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To improve existing online portfolio selection strategies in the case of non-zero transaction costs,
we propose a novel framework named Transaction Cost Optimization (TCO). The TCO framework
incorporates the L1 norm of the difference between two consecutive allocations together with the
principle of maximizing expected log return.We further solve the formulation via convex optimization,
and obtain two closed-form portfolio update formulas, which follow the same principle as Proportional
Portfolio Rebalancing (PPR) in industry. We empirically evaluate the proposed framework using four
commonly used data-sets. Although these data-sets do not consider delisted firms and are thus subject
to survival bias, empirical evaluations show that the proposed TCO framework may effectively handle
reasonable transaction costs and improve existing strategies in the case of non-zero transaction costs.

Keywords: Portfolio optimization; Transaction costs; Learning in financial models; Investment
strategy

JEL Classification: C4, C5, C44, C51, G1, G11

1. Introduction

We propose a novel online portfolio selection (OLPS) frame-
work, named Transaction Cost Optimization (TCO), so as to
improve existing strategies with non-zero proportional trans-
action costs. The framework can be applied to most existing
OLPS algorithms. Inspired by our preliminary analysis, the
proposed TCO appends a L1 regularization to the traditional
objective function of maximizing portfolio’s expected log re-
turn (Kelly 1956, Li and Hoi 2014). Solving the TCO’s opti-
mization problem, we can obtain two closed-form portfolio
update formulas and derive two specific algorithms named
‘TCO1’ and ‘TCO2’, which follow state of the art mean re-
version predictions (Li et al. 2012, 2015). Extensive empirical
experiments on data-sets‖ show that the derived algorithms
are effective in boosting performance in the environment of
non-zero proportional transaction costs.

The first key motivation of this study is to improve the
out-of-sample performance of existing algorithms when the
transaction costs are non-zero. It it widely documented that
in frictionless backtesting environments (Huang et al. 2013,

∗Corresponding authors. Email: binli.whu@whu.edu.cn; (Bin Li);
chhoi@smu.edu.sg (Steven Hoi)
‖To better compare with existing strategies, we employ widely used
data-sets, which may be subject to the survival bias.

Li et al. 2015), existing OLPS strategies achieved significant
success, which seem to beat the best human investors on this
planet. On the other hand, as a routine in the backtests, they
often simulated their algorithms in an environment of non-zero
(proportional) transaction costs, in which the performance de-
grade exponentially with increasing rates. One crucial problem
is that almost no existing algorithm has ever considered the
transaction costs issue in their decision-making process, and
thus suffers a lot in tests with non-zero costs. The second key
motivation is that the market imposed transaction costs are
directly related to the L1 norm of the difference between two
consecutive allocations. Thus, besides the traditional objective
of maximizing a portfolio’s expected log return, we add a
second term that minimizes the L1 norm of difference between
two consecutive allocations, which is equivalent to minimizing
the incurred transaction costs.

In summary, our main contributions are fourfold. First, we
formulate the problem of online portfolio selection with pro-
portional transaction costs and analyse the cause of transaction
costs. Second, we propose a novel framework to handle pro-
portional transaction costs, and derive closed-form solutions.

© 2017 Informa UK Limited, trading as Taylor & Francis Group
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2 B. Li et al.

Based on the solutions, we design two specific algorithms
following mean reversion prediction schema. Note that the
mathematics behind the solutions is not new, however, we
are the first to leverage the mathematical method for online
portfolio selection with non-zero transaction costs. Different
from other papers on online portfolio selection, our paper uses
the new mathematical method and proposes a novel algorith-
mic framework to deal with transaction costs. Our paper also
differs from other papers on their underlying mathematics,
including both formulations and algorithms. Finally, empirical
evaluations show that the derived algorithms can significantly
improve the performance when non-trivial transaction costs
exist.

The rest of this paper is organized as follows. Section 2
mathematically formulates the research problem, and section
3 reviews and analyses related work. Section 4 analyses the
cause of transaction costs, presents the proposed framework,
and derives two specific mean reversion based algorithms.
Their effectiveness is validated by extensive empirical studies
on real stock markets in section 5. Section 6 summarizes the
paper and provides future directions.

2. Preliminaries

2.1. Problem setting

In the problem of online portfolio selection, a portfolio man-
ager sequentially (re)distributes his/her capital such that the
portfolio’s allocation can capture the assets’volatility and max-
imize his/her terminal capital in the long run. In particular, at
the beginning of every period, the manager decides an allo-
cation based on his expectation of the assets’ changes in the
coming period. He/She then rebalances from current allocation
to the decided new allocation. After the rebalance, the port-
folio’s capital will increase or decrease following the market
fluctuations till the end of the period. Note that the allocation on
the assets also changes dynamically, as outperforming assets’
capital will increase and underperforming assets’ capital will
decrease. At the beginning of next period, the above procedure
repeats. Existing research (Li and Hoi 2014) often assumes that
the portfolio rebalance is frictionless and incurs no transaction
costs. However, during the rebalance, the market does enforce
transaction costs, such as the commission fee paid to brokers,
the taxes paid to governments, etc. In the following, we try
to mathematically formulate the research problem (Bauer and
Kohavi 1999, Albeverio et al. 2001, Györfi and Vajda 2008).

We start by introducing some basic terms. Consider a market
with m assets to be invested for n periods. Their price changes
for period t are represented by a price relative vector, i.e.
xt ∈ R

m+. The element xt,i denotes the ratio of change to an
investment in asset i for period t . For example, xt,i = 1.1
means investing in the asset will increase the initial capital
by a factor of 1.1, or equivalently an increment of 10%. Note
that the element xt,i is defined as xt,i = pt,i

pt−1,i
, where pt,i

denotes the closing price at the end of the t th trading day.
Investing in an asset for the t th trading day means buying the
asset at the end of day t − 1 and hold till the end of day t .
The allocation over the market (or portfolio) is specified by
a portfolio vector, denoted as b = (b1, . . . , bm), where bi

represents the proportion of capital invested in the i th asset.
Typically, we assume the portfolio is self-financed and no
margin/shorting is allowed, and then b ∈ �m , where �m ={
b : b ∈ R

m+,
∑m

i=1 bi = 1
}
. A portfolio selection strategy is a

sequence of mappings,

bt : R
(t−1)×m
+ →�m, t = 2, 3, . . . ,

where bt = bt (x1, . . . , xt−1) denotes the portfolio used for
period t . Note that as no initial information exists, the portfolio
generally starts with uniform portfolio, i.e. b1 =

(
1
m , . . . , 1

m

)
.

At the beginning of period t , a manager (or algorithm here)
decides a new portfolio of bt and rebalances from current
allocation of b̂t−1 to the new allocation bt . Note that as the cur-
rent allocation of b̂t−1 is different from bt−1, where b̂t−1,i =
bt−1,i xt−1,i
bt−1·xt−1

, i = 1, . . . , m. Let γs and γb be the transaction costs
rates to be charged during sales and purchases, respectively,
and wt−1 be the net proportion after transaction costs imposed
by the markets. The sale occurs when the proportion before
rebalancing is greater than the proportion after rebalancing,
i.e. b̂t−1,i − bt,iwt−1 > 0, while the purchase occurs when
bt,iwt−1 − b̂t−1,i > 0. Clearly, following the common fact
that net proportion after transaction costs and transaction costs
always sum to 1, we have

1 = wt−1︸ ︷︷ ︸
net proportion

+ γs
∑m

i=1

(
b̂t−1,i − bt,i wt−1

)+ + γb
∑m

i=1

(
bt,i wt−1 − b̂t−1,i

)+
︸ ︷︷ ︸

transaction costs incurred in sales and purchases

.

(1)

Following the conventions (Bauer and Kohavi 1999,Albeverio
et al. 2001, Györfi and Vajda 2008), we assume γs = γb = γ ∈
[0, 1]†, and rewrite the equation as,

1 = wt−1 + γ

∥∥∥b̂t−1 − btwt−1

∥∥∥
1
. (2)

We thus treat the net proportion after transaction costs incurred
as a function of two consecutive portfolios and last price rela-
tive vector, i.e. wt−1 = w (bt , bt−1, xt−1). Note that wt−1 can
be efficiently solved via any optimization toolbox.

