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Abstract—Developers prefer to utilize third-party libraries 

when they implement some functionalities and Application 
Programming Interfaces (APIs) are frequently used by them. 
Facing an unfamiliar API, developers tend to consult tutorials as 
learning resources. Unfortunately, the segments explaining a 
specific API scatter across tutorials. Hence, it remains a 
challenging issue to find the relevant segments. In this study, we 
propose a more accurate model to find the exact tutorial 
fragments explaining APIs. This new model consists of a text 
classifier with domain specific features. More specifically, we 
discover two important indicators to complement traditional text 
based features, namely co-occurrence APIs and knowledge based 
API extensions. In addition, we incorporate Word2Vec, a 
semantic similarity metric to enhance the new model. Extensive 
experiments over two publicly available tutorial datasets show 
that our new model could find up to 90% fragments explaining 
APIs and improve the state-of-the-art model by up to 30% in 
terms of F-measure. 

Keywords—Application Programming Interface; Text 
Classification;Feature Construction 

I. INTRODUCTION 

Instead of writing code snippets themselves, developers 
usually tend to reuse existing Application Programming 
Interfaces (APIs) to accomplish programming tasks [1, 2]. API 
anchored programming is a typical software reuse technique 
which can speed up developing process [3]. Unfortunately, it is 
a challenge for developers to use an unfamiliar API correctly, 
thus API learning resources are welcomed for developers. To 
be able to use an unfamiliar API without mistakes, developers 
usually tend to refer to the API specifications as learning 
resources [4, 5]. API specifications explain the preconditions, 
parameters, exceptions and return values of the specific APIs 
[6]. However, they will not put the specific APIs into some 
particular context.  In contrast, tutorials are important learning 
resources which combine the functional explanations and code 
examples together. By referring to tutorials, developers can 
quickly know how to use the APIs correctly in specific 
situations. As a result, tutorials are key resources to the 
developers. 

However, there are some challenges for developers to find 
the API explanations in the tutorials. First, tutorials are usually 
structured as a series of programming topics with APIs mixed 
in different sections. As a result, it is hard to find related 
sections for a given API in the tutorials. Developers often have 

to go through the lengthy tutorials to locate API explanations. 
Thus, it is essential to split the whole tutorials into consistent 
fragments in terms of content. Second, APIs are often 
mentioned in an irrelevant fragment without being the topic of 
it. One fragment may contain more than one API, but the 
fragment cannot explain all the appeared APIs at the same time. 
Developers have to decide whether the fragment is really 
talking about the given API, since the API may be listed as an 
example or appear to compare against other APIs. In such 
situations, the fragment does not explain this API.  

Previous works have tried to discover tutorial fragments 
explaining APIs using a text classification model [1]. This 
model extracts a series of linguistic and structural features from 
the API-fragment pairs. These features are divided into five 
different groups according to their relevance, including real 
valued features, tutorial level, section level, sentence level 
features, and dependency based features. Real valued features 
detect the frequency of occurrence of the whole API and part 
of it. Tutorial level, section level, and sentence level features 
are all boolean or binary features which detect a predefined 
hypothesis. Dependency based features measure the 
dependency between the code-like terms. These features do not 
measure the similarity between APIs and fragments, since the 
information is unmatched. APIs usually consist of several 
terms, while the fragments contain hundreds of terms. After the 
features of each API-fragment pair are extracted, and the class 
label, namely whether the fragment explains the API or not is 
annotated, the training set is fed into the MaxEnt classifier to 
train the model. Given a new API-fragment pair, the trained 
model can predict the class label for it. The model can discover 
the fragments explaining APIs with an average F-measure of 
75.6%.  

However, the existing model does not consider the domain 
specific knowledge of APIs effectively. A given API is usually 
introduced along with other APIs which is called co-occurrence 
APIs, and the patterns of co-occurrence APIs are important 
factors to find explaining fragments for the given API. Besides, 
the given API can be treated as both text and code. From the 
perspective of text, we can fully mine its implicit meaning and 
relevance with the fragments. From the perspective of code, we 
can borrow the knowledge and API usage experience from 
both the crowds and experts, and these knowledge and 
experience can be used to find fragments explaining the given 
API. In summary, we have the following observations: 



• Several APIs can appear in one fragment at the same time. 
When considering one of the APIs, the more co-occurrence 
APIs exist, the less possibility the fragment explains the 
API. As a result, the co-occurrence APIs are important 
indicators to discover fragments explaining an API. 

• As a general programming interface, an API can be used by 
a large number of developers. The API usage experience 
can be discussed and shared in some technical forums, such 
as Stack Overflow. The crowd knowledge contained in 
Stack Overflow can be leveraged to discover explaining 
fragments for APIs. 

• Accompanied with the distribution of APIs, the providers 
will supply the specifications for the APIs. The 
specifications are written by some experienced developers, 
and describe the functional properties of the APIs. The 
expert knowledge contained in the specifications can also 
be exploited. 

In this study, we propose a new model of FInding Tutorial 
Segments Explaining APIs (FITSEA). FITSEA fully leverages 
the above mentioned domain specific knowledge, and follows 
the same process as text classification. In FITSEA, we 
construct three feature groups from each API-fragment pair. 
The first group is raw API feature group, and it digs relevant 
information between the raw APIs and fragments. The second 
group is co-occurrence API feature group. This group 
considers the structural and semantic information of co-
occurrence APIs in the fragments. The last group is API 
extension feature group, and it takes advantages of the crowd 
knowledge and expert knowledge from Stack Overflow and 
API specifications respectively to extend APIs, and finds 
connections between API extensions and fragments. Within the 
three groups of features, we introduce the Word2Vec [28] 
similarity which can measure the semantic similarity and 
eliminate the mismatch between APIs and fragments. After all 
the features and label of each API-fragment are constructed, a 
widely used classifier, namely decision tree is utilized to train 
the classification model. The trained model can be used to 
predict the labels of new API-fragment pairs.  

