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Abstract—Nowadays, most software use multiple program-
ming languages to implement certain functionalities based on
the strengths and weaknesses of different languages. Researchers
in the past have studied the impact of independent programming
languages on software quality, however, there has been little or
no research on the impact of multiple languages on the quality of
software. Does the use of multiple languages cause more bugs?
Are certain languages when used with other languages make
software more bug prone? What are the relationships between
multi-language usage and various bug categories?

In this study, we perform a large scale empirical investigation
to provide some answers to these questions. We gather a large
dataset consisting of popular projects from GitHub (628 projects,
85 million SLOC, 134 thousand authors, 3 million commits, in 17
languages) to understand the impact of using multiple languages
on software quality. We build multiple regression models to
study the effects of using different languages on the number of
bug fixing commits while controlling for factors such as project
age, project size, team size, and the number of commits. Our
results show that in general implementing a project with more
languages has a significant effect on project quality, as it increases
defect proneness. Moreover, we find specific languages that are
statistically significantly more defect prone when they are used
in a multi-language setting. These include popular languages like
C++, Objective-C, and Java. Furthermore, we note that the use
of more languages significantly increases bug proneness across all
bug categories. The effect is strongest for memory, concurrency,
and algorithm bugs.

Keywords—multiple programming languages, code quality, bug
fix commits, multiple regression models

I. INTRODUCTION

There is a large number of programming languages avail-
able to develop different kinds of software — the Wikipedia
Encyclopedia lists about 700 languages1. They include object-
oriented languages (e.g., Java, C++), functional languages
(e.g., Clojure, Haskell), procedural languages (e.g., C, Go), and
many more, each with its own advantages and disadvantages.
Some languages have been used for a long period of time
(e.g., C), whereas others have only been around for few years
(e.g., Go). The wide variety of programming languages gives
developers a plethora of options to choose from.

Developers often leverage the strengths of multiple lan-
guages to cope with challenges of building complex software.
By using languages that complement one another, perfor-
mance, productivity, and agility may be improved. For exam-
ple, to build web applications developers often use a server side

1https://en.wikipedia.org/wiki/List of programming languages

language such as Perl, PHP or Python and client-side language
like JavaScript. Also, many popular software available in the
market are implemented in multiple languages. For example,
the Linux2 operating system is built using3 kernel written in C
with parts such as utilities and applications developed in C++,
Perl and Python. Similarly, OpenCV4, which is an open-source
computer vision library, is developed using a set of languages
including C++, C, Python, Java and JavaScript. Although using
multiple languages has advantages, unfortunately it also raises
a number of issues related to the increase in the complexity
of the software and the need for proper interfaces between
different languages. These issues may in turn translate to
software quality problems.

Past studies have studied characteristics of programming
languages by looking into a large number of projects in open
repositories. For example, Bissyande et al. studied popularity,
interoperability, and impact of programming languages by
analyzing a large number of open-source projects hosted on
GitHub [1]. They identified popular languages that are used
to implement many projects, languages that are often used
together, and correlations between individual language usage
with project success (measured in terms of number of forks and
watchers), number of issue reports, and team size. In a later
work, Ray et al. studied a large number (i.e., hundreds) of
popular projects from GitHub to analyze the effect of individ-
ual language usage on the number of bug fixing commits [2].
Different from Bissyande et al.’s work, they looked into bug
fixing commits instead of issue reports, which are often scarce
for projects hosted in GitHub [3]. They use negative bino-
mial regression (NBR) to analyze the relationships between
different languages and number of bug fixing commits. They
found that some languages have significant relationships with
bug proneness. Moreover, compared to procedural or scripting
languages, functional languages had weaker relationships to
bug proneness. Unfortunately, despite this recent interest in
analyzing characteristics of programming languages from a
large number of projects in open repositories, to the best of our
knowledge, there has been no large-scale study on the impact
of the usage of multiple languages on bug proneness.

To fill this gap, we analyze a large number of popular
repositories in GitHub and extract information such as lan-
guages used and number of bugs. We run a parser that supports

2https://www.linux.com/
3In this study, we define a project uses a language if the project contains

parts of its code written in that language.
4http://opencv.org/
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a large number of languages to identify the languages used and
the extent to which they are used. Similar to Ray et al. [2],
we detect occurrences of bug fixing commits by analyzing
the commit logs. After all relevant pieces of information
are extracted, we build several regression models to examine
the relationship between multiple language usage and bug
proneness, while controlling for factors such as project age,
project size, team size, and number of commits.

We examine the following research questions:

RQ1: Does the use of more languages correlate with higher
bug proneness?

RQ2: Are some languages more bug prone when they are
used with other languages?

RQ3: What are the relationships between multi-language
usage and bugs of various categories?

The contributions of our work are as follows:

1) We are the first to perform a large-scale study to analyse
the impact of the usage of multiple languages in a project
to its bug proneness.

2) We identify languages that are more bug prone when used
in a multi-language setting.

3) We also identify the impact of multiple-language usage
to bug proneness for bugs in various categories.

4) We release our dataset publicly to allow for others to
replicate our findings and investigate other interesting
characteristics of multiple-language usage.

The structure of the paper is as follows. In Section II, we
elaborate the way we collect our dataset and its characteristics,
along with the statistical methods that we use to analyze the
data. In Section III, we answer the three research questions
we listed above. We discuss implications in Section IV and
threats to validity in Section V. Section VI describes related
work. We conclude with future work in Section VII.

II. METHODOLOGY

In this section, we first present how we collected our dataset
and some basic statistics of our dataset in Section II-A. We
then present a semi-automated classification process that we
follow to assign bug fixing commits to various categories in
Section II-B. Next, we present the analysis method and answer
our research questions in Section II-C.

A. Data Collection

To study whether the usage of multiple programming
languages within a single project has an impact on code
quality, we consider the same top 17 languages investigated
by Ray et al. [2]. For each of the 17 languages, we select the
top 50 projects primarily written in that language. We collect
a new dataset because Ray et al. do not make their dataset
public. Table I shows for each of the 17 languages, the top-3
most popular projects that are implemented primarily in the
language. Our dataset consists of projects written in a single
language as well as projects written in multiple languages.
We elaborate the detail of the data collection process in the
following paragraphs.

