactive assignee in GitHub, and 

the inactive assignee indeed works in the company of the project 

in which he or she is inactive; Otherwise, we fail to find this inac- 

tive assignee in LinkedIn. In total, we successfully confirm that 73 

inactive assignees indeed work for organizations through LinkedIn. 

We determine whether inactive assignees work for organiza- 

tions through GitHub or LinkedIn, and plot results in Table 6 . In 

project zipkin , 87.02% of inactive assignees are confirmed to work 

for the organization owning zipkin . In 11 projects, more than 70% 

of inactive assignees are confirmed to work for the respective or- 

ganizations which own the projects. 

Results show that the majority of inactive assignees indeed 

work for the respective owner organizations. Some organizations 

provide coarse-grained administration for teams. Organizations add 

workers in companies to teams, and these workers automatically 

become assignees. However, some workers may never participate 

in some projects. 

In order to verify our finding, we randomly select 30 inactive 

assignees, and send them emails. We ask why they become inac- 

tive assignees, and receive 2 replies. An inactive yet available as- 

signee says “I work at Twitter. We have 109 public repositories un- 

der our GitHub account. So I have access to all 109 repositories, but 

I am only active and handle pull requests in the ones that I work 

on (maybe 5 or 6 of them).” Another inactive assignee tells us that 

“I am listed as a collaborator of Zipkin because I am a member of 

the Twitter organization (my employer), and the Twitter organiza- 

tion is the owner of Zipkin. But I personally never work on Zipkin.”

Their replies further substantiate our findings. 

5.2. Organization analysis 

As shown in above subsections, inactive assignees are mainly 

caused by inappropriate administration of organizations owning 

the 17 projects. We take a further step, and explore whether 

other projects in the organizations also have inactive assignees. 

Fig. 3. Number of assignees in projects. 

Table 2 shows that projects zipkin, paperclip, libuv, django-cms, elas- 

ticsearch, foundation, node, devise, libgit2 and SignalR have percent- 

ages of inactive assignees higher than 20%. These 10 projects be- 

long to 9 organizations. In March 2017, all projects sharing the 

same organization as elasticsearch are marked as private. We thus 

cannot collect details of these projects. The project elasticsearch was 

public in GitHub when we collected our first set of data in January 

2015. However, its status changed and it was a private project on 

March 2017 when we collected our second set of data. We col- 

lected details of projects belonging to the following organizations: 

twitter, thoughtbot, joyent, divio, zurb, plataformatec, libgit2 and Sig- 

nalR . Table 7 shows statistic information of these projects. In total, 

we collect 797,756 records of activities for 687 projects belonging 

to the 8 organizations. 

We compute the number of assignees in projects belonging 

to the 8 organizations, and plot cumulative distribution function 

(CDF) of number of assignees in Fig. 3 . In the organization twit- 

ter , 6.67% of projects have less than 270 assignees, and the other 

93.33% of projects have more than 270 assignees. In the organi- 

zation twitter , the oldest project was created in April 2008, and 

the newest project was created in March 2015. Both old and new 

projects have many assignees, no matter how many assignees are 

really needed. For example, the project unishark 11 was created in 

March 2015, and had only 1 star when we collected our datasets. 

However, the project unishark has as many as 271 assignees. In the 

CDF, we can see a jump at 271. 68 (64.76%) projects all have 271 

assignees. We guess that the organization twitter has a large team 

of 271 developers, and allows this team to manage many projects. 

271 team members automatically become assignees of projects 

controlled by this team. 109 projects (77.3%) have 104 assignees in 

the organization thoughtbot . 88 (36.67%) projects have 91 assignees 

and another 72 (30%) projects have 50 assignees in the organiza- 

tion joyent . In Fig. 3 , other organizations also have jump points. It 

shows that these organizations may also have some teams, whose 

members automatically become assignees of several projects. We 

cannot collect team information through GitHub API. In future, we 

will try to collect team information through other ways, and verify 

the existence of large teams in the organizations. 