Experiment results over the dataset created by Gayane et al. 
[1] show that, FITSEA can achieve an average F-measure of 
82.82% which outperforms the state-of-the-art model by 7.2%. 
To generalize the effectiveness of FITSEA, we annotate new 
dataset of Android API tutorials. Results on the newly 
annotated dataset also show the advantages of FITSEA model. 
For example, the F-measure is between 60% and 74% over the 
new dataset which is superior to the state-of-the-art model. 

In summary, this study makes the following contributions: 

• We propose a new model, namely FITSEA to discover the 
tutorial fragments explaining APIs. It fully leverages 
domain specific knowledge, and incorporates the 
Word2Vec semantic similarity. This model shows better 
results than the state-of-the-art model. 

• We conduct a series of experiments to show the 
effectiveness of FITSEA. The experiment results indicate 
that FITSEA can achieve the F-measure of 82.82% and 
67.22% over the two tutorial datasets on average, and 

outperforms the state-of-the-art model by 7.2% and 12.2% 
respectively. 

• We construct a new manually annotated tutorial dataset 
related to Android APIs. The new tutorial dataset consists 
of four tutorials including 430 API-fragment pairs in total. 
The new tutorial dataset is made publicly available to 
researchers and developers.   

This paper is structured as follows. In section II, we present 
the usage scenario. In section III, we show the tutorial datasets 
used in the experiments. We describe the overall framework of 
FITSEA in section IV. The experimental setup and results are 
introduced in section V and VI. Then, section VII and VIII 
show the threats to validity and related work respectively. Last, 
we conclude this study in section IX. 

II. USAGE SCENARIO 

In this section, we demonstrate the usage scenario of 
discovering tutorial fragments explaining APIs.  

When developers want to accomplish some programming 
tasks, they usually tend to reuse functionalities provided by 
third party libraries through APIs [21]. In such a situation, 
developers often know which specific APIs they should use, 
due to the meaningful name of the APIs. However, they often 
do not know how to use them in particular programming 
context. The aforementioned situation is of concern to us. 
Actually, there exists the situation which developers do not 
know which APIs they can use. However, many studies 
address the problem of API usage recommendation in the 
literature [7, 8, 9], and they can resolve this problem effectively. 
Hence, we do not take this situation into consideration. 

For the above API usage scenario, we choose the 
granularity of the considered APIs at the class or interface level 
to discover the tutorial fragments as [1]. Tutorials usually 
introduce some programming topics by using a series of 
methods of some classes. Besides, developers usually want to 
know some behaviors of classes or interfaces rather than the 
functional feature of only one method [1]. As a result, Class or 
interface level is the best level of granularity. 

By discovering the explaining tutorial fragments for an API, 
we can show the tutorial fragments to developers when they 
have no idea about the API. Fig.1 shows the usage scenario. If 

 
public class MyView extends View  

{ 
...... 

@Override 
protected void onMeasure 
( 

int widthMeasureSpec,  
int heightMeasureSpec 

)  
{ 

setMeasuredDimension(150,50); 
} 

 
...... 

 
}

1. View Layers 

In all versions of Android, views have had the 
ability to render…                See More

2.  How Property Animation Different from View? 

The view animation system provides the 
capability to only animate…   See More 

3.  Animating Views

The property animation system allows 
streamlined animation…         See More 

…… 

Fig. 1 An example of usage scenario 

See fragments in tutorials: 



developers do not know how to use “android.view.View”, we 
will recommend some fragments explaining it in the right panel. 
After reading the summary and the first sentence, developers 
can check more information by clicking “See More”. In this 
way, developers will quickly learn how to use the API without 
much effort.  

III. TURORIAL DATASETS 

It is necessary to find or construct tutorial datasets to study 
the process of discovering explaining fragments for APIs. 
There are two tutorial datasets used in this study. In the 
following subsections, we introduce the two tutorial datasets 
respectively, especially the process of constructing the Android 
tutorial dataset. 

A. McGill Tutorial Dataset 

The first tutorial dataset denoted as McGill tutorial dataset 
is created by McGill University which is made publicly 
available. McGill tutorial dataset consists of five tutorials 
which explain JodaTime, Math, Collections and Smack APIs. 
They are diverse in the tutorial size and format, so they are 
well-suited for research study. Table 1 shows the statistical 
information of McGill tutorial dataset. We can see from the 
table that the number of API-fragment pairs ranges from 68 to 
220, and the average length of fragments is less than 250 words. 
The relevant column shows the number of pairs in which the 
fragments really explain the APIs, and it is between 30 and 56. 

B. Android Tutorial Dataset 

In order to contribute more tutorial datasets to research and 
development study, we construct another tutorial dataset 
explaining Android APIs, and name it as Android tutorial 
dataset. Android development is gradually booming these years, 
and developers are pouring into Android development. As a 
result, there is a high demand to discover explanatory tutorial 
fragments related to various Android APIs. This pushes us to 
build Android API tutorial dataset ourselves. As a complement 
for McGill tutorial dataset, Android tutorial dataset can be used 
to generalize the effectiveness of FITSEA model. We can find 
from Table 1 that there are four tutorials in Android tutorial 
dataset, namely Graphics, Resources, Text and Data for 
Android APIs. There is no big difference between McGill 
tutorial dataset and Android tutorial dataset in statistics, except 
that the lengths of tutorials in the Android dataset are much 
longer. The Android tutorial dataset is publicly available in the 
following website: http://oscar-lab.org/paper/API/. 

