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ABSTRACT 
This paper examines the performance of single-queue service systems using a combination of 

computer simulation and M/M/C queuing models. Our results show that the accuracy of 

M/M/C models is significantly affected by the assumptions supporting the models. Managers 

should therefore exercise caution in using the M/M/C models for designing queuing systems 

when the models’ assumptions are violated. Our results show that cost-centric and service-

centric firms should manage their queues differently. While cost-centric firms should target 

higher arrival load, single service session, and front-loaded arrival pattern for higher efficiency, 

service-centric firms should strive for lower arrival load, multiple short sessions and even 

arrival pattern for better service. In addition, both cost-centric and service-centric firms can 

consider pooling servers together and reducing the variability of inter-arrival and service 

times to improve both cost and service simultaneously.  
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1. INTRODUCTION  

Despite the current advances in modeling queues, the standard texts and courses in quanti-

tative modeling and operations management have focused primarily on the simplest queuing 

models that assume exponential arrival and service times (Hillier & Hillier 2002; Hillier & 

Lieberman 2004; Jacobs & Chase 2010; Krajewski et al. 2012). These models typically 

assume a system with stationary arrival rate such that the average number of customer arrivals 

does not change with time. These models also frequently consider only scenarios with one to 

several servers serving a single common queue. Customers in the queue are served as first-

come, first-served; and the queue has ample space such that no customers are turned away due 

to limited space. Queuing systems with the above characteristics are often modeled as M/M/C 

models. 

As formulae for the M/M/C models are relatively simple and easy to use, they appeal to 

many students, teachers and practitioners of operations management. In their paper, Donnelly 

& McMullan (1994) used the M/M/C models to predict the mean waiting time and probability 

of no waiting at a service enquiry counter. The customer arrival rate was noted to vary both 

within a day and across days; but the authors still used the M/M/C models even though the 

service counter did not operate continuously, but encountered opening and closing transience 

every day. In another study, Goldstein (2009) also used the M/M/C models to predict the 

mean waiting times of customers when they are served at separate counters versus a single 

counter. In both papers, the authors made no attempt to validate the accuracy of the M/M/C 

models-suggesting that many practitioners believe in the robustness of M/M/C models even 

when the assumptions are violated. 

To model the effects of non-stationary arrival rate and opening and closing transience in a 

queuing system, relatively more complex procedures are available. Two basic approaches are 

proposed in the literature. The first approach is to explicitly model the system transience and 

state transition over time as suggested by Abate & Whitt (1987), Lee & Roth (1993), Van 

Den Berg & Groenendijk (1991), Wang (1999), and Garcia et al. (2002). The second approach is 

to divide time into segments, estimate the performance in each segment using stationary 

queuing models such as the M/M/C models, and finally average the performance across all 

segments. This approach is suggested and used by Green & Kolesar (1991, 1995, 1997), 
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Green et al. (2001), and Green et al. (2007). However, both approaches are relatively 

complex and require recursive procedures to calculate and predict the system performance. It 

is thus not surprising that most teachers and practitioners of operations still prefer the M/M/C 

models and ignore the presence of non-stationary arrival rate and operating transience.  

In queuing systems where the assumptions supporting the M/M/C models are violated, 

computer simulation offers a viable alternative to model the performance of real systems, 

especially with the advent of simple and easy-to-use simulation software. The M/M/C models 

and computer simulation are the two most preferred techniques for analyzing queues (Martinich 

2002; Sheu et al. 2003; Treville & Ackere 2006; Wang et al. 2006). The M/M/C models may 

be easier to use but are less accurate than computer simulation when the assumptions 

supporting the analytical models are violated.  

This research has two objectives. The first objective is to test the robustness of the M/M/C 

models against computer simulation in predicting the performance of queuing systems under 

different environments. Our results show that M/M/C models report sizable estimation errors 

when the assumptions supporting the models are violated. We therefore caution the indiscri-

minate use of M/M/C models for designing real systems where one or more of the model’s 

assumptions are violated. While many will agree that M/M/C models provide good insights 

on understanding the tradeoff between cost and service in queue design, their ability to 

predict the actual system performance accurately should be cautioned.  