Table I: Top three projects in each language

Primary Language Projects

C linux, redis, php-src
C++ node-webkit, phantomjs, textmate
C# corefx, mono, SignalR
Objective-C AFNetworking, GPUImage, SDWebImage
Go docker, build-web-application-with-golang, kubernetes
Java elasticsearch, storm, SlidingMenu
CoffeeScript atom, coffee-script, hubot
JavaScript bootstrap, d3, node
TypeScript bitcoin, dogecoin, litecoin
Ruby rails, gitlabhq, jekyll
Php laravel, CodeIgniter, yii
Python flask, django, reddit
Perl gitolite, showdown, dotfiles
Clojure LightTable, clojurescript, leiningen
Erlang otp, ejabberd, mochiweb
Haskell pandoc, yesod, Haxl
Scala PredictionIO, scala, akka

Retrieving popular projects. To retrieve projects primar-
ily written in each language from GitHub, we use GitHub
Archive5. GitHub Archive is a database that records the public
GitHub timeline activities to provide easy access for further
analysis. The archive stores more than 20 different event
types corresponding to new commits, commenting, forking,
pull requests, issue tracking, and adding developers to a
project. The archive is available as a public dataset on Google
BigQuery6 and is updated automatically on an hourly basis.
Google BigQuery enables users to run SQL-like queries over
the entire dataset.

For each selected language, we retrieve a list of GitHub
repositories primarily written in that language by using the
Google BigQuery interface of GitHub Archive7. Then, we
count the number of stars acquired by each repository by
counting occurrences of events of type WatchEvent8. The
number of stars is an indicator of the popularity of a project,
because it relates to the number of people who are interested
in a project as well as the number of forks for that project [4],
[5]. Next, for each language, we download the top 50 projects
having highest number of stars using the git clone command.
We discard all projects with less than 256 commits, to ensure
that the selected projects have sufficient development history.
The value 256 is the first quartile commit count of the 850
projects. The filtering process leaves us with 628 projects for
our study.

Analyzing project evolution history. Following Ray et al.’s
methodology, for each of the 628 projects, we retrieve the com-
mit logs of non-merge commits using the git log –no-merges
–numstat command. We obtain the author, commit date, and
descriptive message of each of the non-merge commits. In
addition to these pieces of information, the command also
lists the files that are changed by a commit, together with the
number of added and deleted lines for each file. Based on the
pieces of information from the commit log, we calculate the
age of a project by taking the difference between the initial
commit date and the latest commit date (in days), the size of
a project by calculating the number of lines of code in it, the
total number of non-merge commits, and the total number of

5https://www.githubarchive.org/
6https://cloud.google.com/bigquery
7GitHub Archive stores the primary language used in a project.
8https://developer.github.com/v3/activity/events/types
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Table II: Basic statistics of the dataset. Number of Associated Languages = number of other programming languages used
together with the corresponding primary language.

Project Details Total Commits BugFix Commits

Primary Number of Number of Number of SLOC Period Number of Code Churn Number of Code Churn
Language Projects Associated Developers (KLOC) Commits (KLOC) Bug Fixes (KLOC)

Languages

C 104 9 25,203 17,350 4/1999 to 10/2015 780,153 229,411 258,822 42,736
C++ 94 12 6,855 14,179 7/2000 to 10/2015 284,331 250,238 112,591 63,881
C# 46 8 4,818 8,848 6/2001 to 10/2015 235,048 138,719 69,974 15,786
Objective-C 38 4 2,319 378 7/2008 to 10/2015 30,048 16,617 7,561 1,031
Go 41 10 6,297 4,013 3/2008 to 10/2015 117,282 33,134 32,371 4,486
Java 84 10 5,456 5,004 3/2006 to 10/2015 156,153 105,063 58,922 21,412
CoffeeScript 44 3 3,930 564 12/2009 to 10/2015 80,613 25,016 14,267 2,630
JavaScript 245 13 10,536 3,596 3/2006 to 10/2015 123,500 45,256 33,498 6,254
TypeScript 42 8 4,941 16,792 5/2002 to 10/2015 188,698 167,050 51,970 18,531
Ruby 87 8 24,184 2,991 1/1998 to 10/2015 337,457 46,014 67,619 6,577
Php 59 4 12,145 2,959 4/2003 to 10/2015 218,751 77,268 73,700 10,221
Python 152 5 11,397 1,864 7/2005 to 10/2015 199,974 37,691 59,670 6,332
Perl 38 5 1,482 297 1/2004 to 10/2015 38,231 7,944 7,649 418
Clojure 46 5 2,171 432 4/2008 to 10/2015 41,588 5,650 6,994 511
Erlang 36 7 2,429 2,670 5/2001 to 10/2015 77,411 24,425 15,579 1,977
Haskell 37 5 4,158 1,053 4/2004 to 10/2015 128,149 21,834 24,558 4,612
Scala 42 8 5,698 2,319 2/2003 to 10/2015 133,754 70,807 31,044 24,287

Summary 628 134,019 85,309 1/1998 to 10/2015 3,171,141 1,302,137 926,789 231,682

developers who contribute code to each project. For project
size, we do not consider the number of files but rather the
number of lines of code as the size of files can vary a lot.
We use these statistics as control variables in our regression
model.

We also identify all bug fixing commits made in each
project using the same list of error related keywords (i.e., ‘er-
ror’, ‘bug’, ‘fix’, ‘issue’, ‘mistake’, ‘incorrect’, ‘fault’, ‘defect’,
‘flaw’) used by Ray et al. [2]. To identify bug fixing commits,
we check if the descriptive message in the log of each commit
contains one of these keywords. Next, we calculate the total
number of bug fix commits per project.

Identifying programming languages used. To identify the
programming languages used to implement each project, we
run the CLOC9 tool on the latest revision of the project.
CLOC is capable of counting the total number of lines of
source code, blank lines and comment lines of files in a given
repository. The tool can detect around 159 file extensions. For
each project, we first run CLOC to obtain the list of languages
used in the project, along with the number of lines of code
written in each of the detected languages.