C. Construction Steps 

There are mainly four steps to complete the construction of 
Android tutorial dataset, namely tutorial download, tutorial 
fragmentation, API identification and manual annotation. We 
will introduce each step in detail in the following paragraphs. 

1) Tutorial Download 
In the first step, we need to download the tutorials from the 

official Android development websites [33]. There are several 
tutorials in the websites, and we select four of them to crawl, 
namely Graphics, Resources, Text and Data. We choose these 

Table 1. Statistical information of datasets 

Dataset Tutorial API Fragment Pairs Length Relevant

McGill 
Tutorial 
Dataset

JodaTime 36 29 68 140 30 

Math Library 73 41 98 203 54 

Col. Official 59 57 220 172 56 

Col. Jenkov 28 69 150 141 42 

Smack 40 47 86 229 56 

Android 
Tutorial 
Dataset

Graphics 70 38 138 411 43 

Resources 63 46 140 674 45 

Text 31 24 76 352 25 

Data 37 25 76 365 28 

tutorials for the following reasons. First, they explain basic 
Android development topics which are relevant to many 
developers. Second, these four tutorials are easy to understand 
so that they can be manually annotated quickly and accurately. 
Third, they have different lengths and formats of fragments 
which can simulate different situations. We download the 
webpages of these tutorials for further processing. 

2) Tutorial Fragmentation 
To help developers in finding useful information for an 

API quickly, we need to split the tutorials into short fragments. 
The contents in each fragment should be cohesive, so that they 
can concentrate on only one topic. Since the contents of the 
tutorials are all stored in HTML files, a basic idea is to split 
the tutorials based on HTML header tags. We find that the 
structures of these HTML files are the same, and the header 
tags are in four levels, namely <h1>, <h2>, <h3> and <h4>. 
Consequently, we decide to split the tutorials based on the 
lowest level, namely <h4>. By using regular expressions, we 
can split the tutorials. 

3) API Identification 
After splitting the tutorials into short fragments, we need to 

find the APIs in each fragment. Detecting the APIs is not a 
hard thing, since HTML files have already given the links to 
specific APIs. What we need do is to detect the “href” links in 
each fragment. By analyzing the link addresses, we can 
identify the exact APIs a fragment contains. 

4) Manual Annotation 
As we have already explained, not all the occurred APIs 

are explained by the fragment. After detecting the APIs in 
each fragment, we can combine them into API-fragment pairs. 
As a result, we need to annotate the class label of each pair by 
our subjective judgment. 

We employ 6 master students to annotate Android tutorial 
dataset. They all major in software engineering, so it is not 
hard for them to annotate API related dataset. Before the 
annotation, each annotator is given a detailed annotation guide, 
and they are required to learn the guide until they know the 
whole annotation process. The annotation guide explains the 
aim of the annotation, the annotation procedures, the 
annotation standards and some tips to speed up the annotation. 
An example is also described in the annotation guide so that 
the annotators could get familiar with the annotation quickly. 



By reading an API-fragment pair, the annotators should decide 
whether the fragment explains the API. If yes, then the API-
fragment pair is relevant, otherwise it is irrelevant. To make 
the annotation more reliable, each API-fragment pair is 
annotated by two different annotators. If there is a conflict 
between them when judging one API-fragment pair, they 
should discuss to reach a consensus. After the annotation 
process is finished, we collect the annotation results and 
construct Android tutorial dataset. 

IV. FRAMEWORK 

In this section, we illustrate FITSEA model, text similarity 
approaches, and the features that we use to characterize API-
fragment pairs. 

A. FITSEA Model 

FITSEA is a typical text classification model which is 
shown in Fig. 2. There are three stages in the whole 
framework. The first stage is the preprocessing stage which 
aims to construct the knowledge base from crowds and experts 
extracting from Stack Overflow and API specifications 
respectively. The second stage is the training stage which aims 
to transfer the API-fragment pairs into feature vectors with the 
assistance of a knowledge base and train a classifier. Each 
API-fragment pair has a class label, namely relevant or 
irrelevant. The third stage is the testing stage. After 
transforming the API-fragment pairs with unknown labels into 
feature vectors, the trained classifier can predict the class 
labels of the feature vectors in test set.  

B. Text Similarity Approaches 

Since some text similarity methods are used as features or 
comparative methods in the experiments, we first describe the 
details of these methods. Texts can be similar in two ways, 
namely lexically and semantically [10]. Texts are similar 
lexically if they share a sequence of characters or terms (i.e., 
words), while texts are similar semantically if they show the 
same meaning. Lexical similarity can be further divided into 
character-based similarity and term-based similarity.  

 In this study, we utilize one of the semantic similarity 
methods, namely Word2Vec similarity. First, Word2Vec 
learns the vector representations of words. Then the vector 
representations of words in text can be merged together to 
form the final vector which can be treated as the semantic 
representation of the text. The similarity can be calculated 
based on the fixed-length vectors. In such a way, the 
mismatched length between two texts can be eliminated. To 
demonstrate the effectiveness of Word2Vec, we set up a 
research question to compare it against the other four lexical 
similarity methods, namely Bi-Gram, Levenshtein, Jaccard 
and Cosine similarity. Among them, Bi-Gram and Levenshtein 
are character-based similarity, while Jaccard and Cosine 
Similarity are term-based similarity. These text similarities 
can be calculated as follows. 

1) Word2Vec Similarity 
Before calculating similarity, we first need to train the 

vector representation of each word. Word2Vec takes in a text 
corpus and outputs the vectors of all the words [34]. The text 
corpus is composed of all the words from the tutorial datasets, 
Stack Overflow, and API specifications. After the word 
vectors are obtained, we average the values in each dimension 
of each word vector in the text to form the text vector. The 
similarity between two text vectors is calculated as follows: 

S(T1,T2)= ∑ (T1)i (T2)in
i=1∑ V(T1)i2n

i=1 ∑ V(T2)i2n
i=1

                      (1) 

where T1 and T2 are two different texts, and V(T1)i and 
V(T2)i show the text vector of T1 and T2 at the ith dimension 
respectively.  