For projects belonging to the above 8 organizations, we identify 

inactive assignees who never participate in issues, pull requests or 

commits. Then we plot cumulative distribution function of the per- 

centage of inactive assignees in Fig. 4 . In the organization twitter , 

only 6.67% of projects have less than 90% assignees who are in- 

active, and the other 93.33% of projects have more than 90% inac- 

tive assignees. 70.47% of projects have even more than 97% inactive 

assignees. More than 80% of assignees are inactive in 84.4%, 95%, 

11 https://github.com/twitter/unishark. 

https://github.com/twitter/unishark


J. Jiang et al. / Information and Software Technology 91 (2017) 44–55 51 

Table 7 
Basic information of projects in 8 organizations. 

Organization twitter thoughtbot joyent divio 

# Projects 105 141 240 81 
# Activities 186,908 142,047 177,114 68,347 

Common Scala, Java Ruby, Swift JavaScript, C Python, JavaScript 
Language JavaScript, Ruby Objective-C, CSS Shell, Ruby CSS, HTML 

Creation time Min 2008-4-21 2008-4-10 2009-4-27 2009-3-5 
Median 2012-5-7 2013-6-7 2014-8-27 2014-2-4 
Max 2015-3-12 2015-3-31 2015-3-27 2017-3-10 

# Stars Min 0 0 0 0 
Median 242 22 1 5 
Max 9,574 6,807 35,482 4765 

Organization zurb plataformatec libgit2 SignalR 
# Projects 73 24 15 8 

# Activities 80,962 35,914 63,926 42,538 
Common JavaScript, CSS Ruby, Elixir C#, JavaScript Java, C# 
Language HTML, Ruby JavaScript C, Objective-C JavaScript 

Creation time Min 2010-10-13 2009-9-16 2010-9-10 2011-7-22 
Median 2014-10-10 2012-2-7 2011-2-27 2013-8-22 
Max 2017-1-30 2016-8-23 2015-3-10 2014-6-12 

# Stars Min 0 0 0 1 
Median 19 46 418 55 
Max 25,098 16,707 6,003 6,323 

Fig. 4. Percentage of inactive assignees. 

58.02%, 86.3% and 83.33% of projects in organizations thoughtbot, 

joyent, divio, zurb and plataformatec . More than 60% of assignees 

are inactive in 73.33% and 87.5% of projects in organizations libgit2 

and SignalR . In these organizations, most of their projects have 

high percentage of inactive assignees. 

Finally, we collect additional information of inactive assignees 

through GitHub API or LinkedIn search, and investigate whether 

inactive assignees really work for the respective owner organiza- 

tions. In Fig. 5 , we plot the percentage of inactive assignees who 

are confirmed to work for the respective organizations which own 

the respective projects. In the organization twitter , only 2.86% of 

projects have less than 85% inactive assignees who are confirmed 

to work for twitter ; for the other 97.14% of twitter projects, more 

than 85% of inactive assignees are confirmed to work for twitter . 

For 85.82% of projects in the organization thoughtbot , more than 

75% of inactive assignees are confirmed to work for thoughtbot . For 

52.5% of projects in the organization joyent , more than 65% of in- 

active assignees are confirmed to work for joyent . Other organi- 

zations have similar results. Results show that most inactive as- 

signees indeed work for the respective organizations. When com- 

panies build large teams, many members in the teams may not 

participate in projects, but automatically become assignees. 

Fig. 5. Percentage of inactive assignees who are confirmed to work for the organi- 
zation. 

RQ2: The main reason for developers being inactive assignees 

is that developers work for organizations and automatically 

become assignees of some projects in the organizations. How- 

ever, these developers do not work on projects. 

6. Impacts of inactive assignees 

As shown in the Section 4 , we find that some developers never 

participated in projects, but they are available assignees who can 

be assigned to issues or pull requests. We wonder whether these 

inactive yet available assignees were really assigned to issues or 

pull requests. As described in Section 3.2 , we collected events of is- 

sues or pull requests. One event type is ‘assignee’, and it describes 

the developer who is assigned to an issue or a pull request. We 

analyze events of issues or pull requests, and identify inactive as- 

signees who were really assigned to issues or pull requests in 17 

projects. We find 6 projects with inactive assignees who were re- 

ally assigned and list them in Table 8 . For example, available as- 

signee simianhacker was assigned to address an issue with num- 



52 J. Jiang et al. / Information and Software Technology 91 (2017) 44–55 

Table 8 
Inactive assignees who were really assigned to issues or pull 
requests. 