Thus, after rebalancing, the remaining capital becomes
St−1×wt−1, where St−1 denotes the capital at the end of period
t −1. During the period, the allocation of bt changes the capital
by a factor of b�

t xt = ∑m
i=1 bt,i xt,i . In sum, for period t , the

portfolio’s capital changes from St−1 to St−1 ×wt−1 ×(
b�

t xt
)
.

As we re-invest, the capital changes multiplicatively, i.e. the
portfolio wealth at the end of period n can be expressed as,

Sw(·)
n = S0

n∏
t=1

[(bt · xt ) × w (bt , bt−1, xt−1)] , (3)

where S0 is usually set to 1 for convenience. Besides the typ-
ical cumulative wealth, traders also interest in the change of
portfolio weights, i.e. the average turnover over the period,

ATn = 1

2n

n∑
t=1

∥∥∥b̂t−1 − btwt−1

∥∥∥
1

= 1

2n

n∑
t=1

1 − wt−1

γ
.

As a summary, protocol 1 outlines the problem formulation,
and also backtests any proposed OLPS algorithm, which is
abbreviated to ALG in the protocol.

†Note that this assumption may be released without considering the
following derivations.
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Transaction cost optimization for online portfolio selection 3

Protocol 1: Online Portfolio Selection with Transaction
Costs.

Input: ALG: An OLPS algorithm; {x1, . . . , xn}: Sequence of price
relative vectors.

Output: Sn : Final cumulative wealth.
1 begin

2 Initialize variables: b1 =
(

1
m , . . . , 1

m

)
, b̂0 = (0, . . . , 0), S0 = 1;

3 for t = 1, . . . , n do
4 Calculate next portfolio: bt = ALG (·);
5 Rebalance the portfolio from b̂t−1 to bt ;
6 begin
7 Solve the net proportion of wealth after transaction costs:

1 = wt−1 + γ ‖b̂t−1 − bt wt−1‖1

8 Update the wealth after transaction costs:
S′ = St−1 × wt−1;

9 end
10 Receive market price relatives: xt = (

xt,1, . . . , xt,m
)
;

11 Update the cumulative return: St = S′ ×
(

b�
t xt

)
;

12 Record current allocation b̂t : b̂t,i = bt,i ×xt,i
bt ·xt

, i = 1, . . . , m;

13 end
14 end

2.2. Discussions

In the above model, we follow the conventions and make
several general assumptions. Firstly, we assume proportional
transaction costs on both purchases and sales. Note that in the
research of OLPS (Li and Hoi 2014), one common assumption
is zero transaction cost. It is widely known that the transaction
costs include various components, such as commissions, bid-
ask spread and market impact. However, the bid/ask spread and
market impact are related to the security’s market microstruc-
ture (Grinold and Kahn 1999), which is beyond the scope of this
study. We therefore consider one typical scenario in practice†
and research (Bauer and Kohavi 1999, Albeverio et al. 2001,
Györfi and Vajda 2008), or the proportional transaction costs.
Note that other types of fee structure are also adopted by certain
brokers.‡ Moreover, in some markets, transaction costs may be
related to stocks, i.e. different stocks may have different rates
of transaction costs. For example, the brokers may charge more
fees on small and illiquid stocks, and charge less on large and
liquid stocks. In this way, our model may incorrectly estimate
transaction costs, leading to biased portfolio allocation. Finally,
to simplify the research, we also equalize the rates of purchases
and sales, which is also widely adopted by related research
(Bauer and Kohavi 1999, Albeverio et al. 2001, Györfi and
Vajda 2008). Note that adopting different rates of purchases and
sales are straightforward for our backtest model, i.e. we could
directly obtain the net proportion after transaction costs using
equation (1) rather than equation (2). Secondly, we assume
each asset is arbitrarily divisible, and one can buy and sell
required quantities at the last closing price of any given trading
period. Thirdly, we assume market behaviour is not affected
by any trading strategy.

Note that the above three assumptions are widely used in
finance (Cover 1991, Helmbold et al. 1998, Borodin et al.

†For example, Interactive Broker (www.interactivebrokers.com)
charges a fixed set percentage of trade value.
‡For example, Interactive Brokers also charges a fixed commission
per share, which is not proportional.

2004, DeMiguel et al. 2009, 2014, Tu and Zhou 2011, Li
et al. 2012, 2015, Shen et al. 2015, Shen and Wang 2016,
2017) and their implications have been thoroughly discussed
(e.g. see Borodin et al. 2004, Li et al. 2012). In the empirical
evaluations, we will follow these assumptions and compare
the proposed algorithms with existing algorithms. Bearing in
mind that we have made these assumptions throughout this
article, even though we can further release them. However,
unless we field-test the algorithms in real markets, it is almost
impossible to model and implement following the full real
market conditions.

2.3. Analysis of transaction costs

Now we decompose the protocol and analyse the sources re-
lated to transaction costs. It is worth special attention that the
allocation decision is made by a portfolio manager (or ALG
in the protocol 1), but transaction costs are imposed by finan-
cial markets. In particular, one iteration of (portfolio) trading
process can be decomposed into two separate components. The
first component is to decide a portfolio for next period, which
is shown in Line 4 of the protocol. The second component is
to rebalance the portfolio in the markets, during which market
imposes transaction costs, as shown in Line 7 and 8. In the
above model, the second component is noncontrollable, while
the first is adjustable. Thus, to control (or reduce) the transac-
tion costs imposed by the market,§ the only way is to choose
efficient portfolios that are expected to incur less transaction
costs.

3. Related work

Machine learning techniques have been widely used in quanti-
tative finance (Fabozzi et al. 2007, Creamer and Freund 2010),
including online portfolio selection (Cover 1991, Helmbold
et al. 1998, Albeverio et al. 2001, Agarwal et al. 2006, Györfi
et al. 2006, Tsagaris et al. 2012, Li et al. 2012, 2015).Although
diverse in formulations, these algorithms’ main underlying
idea is to implicitly or explicitly estimate the distribution of
next price relatives (vector), and then maximize the portfolio’s
expected log return based on the distribution (Kelly 1956,
Thorp 1971, Laureti et al. 2010, Maclean et al. 2010),

bt+1 = arg max
b∈�m

E [log (b · x̃)] , (4)

where x̃ denotes the estimated price relative vector. Table 1
summarizes most existing OLPS formulations via the above
framework. Some other algorithms also have close connection
with the framework but cannot be summarized here, including
Universal Portfolios (UP) (Cover 1991), and AntiCorrelation
(Anticor) (Borodin et al. 2004), etc. For a complete survey of
the online portfolio selection algorithms, please refer to Li and
Hoi (2014).

On the one hand, these algorithms are successful either
theoretically (Cover 1991, Helmbold et al. 1998,

§In imperfect markets, optimized execution (Nevmyvaka et al. 2006)
can slice large orders into small one so as to limit the impact of large
orders, and thus reducing (implicit) transaction costs.
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4 B. Li et al.

Table 1. A summary of existing algorithms based on the framework of equation (4). R(·) or R(·, ·) denotes the regularization term, and

C j
t , j = 1, 2, 3 denote the similarity sets obtained with different criteria in their respective studies. pi denotes the implicit probability of

prediction. Note that in some studies (e.g. EG, PAMR, CWMR and OLMAR), their probabilities of predicted price relative can be regarded
as 100%. In these cases, they are deterministic, without stochasticity.