We also obtain the languages associated with each non-
merge commit, based on the extensions of the changed files.
For each project, we calculate the total number of commits
per each detected language based on this information. Next,
for each project, we exclude some of the detected languages,
if the language has less than 11 commits. The value 11 is
the first quartile of the total number of commits associated
with each detected language per project. This filtering ensures
that we consider only languages corresponding to significant
activity within a given project. This leaves us with a dataset
containing 297 projects written in a single language and 331
projects written in multiple languages.

Table II shows some basic statistics of our dataset. The
second column of the table (i.e., Project Details) shows infor-

9http://cloc.sourceforge.net/

mation of projects in our dataset that are written primarily
in one of the 17 languages. The third column (i.e., Total
Commits) shows the total number of commits, containing code
written in each of the languages, along with the total number
of lines of code churned (i.e., added, deleted, or modified) by
those commits. The fourth column (i.e., Bug Fix Commits)
corresponds to commits that are bug fixes and describes their
numbers and the total number of lines of code churned by
those commits, for each of the 17 languages. From the table,
we can note that our dataset consists of 628 projects, 134
thousand developers, 3.17 million commits and 926,789 bug
fixing commits.

Table III shows what are the other languages that are
used together with each primary language considering projects
written in multiple languages.

Table III: Languages used with each primary language

Primary Language Languages Used with the Primary Language

C Java, C++, Ruby, PHP, Python, Javascript, Perl, Objective-C,
TypeScript

C++ Javascript, C, Java, Objective-C, Python, Ruby, CoffeeScript,
PHP, Perl, Haskell, C#, TypeScript

C# C++, C, Javascript, Ruby, Perl, Python, Objective-C, Java
Objective-C Python, Javascript, C, Ruby
Go C++, TypeScript, Javascript, Ruby, C, Python, Perl, Java, PHP,

Objective-C
Java C++, C, Python, Javascript, Clojure, Perl, Ruby, Objective-C,

C#, Scala
CoffeeScript Javascript, Ruby, Python
JavaScript C#, PHP, C++, Clojure, CoffeeScript, Ruby, Erlang, Python,

Haskell, Java, Go, TypeScript, Scala
TypeScript C++, Java, Python, Javascript, CoffeeScript, C, Perl, PHP
Ruby CoffeeScript, Javascript, Python, C++, C, Java, Perl, PHP
PHP Javascript, Python, Perl, C
Python Javascript, C, C++, CoffeeScript, PHP
Perl Javascript, Java, Python, C++, C
Clojure Javascript, Java, C, Objective-C, Ruby
Erlang C, Python, Javascript, PHP, C++, Java, Clojure
Haskell C, Javascript, Python, Perl, Java
Scala Java, Ruby, Javascript, Perl, C#, Python, CoffeeScript, Clojure

B. Categorizing Bugs

Developers often leave important pieces of information in
commit logs while fixing software bugs. Such important pieces
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Table IV: Categories and distribution of bugs in the training and overall dataset

Bug Type Bug Search Training Training Overall Overall
Description Keywords/Phrases Data Training Data

(Count)
Data
(%)(Count) (%) (Count) (%)

Cause

Algorithm (Algo) algorithmic and logical errors algorithm 47 0.05 688 0.07
Concurrency (Conc) multi-threading or deadlock, race condition, synchronization error, 917 0.99 9,290 1.01

multi-processing mutex, semaphore, starvation, locking, multiple
related issues threads

Memory (Mem) incorrect memory handling memory leak, null pointer, buffer overflow, heap 3,434 3.74 34,320 3.74
overflow, dangling pointer, double free,
segmentation fault, segfault, space leak,
dereference, memory corruption, memory
overrun, heap overrun

Programming (Prog) generic programming errors exception handling, error handling, type error, 86,620 94.25 864,645 94.10
typo, compilation error, copy-paste error,
refactoring, missing switch case, faulty
initialization, default value, declaration, syntax,
counter, signature, variable, regexp, cut-paste
error, operator, inconsistent name, parameter,
argument, procedureargument, procedure

Impact
Security (Sec) correctly runs but can be

exploited by attacks
buffer overflow, security, password, oauth,
ssl,vulnerability, attack

2,916 3.17 25,692 2.80
exploited by attacks ssl,vulnerability, attack

Performance (Perf) correctly runs with delayed
response

optimization problem, performance, latency,
speed, delayed, throughput

1,537 1.67 13,750 1.50
response speed, delayed, throughput

Failure (Fail) crash or hang reboot, crash, hang, restart, freeze 6,330 6.89 61,275 6.67

Unknown (Unkn) not part of the above seven 869 0.95 9,663 1.03
categories

of information may include the root cause of the bug, how
the bug affects the functionality of the software, and the fixes
made to correct the bug. We use these pieces of information
to categorize the identified bug fix commits of each project,
taking a similar approach followed by Ray et al. [2].

Each bug fix commit is categorized based on its cause
and impact. The cause and impact dimensions include several
categories. The cause categories are: algorithmic, concurrency,
memory, programming, and unknown. The impact categories
are: security, performance, failure, and unknown. Each bug fix
commit is assigned a cause and an impact category following a
semi-automated classification process. For example, a commit
with log message “Fix a crash caused by uninitialized variable
m transport” of the TrinityCore10 C++ project corresponds to
a bug caused by an uninitialized variable (i.e., a programming
error) and the impact was a crash (i.e., a failure). Thus, this bug
fix commit is assigned to the programming category (for cause)
and failure category (for impact). The classification process
is performed by following the two steps described below. In
the first step, we iteratively match a small number of bug
fixing commits against multiple lists of keywords (which gets
manually refined at the end of each iteration) to get a training
set of labeled commits. In the second step, we use a classifier
built from the training data to label the rest of the bug fixing
commits. We elaborate these two steps below.