The second objective in this paper is to examine the impact of different operating factors 

on the performance of queuing systems. The operating factors are represented by six factors, 

namely the number of servers, arrival load, session length, arrival pattern, arrival time variability, 

and service time variability. Our results show that these factors should be managed differently 

depending on the cost and service orientation of a firm. A cost-centric firm should target 

higher arrival load, single rather than multiple shorter sessions, and front-loaded arrival 

pattern for greater efficiency. In contrast, a service-centric firm should strive for lower arrival 

load, multiple short sessions, and even arrival pattern to keep customer waiting times in 

check. While it is a common belief that a firm can choose either cost or service, but not both, 

pooling servers together for a common queue improves both the cost and service performance 

of a firm. Reducing the variability of the inter-arrival times and service times is another 
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option to improve both cost and service performance simultaneously. 

The rest of the paper is organized as follows: Section 2 describes the simulation model and 

the experimental design. Section 3 presents the performance measures used in the study, 

followed by Section 4 which discusses the results on the robustness of M/M/C models and the 

impact of each experimental factor on the performance of queuing systems. Section 5 discusses 

the managerial implications, and Section 6 ends with the conclusions. 

 

2. SIMULATION MODEL AND EXPERIMENTAL DESIGN 

A simulation model of a service system with a single queue is built using the simulation 

software ARENA (Kelton et al. 2010). In total, six factors are examined for their impact on 

system performance. These include: (1) number of servers, (2) arrival load, (3) session length, 

(4) arrival pattern, (5) arrival time variability, and (6) service time variability. 

 

2.1 Number of Servers (NS) 

In order to assess the impact of number of servers on the estimation accuracy of M/M/C 

models, this factor is examined at two levels, with one and four servers. As a result, the 

potential benefit of pooling servers together for a common queue can be investigated. 

 

2.2 Arrival Load (AL) 

The arrival load is examined at three levels by adjusting the mean customer arrival rate to 

achieve a mean load of 65, 80 and 95% of the total servers’ capacity. In systems where 

congestion is costly, the arrival load may be kept low deliberately by limiting the customer 

arrivals or by expanding the service capacity. 

 

2.3 Session Length (SL) 

While most queuing systems start and end a session with no customers in the system, some 

may operate continuously. For example, an emergency department of a hospital operates 24 

hours a day, whereas an outpatient clinic normally operates about 8 hours per day. Within a 

day, the same clinic may also choose to close for lunch and change the 8-hour session into 

two 4-hour sessions. Three different session lengths are investigated, representing 4, 8 and 24 
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hours of operations. In systems that operate 4 or 8 hours, late arrivals after the scheduled 

session end are denied entry into the system. The system, however, continues to operate 

beyond the scheduled session end and closes only after the last customer in the system is 

served. 

  

2.4 Arrival Pattern (AP) 

Three arrival patterns, namely, stationary, front-loaded and back-loaded, are explored. 

Front-loaded pattern is a common sight in post offices and banks where customers rush in 

during the early opening hours. Back-loaded arrival pattern can also be observed where shop-

pers rush in to buy groceries after their workday. Arrival pattern is not totally uncontrollable 

by the management. Some organizations, for example, may intentionally publish the expected 

waiting times for different periods of their operations to elicit a more even and stationary 

arrival pattern. Others may offer various incentives or differential pricing to achieve their 

desired arrival patterns. While there are many possible arrival patterns, the purpose of this 

study is to examine the effect of ignoring a varying, i.e. non-stationary, arrival pattern when it 

is present. The exact form of the non-stationary arrival pattern is thus of less importance. The 

mean arrival rate pattern is modeled with a stationary rate (µ) and with peaks occurring at 

either the front (F) or back (B) of the session. Figure 1 illustrates the three arrival patterns for 

a single server working on a session length of 8 hours and an arrival load of 80%.  
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Front-loaded Mean Arrival Rate 
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Back-loaded Mean Arrival Rate 
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Figure 1. Arrival Patterns for a Single-Server, 8-Hour Session Length and 80% Arrival Load 