Project Inactive assignees 
who were really assigned 

django-cms kkovrizhenko 
elasticsearch colinsurprenant, palecur, simianhacker 
foundation accbjt, jeaniec 
SignalR roopalik 
openFrameworks ofbot 
xbmc modhack 

Table 9 
Average number of days between assignment 
and close of issues or pull requests. 

Project Average number of days 

django-cms 320 
elasticsearch 213 
foundation 23 
SignalR 7 
openFrameworks 60 
xbmc 38 

ber 7612 in project elasticsearch on September 7, 2014 12 . However, 

simianhacker never participated in the project, and he did not ad- 

dress this issue. The issue was finally closed on October 6, 2016, 

which was more than 2 year later after its submission. Another 

issue with number 7973 faced a similar problem 13 . Available as- 

signee palecur was assigned to address this issue, but he was an 

inactive assignee. This issue was reassigned to another available 

assignee dadoonet 21 days later. The other 5 projects also have in- 

active assignees who were really assigned but never participated 

in the respective projects. 

Six projects have inactive assignees who were really assigned 

to address issues or pull requests. For these issues or pull requests 

with inactive assignees, we compute the length of the time in- 

terval between assignment and close, and show them in Table 9 . 

In project elasticsearch , issues or pull requests with inactive as- 

signees have 213 days between assignment and close, which is a 

long time. In projects django-cms, foundation, SignalR, openFrame- 

works and xbmc , average number of days between assignment and 

close are 320, 23, 7, 60 and 38, respectively. Thus, issues or pull re- 

quests with wrong assignment of inactive assignees can cause se- 

rious delay. 

We take a further step, and send questionnaires to active de- 

velopers in projects to understand their attitudes towards inactive 

assignees. We ask 3 questions in the survey: (1) Before this sur- 

vey, do you know that some assignees never participate in some 

projects? (2) In your opinion, do inactive assignees affect open 

source software development? (3) If you choose Yes in the ques- 

tion 2, what are impacts of inactive assignees on software devel- 

opment? In the first and the second questions, we provide prede- 

fined choices, including yes, no and not sure . The third question is 

open-ended, and allows respondents to describe impacts of inac- 

tive assignees in details. 

As can be seen from Table 2 , 17 projects have 33,792 active de- 

velopers. In each project, we randomly choose 100 active devel- 

opers, who fill in their email addresses in GitHub. Then we send 

emails to 1700 developers, and receive 102 replies. In the follow- 

ing paragraphs, we analyze the replies to understand active devel- 

opers’ attitudes towards inactive assignees. 

12 https://github.com/elastic/elasticsearch/issues/7612. 
13 https://github.com/elastic/elasticsearch/issues/7973. 

Table 10 
Before this survey, do developers know 
that some assignees never participate in 
some projects? 

Response Developers 

Yes 53 / 51.96% 
No 22 / 21.57% 
Not sure 27 / 26.47% 

Table 11 
Do inactive assignees affect open source 
software development? 

Response Developers 

Yes 38 / 37.25% 
No 48 / 47.06% 
Not sure 16 / 15.69% 

Table 12 
What are impacts of inactive assignees on software devel- 
opment? 

Impact Developers 

Cause unresolved issues or pull requests 12 / 31.58% 
Delay software development 11 / 28.95% 
Make other contribution 5 / 13.16% 
Other 5 / 13.16% 
Not filled 5 / 13.16% 

Firstly, we ask developers whether they know the existence of 

inactive assignees before the survey. We describe their answers in 

Table 10 . 51.96% of respondents know that some assignees never 

participate in some projects before the survey. Though inactive as- 

signees never appear in projects, the majority of respondents still 

notice the existence of inactive assignees. 

Next, Table 11 shows developers’ attitudes towards inactive as- 

signees. 37.25% of respondents think that inactive assignees impact 

software development. 47.06% of respondents think that inactive 

assignees do not affect project development. Few respondents ex- 

plain their reasons. A respondent says that “As long as the project 

still has engineers the tasks assigned to inactive assignees can just 

be reassigned.” The other 15.69% of respondents are not sure about 

impacts of inactive assignees. 

38 respondents think that inactive assignees bring impacts on 

software development. The first, third and fourth authors indepen- 

dently read their responses, and build corresponding categories. 