Step 1: Keyword matching. We randomly select 10% of the
total bug fixing commits (926,789) obtained from the 628
projects. We employ semi-automated way to classify each
bug fixing commit using a set of keywords and phrases. For
example, if a bug fixing commit log contains “deadlock”, “race
condition” or “synchronization error”, we classify the commit
as a concurrency bug. We classify each commit separately for
its cause and impact category. Some commit logs may contain
keywords from multiple cause and impact categories. Such
cases are resolved by assigning the category that matches the
maximum number of keywords in the logs. At the end, one

10https://github.com/TrinityCore/TrinityCore

category is assigned for cause and another for impact.

To reduce the number of commits with both cause and im-
pact assigned to the unknown category, we iteratively increase
the number of keywords and phrases used for the classification
process. Our first iteration uses the keywords proposed by Ray
et al. [2]. Unfortunately, at the end of this iteration, there were
still many commits that belonged to the unknown category. We
contacted Ray et al. who advised us to increase the number
of keywords. Thus, we performed additional iterations. At the
end of each iteration, we retrieved the most frequent words
from the commits assigned to the unknown category. Then,
we manually identified additional keywords for the cause
and impact categories. Next, we redid the classification of
the bug fixing commits using the expanded list of keywords
and phrases. We continued this process until the number of
commits with both their cause and impact assigned to the
unknown category is reduced to less than 1% of the training
data.

Table IV shows the descriptions of the bug categories
along with some of the keywords used to identify them. The
percentages do not add up to 100% because a bug fixing
commit can be assigned to both cause and impact categories.
The row corresponding to the category unknown at the bottom
of the table shows the number and percentages of bug fixing
commits that have both their cause and impact categories
assigned to the unknown category.

Step 2: Supervised classification. We use the labeled training
data created at the end of Step 1 to classify the remaining
90% of the bug fixing commits using a supervised learning
technique. We first convert the descriptive message in each
bug fixing commit log into a bag of words. Then, we identified
and removed commit-specific keywords that only had a single
occurrence in all bug fixing commit messages. Next, we
remove stop words and performed stemming using the popular
Porter stemming algorithm11. As the final step, we used
the well-known Support Vector Machine (SVM) classification

11http://tartarus.org/martin/PorterStemmer
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algorithm12 to create a classifier from the training data and to
classify the remaining bug fixing commits.

To evaluate the built SVM classifier, we randomly choose
270 bug fixing commits for manual inspection. Next, we
compared the results obtained using the built classifier with
the manual inspection result. Table V summarizes the precision
and recall obtained for each category. Precision for a category
refers to the proportion of bug fixing commits that are correctly
assigned to the category, among those that are assigned to
the category. Recall for a category refers to the proportion of
bug fixing commits that are correctly assigned to the category,
among those that truly belong to the category. We find that the
precision and recall are high (more than 80%) — similar to
the precision and recall of the classifier used by Ray et al. to
label their bug fixing commits.

Table V: Classifier precision and recall results

Precision Recall

Performance 100% 83.33%
Security 78.57% 73.33%
Failure 81.81% 90.00%
Memory 96.00% 80.00%
Programming 65.91% 96.67%
Concurrency 87.50% 70.00%
Algorithm 96.30% 86.67%

Average 86.58% 82.86%

The last two columns of Table IV summarizes the total
numbers and percentages of bug fixing commits classified to
each category by our two-step semi-automated classification
process. The results show that most of the bug fixing commits
are related to programming errors (94.10%). This is reasonable
because this category includes many common errors such as
issues with exception handling, typos, type errors, incorrect
initializations, incorrect control flows, compilation and build
errors, etc. A similar finding was reported by Ray et al. [2].
Around 3.74% of the bug fixing commits are related to
incorrect memory handling; 1.01% are related to concurrency
bugs, and 0.07% are related to algorithmic and logical errors.
When considering impact, we find that 6.67%, 2.80%, and
1.50% of the bug fixing commits belong to the failure, security,
and performance category respectively. Around 1.03% of the
bug fixing commits have both their cause and impact categories
assigned to the unknown category.

C. Statistical Method

We use regression analysis to study the relationship be-
tween a dependent variable and a set of independent variables
given a set of control variables. We consider the same depen-
dent and control variables that were used by Ray et al. [2] and
vary the independent variables based on our research questions.
Our dependent variable is the number of bug fixing commits
and control variables are project age (age), project size (size),
number of developers (developers), and total number of com-
mits (commits). The control variables are intuitively positively
correlated with the number of bug fixing commits. Projects of
longer age, of larger size, with more developers, and with more
commits, generally have more bug fixing commits. Similar to
Ray et al., we use negative binomial regression (NBR) [6] as

12https://www.csie.ntu.edu.tw/~cjlin/libsvm/

the regression analysis method. NBR is a generalized linear
model that can handle over-dispersion.

To check for excessive multi-collinearity, we compute
variance inflation factors (VIFs), which measure how much the
variances of the estimated coefficients in a regression model
are inflated because of linear dependencies among independent
and control variables. Although there is no threshold value
for VIF, we use the commonly accepted value of 5 [6].
We compute VIFs of all variables for all NBR models built
to answer our research questions and find that no multi-
collinearity problem exists.

Moreover, because the number of projects of each lan-
guage differs, our dataset is unbalanced. Thus, we employ
weighted effects coding [7] to deal with this data imbalance
problem. Weighted effects coding allows for a straightforward
interpretation of the coefficients learned by NBR for the inde-
pendent/control variables. Weighted effects coding represents
the relative effect of an independent/control variable on the
dependent variable, compared to the weighted mean of the
values of the dependent variable across all projects.

III. FINDINGS

In this section, we describe findings which answer each of
our three research questions.

A. RQ1: Does the use of more languages correlate with higher
bug proneness?

Motivation: A significant number of projects use multiple
programming languages in their implementations — 331 out of
the 628 projects in our dataset are implemented using multiple
programming languages. The usage of multiple programming
languages in a project potentially increases project complexity
and necessitate the creation of proper interfaces between
different languages. This raises a question as to whether the
usage of more programming languages is harmful to project
quality. This motivates us to analyse if adding more languages
significantly increases bug proneness measured by the number
of bug fixing commits.

Methodology: We use the NBR method described in Sec-
tion II-C with the number of languages used to implement
a project (num-langs) as the independent variable. The de-
pendent variable is the number of bug fixing commits. The
control variables are: project’s age, size, number of developers
(developers), and total number of commits (commits).