 

2.5 Arrival Time Variability (AT) 

Variability of the arrival times between customers is expected to affect the performance of 

a queuing system. A system that faces highly variable inter-arrival times is more likely to 

experience sporadic congestion and idleness. To examine the effect of this factor, a uniform 

distribution with a coefficient of variation of 0.4 and an exponential distribution with a 

coefficient of variation of 1.0 are used to generate the arrival times between customers. It 

should be noted that the actual probability density functions used is not important as the 

variability of arrival times can be characterized fairly accurately by the coefficient of variation. 

Ho & Lau (1992), for instance, found that system performance is affected primarily by the 

mean and coefficient of variation but not by the skewness, kurtosis and other shape parameters 
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of the probability density function. 

  

2.6 Service Time Variability (ST) 

The mean service rate of each server is fixed at 6 customers per hour by generating the 

service time for each customer from a probability density function with a mean of 10 

minutes. The variability of service times is modeled at two levels. A lognormal distribution 

with a coefficient of variation of 0.4 is used to represent a less variable service time that is 

common in practice, while an exponential distribution is used to represent a highly variable 

service time with a coefficient of variation of 1.0 assumed by the M/M/C models. It is again 

noted the variability of service times can be represented fairly accurately by the coefficient of 

variation since the other shape parameters have minimal impact on the system performance 

(Ho & Lau 1992). 

Table 1 summarizes the factors and factor-levels examined in this paper. A total of 216 

factor combinations are examined in the simulation experiments (i.e., 2 NS×3 AL×3 SL×3 

AP×2 AT×2 ST). The “base case” is represented by factor combinations with session length 

of 24 hours, stationary arrival pattern, and coefficient of variation of arrival and service times 

of 1.0, which correspond to the assumptions of M/M/C models. For each factor combination, 

the simulation model is run to produce 20 observations of 2000 sessions each. Five perfor-

mance measures are collected as described in Section 3. 

 

Table 1. Experimental Design 

 

3. PERFORMANCE MEAURES  

Five performance measures are collected to examine the effects of the experimental fac-

tors. The measures include the mean number in queue (NIQ), probability of no waiting on 

Factors Levels 
Number of Servers (NS) 1 & 4 
Arrival Load (AL) 65%, 80% & 95% 
Session Length (SL) 4, 8 & 24 hours 
Arrival Pattern (AP) Stationary, Front-loaded & Back-loaded 
Arrival Time (AT) 0.4 & 1.0 
Service Time (ST) 0.4 & 1.0 
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arrival (PNW), mean session overtime (SOT), mean overtime per customer served (COT), 

and mean server utilization (SUT). 

The mean number in queue (NIQ) measures the mean queue length that a customer will 

encounter on arrival. Waiting time is one of the more important factors affecting customer 

satisfaction (Karaca et al. 2011). A long queue length will increase not only the actual but 

also the perceived waiting time of customers. The probability of no waiting on arrival (PNW) 

measures the probability of a customer being able to enter service immediately on arrival, i.e. 

when there is at least one idle server in the system. A high probability of no waiting is an 

indication of fast service but low server utilization. 

The mean session overtime (SOT) is the extra time needed beyond the official session 

length to serve all customers in system. All customers who arrive during the official session 

length are allowed entry into the system, and the session ends only after the last customer is 

served. SOT is a measure of the extra time, i.e. overtime, to keep the system open to serve all 

customers admitted into the system. The mean overtime per customer served (COT) measures 

the overtime cost incurred per customer, and it is computed by dividing the total servers’ 

overtime by the number of customers served per session. When the session length is fixed at 

24 hours, SOT and COT are always zero as system operates continuously. 