Three authors compare results, identify inconsistencies and retrofit 

categories. Then three authors classify responses independently. A 

response is classified into a specific category, if at least 2 authors 

make the same decision. If a response is classified into different 

categories, 3 authors discuss together, resolve conflicts and make 

decision. Table 12 shows impacts of inactive assignees on the soft- 

ware development. From the results, we can note that: 

(1) One main impact is that inactive assignees may cause un- 

resolved issues or pull requests. Inactive assignees give false as- 

sumption that issues or pull requests will be resolved, but nothing 

actually happen. These issues or pull requests get stalled and often 

never get finished. Active assignees will not work on issues or pull 

requests, if they think other people are already working on them. 

A respondent writes that “Off the top of my hat, if a person is as- 

signed then others will be extremely unlikely to pick that work up, 

meaning that it may be abandoned forever”. Another respondent 

says that “It impacts the workflow of a project. Inactive assignees 

who are assigned to issues will give a false sense of progress.”

(2) 11 respondents think that inactive assignees cause delays 

in the open source software development. One example of their 

responses is “Inactive assignees might prevent some contributors 

https://github.com/elastic/elasticsearch/issues/7612
https://github.com/elastic/elasticsearch/issues/7973


J. Jiang et al. / Information and Software Technology 91 (2017) 44–55 53 

from fixing open tickets , thinking the fixes are being handled. It 

might cause delay in issues being handled.” Another respondent 

writes “If the assignee is inactive that could delay a lot of things in 

a project and that could delay other downstream projects as well.”

(3) 5 respondents think that inactive assignees may not par- 

ticipate in issues or pull requests, but they should contribute to 

OSS projects in other ways. For example, a respondent says that 

“Not all participants show up as activity on github. In my case that 

is providing know-how and guidance to active contributors and 

helping moderate communities.” Another respondent writes that 

“Some people can improve the quality of the project just by cor- 

recting typo on documentation.”

(4) 5 developers mention other impacts, and 5 developers do 

not fill in detailed impacts. 

RQ3: 37.25% of respondents describe that inactive assignees 

affect open source software development (i.e., causing unre- 

solved issues or pull requests, and delaying software devel- 

opment). 

7. Discussion 

7.1. Implications 

Previous works have designed techniques to automatically rec- 

ommended reviewers [24–27] . Some studies recommended re- 

viewers for pull requests in GitHub [9–11] . Assignees are available 

developers to whom issues or pull requests may be assigned. Our 

findings suggest that some projects may have a lot of assignees, 

but only few assignees are active. If issues or pull requests are as- 

signed to inactive assignees, these issues or pull requests will not 

be handled by these assignees and remain open for a long time, 

which may discourage submitters of issues or pull requests. Re- 

viewer recommendation should exclude inactive yet available as- 

signees for pull requests in GitHub. Future studies about assignees 

should be careful to perform data cleaning, since some available 

assignees are added by virtue of their employment and do not re- 

ally work on projects. 

These findings about inactive assignees imply that organizations 

should improve team management, and carefully select developers 

to become assignees in projects. In some organizations, workers 

may never participate in some projects, but become inactive as- 

signees. Management confusion in some organizations causes high 

percentage of inactive assignees, which may confuse active devel- 

opers in projects. 

7.2. Threats to validity 

Threats to internal validity relate to experimenter bias and er- 

rors. We collect datasets through GitHub API and decide whether 

assignees are active or not. The majority of inactive assignees are 

workers in companies. Some inactive assignees may discuss with 

other developers face to face at offices, and their contributions are 

not recorded in GitHub. Offline communications are not collected 

by us, which may affect the identification of inactive assignees. 

Threats to external validity relates to the generalizability of our 

study. Our empirical findings are based on open source projects in 

GitHub, and it is unknown whether our results can be generalized 

to other OSS platforms, which also use teams to manage projects 

for large organizations. In the future, we plan to study a similar set 

of research questions by analyzing data from other platforms, and 

compare their results with our findings in GitHub. 

Threats to conclusion validity is concerned with issues that af- 

fect the ability to draw the correct conclusion. Firstly, the most 

probable conclusion validity threat in our work is due to the anal- 

ysis of questionnaires. We manually read replies from develop- 

ers and analyze impacts of inactive assignees. Though these pro- 

cesses are subjective, our three authors read replies, compare re- 

sults, identify inconsistencies and modify reasons, so as to reduce 

impacts from the experience and subjective awareness of authors. 