2) Bi-Gram Similarity 
Bi-Gram is a type of N-Gram which splits the text into a 

sequence of characters with length 2 [11]. For example, the 
Bi-Gram of “student” is {st, tu, ud, de, en, nt}.The Bi-Gram 
similarity score is defined as the ratio of the number of shared 
Bi-Gram between two texts to the total number of Bi-Gram in 
both texts: 

 
 

Classifier 

Knowledge 
Base 

API 
Specifications 

Fig. 2. Workflow of FITSEA 

Feature 
Extractor 

APIFre CodeFre SubjectFre … Label 

5 19 11 … relevant 

7 35 5 … irrelevant

16 2 1 … relevant 

… … … … … 

API Fragment Label 

java.util.List As a rule… ? 

java.util.Set This section … ? 

java.util.HashSet As you can … ? 

… … … 

Model 
Learner 

Preprocessing 
T

raining 

Method Summary 
 
Modifier and Type                     Method and Description 
 
boolean                                        add (E e )                                          
                                                     Appends the specified element to … 
 
void                                              add(int index, E element) 
                                                     Inserts the specified element at the… 
 
boolean                                        addAll (Collection<? Extends E> c)          
                                                     Appends all of the elements in the … 

I’m trying to find an implementation of java.util.List and 
java.utils.Set at the same time in Java. I want this class to 
allow only unique elements (as Set) and preserve their order 
(like List). Does it exist in JDK 6? 

TreeSet is sorted by element order; LinkedHashSet retains 
insertion order. Hopefully one of those is what you were 
after :) 
EDIT: Okay, now you’ve specified that you want to be able to 
insert at an arbitrary location, I suspect you’ll have to write 
your own – just create a class containing a HashSet<T> and 

APIFre CodeFre SubjectFre … Label 

7 9 5 … ? 

4 11 4 … ? 

1 2 3 … ? 

… … … … … 

Feature 
Extractor 

API Fragment Label 

java.util.Iterator Each of the … relevant 

java.util.Vector The fact that … irrelevant 

java.util.Hashtable If you need… relevant 

… … … 

 

T
esting 

APIFre CodeFre SubjectFre … Label 

7 9 5 … relevant 

4 11 4 … relevant 

1 2 3 … irrelevant

… … … … … 



S(T1,T2)= 2×|Bi(T1)∩Bi(T2)|

|Bi(T1)|+|Bi(T2)|
                          (2) 

where Bi(T1) and Bi(T2) are the Bi-Gram of T1 and T2 
respectively. 

3) Levenshtein Similarity 
Levenshtein similarity calculates the minimum edit 

operations needed to change one text into another. The edit 
operation includes insertion, deletion and substitution. The 
equation of it can be: 

S(T1,T2)=1-
MinOper(T1,T2)

Max	(T1,T2)
                        (3) 

where MinOper(T1,T2) stands for the number of minimum 
edit operations, and the Max(T1,T2) measures the maximum 
length of T1 and T2. 

4) Jaccard Similarity 
Jaccard similarity measures the size of intersection divided 

by the size of union in terms of words, and it can be calculated 
as follows: 

S(T1,T2)= |S(T1)∩S(T2)|
|S(T1)∪S(T2)|                           (4) 

where S(T1) and S(T2) are the set of terms in T1 and T2. 

5) Cosine Similarity 
Texts can be transformed into word vectors, after a series 

of steps, such as tokenization, stemming and stop words 
removal. Cosine similarity measures the cosine of the angle 
between two word vectors, after transforming the texts into 
word vectors with the term weight of term frequency-inverted 
document frequency (tf-idf). The calculation formula can be: 

S(T1,T2)= cos(θ)=
∑ T1iT2i

n
i=1∑ T1i

2n
i=1 ∑ T2i

2n
i=1

                  (5) 

where T1i and T2i are word vectors of T1 and T2 at the ith 
dimension respectively. 

C. Feature Design 

We design and extract 17 features from each API-fragment 
pair by taking co-occurrence APIs and API extensions into 
consideration. These features are divided into three groups, 
namely raw API features, co-occurrence API features, and API 
extension features respectively. Raw API features dig relevant 
information between raw APIs and fragments. Co-occurrence 
API features mine relationships between co-occurrence APIs 
and fragments. API extension features make use of the 
knowledge and usage experience from Stack Overflow and 
API specifications to find relevant facts. These groups of 
features all combine both linguistic and semantic properties 
between APIs and fragments. Some features have real values, 
while the others have boolean values. Table 2 shows the 
summary of these features. We will clarify all the features of 
each API-fragment pair in detail for the rest of this subsection. 

1) Raw API Features 
WholeAPIFre: This feature measures the frequency of the 

complete API name occurred in the fragment. The complete 
API name is the name from the root package, for example, the 
complete API name of “Iterator” is “java.util.Iterator”. The 

Table 2. Summary of features 

Feature Description 
Group 1: Raw API features 

WholeAPIFre How strongly a whole API is associated to the fragment. 
PartAPIFre How strongly a part API is associated to the fragment. 
ContainCodeFre How many code snippets the fragment contains. 
InstantiationFre Frequency with which an API is initialized as an object. 
SubjectFre How many times the API acts as subject of each sentence. 
InConditionSen Whether the API appears in the condition sentences. 
EmergeParaLoc The minimum location the API appears in each paragraph. 
Word2VecSimi Word2Vec similarity between API and fragment. 

Group 2: Co-occurrence API features 

CoAPIFre 
How many co-occurrence APIs are contained in the 
fragment. 