The mean server utilization (SUT) measures the percentage of the time that servers are 

busy from the beginning to the end of each session. SUT is a measure of cost efficiency, i.e. 

the proportion of the servers’ capacity used productively to serve customers. 

 

4. RESULTS 

The results are presented in two parts. First, the accuracy and robustness of the M/M/C 

models in predicting the performance of queuing systems are examined when the assumptions 

supporting the models are violated. Second, the performance of the queuing systems is exa-

mined under changing factor levels to understand the impact of each factor on system perfor-

mance. 

 

4.1 Robustness of M/M/C Models 

The M/M/C models provide easy-to-use formulae to compute the mean number in queue 

and probability of no waiting in queuing systems. These formulae can be found in standard 
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texts (Hillier & Hillier 2002; Hillier & Lieberman 2004); and their accuracy is assessed by 

computing (1) the percentage estimation error of the mean number in queue (ENIQ) and (2) 

the percentage estimation error of the probability of no waiting (EPNW) for various scenarios. 

Table 2 and Table 3 tabulate the results for ENIQ and EPNW, respectively. In both tables, the 

third column shows the percentage estimation errors for different number of servers and 

arrival loads when all assumptions of the M/M/C models are valid in the simulation (i.e. 24-hr 

session length, stationary arrival pattern and exponentially-distributed inter-arrival and 

service times with CV = 1). The percentage estimation errors for these “base cases” are 

expectedly close to zero, which validate the accuracy of the M/M/C and simulation models 

when all assumptions are valid. 

 

Table 2. Percentage Estimation Error of M/M/C models for Mean Number in Queue 

SL AP AT ST NS 
(C) AL M/M/C 

4-hr 8-hr FL BL CV = 0.4 CV = 0.4
1 65 -0.23 59.25 27.35 -33.48 -32.99 116.28 71.77 
1 80 -0.01 140.96 73.66 -35.86 -35.97 92.63 73.44 
1 95 -0.99 747.52 448.16 -16.45 -16.86 76.98 72.67 
4 65 -0.01 26.38 12.35 -59.85 -59.93 184.63 61.49 
4 80 0.53 54.74 25.51 -72.67 -72.79 115.95 67.45 
4 95 0.46 358.13 202.84 -56.00 -55.91 81.64 70.51 

Mean: -0.04 231.16 131.65 -45.55 -45.91 111.35 69.56 
 

Table 3. Percentage Estimation Error of M/M/C models for Mean Probability of No Waiting 

SL AP AT ST NS 
(C) AL M/M/C 

4-hr 8-hr FL BL CV = 0.4 CV = 0.4
1 65 -0.16 -16.89 -9.67 -0.04 0.14 -0.08 0.07 
1 80 0.03 -36.71 -25.98 0.24 0.26 0.01 -0.13 
1 95 0.12 -78.51 -71.75 0.39 0.37 0.15 1.39 
4 65 0.02 -5.48 -2.97 7.93 7.87 -11.41 -1.65 
4 80 -0.10 -17.27 -10.03 12.43 12.73 -13.50 -2.88 
4 95 0.35 -64.31 -54.10 12.86 12.96 -15.16 -3.54 

Mean: 0.04 -36.53 -29.08 5.64 5.72 -6.67 -1.12 
 

The remaining columns in the tables show the percentage estimation errors when one of 

the assumptions of the M/M/C models is violated at a time. Columns 4 and 5, for example, 
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show the percentage estimation errors when the session length is 4 and 8 hours, respectively, 

instead of 24 hours. Positive (or negative) errors indicate overestimation (or underestimation) 

of the performance measures.  