17 projects have 33,792 active developers. 102 respondents from 

a population of 33,792 active developers yield a 95% confidence 

level with a 9.69% error margin. Secondly, we collect company in- 

formation from GitHub or LinkedIn, and decide whether inactive 

assignees really work for the respective organizations which own 

the respective projects. Some inactive assignees may work for the 

respective owner organizations, but do not fill in their company in- 

formation. Since we can not collect complete company information 

from GitHub or LinkedIn, actual proportions of inactive assignees 

working for the respective owner organizations may be larger than 

our results. It still shows that the majority of inactive assignees in- 

deed work for the respective owner organizations. 

Threats to construct validity are related to the degree which the 

construct being studied is affected by experiment settings. A fre- 

quently observed threat on a questionnaire-based analysis is that 

designed questions may misguide responders. We carefully design 

questions to ensure their understandability. 

8. Related work 

We firstly present related works about mechanisms in GitHub. 

Then we highlight related works on how developers make contri- 

butions and change roles in OSS projects. 

8.1. Mechanisms in GitHub 

In GitHub, an issue or a pull request can be assigned to a spe- 

cific assignee who is responsible for working on the issue or pull 

request. Developers write issue reports to discuss bugs or feature 

requests. Developers open pull requests to submit code changes 

which they want to merge into original projects. Commits are used 

to record code changes in projects. Issues, pull requests and com- 

mits are important activities in GitHub [28] . As the popularity 

of GitHub, researchers study issues, pull requests or commits in 

GitHub [2] , [3,4,29–40] ]. 

Issue Bissyande et al. investigated the actual adoption of issue 

trackers in software development in GitHub [2] . They found that 

projects with reported issues tended to have more lines of codes 

and more developers. They further observed that the number of 

issues was strongly correlated with the number of watchers and 

forks. 

Cabot et al. explored the use of labels to categorize issues [29] . 

They found that although the label mechanism was scarcely used, 

using labels favored the resolution of issues. They further reported 

that projects employed labels in different ways to classify issues 

according to priority, affected component and workflow process. 

Pull request Gousios et al. performed an exploratory study of 

pull-based software development model in GitHub [3] . They ob- 

served that the decision to merge a pull request was mainly in- 

fluenced by whether the pull request modified recently changed 

codes. They further found that the time to merge a pull re- 

quest was influenced by the developer’s previous track record, the 

project’s size, its test coverage and its openness to external contri- 

butions. 

Tsay et al. observed that both technical and social information 

were considered in the evaluation of pull requests [4] . They found 

that project managers made use of information signaling both good 

technical contribution practices for a pull request and the strength 

of the social relationship between the submitter and project man- 

ager in the evaluation of pull requests. 



54 J. Jiang et al. / Information and Software Technology 91 (2017) 44–55 

Jiang et al. proposed a method to predict whether integrators 

would be long-term active in the evaluation of pull requests [36] . 

They observed that whether integrators becoming long-term active 

was associated with the number of active months and social dis- 

tance with contributors in their first year as integrators. 

Commit Barnett et al. studied the relationship between com- 

mit message details and defect proneness in Java projects [39] . 

They found that their commit message volume metric and com- 

mit message content metric both contributed statistically signifi- 

cant amount of explanatory power to the Just-In-Time defect pre- 

diction models. 

Michaud et al. designed an approach to automatically recover 

the previously unknown branch of origin of commits [40] . This ap- 

proach used Git’s default merge commit messages, and examined 

the relationships between neighboring commits. The evaluations 

showed that their approach had average accuracy higher than 97% 

and average precision higher than 80%. 

Different from above works, we do not study detailed process of 

issues, pull requests or commits. We explore whether assignees re- 

ally participate in issues, pull requests or commits. Then we study 

why some assignees are inactive, and analyze impacts of inactive 

assignees on OSS projects. 

Organization Organization is intended for a company or a non- 

profit organization. We observe that some organization manage- 

ment causes inactive assignees. Few works studied organizations 

in GitHub. Gousios et al. developed a service to collaboratively col- 

lect and share data in GitHub [5] . He collected more than 900GB of 

raw data and 10GB of metadata, and allowed researchers to down- 

load GHTorent dataset. GHTorent dataset included members of or- 

ganizations. This work provided valuable dataset for research, and 

it did not analyze organization management. This work is much 

different from our work. 