Categories Methods Formulations (bt+1 = arg max
b∈�m

) Prediction (x̃i ) Prob. (pi )

In hindsight BCRP (Cover 1991)
∑n

i=1
1
n log b · xi xi , i = 1, . . . , n 1/n

EG (Helmbold et al. 1998) log b · xt − λR (b, bt ) xt 100%
Follow the Winner SCRP (Granger and Sin 2000)

∑t
i=1

1
t log b · xi xi , i = 1, . . . , t 1/t

ONS (Agarwal et al. 2006)
∑t

i=1
1
t log b · xi − λR (b) xi , i = 1, . . . , t 1/t

PAMR (Li et al. 2012) log b · 1
xt

− λR (b, bt ) 1/xt 100%

Follow the Loser CWMR (Li et al. 2013) Prob(b · 1
xt

) − λR (b) 1/xt 100%
OLMAR (Li et al. 2015) log(b · x̃t ) − λR (b) Equation (1) in the paper 100%

BK (Györfi et al. 2006) −∑
i∈C1

t

1∣∣C1
t

∣∣ log b · xi xi , i ∈ C1
t 1/

∣∣∣C1
t

∣∣∣
Pattern Matching BNN (Györfi et al. 2008) −∑

i∈C2
t

1∣∣C2
t

∣∣ log b · xi xi , i ∈ C2
t 1/

∣∣∣C2
t

∣∣∣
CORN (Li et al. 2011) −∑

i∈C3
t

1∣∣C3
t

∣∣ log b · xi xi , i ∈ C3
t 1/

∣∣∣C3
t

∣∣∣

Agarwal et al. 2006) or empirically (Györfi et al. 2006,
Li et al. 2012, 2015), but their formulations (or the decision-
making step) ignore the transaction costs issue, which all port-
folio managers have to pay in the next portfolio rebalance step.
Ignoring this unavoidable aspect in the decision-making step
will result in sub-optimal performance, as transaction costs in
real market are always non-zero. In particular, in case of zero
transaction costs, the decision-making component in equation
(4) and the portfolio rebalance component (equations (2) and
(3)) are consistent, i.e. γ = 0 results in wt−1 = 1. However,
in real market the transaction cost rate (λ) is non-zero, thus
the two components have discrepancies, resulting in inefficient
decisions or lower performance. On the other hand, these algo-
rithms’ performance degrades significantly in backtests when
the transaction costs are non-zero. Such decision inefficiency
and observed performance degradation motivate us to propose
a new framework for non-zero transaction costs scenarios.

To the best of our knowledge, only a few existing strategies
have been proposed to consider transaction costs for online
portfolio selection. The first extension is based on the BCRP
benchmark. Bauer and Kohavi (1999) proved that Cover’s
Universal Portfolios is still universal when the market imposes
proportional transaction costs. However, it does not take the
transaction costs into decision-making process, thus failing
to solve the transaction costs issue. Albeverio et al. (2001)
proposed a new strategy for online portfolio selection with
transaction costs. Its main idea is to maximize the expected
return and minimize the distance between consequent port-
folios. Similar to Helmbold et al. (1998), the authors em-
ployed relative entropy as the distance measure (Albeverio
et al. 2001, equation (3.4)). Closed-form solutions are ob-
tained by solving its optimization problem. The new strategy is
equipped with a new prediction method based on ‘cross rate’.
The algorithms empirically work well on the portfolios of pair
stocks. However, the strategy is constrained to work with a
pair of two stocks, and has not been extended to more than two

stocks. We thus will compare their portfolio generation part
with our proposed method in sections 4.2.1 and 4.3, and ignore
the comparison of their empirical performance.† Györfi and
Vajda (2008) directly incorporated equation (2) to the decision
formulas of the Pattern Matching-based approaches. Though
straightforward, the decision formulas is hard (or unable for
us) to solve by current techniques. Ormos and Urbán (2013)
empirically analysed the performance of the Pattern Matching-
based algorithms. Das et al. (2013) considered the transaction
costs issue for the GP algorithm (Helmbold et al. 1997), which
is an variant of the EG algorithm (Helmbold et al. 1998).
However, it considers the L1 norm of the difference between
two decision portfolios, which is conceptually different from
our proposed method in both formulations and algorithms, as
shown in sections 4.2.1 and 4.3.

4. Transaction costs optimization

4.1. Motivation

Although maximizing the expected log return (or/and risk)
is heavily investigated in literatures (Li and Hoi 2014), the
unavoidable transaction costs issue is seldomly discussed, es-
pecially on the mean reversion based online portfolio selection
algorithms (Borodin et al. 2004, Li et al. 2012, 2015). To
motivate our approach, we first analyse the net proportion
of wealth after transaction costs imposed by the market, i.e.
equation (2). Getting rid of wt−1 within the L1 norm, we can
bound wt−1 as in proposition 4.1, which shows the relationship
between wt−1 and

∥∥∥b̂t−1 − bt

∥∥∥
1
.

†We also checked the authors’ publications and found no clues on
how to extend the strategy. We may extend their strategy to more than
two stocks, but it is far beyond the scope of this article.
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Transaction cost optimization for online portfolio selection 5

Proposition 4.1 The net proportion of wealth after transac-
tion costs is bounded as

1 − γ

1 − γ + γ

∥∥∥b̂t−1 − bt

∥∥∥
1

≤ wt−1

≤ 1 + γ

1 + γ + γ

∥∥∥b̂t−1 − bt

∥∥∥
1

.

Proof. To get the lower and upper bounds for wt−1, we have to
get rid of wt−1 within the L1-norm. Firstly, utilizing the norm
inequality, we can get,

1 = wt−1 + γ ‖b̂t−1 − btwt−1‖1

= wt−1 + γ ‖wt−1b̂t−1 + (1 − wt−1) b̂t−1 − btwt−1‖1

≤ wt−1 + γwt−1‖b̂t−1 − bt‖1 + γ (1 − wt−1) ‖b̂t−1‖1

= wt−1 + γwt−1‖b̂t−1 − bt‖1 + γ (1 − wt−1) ,

and then the lower bound of wt−1 is,

wt−1 ≥ 1 − γ

1 − γ + γ

∥∥∥b̂t−1 − bt

∥∥∥
1

.

Similarly, we can derive its upper bound as follows,

1 = wt−1 + γ ‖b̂t−1 − btwt−1‖1

≥ wt−1 + γ ‖b̂t−1 − btwt−1

+ b̂t−1 (wt−1 − 1) ‖1 − γ ‖b̂t−1 (wt−1 − 1) ‖1

= wt−1 + γwt−1

∥∥∥b̂t−1 − bt

∥∥∥
1
− γ (1 − wt−1) ,

and then the upper bound of wt−1 is

wt−1 ≤ 1 + γ

1 + γ + γ ‖b̂t−1 − bt‖1
.

In summary, we can bound the net proportion of wealth after
transaction costs as,

1 − γ

1 − γ + γ ‖b̂t−1 − bt‖1
≤ wt−1

≤ 1 + γ

1 + γ + γ ‖b̂t−1 − bt‖1
.

Obviously, both the upper bound and lower bound are in-
versely related to ‖b̂t−1−bt‖1, i.e. the smaller the L1 norm, the
larger the upper/lower bound and thus the value of wt−1. There-
fore, to obtain a high net proportion of wealth after transaction
costs, the proposition motivates us to minimize ‖b̂t−1 − bt‖1.
Note that two cases will lead to wt−1 = 1, i.e. γ = 0 or
bt = b̂t−1, the former of which denotes zero transaction cost
and the latter means no rebalancing. It is worth distinguishing
that the first case means that market imposes no transaction
costs, while the second is based on the manager’s decision. In
other words, we have no way to control the transaction costs
imposed by the market (the first case), but we can actively de-
cide portfolios considering transaction costs (the second case).
As we discussed before, this distinction is seldomly addressed
by any previous study. Moreover, note that ‖b̂t−1 − bt‖1 is

conceptually different from ‖bt−1−bt‖1 (Das et al. 2013). The
latter considers the difference of consecutive decision portfo-
lios, which does not precisely reflect the impact of transaction
costs.

To handle the transaction costs issue for online portfolio
selection, we thus propose a new framework called Transaction
Costs Optimization (TCO). On the one hand, we follow the line
of previous research, and focus on maximizing the portfolio’s
expected log return. On the other hand, we promptly take
transaction costs into account in the decision-making process.
That is, we try to minimize the L1 norm of ‖b̂t−1 − bt‖1,
which is connected to the incurred transaction costs as shown
in proposition 4.1. Balancing between the two can effectively
handle the transaction costs issue and significantly improve the
performance when the market imposes non-zero transaction
costs.

4.2. Formulation

In this section, we formally formulate the proposed Transac-
tion Costs Optimization (TCO) framework. In principle, this
framework can be applied to any type of trading principles,
including mean reversion, momentum, and pattern matching,
etc. However, we restrict our discussion to the domain of mean
reversion-based strategy (Li et al. 2012, 2013, 2015, as they
achieve the state of the art performance.