CoAPIFreInCode 
How many co-occurrence APIs are contained in code 
snippets. 

wholeCoAPIFre 
How strongly co-occurrence APIs are associated to the
fragment. 

CoAPISenPro 
The proportion of sentences which contain co-occurrence 
APIs. 

CoWord2VecSimi 
Word2Vec similarity between sentences containing co-
occurrence APIs and not. 

Group 3: API extension features 

MethodFre 
How many methods in specification based API extension are 
contained in the fragment. 

IsMethodInTitle 
Whether the methods in specification based API extension
are contained in the title. 

ClueWordCount 
How many clue words occurred in Stack Overflow based 
API extension. 

ExWord2VecSimi 
Word2Vec similarity between Stack Overflow based API
extension and the fragment. 

rational is that the more times the complete API name appears, 
the more chances the fragment explains the API. 

PartAPIFre: An API name may be composed of several 
single words following CamelCasing convention. This feature 
measures the frequency of component words of API name in 
the fragment. For the same rational as the first feature, the 
more times the component words appear, the more chances the 
fragment explains the API. 

ContainCodeFre: This feature computes code snippets 
frequency contained in the fragment. The code snippets can be 
found by the HTML tags, like “<codeblock>” or “<codebox>”. 
The more code snippets exist in the fragment, the more 
chances the fragment concentrates on the API and its context. 

InstantiationFre: This feature calculates how many times 
the API is initialized as an object. The more times it is 
initialized as an object, the more chances the fragment 
explains the constructors of the API. 

SubjectFre: This feature calculates the frequency of which 
the API acts as the subjects of all the sentences. We use the 
Stanford Parser [12] to detect the subject of each sentence. If 
the API is the subject of a sentence, the sentence will pay 
much attention on it.  

InConditionSen: This is a boolean feature which tries to 
detect whether the API exists in condition sentences. We 
detect the condition sentences with some phrases, such as “for 
example”, “such as”, “for instance” etc. 



EmergeParaLoc: the minimum location where the API 
occurred in each paragraph of the fragment. If the API appears 
in the front of one paragraph, the paragraph will pay much 
attention on the API. 

Word2VecSimi: The Word2Vec similarity between API 
name and fragment. The calculation method is introduced in 
part B of section IV. 

2) Co-occurrence API Features 
CoAPIFre: This feature detects the frequency of the co-

occurrence APIs in the fragment in total. The more times the 
co-occurrence APIs appear, the less chances the fragment 
explains the API. 

CoAPIFreInCode: The feature is calculated by counting 
the number of appearances of co-occurrence APIs in code 
snippets. The rational is the same as CoAPIFre. 

WholeCoAPIFre: This feature combines both the complete 
co-occurrence APIs and part of them. If a complete co-
occurrence API appears once, the value is increased by 1, 
while part of co-occurrence API (the component word) 
appears once, the value is increased by 0.5. 

CoAPISenPro: This feature measures the proportion of 
sentences which contain co-occurrence APIs to all the 
sentences. The larger proportion of sentences containing co-
occurrence, the less chance the fragment explains the API. 

CoWord2VecSimi: The feature calculates the Word2Vec 
similarity between sentences which contain co-occurrence 
APIs and sentences do not. 

3)  API Extension Features 
In the first place, we illustrate how to extend API from 

crowds and experts based on Stack Overflow and API 
specifications. Then, we show how to calculate features based 
on the API extensions. 

Knowledge contained in Stack Overflow can be leveraged 
by many tasks [13, 14]. We follow the same method to 
discover crowd knowledge for APIs from Stack Overflow [15]. 
The APIs are treated as the queries, and the pairs of question 
and best answer are treated as documents to be retrieved. The 
ranking criteria are based on two aspects: the text similarity 
between the queries and the documents, and the quality of the 
documents. The text similarity is calculated using Lucene’s 
[29] similarity, while the quality of the pairs of question and 
best answer can be measured by the user rating score of both 
question and best answer. The final ranking value is the 
average of text similarity and the quality of each pair of 
question and best answer. Through a series of experiments in 
[15], it has been proved to be an effective method for finding 
crowd knowledge from Stack Overflow. In FITSEA, we try to 
find crowd knowledge from Stack Overflow for APIs, and the 
first ranked pair of question and best answer is retained as 
Stack Overflow based API extension. 

Besides, we parse the official API specifications, and 
extract the methods for each API. The specification based API 
extension consists of these methods. The following features 

are calculated using Stack Overflow based API extension or 
specification based API extension. 

MethodFre: This feature calculates the frequency of the 
methods in specification based API extension appears in the 
fragment. The more times the methods exist, the higher 
chances the fragment explains the API. 

IsMethodInTitle: This feature measures whether one of the 
methods in specification based API extension appears in the 
title of the fragment. If true, then the fragment will pay much 
attention on the API. 

ClueWordCount: The clue words are the 10 highest 
frequent words [16] in the fragment. This feature measures 
how many clue words exist in the Stack Overflow based API 
extension. 

ExWord2VecSimi: The feature calculates the Word2Vec 
similarity between the Stack Overflow based API extension 
and the fragment. 

V. EXPERIMENTAL SETUP 

In this section, we detail the experiment related issues. 
First, we show our Research Questions (RQs) to explore the 
performances of FITSEA. Second, we describe the two 
comparative models used in the experiments. Third, the 
evaluation method used in the experiments is introduced. Last, 
the evaluation metrics are explained. 

A. Research Questions 

In this study, we investigate the following three RQs: 

RQ1: How will FITSEA perform when using different 
groups of features? 

As described above, features are divided into three groups. 
In this RQ, we want to explore the performances of FITSEA 
when applying different groups of features. 

RQ2: Does it achieve better results when using Word2Vec 
semantic similarity than other similarity methods? 