 

Some interesting patterns in the results are observed when one assumption is violated at a 

time. The main findings are summarized as follows: 

i. Overall, the percentage estimation errors are substantially larger for the mean number in 

queue (ENIQ), ranging from -45.91 to 231.16% on average (Table 2), compared to the 

probability of no waiting (EPNW) ranging from -36.53 to 5.72% (Table 3). For ENIQ, the 

SL, AT, ST and AP have the largest impact on the percentage estimation errors in the 

order as listed, whereas for EPNW, the order changes to SL, AT, AP and ST. 

ii. Session Length (SL): The shorter the SL, the higher the percentage estimation errors for 

both performance measures. Relatively larger positive errors (i.e. overestimation) of 

ENIQ are observed in Table 2, compared to smaller but still sizable negative errors (i.e. 

underestimation) of EPNW in Table 3. A queuing system starts empty when its operation 

is not continuous. Consequently, it is not surprising that M/M/C models overestimate the 

number in queue and underestimate the probability of no waiting. The impact of shorter 

SL on higher estimation errors is further exacerbated by smaller number of servers and/or 

higher arrival loads. As a result, the highest percentage estimation errors occur for the 

extreme case with SL = 4, NS = 1 and AL = 95% (e.g. 747.52% and -78.51% for ENIQ 

and EPNW, respectively). 

iii. Arrival Pattern (AP): The percentage estimation errors of front-loaded and back-loaded 

arrival pattern on the mean number in queue, ENIQ (and probability of no waiting, EPNW) 

are practically equal, since the effect of a peak arrival occurring at the beginning or end of 

session on the mean performance measure is the same when session length is fixed as 24 

hours, i.e. continuous. An underestimation of ENIQ occurs when the arrival pattern is 

non-stationary and the magnitudes are smaller at both extremes of arrival loads with 65 

and 95% (See Table 2). This is intuitive, as ignoring the presence of non-stationary arrival 

pattern is relatively less important when the system is relatively idle (or very busy) which 

occurs at low (or very high) arrival load. On the other hand, overestimation is observed for 
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the effect of non-stationary arrival pattern on EPNW. The estimation error is negligible 

with one server, but increases as both the number of servers and arrival load increase (See 

Table 3). This result is not surprising given that in a single-server system, the probability 

of no waiting depends largely on the probability of the single server being free, i.e. the 

mean server’s utilization. In contrast, in a multiple-server system, a new customer has to 

wait only if all servers are busy; and the probability of one to all servers being busy is a 

more complex function of the mean server utilization, arrival pattern, arrival time 

variability, and service time variability. Therefore, ignoring the arrival time variability, 

service time variability and non-stationary arrival pattern when there are multiple servers 

introduces larger percentage estimation errors of EPNW. For both ENIQ and ENPN, the 

percentage estimation errors increase as the number of servers (NS) increase from one to 

four servers. 

iv. Arrival Time (AT): When the arrival times between customers are less variable with a 

coefficient of variation of 0.4, the M/M/C models overestimate the mean queue length. 

The percentage estimation errors in ENIQ decrease as AL increases and/or NS decreases 

(See Table 2). This suggests that the arrival time variability has less impact on the mean 

number in queue in single-server systems when the arrival load is high. With regards to 

EPNW, the errors are negligible when NS = 1, but increase significantly for the multiple-

server system simulated with NS = 4, especially when the arrival loads are also higher 

(See Table 3). 

v. Service Time (ST): When service time variability is reduced to CV = 0.4, there is substantial 

overestimation for ENIQ, whereas the impact is almost negligible for EPNW. Unlike the 

other factors, the impact of ST is rather robust to changes in NS and/or AL with similar 

percentage estimation errors (around 60-70% for ENIQ; 0-4% for EPNW in Table 2 & 

Table 3). Overall, it is safer to use M/M/C models to estimate the probability of no 

waiting for single-server systems when only one of the assumptions related to arrivals 

(i.e. AL or AT) or service times (ST) is violated. 