Straightforwardly, to couple with the transaction costs, two
folds of implications exist. One is to maximize portfolio’s
expected log return (Kelly 1956), which is the main principle
underlying most existing algorithms. The other is to minimize
‖b̂t−1 − bt‖1, such that the proportion after transaction costs
could be maximized according to proposition 4.1. Intuitively,
we formulate the following framework.
Transaction Costs Optimization: Constrained version

bt+1 = arg min −
expected log return︷ ︸︸ ︷
E {log b · x̃t+1} +λ

term to bound wt︷ ︸︸ ︷∥∥∥b − b̂t

∥∥∥
1

s.t. b · 1 = 1, b 
 0, (5)

where λ ≥ 0 is a trade-off parameter to balance the first
term and the second term. Minimizing the first term refers
to maximize the portfolio’s expected log return. Minimizing
the second term is equivalent to maximizing the net proportion
after transaction costs. Balancing the two terms can effectively
control the transaction costs to be incurred in the next portfolio
rebalance, while maintaining satisfactory return. If λ is small,
the whole system concentrates more on obtaining higher ex-
pected return; if λ is large, the system concentrates more on
transaction costs.

Although the above optimization is convex, the non-
negativity constraint is an unsolved issue (Helmbold et al.
1998). To ease its derivation (Bach et al. 2012), we combine
the constraint that the portfolio summation equals one into the
objective function and discard the non-negativity constraint
at the moment. This leads to an unconstrained version, which
economically allows shorting. Note that the coefficient of the
constraint, θ , will be eliminated with an endogenetic variable
forcing the portfolio sums to one.
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6 B. Li et al.

Transaction Costs Optimization: Unconstrained Version

bt+1 = arg min
b∈Rm

−E {log b · x̃t+1}

+ θ (b · 1 − 1) + λ

∥∥∥b − b̂t

∥∥∥
1
. (6)

Later we will project the obtained portfolio onto the simplex
domain (Duchi et al. 2008) such that the solution can be applied
to the problem setting in section 2.

4.2.1. Discussion. The framework in equation (5) is in fact a
general framework for the whole Kelly’s approaches, including
the mean reversion approaches. However, when converting it
to the unconstrained version as in equation (6), we adopt the
similar process in all the derivations of mean reversion based
algorithms (Li et al. 2012, 2013, 2015). Economically, it allows
increasing leverage at first, and then lowers the leverage by
projecting portfolio back to the simplex domain.

We would also like to compare the TCO’s formulation with
FWGTC’s formulations (Albeverio et al. 2001, equation (3.1))
and OLU’s formulation (Das et al. 2013), which are conceptu-
ally different. First, FWGTC adopts a similar idea of balancing
the expected return and the change of next portfolio from the
latest allocation. On the one hand, to obtain an expected return,
it predicts the next price relatives’ ranking using a proposed
‘cross rates’ method (Albeverio et al. 2001, sections 4.3 and
4.4). One crucial drawback of the prediction method is that it
can only handle a pair of two stocks, which is quite limited
in real asset management. On the other hand, to constrain
the unnecessary changes in the weights, it adopts a relative
entropy function to measure the distance of weight change,

i.e. dre

(
b, b̂t

)
= ∑m

i=1

(
bt+1,i log bt+1,i

b̂t,i

)
. Then the final

formulation of the FWGTC equals

bt+1 = arg max
b∈�m

λFW
(
b, x̂t+1

) − dre

(
b, b̂t

)
,

where F (1)
W

(
b, x̂t+1

) = bx̂t+1 and F (2)
W

(
b, x̂t+1

) =
log

(
b̂t · x̂t+1

)
+ x̂t+1·

(
b−b̂t

)
b̂t ·x̂t+1

.As we can see from the equations,

although its idea is similar to our TCO, they are different from
the following two aspects. Conceptually, FWGTC concentrates
on prediction for price relatives, while TCO focuses on propos-
ing a framework for transaction costs that applied to all kinds
of algorithms in the same category. Technically, TCO’s L1
norm is consistent with the return calculation with propor-
tional transaction costs, as in both TCO and FWGTC’s mod-
els. However, FWGTC’s distance function is different from
the return calculation, which may diverge from the optimal
portfolios.

Secondly, OLU also adopted L1 norm to constrain the
change of the portfolio from last portfolio, but not the lat-
est allocation, i.e. ‖b − bt‖. The TCO, on the other hand,
adopts the L1 norm of the difference in the portfolio and the
latest allocation, i.e. ‖b − b̂t‖, where b̂t−1,i = bt−1,i xt−1,i

bt−1·xt−1
, i =

1, . . . , m. The basic trading principle shows that the transaction
costs are caused by the deviation from the target portfolio
and current allocation, or b̂t rather than bt . While it enjoys
theoretical convenience with the latter term (such as proving
a bound), it does not follow the general trading principle.
To better understand their difference, let us see an example.

Let us consider the market with two assets, and stand at the
beginning of day 1. Suppose we are running a uniform CRP
strategy, that is, every portfolio vector is an equally weighted
portfolio (bt = (0.5, 0.5) , t = 1, . . . , n). The initial allocation
is b1 = (0.5, 0.5) and day 1’s price relative is x1 = (0.8, 1.2).
At the end of day 1, the allocation becomes b̂1 = (0.4, 0.6). At
the beginning of day 2, the portfolio will be rebalanced from
current allocation (b̂1, not b1) to the target allocation (b2).
Here, note that the current allocation, rather than day 1’s initial
allocation, is meaningful for the rebalancing. Rebalancing to
b2 = (0.5, 0.5) will incur a transaction cost of γ ‖b2 − b̂1‖1 =
0.2γ . Although both formulations adopt L1 norm of difference
between two portfolios, we adopt b̂1 rather than OLU’s b1.
In OLU’s cases, as b2 = b1, their model will incur zero
transaction costs, which is obviously incorrect.

We also want to discuss the role of the L1 norm, which is
actually a typical regularization term. However, our intention is
not to control the complex of the model (Agarwal et al. 2006),
or record all historical information (Helmbold et al. 1998,
Li et al. 2012). Motivated to maximize the net proportion of
wealth after transaction costs, the L1 term is used to control
the effect of transaction costs. In fact, one particular strategy
is when λ = +∞, then the TCO model degrades to,

bt+1 = arg min
b∈�m

∥∥∥b − b̂t

∥∥∥
1

⇒ bt+1 = b̂t .

Note that the strategy is the Buy And Hold (BAH) strategy,
which incurs the least transaction costs. Moreover, when λ =
0, the TCO model is the same as equation (4), which does not
consider transaction costs in the decision-making process.

Similar to table 1, equation (5) can be instantiated to different
trading schema, in which most existing ideas can be adopted.
As shown in table 2, we further adopt some representative
predictions in the framework of TCO. In this article, we focus
on TCO-MR as mean reversion-based strategies achieved the
state of the art performance.

4.3. Algorithm

In this section, we solve the TCO formulation via Proximal
Gradient Descent (Boyd and Vandenberghe 2004, Bach et al.
2012) and derive the proposed framework. Proposition 4.2
illustrates the solution of the unconstrained optimization equa-
tion (6).

Proposition 4.2 The solution to the unconstrained TCO for-
mulation (equation (6)) is

b̃t+ 1
2

= ηt

(
E

{
x̃t+1

b̂t · x̃t+1

}
− 1

m
1 · E

{
x̃t+1

b̂t · x̃t+1

})
,

bt+1 = b̂t + sign
(

b̃t+ 1
2

) [∣∣∣b̃t+ 1
2

∣∣∣ − ληt+ 1
2

]
+ ,

where [v]+ = max (0, v), sign (v) denotes the sign of v, and
ηt , ηt+ 1

2
, λ are parameters to control the learning progress.

Proof. Firstly, we linearize the log function around the current
allocation of b̂t and eliminate the constant terms, and rewrite
equation (6) into the following form,
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Transaction cost optimization for online portfolio selection 7

Table 2. Some representative formulations derived from the TCO framework.