Findings: Table VI shows the coefficients of the regression
model built using NBR and the impact of various control
and independent variables on the dependent variable. We
can observe that the impact of all independent and control
variables are statistically significant — p-values are all < 0.05.
Focusing on the independent variable, the result shows that
the coefficient (Coeff.) is 0.273, indicating that the number
of languages has most impact on the number of bug fixing
commits.

The coefficient of an independent/control variable corre-
sponds to the expected change in the log of the dependent
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variable, when there is a one unit change in the indepen-
dent/control variable and all other variable values are held
constant. From the coefficient of num-langs in Table VI, we
can infer that with a unit increase in the number of languages
of a project, we can expect an increase in the number of bug fix
commits by a factor of e0.273 = 1.31. For example, consider
a project with 100 bug fixing commits. If the project is to be
implemented in one more programming language, the number
of bug fixing commits is expected to increase to 100 × 1.31
= 131 bug fixing commits. From the table, we can also note
that implementing a project in one more language has more
impact to bug proneness than adding a unit to the project’s age
(i.e., one more day), size (i.e., one more SLOC), number of
developers (i.e., one more developer), and commits (i.e., one
more commit).

Table VI: Coefficients of the negative binomial regression
model for RQ1. Coeff. = coefficient, age = time between the
first commit and the last commit (in days), size = project size
(in SLOC), developers = number of developers in the project,
commits = total number of commits, num-langs = number of
unique languages used in the project. AIC = 9164.93, BIC =
9196.03, Log Likelihood = -4575.46, Deviance = 695.19.

Coeff. Std. Error z-val Pr(> |z|)
(Intercept) 4.718 0.089 53.19 0.000 ***

age 2.939e−04 3.794e−05 7.75 0.000 ***

size 3.390e−07 1.310e−07 2.59 0.010 **

developers 9.807e−04 1.107e−04 8.86 0.000 ***

commits 6.048e−05 5.177e−06 11.68 0.000 ***
num-langs 0.273 0.029 9.50 0.000 ***
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Number of languages has a significant impact on increasing
bug proneness.

B. RQ2: Are some languages more bug prone when they are
used with other languages?

Motivation: From RQ1, we find that in general, increasing the
number of languages increases bug proneness. In this research
question, we want to identify languages that are more bug
prone when used in a multi-language setting.

Methodology: To answer RQ2, we introduce 34 independent
variables. Seventeen of these variables correspond to the usage
of one of the 17 languages as the primary language of a project
in a single-language setting. The other seventeen correspond
to the usage of the 17 languages as the primary language of a
project in a multi-language setting. We use the same control
and dependent variables as RQ1.

Findings: Table VII shows the impact of using each of the
17 languages on the number of bug fixing commits in a
single-language (denoted as 〈language〉S) and multi-language
(denoted as 〈language〉M ) setting. From the table, we can note
that the coefficients of the languages are not always statistically
significant. The statistically significant ones are marked with
one or multiple asterisks. There are 20 of them. For those that
are not statistically significant (i.e., 14 of them), unfortunately
not much conclusion can be drawn.

For some languages, the coefficient for the single-language
setting is significant, while the one for the multi-language
setting is not (four languages: CoffeeScript, Ruby, Erlang,
Haskell). For some other languages, it is the other way around
— the coefficient for the multi-language setting is significant,
while the one for the single-language setting is not (four lan-
guages: C, Go, PHP, Python). For yet other languages, their co-
efficients for both settings are not significant (three languages:
C#, JavaScript, Perl). Unfortunately, for such languages (11
languages), we cannot compare the two settings (i.e., single-
language and multi-language), because the coefficient of at
least one of the settings is inconclusive.

Thus, we focus on languages with statistically significant
coefficients for both single and multi-language settings. We
find six languages with statistically significant coefficients:
C++, Objective-C, Java, TypeScript, Clojure, and Scala. For all
of them, we consistently find that their coefficients are larger
when they are used in a multi-language setting. This means
that there is a statistically significant support that using these
languages in a multi-language setting (rather than a single-
language setting) increases bug proneness. The findings for the
other eleven languages do not refute the six languages, because
we can not conclude when coefficients are not statistically
significant.

Six languages including C++, Objective-C, Java, TypeScript,
Clojure, and Scala are more defect prone when they are used
with other languages. The results are inconclusive for the
other eleven languages.

C. RQ3: Does the correlation between number of languages
and bug proneness exist for various bug categories?

Motivation: RQ1 finding highlights that number of languages
is positively and significantly correlated to bug proneness.
Because there are different categories of bugs, in this research
question we investigate whether the positive correlation re-
mains considering various bug categories. Additionally, we
would like to investigate the categories of bugs that are the
most impacted by the number of languages. Results of these
investigations will shed light on the relationship between the
use of multiple programming languages and bugs.

Methodology: To answer RQ3, we build multiple NBR mod-
els, one for each bug category i.e., four models for different
categories of bug causes (memory, concurrency, programming
and algorithm) and three for different categories of bug impacts
(security, failure and performance). For each NBR model, we
use the same variables as for RQ1.

Findings: Table VIII shows the coefficients of the NBR
models built for the four bug cause categories. For each of
the categories, we find that number of languages still has
a significant impact on the number of bug fixing commits
(p-value < 0.001). The coefficients are all larger than zero
indicating that the more the languages, the larger the number
of bug fixing commits of each category is likely to be.