In each group of features, there exists one feature which 
measures semantic similarity based on Word2Vec. To explore 
whether it is superior to other similarity measurements, we try 
four other methods based on lexical information, namely Bi-
Gram, Levenshtein, Jaccard and Cosine similarity.  

RQ3: Can FITSEA perform better than the other models 
over the two tutorial datasets? 

In this RQ, we want to explore whether FITSEA could 
discover more explaining fragments for APIs than the other 
models. We compare FITSEA against the state-of-the-art 
model which was introduced in [1] and an information 
retrieval model. 

B. Comparative Models 

There are two comparative models in the literature [1]. The 
first model is proposed by [1] which we name it as GMR 
(constructed by concatenating the first character of each 
author’s name). The second model is the traditional 



information retrieval model which we name it as IR. In the 
following part, we will detail the workflow of the two models. 

1) GMR Model 
The GMR model is a typical text classification model, and 

it is the first work which tries to discover explaining fragments 
for APIs. GMR model extracts 20 features from each API- 
fragment pair. The 20 features are linguistic and structural 
features, and they are divided into five groups. The training set 
is used to train a MaxEnt classifier, and the class labels of 
API-fragment pairs in test set can be predicted by the trained 
classifier. 

2) IR Model 
The IR model tries to resolve this task by using 

information retrieval method [27]. Since there is mismatch 
between information in APIs and fragments, the APIs should 
be extended using descriptions in the API specifications. The 
rational is that, the more conjoint words occurred in both API 
descriptions and fragment, the more likely the fragment 
concentrates on and explains the API. In such a situation, the 
API descriptions are treated as the queries, and the fragments 
are treated as the documents to be searched. The similarity is 
calculated using cosine similarity with tf-idf term weight.  

We consider a fragment explains an API, if the cosine 
similarity between the fragment and the API descriptions is 
greater than a predefined threshold. The threshold is defined 
according to the following process: the top N fragments are 
received for each API, where N is the number of relevant 
fragments according to the annotation. The average value of 
each lowest similarity of the top N fragments is treated as the 
threshold. In such a way, IR model can also be evaluated in 
the same way as text classification model.  

C. Evaluation Method 

In this subsection, we discuss the evaluation method when 
we perform text classification. 

We use the same the evaluation method as in [1], namely 
Leave-One-Out Cross Validation (LOOCV) to test the results 
of each tutorial in all the experiments. More specifically, in 
each run, only one API-fragment pair is chosen as the test set. 
All the remaining pairs are treated as training set. Then, the 
pairs in training set are fed into the classifier to train the model. 
The trained model can be used to predict the class label of 
API-fragment pair in test set. After all the pairs are chosen as 
the test set, we calculate the final results. There are several 
advantages for using LOOCV. It could use as many pairs as 
the training set as possible, so the whole dataset can be 
effectively covered in each run. Besides, the results are more 
reliable and reproducible. 

D. Evaluation Metrics 

In this study, widely used Precision, Recall and F-measure 
are employed to evaluate the performances of different models. 
Precision, Recall and F-measure are typical metrics to evaluate 
a classification model [16]. In the task of finding fragments 
explaining APIs, these metrics are also commonly used [1]. 

Table 3. Confusion matrix 

 
True Condition 

Positive Negative 

Predicted 
Condition 

Positive TP FP 

Negative FN TN 

In the classification task, the True Positives (TP), True 
Negatives (TN), False Positives (FP) and False Negatives (FN) 
are computed to compare the results between true condition 
and predicted condition. Positive and negative refer to the 
prediction of the classifier, while true and false refer to 
whether the prediction corresponds to the true condition. The 
confusion matrix shown in Table 3 defines these terms. 

Based on the confusion matrix, the Precision and Recall 
can be calculated as follows: 

Precision=
TP

TP+FP
                                   (6) 

Recall=
TP

TP+FN
                                      (7) 

F-Measure tries to combine and balance the Precision and 
Recall which can be calculated as follows: 

F-Measure=
2×Precision×Recall

Precision+Recall
                           (8) 

VI. EXPERIMENTAL RESULTS 

In this section, we detect the experimental results of each 
RQ. Through these RQs, we can evaluate different properties 
and performances of FITSEA. 

A. Investigation to RQ1 

As mentioned before, we will investigate the results when 
using different groups of features. Different groups of features 
may have different contributions to the classifier. Through this 
RQ, we can also detect whether the co-occurrence API 
features and API extension features can improve the results 
effectively, as complements for the raw API features. Various 
combinations of the three groups are tested in each run. The 
results of each combination of groups of features over McGill 
dataset are listed in Table 4. 

We can see from the table that different combinations of 
groups of features show different results over the five tutorials. 
For each separate group, the raw API feature group shows the 
best results on average. For example, the F-measure of 
JodaTime is 82.76% when using raw API feature group, while 
it’s only 63.33% and 35.29% when only considering co-
occurrence API features and API extension features 
respectively. For the combinations of two groups of features, 
the results are improved compared with only one group of 
features on average. For example, when combining raw API 
feature group with co-occurrence API feature group, the F-
measure of Smack is 86.49%, while it’s only 78.90% and 
77.14% when considering one of them respectively. When the 
three groups of features are all considered, the results are the 
best on average. For instance, the F-measure of Col. Jenkov is 
85.37% which is the best results. In summary, from the 
perspective of feature groups, there is no dominant or idle 
feature group. As more features are used, the results are 
improved on average. 



Table 4. Classification results for different groups of features

  
When comparing different tutorials, we can see that even 

using the same feature group, different tutorials show different 
results. The F-measure is from 72.90% to 90% when using all 
the features among these tutorials. Col. Official is the most 
difficult tutorial to classify, the reason may be that the number 
of relevant and irrelevant API-fragment pairs is the most 

imbalance one. While JodaTime is the easiest tutorial to 
classify, since the number of relevant and irrelevant API-
fragment pairs is the most balance one. We can see that, the 
more the data is balanced, the better the results are. 