8.2. Role migration 

Developers have different roles in OSS projects. Some previous 

works studied developer contribution and their role migration in 

software development. 

The structure of the hierarchical process was known as “onion 

model” [41,42] . They described the general layered structure of OSS 

communities, including project leaders, core members, active de- 

velopers, peripheral developers, bug fixers, bug reporters, readers 

and passive users. 

Zhou et al. observed that the probability for a new joiner to 

become a long term contributor was associated with her willing- 

ness and environment [17] . At the time of joining, future long term 

contributors tended to take more active role and showed more 

community-oriented attitude than other joiners. They also received 

more attention from the community and encountered more expe- 

rienced peers. 

Casalnuovo et al. found that developer migration in GitHub 

was strongly affected by pre-existing relationships [43] . They ob- 

served that joining a new project in which there were prior co- 

participants increased the developer’s probability for initial contri- 

bution above baseline by 3.7% to 6.2%. 

Above works mainly study factors which influence the role mi- 

gration of active developers. However, these works do not con- 

sider inactive developers who have special roles in OSS projects. 

We study inactive assignees, which is different from above works. 

9. Conclusion 

This paper presents an empirical study of inactive yet available 

assignees in GitHub. We show empirical evidence that: (1) Some 

projects have high percentage of inactive assignees. Projects with 

inactive assignees all belong to organizational owners, rather than 

personal owners. (2) The main reason for developers being inactive 

assignees is that developers work for organizations and automati- 

cally become assignees of some projects in the organizations. How- 

ever, these developers do not work on projects. (3) 37.25% of re- 

spondents describe that inactive assignees affect open source soft- 

ware development (i.e., causing unresolved issues or pull requests, 

and delaying software development). 

Our findings provide implications for organizations and fu- 

ture sturdies. Organizations should carefully manage team mem- 

bers, and select suitable developers to become assignees. Cur- 

rently, some organizations provide coarse-grained administration 

for teams. Organizations add workers in companies to teams, and 

these workers automatically become assignees. However, some 

workers may never participate in some projects. It causes the 

high percentage of assignees. Assignees are available developers to 

whom issues or pull requests may be assigned. If issues or pull 

requests are assigned to inactive assignees, these issues or pull re- 

quests will not be handled by these assignees and remain open 

for a long time, which may discourage submitters of issues or 

pull requests. Reviewer recommendation should exclude inactive 

yet available assignees for pull requests in GitHub. Future studies 

about assignees should be careful to perform data cleaning, since 

some available assignees are added by virtue of their employment 

and do not really work on projects. 

Acknowledgments 

This work is supported by National Natural Science Foundation 

of China under Grant no. 6130 0 0 06 , and the State Key Laboratory 

of Software Development Environment under Grant no. SKLSDE- 

2017ZX-06, and Beijing Natural Science Foundation under Grant no. 

4163074 . 

References 

[1] A. Lima , L. Rossi , M. Musolesi , Coding together at scale: Github as a collabora- 
tive social network, in: Proc. of AAAI, Qubec, Canada, 2014 . 

[2] T.F. Bissyande , D. Lo , L. Jiang , L. Reveillere , J. Klein , Y.L. Traon , Got issues? Who 
cares about it? A large scale investigation of issue trackers from GitHub, in: 
Proc. of ISSRE, Washington DC, USA, 2013 . 

[3] G. Gousios , M. Pinzger , A. van Deursen , An exploratory study of the pull-based 
software development model, in: Proc. of ICSE, Hyderabad, India, 2014 . 

[4] J. Tsay , L. Dabbish , J. Herbsleb , Influence of social and technical factors for eval- 
uating contribution in GitHub, in: Proc. of ICSE, Hyderabad, India, 2014 . 

[5] G. Gousios , The ghtorent dataset and tool suite, in: Proc. of MSR, San Francisco, 
USA, 2013 . 

[6] M. Foucault , M. Palyart , X. Blanc , G.C. Murphy , J.-R. Falleri , Developer turnover 
in open-source software, in: Proc. of FSE, Bergamo, Italy, 2015 . 

[7] K. Crowston , K. Wei , J. Howison , A. Wiggins , Free/libre open source software 
development: what we know and what we do not know, ACM Comput. Surv. 
44 (2012) . 