 

While it is interesting to outline the causes and reasons for the estimation errors, most of 

the percentage estimation errors of the M/M/C models in Table 2 and Table 3 are sizable, 
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even though only one assumption is violated at a time. Computer simulation is thus a more 

reliable and accurate tool to estimate the performance of queuing systems when one or more 

assumptions supporting the M/M/C models are violated. 

 

4.2 Impact of Operating Factors on Queue Performance 

Each of the six factors, namely the number of servers, arrival load, session length, arrival 

pattern, arrival time variability, and service time variability is examined for its impact on the 

five performance measures (See Section 3). In order to identify potential interactions among 

these factors, analysis of variances (ANOVA) is conducted on each performance measure.  

 

Table 4. Main Effects of the Six Operating Factors 

Number of Servers, NS NIQ PNW (%) SOT (min) COT (min) SUT (%)
1 2.846 25.11 17.81 0.6304 75.88 
4 5.246 45.38 15.71 0.5738 76.37 
      

Arrival Load, AL NIQ PNW (%) SOT (min) COT (min) SUT (%)
65 0.649 52.89 8.916 0.4232 63.32 
80 2.363 35.09 14.81 0.5595 76.66 
95 9.127 17.75 26.58 0.8238 88.40 

      
Session Length, SL NIQ PNW (%) SOT (min) COT (min) SUT (%)

4 1.542 39.49 22.11 1.1095 73.03 
8 2.498 36.41 28.19 0.6970 75.39 

24 8.098 29.82 0.000 0.0000 79.96 
      

Arrival Pattern, AP NIQ PNW (%) SOT (min) COT (min) SUT (%)
Stationary 2.244 35.91 14.27 0.5241 76.60 

Front-loaded 5.282 31.78 9.534 0.3554 77.61 
Back-loaded 4.613 38.04 26.50 0.9269 74.18 

      
Arrival Time, AT NIQ PNW (%) SOT (min) COT (min) SUT (%)

CV = 0.4 3.270 36.04 14.63 0.5243 76.72 
CV = 1.0 4.822 34.45 18.91 0.6800 75.54 

      
Service Time, ST NIQ PNW (%) SOT (min) COT (min) SUT (%)

CV = 0.4 3.448 34.85 13.21 0.4687 76.94 
CV = 1.0 4.644 35.64 20.32 0.7356 75.31 
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The results show that all main effects and many higher-order interactions are statistically 

significant at 1%. The interactions are examined and found to affect only the relative perfor-

mance but not the rankings of the factor-levels. In other words, for each performance mea-

sure, the same factor-level performs the best across all interactions. It is therefore sufficient to 

present only the main effects in Table 4 since the interactions do not affect the choice of the 

best factor-level. 

As shown in Table 4, a 4-server system always performs better than a single-server system 

with higher probability of no waiting, higher server utilization, lower session overtime and 

lower overtime per customer served. While a 4-server system has 1.84 times (i.e. 5.246/ 

2.846) the mean number in queue of a 1-server system, the mean waiting time in queue of the 

4-server system is only 0.46 times that of the 1-server system using Little’s Law. Pooling 

servers together for a common queue is thus preferred for both cost- and service-centric firms 

with no trade-offs. 

As the arrival load increases, the number in queue, session overtime, and overtime per 

customer served increase, whereas the probability of no waiting decreases significantly. In 

other words, both customer service and overtime cost will deteriorate when the arrival load 

increases. However, on a more positive note, the mean server utilization increases as the 

arrival load increases. Consequently, a service-centric firm should favor a lower arrival load 

while a cost-centric firm should favor a higher arrival load, i.e. higher server utilization as 

long as the overtime premium is not excessive.  

As the session length increases from 4 to 8 hours, the number in queue increases and the 

probability of no waiting decreases, while the overtime per customer served decreases and the 

server utilization increases. Overall, the results show that customer service deteriorates while 

cost efficiency improves with session length (assuming that the fixed cost per unit time to 

keep system open during the session overtime is not excessive). Service-centric firms should 

therefore favor multiple short sessions while cost-centric firms should favor a single long 

session. 