Categories Methods Formulations (bt+1 = arg minb∈�m
) Prediction (x̃i

t+1) Prob. (pi )

Follow the Winner TCO-EG − log b · xt + λ‖b − b̂t‖1 xt 100%
TCO-SCRP −∑t

i=1
1
t log b · xi + λ‖b − b̂t‖1 xi , i = 1, . . . , t 1/t

Follow the Loser TCO-MR − log b · 1
xt

+ λ‖b − b̂t‖1 1/xt 100%

Pattern Matching based TCO-NP −∑
i∈Ct

1
|Ct | log b · xi + λ‖b − b̂t‖1 xi , i ∈ Ct 1/|Ct |

bt+1 = arg min
b∈Rm

−E

{
x̃t+1

b̂t · x̃t+1
·
(

b − b̂t

)}

+ 1

2ηt

∥∥∥b − b̂t

∥∥∥2

2
+ θ (b · 1 − 1) + λ

∥∥∥b − b̂t

∥∥∥
1
,

where ηt is a parameter to bound the linear approximation
(Bach et al. 2012). To simplify the L1 norm, let b̃ = b − b̂t ,
then b = b̃ + b̂t , and equivalently,

b̃t+1 = arg min
b̃∈Rm

−E

{
x̃t+1

b̂t · x̃t+1
· b̃

}
+ 1

2ηt

∥∥∥b̃
∥∥∥2

2

+ θ
((

b̃ + b̂t

)
· 1 − 1

)
+ λ

∥∥∥b̃
∥∥∥

1

= arg min
b̃

f
(

b̃
)

+ λ�
(

b̃
)

,

which satisfies the formulation in Duchi and Singer (2009)
and is straightforward to solve. In particular, we decompose
the above optimization into two steps,⎧⎪⎪⎨

⎪⎪⎩
b̃t+ 1

2
= arg min

b̃

f
(

b̃
)

(7a)

b̃t+1 = arg min
b̃

1

2

∥∥∥b̃ − b̃t+ 1
2

∥∥∥2

2
+ ηt+ 1

2
�
(

b̃
)

(7b)

Setting the derivative of equation (7a) to zero,

∂ f

∂b̃
= −E

{
x̃t+1

b̂t · x̃t+1

}
+ 1

ηt
b̃ + θ1 = 0,

we can get,

b̃ = ηt

(
E

{
x̃t+1

b̂t · x̃t+1

}
− θ1

)
.

Multiplying both sides by 1 and utilizing the property of b̃·1 =
0, we can obtain θ ,

0 = ηt

(
1 · E

{
x̃t+1

b̂t · x̃t+1

}
− θm

)
−→ θ

= 1

m
1 · E

{
x̃t+1

b̂t · x̃t+1

}
.

Subsequently, we can derive the update formula of b̃t+ 1
2
,

b̃t+ 1
2

= ηt

(
E

{
x̃t+1

b̂t · x̃t+1

}
− 1

m
1 · E

{
x̃t+1

b̂t · x̃t+1

}
1

)
.

On the other hand, solving equation (7b) results in a closed
form update (Duchi and Singer 2009),

bt+1 = b̂t + sign
(

b̃t+ 1
2

) [∣∣∣b̃t+ 1
2

∣∣∣ − ληt+ 1
2

]
+ ,

where [v]+ = max (0, v) and sign (v) returns the sign of each
element in v.

Based on the proposition, we can formulate the TCO frame-
work. However, one problem still unsolved is the prediction
schema of x̃t+1.As shown in section 3, there are several predic-
tion schema employed by existing algorithms. In this article,
we derive two specific algorithms following two mean rever-
sion predictions, whose implicit or explicit assumptions are
summarized in table 3. In particular, we derive the algorithm
based on the prediction of x̃i

t+1 = f
(
xt

1

)
and corresponding

probability of 100%. Then the expected value of x̃t+1

b̂t ·x̃t+1
equals

f (xt
1)

b̂t · f (xt
1)

. To this end, we can obtain proposition 4.3.

Proposition 4.3 The solution to the unconstrained TCO for-
mulation in equation (6) with existing mean reversion predic-
tion, i.e. x̃t+1 = f

(
xt

1

)
and a probability of 100%, is

b̃t+ 1
2

= ηt

(
f
(
xt

1

)
b̂t · f

(
xt

1

) − 1

m
1

(
1 · f

(
xt

1

)
b̂t · f

(
xt

1

)
))

,

bt+1 = b̂t + sign
(

b̃t+ 1
2

) [∣∣∣b̃t+ 1
2

∣∣∣ − ληt+ 1
2

]
+ ,

where [v]+ = max (0, v) and sign (v) returns the sign of v.

Proof. We omit the derivation, which is straightforward.

To now, we can derive the proposed online portfolio se-
lection algorithms named ‘Transaction Costs Optimization’
(TCO) in algorithm 2. The whole trading simulation procedure
is illustrated in protocol 1 by replacing ALG with TCO. For
simplicity, we let λ = ληt+ 1

2
and adopt a fixed parameter

of ηt = η for all iterations. Ignoring the examples, the al-
gorithm represents a framework for online portfolio selection
with (zero or non-zero) transaction costs. The two examples,
named TCO1 and TCO2, respectively, show two specifications
whose prediction of price relative vector follows the state of
the art mean reversion principle. Moreover, to conform to the
typical constrained version of online portfolio selection, we
follow the existing techniques (Li et al. 2012, 2015) and project
the final portfolio to the simplex domain.†

†We adopt the lsqlin function in Matlab optimization toolbox.
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8 B. Li et al.

Algorithm 2: Transaction Costs Optimization:
TCO(b̂t , xt

1, λ, η).

Input: b̂t : last price adjusted portfolio; xt
1: historical price relatives; λ:

trade-off parameter; η: smoothing parameter; w: window size for
TCO-2.

Output: bt+1: next portfolio.
1 begin
2 Estimate next price relative vector: x̃t+1 = f

(
xt

1

)

Examples

⎧⎨
⎩

TCO-1 : f1 = 1
xt

TCO-2 : f2 = 1
w

(
1 + 1

xt
+ · · · + 1⊙w−2

i=0 xt−i

)

3 Calculate variables: vt = E

{
x̃t+1

b̂t ·x̃t+1

}
, v̄t = 1·vt

m

Examples

⎧⎨
⎩

TCO-1 : vt = f1
b̂t · f1

TCO-2 : vt = f2
b̂t · f2

4 Update portfolio:

b̃
t+ 1

2
= η (vt − v̄t 1)

bt+1 = b̂t + sign

(
b̃

t+ 1
2

)[∣∣∣∣b̃t+ 1
2

∣∣∣∣ − λ

]
+

5 Normalize portfolio:

bt+1 = arg min
b∈�m

∥∥b − bt+1
∥∥2

6 end

4.3.1. Discussions. Note that there also exist some other
types of predictions, such as Pattern Matching-based
predictions and Follow the Winner predictions. However, their
respective studies solved their optimizations via different tech-
niques from ours in proposition 4.2. It is feasible to incorporate
their predictions to the TCO framework, and derive their algo-
rithms accordingly, which however is beyond the scope of this
article.

Besides formulations, TCO’s derivation technique is also
different from that of FWGTC (Albeverio et al. 2001, equations
(3.9) and (3.10)) and OLU (Das et al. 2013). In particular, we
derive the TCO’s algorithms using Proximal Gradient Descent
(Boyd and Vandenberghe 2004, Bach et al. 2012), and FWGTC
and OLU derived their algorithms using the Lagrange methods
and the Alternating Direction Method of Multipliers (ADDM)
(Boyd et al. 2011), respectively. In addition, TCO’s update
formulas are additive, while FWGTC’s are multiplicative.

4.4. Analysis

Now we analyse the update formula such that we can better
understand its underlying mechanism, and compare it with
Percentage of Portfolio Rebalancing (PPR) (Institute 2013),
which is a rebalance strategy used by various practitioners in
case of non-zero transaction costs.

Let us first analyse vt = E

{
x̃t+1

b̂t ·x̃t+1

}
in proposition 4.2.

Without considering the expectation, the denominator is the
return without rebalancing, while the numerator is the price rel-
ative vector. We thus can view it as a return-adjusted price rela-
tive vector. Then, the following step (b̃t+ 1

2
= ηt

(
vt − vt ·1

m 1
)

)
splits the underlying assets into two groups, i.e. outperforming

the average and underperforming the average. This is in general
reasonable, since investors often transfer weights from the
assets that are expected to underperform to the assets that
are expected to outperform. Thus, b̃t+ 1

2
represents the weights

to be transferred, which will transfer from its negative com-
ponents to positive ones. For the assets that are expected to
increase (or decrease) by a small (large) value, the transferred
weights (b̃t+ 1

2 ,i ) will also be small (large).