[8] J. Xavier , A. Macedo , M. de Almeida Maia , Understanding the popularity of 
reporters and assignees in the GitHub, in: Proc. of SEKE, Vancouver, Canada, 
2014 . 

[9] Y. Yu , H. Wang , G. Yin , C. Ling , Reviewer recommender of pull-requests in 
GitHub, in: Proc. the 30th ICSME, Victoria, Canada, 2014a, pp. 609–612 . 

[10] Y. Yu , H. Wang , G. Yin , C.X. Ling , Who should review this pull-request: re- 
viewer recommendation to expedite crowd collaboration, in: Proc. the 21st 
APSEC, Jeju, Korea, 2014b, pp. 335–342 . 

[11] J. Jiang , J.-H. He , X.-Y. Chen , Coredevrec: automatic core member recom- 
mendation for contribution evaluation, J. Comput. Sci. Technol. 30 (5) (2015) 
998–1016 . 

[12] K. Herzig , S. Just , A. Zeller , Its not a bug, its a feature: how misclassification 
impacts bug prediction, in: Proc. of ICSE, San Francisco, USA, 2013 . 

[13] T.F. Bissyande , F. Thung , D. Lo , L. Jiang , L. Reveillere , Popularity, interoperability, 
and impact of programming languages in 10 0,0 0 0 open source projects, in: 
Proc. of COMPSAC, Kyoto, Japan, 2013 . 

[14] J. Jiang , L. Zhang , L. Li , Understanding project dissemination on a social coding 
site, in: Proc. of WCRE, Koblenz, Germany, 2013 . 

[15] L. Dabbish , C. Stuart , J. Herbsleb , Social coding in GitHub: transparency and 
collaboration in an open software repository, in: Proc. of CSCW, Washington, 
USA, 2012 . 

[16] M. Zhou , A. Mockus , Does the initial environment impact the future of devel- 
opers? in: Proc. of ICSE, Honolulu, USA, 2011 . 

[17] M. Zhou , A. Mockus , What make long term contributors:willingness and op- 
portunity in OSS community, in: Proc. of ICSE, Zurich, Switzerland, 2012 . 

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100004826
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0017


J. Jiang et al. / Information and Software Technology 91 (2017) 44–55 55 

[18] G. Gousios , A. Zaidman , M.-A. Storey , A. van Deursen , Work practices and 
challenges in pull-based development: the integrators perspective, in: Proc. of 
ICSE, Florence, Italy, 2015 . 

[19] H.B. Mann , D.R. Whitney , On a test of whether one of two random variables is 
stochastically larger than the other, Ann. Math. Stat. 18 (1) (1947) 50–60 . 

[20] H. Borges , A. Hora , M.T. Valente , Predicting the popularity of GitHub reposito- 
ries, in: Proc. of PROMISE, Ciudad Real, Spain, 2016 . 

[21] S. Kuhn , B. Egert , S. Neumann , C. Steinbeck , Building blocks for automated elu- 
cidation of metabolites: machine learning methods for NMR prediction, BMC 
Bioinf. 9 (2008) 1–19 . 

[22] D. Kim , J.-H. Kim , Y. Nam , How does industry use social networking sites? An 
analysis of corporate dialogic uses of facebook, twitter, youtube, and linkedin 
by industry type, Qual. Quant. 48 (2014) 2605–2614 . 

[23] A. Archambault , J. Grudin , A longitudinal study of facebook, linkedin, and twit- 
ter use, in: Proc. of CHI, Austin, USA, 2012 . 

[24] J.B. Lee , A. Ihara , A. Monden , K. ichi Matsumoto , Patch reviewer recommenda- 
tion in OSS projects, in: Proc. of APSEC, Bangkok, Thailand, 2013 . 

[25] V. Balachandran , Reducing human effort and improving quality in peer code 
reviews using automatic static analysis and reviewer recommendation, in: 
Proc. the 35th ICSE, San Francisco, USA, 2013, pp. 931–940 . 

[26] P. Thongtanunam , C. Tantithamthavorn , R.G. Kula , N. Yoshida , H. Iida , K. ichi 
Matsumoto , Who should review my code? A file location-based code-reviewer 
recommendation approach for modern code review, in: Proc. the 22nd SANER, 
Montreal, Canada, 2015, pp. 141–150 . 