The front-loaded arrival pattern produces the lowest session overtime, lowest overtime per 

customer served, and highest server utilization. Therefore, it is a good choice for cost-centric 

firms, even though it produces the largest number in queue and lowest probability of no 
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waiting. Table 4 also shows that the stationary arrival pattern produces the smallest number 

in queue, but a slightly lower probability of no waiting compared to the back-loaded arrival 

pattern. Although it does not dominate the back-loaded pattern on both measures of customer 

service (i.e. with the smallest number in queue but a slightly smaller probability of no wai-

ting), the stationary arrival pattern is preferred due to its significantly lower session overtime, 

lower overtime per customer served, and higher server utilization. Promoting a stationary and 

less variable arrival pattern is a good strategy for service-centric firms. 

The last two factors-variability of the arrival times and service times have smaller impact 

on the performance measures relative to the other factors. Table 4 shows that the performance 

measures, especially PNW and SUT, change only marginally at different levels of these two 

factors. Specifically, reducing the variability of the arrival times and service times exhibits a 

small, but positive, impact on the number in queue, session overtime, and overtime per cus-

tomer served. Both cost- and service-centric firms are thus encouraged to reduce variability 

of the arrival and service times. 

 

5. Managerial Implications 

A service firm can choose to adopt a cost-, service-, or value-centric proposition. Gene-

rally, cost-centric firms will seek to achieve higher server utilization as well as lower session 

overtime and overtime per customer served; whereas service-centric firms will seek better 

customer service with lower queue length and higher probability of no waiting. Measures that 

these firms can adopt are as follows: 

i. Expanding the scale of operations: With multiple servers serving a larger pool of customers, 

firms can achieve higher cost efficiency through increased server utilization and decreased 

session overtime and overtime per customer served. In particular, if demand is price-elastic, 

a virtuous cycle can be generated if the firms share the cost savings with their customers 

to stimulate higher demand resulting in the installation of multiple-server systems to reap 

the cost and service benefits of resource pooling.  

ii. Increasing session length: A longer session length increases the session overtime, but 

decreases the mean overtime per customer served and increases the overall server utilization. 

Consequently, unless the overtime premium in keeping a system open is high, reducing 
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the mean overtime per customer served and increasing the mean server utilization are 

more beneficial in curbing the total operating cost. Hence, it is preferable for cost-centric 

firms to run a single long session than multiple short sessions of equivalent total length. 

While a long session length offers customers greater access to service, it also increases 

the mean queue length and reduces the probability of no waiting. To offer customers good 

access and better queuing experience, service-centric firms can thus consider offering 

multiple short sessions with a total length equivalent to a single long session. 

iii. Scheduling arrivals: Cost-centric firms may foster a front-loaded arrival pattern by intro-

ducing incentives such as early bird discounts to reduce the chance and magnitude of 

overtime. Similarly, service-centric firms may also introduce tailored reward and penalty 

schemes to solicit a more even arrival pattern. Firms may also try to control the arrival 

patterns and variability of inter-arrival times between customers by scheduling appoint-

ments. The results attainable will, however, depend on whether the firms have complete 

or partial control over the arrivals. Implementing an appointment system that mandates 

customers to adhere strictly to the schedule is useful in establishing the desired arrival 

patterns and less variable inter-arrival times. 

iv. Standardizing service: Standardization of service represents another means for firms to 

achieve less variable service times, which shortens the session overtime and overtime per 

customer served. Standardization of service can be achieved by establishing a set of 

standard protocols and procedures for serving customers. It can also be achieved by 

segregating customers into similar groups for standardized processing. 