Viewing b̃t+ 1
2

as the weights to be theoretically transferred
without transaction costs, the second update formula adjusts
it in case of non-zero transaction costs. While b̂t denotes the
current allocation before rebalancing, the remaining terms de-
note the weights to be transferred in case of non-zero trans-
action costs. If the absolute value of b̃t+ 1

2
is large (small), it

deems to affect more (less) to the final performance. Since the
transaction costs exist, rebalancing one asset should produce
more value than the incurred transaction costs. Therefore, the
latter term truncates b̃t+ 1

2
if one element’s absolute value is

below a threshold of λ, and keeps the original value if its
absolute value is above the threshold. If the threshold is zero,
then the update degrades to bt+1 = b̂t + ηt (vt − v̄t 1), which
follows the principle of investments (Li et al. 2015). If the
threshold is positive, the algorithm will compare the magnitude
(or absolute value) of bt+ 1

2
with the threshold. In other words,

such mechanism ensures that the portfolio will only rebalance
assets that are expected to deviate a lot and outweigh the
transaction costs.

Finally, we want to further investigate the portfolio algo-
rithms. Usually, when transaction costs are included in port-
folio selection problems, there is a boundary that the portfolio
(or individual stocks) has to cross before manager rebalances
the portfolio. In literature, this portfolio rebalancing method is
named Proportion of Portfolio Rebalancing (PPR) (Institute
2013). The key idea of PPR is to keep a corridor of the weights,
which defines the upper bound and lower bound for each asset,
and only rebalance the allocation once next weight is out of
the corridor. For example, the manager set the corridor for an
asset as W ± 0.1W , where W denotes the current weight. The
manager thus only rebalances the allocation if the transferred
weight is larger than 10% of current weight. Although we do
not consider such mechanism in the TCO’s formulation, its
derived portfolio updates do reflect such thresholds. Obviously,
TCO’s mechanism is the same as PPR’s, which is equivalent to
λ = 0.1. Such coincidence interestingly connects our method
to the commonly used rebalancing method in industry.

5. Empirical evaluations

5.1. Data-sets

In the empirical evaluations, we mainly adopt four public
data-sets,† i.e. NYSE (O) (Cover 1991), and its following data-
set, NYSE (N) (Györfi et al. 2012, Li et al. 2013), TSE (Borodin
et al. 2004) and MSCI (Li et al. 2012). These publicly available
data-sets ensure the reproducibility and make our comparison

†Details of these data-sets, including their compositions, are available
at http://olps.stevenhoi.org/, and TCO’s Matlab implementation will
be available online.
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Transaction cost optimization for online portfolio selection 9

Table 3. Summary of the adopted mean reversion predictions.
⊙

denotes the element-wise product, and pi denotes the implicit probability
of prediction x̃i

t+1.

Schema Prediction (x̃i
t+1 = f

(
xt

1

)
) Prob. (pi ) Reference

1 1/xt 100% PAMR (Li et al. 2012)/CWMR (Li et al. 2013)

2 1
w

(
1 + 1

xt
+ · · · + 1⊙w−2

i=0 xt−i

)
100% OLMAR (Li et al. 2015)

fair to existing algorithms. In particular, NYSE (O) contains 36
large cap stocks from the New York Stock Exchange, and 5651
price relatives ranging from 7 March 1962 to 31 December
1984. NYSE (N) has 23 remaining survived stocks till 30 June
2010, totalling 6431 price relatives. TSE contains 88 large
cap stocks from the Toronto Stock Exchange (TSE) and 1259
price relatives, ranging from 4 January 1994 to 31 December
1998. The final MSCI data-set is a collection of global equity
indices that are the constituents of MSCI World Index.† It
contains 24 indices that represent the equity markets of 24
countries around the world, and consists of 1043 trading days
ranging from 1 April 2006 to 31 March 2010. While the first
three data-sets mainly test the proposed algorithms on stock
markets, the fourth data-set test the algorithm’s capability on
market indices, which may be potentially applicable to ‘Fund
of Funds’(FOF). Moreover, even though we test the algorithms
on the stock related markets, they can be applied to any type
of financial markets.

5.1.1. Discussions on survival bias. Pioneered by Cover
(1991), NYSE (O) is the standard data-set widely used in the
online portfolio selection community. The main reason for
choosing NYSE (O) is because it allows us to compare the
proposed algorithms with all related algorithms in section 3.As
the data-set contains 36 large cap NYSE stocks that survived in
hindsight for 22 years, it suffers from extreme survival bias. To
examine a strategy’s profitability over time, Gábor Gelencsér
and we‡ created the new NYSE (N) data-set as a continuation
of NYSE (O), containing 23 stocks from the 36 NYSE stocks
that survived for additional 26 years. Note that the delisted
stocks are mainly due to merge and acquisitions, as they are
the largest cap firms in the US markets. The NYSE (N) data-
set is therefore even worse than the old data-set in this respect.
Any serious researcher should be aware of the implicit survival
bias in the empirical evaluations.

In fact, there is a trade-off for any fixed (assets) data-set,
i.e. length of the data-sets vs. the survival bias. If one data-set
is long (such as NYSE (O) or NYSE (N)), it tends to suffer
extreme survival bias but is more representative for the whole
population. Though the effect of survival bias is weak in data-
sets with short durations (such as MSCI and TSE), it may be not
large enough to represent the population. Thus, our experiment
test bed covers both long-period data-sets (5000∼6000 trading
days) and short-period data-sets (∼1000 trading days).

Clearly, testing the proposed algorithm on survivor-bias free
data-sets can be more realistic. However, to adopt survivor bias

†The constituents of MSCI World Index are available on MSCI Barra
(http://www.mscibarra.com), accessed on 28 May 2010.
‡Gábor collected till 2006 and we extended the data to 2010.

free data-sets, we may encounter several challenges. The first
challenge is that the delisting return data are missing or hard
to collect and calculate. According to Beaver et al. (2007),
the delisted stocks are mainly due to mergers and acquisitions
(51% of their samples) or poor performance (44% of their
samples). The returns may be significantly different in the two
cases. In cases of mergers and acquisitions, which is hard to
collect and process the data, these delisting returns may be
positive. In cases of poor performance (e.g. bankruptcy), these
returns may be negative. Some studies assign −100% for these
returns (Sloan 1996), while others assign −30% (Mohanram
2005) or just deleted them (Hribar and Collins 2002). To the
best of our knowledge, there is no agreed on method to calculate
the returns for delisted stocks.

The second challenge is that even if we can obtain a survivor-
bias free data-set, we may encounter challenges in portfolio
construction. As survivor-bias free data-sets include delisted
stocks, the number of assets will change over time. However,
all existing algorithms are designed and implemented with
a fixed number of assets (see the problem setting in section
4.2). As a result, all these algorithms have to be modified
for the changing number of assets. We note that some ac-
counting and finance studies (such as Beaver et al. (2007))
using survivor-bias free data mainly adopt equally weighted
portfolio, which simply divides the stocks into several groups
and assigns equal weights in each group. Unfortunately, the
existing online portfolio selection strategies are usually far
more complicated than equally weighted portfolio (c.f. see
existing algorithms in section 3), and adapting them to handle
changing number of assets is a challenging task. As our main
purpose is to propose a framework to tackle the transaction
costs issue for online portfolio selection, adapting existing
algorithms for the changing number of assets is beyond the
scope of this article.

The third reason is that the four data-sets have been widely
used in the related studies. To fairly compare with existing
studies, we therefore follow existing studies to conduct the
empirical experiments on the widely used data-sets. But re-
searchers should keep in mind that the reported results may
be biased by the survival bias embedded in the widely used
data-sets.

5.2. Settings

The TCO algorithm has two possible parameters, i.e. η and
λ. Intuitively, the higher the cost rate is, the less the man-
ager should rebalance. Following the line of OLPS research
(Helmbold et al. 1998, Li et al. 2012), we empirically choose
parameter values and later evaluate their sensitivity. It is
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10 B. Li et al.

possible to further alleviate the challenge of parameter selec-
tion, such as using expert learning (Borodin et al. 2004, Li
et al. 2013), etc. Note that in some existing studies, optimal
performance can be theoretically achieved under certain dis-
tributional assumptions, however, TCO’s optimal performance
cannot be achieved. Naturally, there is no way to choose pa-
rameter values so as to obtain optimal out-of-sample perfor-
mance.