Comparing the coefficients, among the four bug categories,
the effect of the number of languages is higher for memory
(coefficient = 0.421), concurrency (coefficient = 0.396) and
algorithm (coefficient = 0.380) bugs than programming bugs
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Table VII: Coefficients of the negative binomial regression model for RQ2. AIC = 9125.36, BIC = 9298.62, Log Likelihood =
-4523.68, Deviance = 686.59

Coeff. Std. Error z-val Pr(> |z|)
(Intercept) 5.208 0.074 70.864 < 2e−16 ***

age 3.091e−04 3.828e−05 8.075 6.77e−16 ***

size 4.143e−07 1.462e−07 2.833 0.005 **

developers 7.672e−04 1.068e−04 7.181 6.92e−13 ***

commits 6.077e−05 5.286e−06 11.498 < 2e−16 ***

CS 0.024 0.291 0.083 0.934
CM 0.331 0.136 2.250 0.024 *
C++S -0.550 0.275 -2.005 0.045 *
C++M 0.609 0.138 4.403 0.000 ***
C#S 0.044 0.159 0.281 0.779
C#M 0.276 0.194 1.421 0.155
Objective-CS -0.416 0.167 -2.497 0.013 *
Objective-CM 0.909 0.345 2.634 0.008 **
GoS 0.193 0.216 -0.893 0.372
GoM 0.475 0.152 3.129 0.002 **
JavaS -0.568 0.164 -3.473 0.001 ***
JavaM 0.530 0.192 2.767 0.006 **
CoffeeScriptS -0.798 0.347 -2.302 0.021 *
CoffeeScriptM -0.245 0.244 -0.101 0.920
JavascriptS 0.164 0.130 1.264 0.206
JavascriptM 0.079 0.109 0.725 0.469
TypeScriptS -3.664 0.915 -4.005 0.000 ***
TypeScriptM 0.542 0.131 4.139 0.000 ***
RubyS -0.541 0.164 -3.297 0.001 ***
RubyM 0.262 0.182 1.444 0.149
PHPS -0.127 0.176 -0.721 0.471
PHPM 0.695 0.181 3.844 0.000 ***
PythonS -0.092 0.156 -0.589 0.556
PythonM 0.671 0.186 3.614 0.000 ***
PerlS -0.482 0.273 -1.768 0.077
PerlM 0.362 0.387 0.935 0.350
ClojureS -0.730 0.139 -5.257 0.000 ***
ClojureM -0.686 0.274 -2.508 0.012 *
ErlangS -0.883 0.150 -5.876 0.000 ***
ErlangM 0.100 0.258 0.389 0.697
HaskellS -0.602 0.171 -3.515 0.000 ***
HaskellM -0.037 0.198 -0.188 0.851
ScalaS -0.629 0.213 -2.948 0.003 **
ScalaM 0.371 0.159 2.338 0.019 *
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05; S=Single-language, M=Multi-language

(coefficient = 0.275). Programming bugs is the largest category
of bugs and thus its coefficient is close to the coefficient
estimated for RQ1 (i.e., considering all bugs). The three other
bug categories often correspond to more complicated bugs
involving incorrect memory handling, concurrency, and algo-
rithmic errors. To avoid these bugs, developers must carefully
consider many factors and deal with the complexity of a
software system (c.f., [8], [9]) which may be made worse with
the use of multiple languages.

Table IX shows the coefficients of the NBR models built
for the three bug cause categories. Again, we find that number
of languages still has a significant impact on the number of
bug fixing commits (p-value < 0.001). The coefficients are all
also larger than zero indicating that the more the languages,

the larger the number of bug fixing commits of the three
categories is likely to be. Comparing the coefficients, we find
that the effect of the number of languages is higher for bugs
causing performance issues (coefficient = 0.339) and failures
(coefficient = 0.336) than those causing security issues (coeffi-
cient = 0.315). This result is reasonable because interaction of
multiple languages may often result in performance problems
caused by the additional runtime overhead due to infrastructure
libraries [10], [11], [12].

Number of languages has a positive and significant impact
on the number of bug fixing commits for all categories of
bugs. The impact is highest for memory, concurrency, and
algorithm bugs.
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Table VIII: Coefficients of the negative binomial regression models for different bug cause categories.

Memory Concurrency Programming Algorithm
Coeff. Std. Err. Sig. Coeff. Std. Err. Sig. Coeff. Std. Err. Sig. Coeff. Std. Err. Sig.

(Intercept) 0.297 0.148 * 0.265 0.160 4.651 0.089 *** -2.855 0.298 ***

age 4.078e−04 6.230e−05 *** 6.296e−05 6.750e−05 2.951e−04 3.804e−05 *** 4.031e−04 1.160e−04 ***

size 8.519e−07 2.107e−07 *** 1.978e−07 2.283e−07 3.162e−07 1.313e−07 * 1.062e−06 3.465e−07 **

developers 4.875e−04 1.782e−04 ** 4.272e−04 1.899e−04 * 9.973e−04 1.110e−04 *** 4.240e−04 2.955e−04

commits 4.017e−05 8.335e−06 *** 5.308e−05 8.942e−06 *** 6.074e−05 5.191e−06 *** 3.036e−05 1.378e−05 *
num-langs 0.421 0.047 *** 0.396 0.050 *** 0.275 0.029 *** 0.380 0.085 ***

AIC 4102.07 3270.45 9091.50 1057.20
BIC 4133.17 3301.55 9122.60 1088.30
Log Likelihood -2044.03 -1628.23 -4538.75 -521.60
Deviance 705.23 666.22 695.66 314.83

Residual Deviance (NULL) 1935.00 1373.57 2449.50 572.37
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table IX: Coefficients of the negative binomial regression models for different bug impact categories.

Security Failure Performance
Coeff. Std. Err. Sig. Coeff. Std. Err. Sig. Coeff. Std. Err. Sig.

(Intercept) 0.239 0.145 1.202 0.127 *** -0.281 0.159

age 4.721e−04 6.092e−05 *** 3.880e−04 5.375e−05 *** 3.526e−04 6.620e−05 ***

size 6.324e−07 2.061e−07 ** 8.896e−07 1.832e−07 *** 1.400e−06 2.188e−07 ***

developers 1.106e−03 1.735e−04 *** 7.990e−04 1.549e−04 *** 5.555e−04 1.858e−04 **

commits 4.925e−05 8.131e−06 *** 5.372e−05 7.246e−06 *** 4.426e−05 8.680e−06 ***
num-langs 0.315 0.046 *** 0.336 0.041 *** 0.339 0.050 ***

AIC 4116.13 5171.43 3286.50
BIC 4147.23 5202.52 3317.60
Log Likelihood -2051.07 -2578.71 -1636.25
Deviance 703.94 725.60 661.89

Residual Deviance (NULL) 1785.47 2107.50 1660.21
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

IV. DISCUSSION

In this section, we first highlight the implications of our
findings in Section IV-A. We then acknowledge the limitations
of our study in Section IV-B.