[27] X. Xia , D. Lo , X. Wang , X. Yang , Who should review this change? in: Proc. of 
ICSME, Bremen, Germany, 2015 . 

[28] C. Bird , P.C. Rigby , E.T. Barr , D.J. Hamilton , D.M. German , P. Devanbu , The 
promises and perils of mining git, in: Proc. of MSR, Vancouver, Canada, 2009 . 

[29] J. Cabot , J.L.C. Izquierdo , V. Cosentino , B. Rolandi , Exploring the use of labels to 
categorize issues in open-source software projects, in: Proc. of SANER, Mon- 
treal, Canada, 2015 . 

[30] R. Kikas , M. Dumas , D. Pfahl , Issue dynamics in GitHub projects, PROFES, 
Bolzano, Italy, 2015 . 

[31] V.J. Hellendoorn , P.T. Devanbu , A. Bacchelli , Will they like this? Evaluating code 
contributions with language models, in: Proc. of MSR, Florence, Italy, 2015 . 

[32] B. Vasilescu , Y. Yu , H. Wang , P. Devanbu , V. Filkov , Quality and productivity 
outcomes relating to continuous integration in GitHub, in: Proc. of FSE, Berg- 
amo, Italy, 2015 . 

[33] Y. Yu , H. Wang , V. Filkov , P. Devanbu , B. Vasilescu , Wait for it: determinants 
of pull request evaluation latency on GitHub, in: Proc. of MSR, Florence, Italy, 
2015 . 

[34] E. van der Veen , G. Gousios , A. Zaidman , Automatically prioritizing pull re- 
quests, in: Proc. of MSR, Florence, Italy, 2015 . 

[35] J. Tsay , L. Dabbish , J. Herbsleb , Let’s talk about it: evaluating contributions 
through discussion in GitHub, in: Proc. of ICSE, Florence, Italy, 2015 . 

[36] J. Jiang , F. Feng , X. Lian , L. Zhang , Long-term active integrator prediction in the 
evaluation of code contributions, in: Proc. of SEKE, San francisco, USA, 2016 . 

[37] E. Guzman , D. Azcar , Y. Li , Sentiment analysis of commit comments in GitHub: 
an empirical study, in: Proc. of MSR, Hyderabad, India, 2014 . 

[38] V. Sinha , A. Lazar , B. Sharif , Analyzing developer sentiment in commit logs, in: 
Proc. of MSR, Austin, USA, 2016 . 

[39] J.G. Barnett , C.K. Gathuru , L.S. Soldano , S. McIntosh , The relationship between 
commit message detail and defect proneness in java projects on GitHub, in: 
Proc. of MSR, Austin, USA, 2016 . 

[40] H. Michaud , D. Guarnera , M. Collard , J. Maletic , Recovering commit branch of 
origin from GitHub repositories, in: Proc. of ICSME, Raleigh, USA, 2016 . 

[41] K. Nakakoji , Y. Yamamoto , Y. Nishinaka , K. Kishida , Y. Ye , Evolution patterns of 
open-source software systems and communities, International Workshop on 
Principles of Software Evolution, Orlando, USA, 2002 . 

[42] Y. Ye , K. Kishida , Toward an understanding of the motivation open source soft- 
ware developers, in: Proc. of ICSE, Portland, USA, 2003 . 

[43] C. Casalnuovo , B. Vasilescu , P. Devanbu , V. Filkov , Developer onboarding in 
GitHub: the role of prior social links and language experience, in: Proc. of FSE, 
Bergamo, Italy, 2015 . 

http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30445-7/sbref0043

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	11-2017

	Understanding inactive yet available assignees in GitHub
	Jing JIANG
	David LO
	Xinyu MA
	Fuli FENG
	Li ZHANG
	Citation


	Understanding inactive yet available assignees in GitHub
	1 Introduction
	2 Background and research questions
	2.1 Background
	2.2 Research questions

	3 Data collection
	3.1 Project selection
	3.2 Data collection

	4 Basic analysis of inactive assignees
	5 Reasons for assignees being inactive
	5.1 Company identification results
	5.2 Organization analysis

	6 Impacts of inactive assignees
	7 Discussion
	7.1 Implications
	7.2 Threats to validity

	8 Related work
	8.1 Mechanisms in GitHub
	8.2 Role migration

	9 Conclusion
	 Acknowledgments
	 References