Answer to RQ1: With the increasing of the feature groups, 
the results get better on average. Co-occurrence API feature 
group and API extension feature group are good indicators for 
classification, and they are good complements for raw API 
feature group. 

B. Investigation to RQ2 

When designing some features, we introduce Word2Vec to 
calculate the similarity. We design this RQ to test whether it is 
a more effective method than the others. In this RQ, we try the 
other four similarity methods to compare, namely Bi-Gram, 
Levenshtein, Jaccard and Cosine similarity. We only replace 
the features which calculate Word2Vec similarity with one of 
these methods, and the other features stay the same. Fig. 3, 4 
and 5 show the Precision, Recall and F-measure of each 
tutorial over McGill tutorial dataset. 

We can see that, the best results are achieved when using 
Word2Vec similarity. For example, the F-measure is 90% 
when using Word2Vec, while it is only 59.65% when using 
Jaccard in JodaTime tutorial. In other cases, Word2Vec also 
achieves better results than the other four similarity methods 
except for the Recall value in Math Library using VSM. By 
observing the results in different tutorials, we can find that, 
even one similarity method shows different effects. The F-
measure cross all the tutorials is from 72.9% to 90% when 
using Word2Vec which shows the best results. The reason 
may be that, Word2Vec is a similarity method which can 
calculate the semantic similarity rather than lexical similarity. 
Even using different words, Word2Vec can capture the same 
meaning behind them. Besides, Word2Vec can learn fix-
length vector representations of words, thus it can overcome 
the shortcomings of information mismatch.  

Answer to RQ2: As a semantic similarity method, 
Word2Vec can measure the similarity much better than other 
methods. Word2Vec may be effective when the length of two 
texts is unmatched. 

C. Investigation to RQ3 

In this RQ, we try to compare FITSEA with the other two 

JodaTime
Math

Library
Col.

Official
Col.

Jenkov
Smack

Word2Vec 90.00% 76.36% 76.47% 87.50% 87.93%

VSM 76.67% 74.14% 65.91% 81.58% 86.21%

Jaccard 62.96% 67.86% 76.00% 83.78% 87.50%

Edit 60.00% 70.18% 73.08% 81.58% 86.21%

Bi-Gram 64.29% 70.18% 72.00% 79.49% 86.44%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%
Precision

Fig. 3. Precision of different similarity methods

JodaTime
Math

Library
Col.

Official
Col.

Jenkov
Smack

Word2Vec 90.00% 76.36% 69.64% 83.33% 91.07%

VSM 76.67% 78.18% 51.79% 73.81% 89.29%

Jaccard 56.67% 69.09% 67.86% 73.81% 87.50%

Edit 60.00% 72.73% 67.86% 73.81% 89.29%

Bi-Gram 60.00% 72.73% 64.29% 73.81% 91.07%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%
Recall

Fig. 4. Recall of different similarity methods 

JodaTime
Math

Library
Col.

Official
Col.

Jenkov
Smack

Word2Vec 90.00% 76.36% 72.90% 85.37% 89.47%

VSM 76.67% 76.11% 58.00% 77.50% 87.72%

Jaccard 59.65% 68.47% 71.70% 78.48% 87.50%

Edit 60.00% 71.43% 70.37% 77.50% 87.72%

Bi-Gram 62.07% 71.43% 67.92% 76.54% 88.70%
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60.00%

70.00%

80.00%

90.00%

100.00%
F-Measure

Fig. 5. F-measure of different similarity methods

Group 
JodaTime Math Library Col. Official Col. Jenkov Smack 

P (%) R (%) F-M (%) P (%) R (%) F-M (%) P (%) R (%) F-M (%) P (%) R (%) F-M (%) P (%) R (%) F-M (%)

1 85.71 80.00 82.76 66.15 78.18 71.67 80.00 71.43 75.47 82.86 69.05 75.32 81.13 76.79 78.90 

2 63.33 63.33 63.33 67.11 92.73 77.86 53.13 30.36 38.64 75.00 7.14 13.04 64.29 96.43 77.14 

3 42.86 30.00 35.29 75.44 78.18 76.79 36.36 7.14 11.94 81.25 30.95 44.83 70.00 100.00 82.35 

1+2 90.00 90.00 90.00 70.59 65.45 67.92 75.51 66.07 70.48 86.84 78.57 82.50 87.27 85.71 86.49 

1+3 83.33 83.33 83.33 67.35 60.00 63.46 78.43 71.43 74.77 83.78 73.81 78.48 81.36 85.71 83.48 

2+3 51.72 50.00 50.85 84.48 89.09 86.73 52.63 35.71 42.55 58.14 59.52 58.82 68.83 94.64 79.70 

1+2+3 90.00 90.00 90.00 76.36 76.36 76.36 76.47 69.64 72.90 87.50 83.33 85.37 87.93 91.07 89.47 

P: Precision, R: Recall, F-M: F-measure                                          1: raw API feature group, 2: co-occurrence API feature group, 3: API extension feature group



 

models, namely GMR model and IR model. To show the 
effectiveness of FITSEA, we compare these models over both 
McGill tutorial dataset and Android tutorial dataset.  

1) Results on McGill Tutorial Dataset 
According to [1], GMR model is the state-of-the-art model 

which shows better results than IR model over McGill tutorial 
dataset. Fig 6, 7 and 8 show the Precision, Recall and F-
measure respectively over McGill tutorial dataset.  