A. Implications

We briefly describe the implications of our findings on
developer activities and future research:

Developers must weigh the cost of using multiple lan-
guages on software quality. Many software projects are
developed in multiple languages. A project team may have
multiple members who are proficient in different programming
languages and they may choose to implement features and
contribute code in their favorite languages. Although using
multiple languages may bring several benefits (e.g., productiv-
ity), developers must to be careful while choosing languages.
Our results show that adding new languages to implement
a project can significantly increase the number of bug fix
commits. Additionally, several popular languages like C++,
Objective-C, Java, TypeScript, Clojure and Scala become more
defect prone when used in multi-language setting. Our findings
suggest that developers should not unnecessarily use more
languages because it may impact software quality. The usage
of an additional programming language in the implementation
of a project should be supported with sufficient justification.

More research to quantify the benefit of multiple language
use is needed. Although anecdotal evidence exists on the
benefit of using multiple languages, unfortunately, no research
study has empirically demonstrated these benefits especially
via large-scale studies. We encourage future researchers to

perform such studies so that the benefits of proper usages
of multiple programming languages can be measured and
quantified. Developers can then pick languages in a more
informed way by considering the trade-offs of multiple benefit
and cost factors.

More research to identify design patterns and anti-patterns
in multiple language use is needed. The fact that successful
projects, like Linux and OpenCV, are implemented in multiple
languages suggests that good practices (i.e., design patterns)
exist in the usage of multiple languages in implementing
a project. Our findings which highlight that adding more
languages significantly increases bug proneness suggests that
poor practices (i.e., anti-patterns) exist too. We encourage
researchers to identify these design patterns and anti-patterns
that can help developers to better use multiple languages in
their projects and thus benefit from the strengths of each of the
languages without sacrificing software quality. It would also
be interesting to identify common bug patterns that may affect
projects written in a particular set of programming languages
(c.f. [13]).

More research is needed to identify languages that are
less (or more) compatible when used together. Our study
highlights languages that are more bug prone when used in
the multi-language setting. However, we have not looked into
identifying pairs or even sets of languages that are more com-
patible with one another (i.e., their use results in no increase
in bug proneness, or even a reduction in bug proneness), and
those that are less compatible (i.e., their use results in a major
increase in bug proneness). It would be interesting to identify
these pairs and perform a qualitative study to identify reasons
why they are less (or more) compatible to be used together.
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B. Limitations

First we only consider the latest revision of the project. It
is possible that over time developers added or deleted code in
a new language not present in the current revision. Second, our
projects belong to different domains and thus results across all
domains (reported in this work) may differ from results for
a particular domain. Third, we check bug proneness of each
language in single-language and multi-language settings. We
do not investigate if certain pairs of languages are likely to be
more buggy when they are used together. Fourth, we do not
differentiate cases when code written in different languages
are dependent or independent of one another.

V. THREATS TO VALIDITY

Our study uses a similar methodology that was used by
Ray et al. [2]. Thus, our study shares many threats to validity
as this prior work.

Construct Validity: First, we use bug fixing commits as a
proxy for bug proneness. We choose not to use number of
issue reports as a proxy because not all the projects use an
issue tracking system and not all bugs are logged in the
issue tracking system [3]. Still, we acknowledge that a bug
may be represented by more than one bug fixing commits.
Furthermore, some bug fixing commits may not be described as
such in commit logs and thus may be missed in our study. Un-
fortunately, manually identifying the exact number of bugs for
a large dataset like ours is very difficult. Second, we categorize
bug fixing commits into different cause and impact categories
using a semi-automated classification process. It is possible
that some bugs are wrongly categorized. To minimize the threat
to validity, two of the authors performed some manual steps
of the classification process (e.g., the identification of ground
truth labels for the 270 bug fixing commits). The two authors
independently perform such manual steps, compare results, and
reconcile any differences. Third, when we count the number
of developers it is possible that the same developer might use
different email addresses and we count the developer multiple
times.

Internal Validity: Our study relies on CLOC to identify the
languages used by a project. The tool may have wrongly
identify languages used by a project (or commit) and the
number of lines of code written in a language for a project (or
a commit). To reduce the threat to validity, we have manually
checked some randomly selected commits and verified that the
CLOC tool behaves correctly. We do not consider complexity
of the applications which might impact the results. However,
we do consider size of the applications as one of the control
variables. Furthermore, we do not check for and remove dead
code.

External Validity: We consider projects hosted on GitHub.
As such, our results may not be valid for projects on other
platforms. However, we reduce this threat by analysing a large
number of projects.

VI. RELATED WORK

We first highlight related work on programming language
adoption and use in Section VI-A. Next, we present related

work that investigate the impact of programming languages
on software quality in Section VI-B. Moreover, we present
some large scale studies that analyze GitHub in Section VI-C.

A. Programming Language Adoption and Use

Meyerovich and Rabkin study factors that impact language
adoption by analyzing over 200,000 projects from Source-
Forge, 590,000 projects tracked by Ohloh, and multiple surveys
of thousands of developers [14]. They study several aspects
such as language popularity, niche languages, developer mi-
gration from one language to another, demographic influence
on language selection, process of learning languages and belief
about languages. They find that language adoption follows a
power law and it is affected by open-source libraries, existing
code and prior experience of developer, whereas language
features such as performance and reliability do not have an
impact. Furthermore, developers learn and forget different lan-
guages throughout their career and exposure through education
results in selecting varied languages whereas age has a little
effect on language adoption.

Bissyande et al. conduct a large scale study on 100,000
open-source projects from GitHub to analyze popularity and
interoperability of programming languages and their impact on
project success (measured in terms of its popularity) [1]. They
collect data such as developer contributions and issue reports
from projects written in 30 programming languages of different
types, for example, object-oriented, procedural, scripting, and
functional. They find that Ansi C, Ruby and Python are popular
languages among developers, and JavaScript, Shell and Ruby
are often used with other programming languages.