In particular, we set the trade off parameter to λ = 10 × γ ,
which is empirically effective, and set the smoothing parameter
toη = 10 in all cases. Further illustrations in section 5.3.4 show
that our choices of parameters are not optimal in all cases, and
it is easy to blindly choose satisfying parameters.

There are mainly two performance metrics to measure an
online portfolio selection strategy with transaction costs. The
first metric is cumulative wealth (Li and Hoi 2014), which
measures the cumulative return starting from one dollar. The
higher the cumulative wealth, the less an algorithm suffers
from the transaction costs. Another is average turnover over
the whole period, which measures the changes of portfolios.
Lower turnovers indicate more effective portfolio rebalancing
strategy in cases of non-zero transaction costs. There also exist
various risk adjusted metrics, such as Sharpe Ratio and Calmar
ratio. However, they are just complementary to the above two
metrics, which will be available in the TCO’s package.

Besides, we also conduct statistical tests for TCO’s daily
return series (Grinold and Kahn 1999). The test separates the
return’s alpha (α) and beta (β), and outputs the probability
that the returns are generated by simple luck. The smaller the
probability, the higher the confidence we have on a trading
strategy.

5.2.1. Comparison approaches. In the experiments, we
implement the two proposed TCO strategies, i.e. TCO1 and
TCO2. We compare them with a number of benchmarks and
existing strategies (Li and Hoi 2014). Below we summarize
these algorithms, whose parameters are set according to the
recommendations from their respective studies.†

(i) Market: Uniform Buy-And-Hold (BAH) strategy;
(ii) Best: Best stock in hindsight;

(iii) BCRP (Cover 1991): Best Constant Rebalanced Portfo-
lios strategy in hindsight;

(iv) UP (Cover 1991): Cover’s Universal Portfolios imple-
mented according to Kalai and Vempala (2002), in which
the parameters are set as δ0 = 0.004, δ = 0.005, m =
100, and S = 500;

(v) EG (Helmbold et al. 1998): Exponential Gradient algo-
rithm with the best parameter η = 0.05;

(vi) ONS (Agarwal et al. 2006): Online Newton Step with
the parameters, that is, η = 0, β = 1, γ = 1

8 ;
(vii) OLU (Das et al. 2013): Online Lazy Updates with the

parameters, that is, η = 20, β = 0.1, γ = 0.1;
(viii) Anticor (Borodin et al. 2004): BAH30(Anticor(Anticor))

as a variant ofAnticor to smooth the performance, which
achieves the best performance among the three solu-
tions;

†We can tune their parameters for better performance. However, it is
beyond the scope of this article.

(ix) CORN (Li et al. 2011): Correlation-driven nonparamet-
ric learning approach with W = 5 and ρ = 0.1;

(x) PAMR (Li et al. 2012): Passive Aggressive Mean Re-
version algorithm with ε = 0.5;

(xi) OLMAR (Li et al. 2015): Online Moving Average Re-
version with w = 5 and ε = 10;

(xii) RMR (Huang et al. 2013): Robust Median Reversion
with w = 5, ε = 5, and m = 200.

5.3. Experimental results

5.3.1. Cumulative wealth with fixed transaction costs. We
backtested two reasonable rates of transaction costs (Das et al.
2013), i.e. 0.25 and 0.5%. Table 4 illustrates the cumulative
wealth achieved by various algorithms under the rates of 0,
0.25 and 0.5%, respectively. For example, 14.50 achieved by
BAH on NYSE (O)-0% means that $1 invested using the BAH
strategy will grow to $14.50 after 22 years.

From the table, we can draw several observations. Firstly,
without transaction costs, BCRP are proved to outperform
Best (Cover 1991, proposition 2.1) due to its exploitation of
assets’volatility (Luenberger 1998). However, with transaction
costs, BCRP may underperform Best, because its constantly
rebalancing will cause high transaction costs. For example,
although BCRP outperforms Best in most cases, it underper-
forms Best in columns NYSE (N)-0.5% and MSCI-0.25% &
-0.5%. Secondly, most state of the art algorithms (e.g. CORN,
PAMR, OLMAR and RMR.) drop significantly when the rates
are non-zeros, especially γ = 0.5%. The observation shows
that this research on tackling non-zero transaction costs is
necessary. Thirdly, although the three theoretical guaranteed
algorithms (i.e. UP, EG and ONS) achieve a low cumulative
wealth with zero transaction costs, their performance degrades
much slower than other algorithms. Finally, the proposed TCO
algorithms perform much better than the state of the art. In
particular, TCO achieves the top two achievements in most
non-zero cases. In summary, the research on non-zero transac-
tion costs is necessary and the proposed TCO algorithms can
robustly resist reasonable transaction costs.

Moreover, table 5 shows the statistical test of the proposed
TCO algorithm in case of three rates, i.e. 0, 0.25 and 0.5%.
As rates increase, both TCO’s winning ratios over the market
and αs decrease. The p-values show that when γ = 0.25%,
TCO’s performance on most data-sets (except MSCI) is not
due to luck. However, when the rate increases to 0.5%, the
test’s results are consistent with the observations in table 4.
In particular, the algorithms cannot beat the market strategy
on some data-sets, thus p-values become as high as 50%. In
summary, the statistical tests verify the observations in table 4,
and show the TCO’s effectiveness with reasonable transaction
costs.

Besides the above observations, we would like to discuss
the issue of market efficiency. Note that the discussion on
the market efficiency does not prevent traders from exploiting
the market for profit. For example, if the market does not
satisfy the weak form efficiency, technical trading rules can
beat the markets (Bodie et al. 2014). The reasons for such
high returns on the NYSE (O) data-set may be in twofolds.
Firstly, the trading strategies are on a daily basis and once the
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Transaction cost optimization for online portfolio selection 11

Table 4. Cumulative wealth achieved by various strategies on the data-sets with two common transaction cost rates (0.25 and 0.5%), plus
zero rate for benchmark. Top two achievements on each column excluding zero rate column and the three benchmarks are highlighted.

NYSE(O) NYSE(N) TSE MSCI

Algorithms 0% 0.25% 0.5% 0% 0.25% 0.5% 0% 0.25% 0.5% 0% 0.25% 0.5%

BAH 14.50 14.46 14.42 18.06 18.01 17.97 1.61 1.61 1.60 0.91 0.90 0.89
Best 54.14 54.00 53.87 83.51 83.30 83.09 6.28 6.26 6.25 1.50 1.50 1.50
BCRP 250.60 182.01 132.20 120.32 98.95 81.38 6.78 6.51 6.26 1.51 1.49 1.48

UP 26.68 17.59 11.36 31.49 20.56 13.31 1.60 1.41 1.24 0.92 0.87 0.81
EG 27.09 23.08 19.66 31.00 25.74 21.37 1.59 1.52 1.46 0.93 0.91 0.88
ONS 109.91 51.47 24.26 21.59 11.24 5.85 1.62 1.21 0.90 0.86 0.72 0.60
OLU 36.04 32.81 29.88 22.58 19.97 17.66 1.71 1.64 1.58 0.46 0.45 0.44
Anticor 2.41E+08 6.37E+04 16.68 6.21E+06 1.46E+03 0.34 39.36 6.87 1.20 3.22 1.02 0.32
CORN 1.48E+13 1.38E+04 0.00 5.37E+05 0.00 0.00 3.56 0.02 0.00 26.10 0.33 0.00
PAMR 5.14E+15 2.09E+05 0.00 1.25E+06 0.00 0.00 264.86 2.11 0.00 15.23 0.15 0.00
OLMAR 4.04E+16 2.43E+07 0.02 2.24E+08 0.04 0.00 424.8 4.00 0.04 16.39 0.34 0.01
RMR 1.64E+17 6.94E+08 2.66 3.25E+08 0.42 0.00 181.34 3.38 0.02 16.76 0.45 0.01

TCO1 1.35E+14 5.53E+09 2.31E+06 9.15E+06 3.80E+03 142.00 148.99 7.73 0.92 9.68 1.52 1.13
TCO2 1.40E+13 3.87E+07 1.28E+04 2.43E+07 2.00E+03 55.00 153.05 31.54 4.70 5.68 1.42 0.84

Table 5. Statistical t-test of TCO2’s performance on the stock data-sets. ‘MER’ denotes Mean Excess Return.