 

Table 5. Strategic Choices for Cost-Centric and Service-Centric Firms 

Factor Cost Strategy Service Strategy 
Number of servers • Multiple servers • Multiple servers 
Arrival Load • High • Low 
Session Length • Single, long • Multiple, short 
Arrival Pattern • Front-Loaded • Stationary 
Arrival Time • Less variability • Less variability 
Service Time • Less variability • Less variability 

 

In summary, Table 5 summarizes the strategic directions of cost-centric and service-centric 
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firms. Between the two extremes, a value-centric firm can seek to find a balance within the 

continuum of cost versus service. A trade-off has to be made between high and low arrival 

load. In addition, a value-centric firm has to weigh the cost and benefits of having a single 

versus multiple shorter sessions. A front-loaded arrival pattern may help to reduce cost, but 

hurt customer service relative to a more even, stationary arrival pattern. Unambiguously, less 

variable inter-arrival and service times are beneficial in reducing cost and enhancing service 

to customers. Pooling single-server systems into a single multiple-server system also helps to 

improve both cost and service performance. 

 

6. CONCLUSIONS 

This paper seeks to examine the robustness of M/M/C models and the influence of various 

factors on the performance of single queue systems with one or multiple servers. To accom-

plish these objectives, this study examines the mean number in queue, probability of no 

waiting on arrival, mean overtime per session, mean overtime per customer served and mean 

server utilization of various simulated queuing systems, and provides results on the percent-

tage errors in estimating the mean queue length and mean probability of no waiting by the 

M/M/C models when the assumptions supporting the analytical models are violated. Our 

results show that session length, inter-arrival time variability, service time variability and 

arrival pattern have the largest impact on the estimation errors of the mean queue length in 

the order as listed. The sequence changes to session length, inter-arrival time variability, 

arrival pattern, and service time variability for the estimation errors of the probability of no 

waiting. 

One of the main objectives of this paper is to test the robustness of the M/M/C models via 

simulation when the assumptions supporting the analytical models are violated. The com-

parison is conducted on the percentage errors in estimating the mean number in queue (NIQ) 

and probability of no waiting (PNW). The results reveal that the session length (SL) and 

inter-arrival time variability (AT) have the largest impacts on the estimation errors of both 

measures, as listed in order of significance. This means that any violation in the assumptions 

of these two factors indicates a serious caution on the accuracy of M/M/C models. The 

highest errors are observed for shorter session lengths combined with higher arrival load and 
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lower number of servers (i.e. single-server systems). The inter-arrival time variability is the 

second most critical factor in terms of accuracy and robustness of these analytical models, 

such that it results in very high estimation errors of NIQ, especially when the number of 

servers increases and/or the arrival load decreases.  

Although violations of the other two factors, namely service time variability (ST) and 

arrival pattern (AP), also result in significant errors for NIQ, the M/M/C models are more 

robust in estimating the PNW. In fact, the M/M/C models may be used for estimating the 

PNW in single-server systems with very high accuracy of greater than 99%, when only one of 

the assumptions-related to the arrival time variability, arrival pattern or service time variability 

-is violated at a time.  

This study further investigates the impact of various key operating factors on the performance 

of single queue systems based on their cost-efficiency (i.e. mean overtime per session, mean 

overtime per customer served, and mean server utilization) as well as customer-service measures 

(i.e. mean number in queue and probability of no waiting). The six operating factors include 

the number of servers, arrival load, session length, arrival pattern, arrival time variability, and 

service time variability. The results suggest that cost-centric firms should encourage a front-

loaded arrival pattern and operate a single long session with heavy load; whereas service-

centric firms should undertake measures to elicit a more stationary arrival pattern and operate 

multiple, short sessions with lighter load. Meanwhile, value-centric firms need to weigh the 

cost and service trade-offs arising from arrival load, session length and arrival pattern. Regar-

dless of the strategy pursuits of a firm, pooling multiple servers into a single queue system 

and reducing the variability of inter-arrival and service times are always desirable, resulting in 

shorter mean queue length, higher server utilization and lower overtime. 
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