Okur et al. study open-source projects that adopted Mi-
crosoft’s parallel libraries – Task Parallel Library (TPL) and
Parallel Language Integrated Query (PLINQ) – to understand
the usage of parallel libraries by developers [15]. They analyze
a total of 655 open-source projects written in C#, consisting of
a total of more than 17 million lines of code (mLOC). Their
results show that developers often unnecessarily make parallel
code complex, applications of different sizes adopt libraries
differently, and misuse of parallel constructs leads to code with
parallel syntax but sequential execution.

Karus et al. study 22 open-source projects to analyze the
evolution of different languages and artifacts like documen-
tation, binaries and graphic files [16]. The 22 projects were
developed in several language such as C, C++, Java, Python,
Ruby, PHP and JavaScript. They find that most of the Java
developers work with XML, while only half of C developers
did so and new developers use fewer file types for their initial
commits. Furthermore, authors find that knowing multiple
languages is not enough but developers must also understand
various programming paradigms.

Chen et al. study the evolution data of 17 different
languages including C, C++, Java, Basic, Cobol, Fortran
and 11 other languages [17]. They analyse several intrinsic
factors such as generality, reliability, machine independence,
extensibility, maintainability, efficiency, simplicity, and imple-
mentability. They also consider several extrinsic factors such as
organizational, government and technology supports. They find
that factors such as generality, reliability, machine indepen-
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dence, and extensibility have correlations with the number of
developers who choose the language as their primary language.

Similar to the above mentioned studies, we also investigate
the adoption of languages. In particular, we investigate the
adoption of multiple languages in single projects. We find that
a close to half of the top projects that we download from
GitHub (331 out of 628 projects) are implemented in more than
one language. Different from Bissyande et al.’s study, which
also analyze the interoperability of languages, we perform
several data cleaning steps, e.g., focusing on popular projects,
ignoring projects with little activity, etc. Due to the large
number of projects in GitHub that are of poor quality [18],
this data cleaning step is necessary.

B. Programming Language and Software Quality

Nanz et al. study a dataset of Rosetta code containing
8,087 solutions of 745 common programming tasks in 8
different languages to investigate several characteristics such
as size of the program, running time, memory usage and
defect proneness [19]. They find that functional and scripting
languages help in writing concise code and languages that
compile into bytecode produce smaller executables compared
to the ones that produce native machine code.

Bhattacharya et al. study four open-source projects which
use C and C++, i.e., Firefox, Blender, VLC Media Player and
MySQL to understand the impact of languages on software
quality [20]. They compute several statistical measures while
controlling for factors, such as developer competence and
software process. They find that applications previously written
in C are migrating to C++ and C++ code is often of higher
quality, less prone to bugs, and easier to maintain than C code.

Pankratius et al. perform a controlled comparative study
on thirteen programmers who have worked on Java and Scala
projects, to analyze aspects such as effort, language usage,
performance, and programmer satisfaction [21]. They find that
Scala code is more compact than Java code, however, Java
scales better on parallel hardware.

Our study extends the above-mentioned studies by shed-
ding more insight into the relationship between programming
languages and software quality. We look into the effect of using
multiple programming languages on defect proneness. This has
not been investigated before in a prior work and thus comple-
ments them well. Our study highlights that the use of more
programming languages significantly impacts bug proneness.
Additionally, 6 out of the 17 languages that we analyze, i.e.,
C++, Objective-C, Java, TypeScript, Clojure, and Scala, are
more bug-prone when they are used with other programming
languages in implementing a software project. Furthermore,
the use of more programming languages adversely affects all
bug types with memory, concurrency, and algorithm bugs being
the prominent ones. These findings were not investigated and
reported by prior studies.

C. Other Large Scale Studies on GitHub

Casalnuovo et al. study 100 most popular C and C++
projects in GitHub to understand the correlation between
asserts and defect occurrence and their results show that asserts
have an effect on software quality [22]. Vasilescu et al. use

mixed-methods approach by surveying thousands of developers
and analysing thousands of projects in GitHub to investigate
the relationship between gender and tenure diversity on team
productivity and turnover [23]. Their findings suggest that
a gender and tenure diverse team has higher productivity.
Vasilescu et al. study 246 projects in GitHub to investigate
the impact of usage of Continuous Integration (CI) on quality
and productivity [24]. They find that teams using CI have more
pull requests accepted from core contributors as well as fewer
rejections from the external ones and using CI leads to finding
more bugs.

Gousios et al. investigate 291 projects written in various
languages to understand the pull-based software development
model on GitHub [25]. They find that only 14% of the active
projects use pull-requests and 60% of the pull-requests are
processed in a day. Kochhar et al. investigate 50,000 projects
to study the correlation between the presence of test cases and
various project development characteristics, including the lines
of code and the size of development teams [26], [27].

VII. CONCLUSION AND FUTURE WORK

Developers often leverage the strengths of different pro-
gramming languages to implement a software project. How-
ever, adding more languages in the implementation of a project
can potentially increase the complexity of the project, which
may translate into software quality issues. In this study, we
empirically investigate the impact of increasing languages used
to implement a project on bug proneness measured in terms
of the number of bug fixing commits. We analyze more than
600 projects written in 17 different languages from GitHub
and build regression models to study the effect of increasing
languages on bug proneness while controlling for various
factors such as project age, project size, number of developers,
and number of commits.

Our empirical study leads to the following findings:

1) Increasing the number of languages to implement a
project significantly increases bug proneness.

2) Six languages including C++, Objective-C, Java, Type-
Script, Clojure, and Scala are significantly more defect
prone when used in multi-language projects.

3) The impact of the number of languages to cause higher
bug proneness is significantly observed for all kinds of
bug categories. The impact is the highest for memory,
concurrency, and algorithm bugs.

As a future work, we would like to identify pairs of
languages that are less compatible and more bug prone. We
are also interested to investigate the types of bugs that affect
multi-language programs, and recommend mitigation strategies
to deal with them. We are also interested to expand our study
beyond the 17 languages considered in this paper.

DATASET

Our dataset is made publicly available and it can be down-
loaded from: https://github.com/smusis/multiple-languages.
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