NYSE(O) NYSE(N) TSE MSCI

Statistics 0% 0.25% 0.5% 0% 0.25% 0.5% 0% 0.25% 0.5% 0% 0.25% 0.5%

Length 5651 5651 5651 6431 6431 6431 1259 1259 1259 1043 1043 1043
MER (TCO) 0.0057 0.0035 0.0021 0.0031 0.0017 0.0011 0.0052 0.0039 0.0025 0.0019 0.0006 0.0000
MER (Market) 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0000 0.0000 0.0000
Winning Ratio 57.69% 49.92% 48.47% 54.52% 49.23% 48.55% 53.77% 51.31% 48.93% 57.05% 51.68% 47.94%
α 0.0051 0.0029 0.0015 0.0026 0.0012 0.0006 0.0046 0.0034 0.0019 0.0019 0.0006 0.0000
β 1.2824 1.3276 1.2008 1.1449 1.0923 1.0601 1.5311 1.5516 1.5584 1.1526 1.1618 1.1285

t-statistics 15.464 8.0341 4.2969 7.2494 3.0743 1.5863 3.3166 2.4115 1.3354 5.5155 1.572 0.0207
p-value 0.0000 0.0000 0.0000 0.0000 0.0011 0.0564 0.0005 0.0080 0.0910 0.0000 0.0581 0.4917

strategies spot a frequent pattern (especially the mean reversion
pattern), the power of compound interests will take effect and
the strategies will yield an astonishing return without trans-
action cost. However, frequent daily trading will incur high
turnover and thus high transaction costs with non-zero rates.
This naturally shows the importance of this study on transaction
costs. Secondly, the years in NYSE (O) are relatively old and
thus the market is more likely to be (weak-form) inefficient.
Thus a strategy may better exploit the market, and gain huge
profit. In particular, the NYSE (O) data-set ranges from 1962
to 1984, when the markets are more inefficient, thus a powerful
strategy can obtain such a high profit. On contrary, NYSE (N),
the subsequent version of NYSE (O), becomes less inefficient,
so the same strategy can obtain much less profit.

For the different returns between NSYE (O) and MSCI,
it may be explained that NYSE (O) and MSCI are different
data-sets with different components. While NYSE(O), NYSE
(N), TSE are three data-sets on stocks, MSCI is a portfolio
of global equity indices. Indicated by table 5—Row ‘MER
(Market)’, MSCI’s return is much lower than the other data-
sets’ return. Moreover, due to the diversification effect, indices

are usually less volatile than individual stocks. Thus, strategies
that exploit the volatility will make less profit (Li et al. 2012,
see section 5.4.3 for an examination of the volatility issue in
the OLPS community). Secondly, as time goes on, more and
more inefficiencies will be exploited for profit, and the financial
markets are thus less and less inefficient (or more and more
efficient). For example, even on the same market and with
similar daily MER, the NYSE (N) data-set yields much less
profit than the NYSE (O) data-set. As MSCI ranges from 2006
to 2010, it tends to be more efficient than NYSE, which ranges
from 1962 to 2010.

5.3.2. Cumulative wealth with varying transaction costs.
To better show the effectiveness of the introduced L1 term for
non-zero transaction costs, figure 1 compares the cumulative
wealth achieved by the proposed TCO strategies and PAMR
and OLMAR, which are equipped with the same prediction
functions. Two benchmarks, market and BCRP, are also plotted
for reference. From the figures, we can draw several observa-
tions. Firstly, PAMR and OLMAR decrease exponentially with
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12 B. Li et al.

Figure 1. Cumulative wealth achieved by TCO with respect to varying transaction cost rates.

Figure 2. Average turnovers achieved by TCO with respect to varying transaction cost rates.

Figure 3. Parameter sensitivity of TCO1 and TCO2 with respect to η and λ at the transaction costs rate of 0.25%. Each point in the
heat map corresponds to cumulative wealth achieved with a combination of η and λ. The colour-bars besides each figure show the scale of
cumulative wealth. The brighter the colour is, the more wealth it achieves. The horizontal axis denotes varying η, and the vertical axis indicates
varying λ.

increasing rates. For example, the break-even rates with respect
to the market for NYSE (O) are around 0.3 and 0.4%, while
for NYSE (N) the break-even rates are 0.1 and 0.2%. Although
some institutional investors may have lower rates, their profit
will be robbed by non-zero transaction costs. Secondly, TCO1
and TCO2 have much higher break-even rates on all data-sets.
In particular, the break even rates are both 1.4% on NYSE
(O), and the break-even rates are both 0.9% on NYSE (N).
Such observation greatly enhances the algorithms’ scalability
with respect to non-zero transaction costs. Thirdly, on almost
all levels of rates (except some small rates subject to tuning),

the proposed TCO can significantly outperform PAMR and
OLMAR. In a word, the proposed TCOs significantly improve
the performance in case on non-zero transaction costs.

5.3.3. Average turnover with varying transaction costs.. As
shown in proposition 4.1, turnover is directly related to the
transaction costs. The lower the turnover, the less the imposed
transaction costs. Thus, figure 2 compares the TCO’s average
turnovers with those of PAMR and OLMAR. While PAMR
and OLMAR do not consider the transaction costs issue, their

D
ow

nl
oa

de
d 

by
 [

Si
ng

ap
or

e 
M

an
ag

em
en

t U
ni

ve
rs

ity
] 

at
 1

8:
25

 1
9 

Se
pt

em
be

r 
20

17
 



Transaction cost optimization for online portfolio selection 13

average turnovers maintain high levels on all data-sets in order
to exploit assets’ volatility. The high turnovers unavoidably
cause high transaction costs when the proportional transaction
costs rate is non-zero. On the other hand, TCO1 and TCO2’s
turnovers are high when the rates are small and consistently
decrease to almost zero as the rates increase. Note that zero
turnover is equivalent to no rebalancing, which will not incur
any transaction costs. This again verifies that TCO trades off
between rates and turnover, to include transaction costs. Fi-
nally, connecting figure 2 to figure 1, we can find that in cases
of non-zero transaction costs, such trade-off leads to TCO’s
higher cumulative return than PAMR and OLMAR.

5.3.4. Parameter sensitivity. We then evaluate the sensitiv-
ity of parameters, i.e. η and λ. The heat maps in figure 3 show
the achieved cumulative wealth with various combinations of
η and λ at a reasonable rate of 0.25%. Firstly, we can always
observe a peak (the brightest) in the middle region, indicating
that these combinations of η and λ yield relative high cumula-
tive wealth. This observation provides a wide range of feasible
parameters that release satisfying performance. Note that the
locations of dark regions do not affect the key observation.
Secondly, fixing λ, we can find that as η increases, TCO’s
wealth initially increases and then peaks at a point and finally
decreases. Thirdly, fixing η, we can observe that strategy with
different λ yields slightly different cumulative wealth. Fixing
a small η, the strategy yields similar wealth around different
λ, as the upper and lower rows have similar colours. Fixing
a middle η, the strategy’s wealth initially increases and then
peaks at a middle point and finally decreases. Fixing a large η,
the lower rows are darker, which indicates low wealth. Finally,
throughout our experiments, we simply set both η and λ to 10,
which release satisfying but obviously not optimal results.

6. Conclusions

In this paper, we investigated the problem of online portfolio
selection with proportional transaction costs. We firstly for-
mulated the problem as a sequential decision problem, and
discovered the relationship between transaction costs and port-
folio change. Then we proposed the TCO framework, which
trades-off between maximizing expected log return and mini-
mizing transaction costs.An analysis of the closed form update
formula shows the connection to a typical rebalancing strat-
egy in industry. Two specific algorithms using existing mean
reversion estimation methods have been proposed. Extensive
experiments on widely used data-sets show that these derived
algorithms are effective in the case of non-zero transaction
costs.

Although we focus on the empirical contribution, one im-
portant drawback of this article is its lack of theoretical con-
tribution. Thus, in future, we would like to investigate the
theoretical aspect of the research problem and try to make
some theoretical contributions. One significant drawback in
our empirical evaluation is that the widely used data-sets are
subject to survival bias. In future, we would like to design
online portfolio selection strategies on data-sets free of sur-
vivor bias. Moreover, we would like to relax the assumptions

of proportional transaction costs. For example, we may as-
sume fixed transaction costs per share, and different rates for
purchases and sales. Finally, relaxing other assumptions, such
as no market impact or liquidity, will also contribute to the
potential deployment of these strategies.
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