We can see from the figures that, FITSEA shows better 
results on average than the two comparative models. In terms 
of Precision, FITSEA can achieve up to 90%, while GMR and 
IR can only reach up to 87% and 74% respectively. As for 
Recall, IR achieves better results than GMR while poorer than 
FITSEA. For example, we can see that IR can come to 94% on 
Col. Official. This is because the threshold is defined much 
smaller in IR model. As a result, a lot of fragments are 
retrieved. From the F-measure viewpoint, we can see FITSEA 
is better than the other two models on the whole. 

  

2) Results on Android Tutorial Dataset 
To make more contributions to the researchers and 

developers, we annotate the Android tutorial dataset. To 
demonstrate the generalization ability of FITSEA, we also 
compare FITSEA with GMR model and IR model over the 
Android tutorial dataset. Fig 9, 10 and 11 show the values of 
the three evaluation metrics over Android tutorial dataset. 

We can see from the figures that FITSEA outperforms the 
other two comparative models. FITSEA doesn’t achieve better 
results than GMR in some cases in Precision, but it shows 
better results than IR. In terms of Recall, FITSEA performs 
favorably to the comparative models. IR shows better results 
than GMR while poorer results than FITSEA on average. In 
particular, when it comes to F-measure, FITSEA reaches up to 
74% and beyond GMR by up to 30% which shows absolute 
advantages. 

After we have demonstrated the effectiveness of FITSEA, 
we would stress the underlying reasons why FITSEA works. It 
fully leverages the domain specific knowledge of APIs. Not 

JodaTime
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Col.

Official
Col.

Jenkov
Smack

FITSEA 90.00% 76.36% 76.47% 87.50% 87.93%

GMR 81.00% 69.00% 71.00% 84.00% 87.00%

IR 73.00% 67.00% 30.00% 33.00% 74.00%
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Fig. 6. Precision on McGill tutorial dataset 

JodaTime
Math

Library
Col.

Official
Col.

Jenkov
Smack

FITSEA 90.00% 76.36% 69.64% 83.33% 91.07%

GMR 73.00% 74.00% 62.00% 76.00% 80.00%

IR 73.00% 65.00% 94.00% 88.00% 52.00%
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60.00%

80.00%
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Fig. 7. Recall on McGill tutorial dataset
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Jenkov
Smack

FITSEA 90.00% 76.36% 72.90% 85.37% 89.47%

GMR 77.00% 71.00% 67.00% 80.00% 83.00%

IR 73.00% 66.00% 45.00% 48.00% 61.00%

20.00%

40.00%

60.00%

80.00%

100.00%
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Fig. 8. F-measure on McGill tutorial dataset

Graphics Resources Text Data

FITSEA 63.64% 75.00% 60.00% 73.08%

GMR 74.80% 87.00% 63.00% 42.50%

IR 35.80% 40.32% 33.33% 37.21%
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Fig. 9. Precision on Android tutorial dataset

Graphics Resources Text Data

FITSEA 65.12% 73.33% 60.00% 67.86%

GMR 58.00% 55.90% 37.20% 37.80%

IR 67.44% 55.56% 44.00% 57.14%
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Fig. 10. Recall on Android tutorial dataset

Graphics Resources Text Data

FITSEA 64.37% 74.16% 60.00% 70.37%

GMR 65.34% 68.07% 46.78% 40.01%

IR 46.77% 46.73% 37.93% 45.07%
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Fig. 11. F-measure on Android tutorial dataset



only it mines the knowledge from Stack Overflow which can 
be called crowd knowledge, but also it borrows the expert 
knowledge from API specifications. Besides, through data 
inspection, we find that the more co-occurrence APIs exist, the 
less likely the fragment explains the API. Based on the 
observations, we design two groups of features which can 
improve the results. Last but not least, more advanced 
technologies have been used to help us, for example, 
Word2Vec semantic similarity. 

Answer to RQ3: FITSEA shows better results than the 
state-of-the-art model over the two public datasets. FITSEA 
can find tutorial fragments explaining APIs more accurately.  

VII. THREATS TO VALIDITY 

In this section, we discuss the threats to validity which 
include threats to internal validity and external validity. 

A. Threats to Internal Validity 

In order to contribute more dataset used for discovering 
tutorial fragments explaining APIs and generalize the 
effectiveness of FITSEA, we employ annotators to create 
Android tutorial dataset. The annotation largely depends on 
the subjective judgment. Different annotators may have 
different viewpoints to the same thing due to their different 
backgrounds of computer and programming. To make it more 
reliable, the annotators are given a rigorous training. They are 
given a detailed guidance with examples to show the 
annotation process, criterions and so on. Besides, each API-
fragment pair is annotated by two different annotators. If they 
have disagreements, they are required to discuss to reach a 
consensus. We believe that the above measures can eliminate 
the bias to some extent. 

B. Threats to External Validity 

In this study, we employ two public open datasets to test 
the performances of FITSEA. It is still uncertain how FITSEA 
will perform on other tutorial datasets. Since the features can 
be defined and calculated accurately, FITSEA can show stable 
performances over different tutorial datasets. In the future, we 
plan to introduce more tutorial datasets to generalize FITSEA. 

VIII. RELATED WORK 

In this section, we introduce two main related works, 
namely API usage patterns mining and text summarization.  

A. API Usage Patterns Mining 

In addition to the recent studies in API documentation and 
discovery, APIs are hard to be used [18, 19, 20]. An API 
method is usually used along with the other methods to 
implement specific functionality. The patterns of co-usage 
relationships between methods of APIs are important for 
developers. Saied et al. [21] proposed a new method to mine 
multi-level API usage patterns. The usage patterns are created 
in a hierarchical way, and can be used by a variety of API 
client programs. Wang et al. [22] proposed an approach named 
UP-Miner which can find the unpopular usage patterns, and 
effectively reduce the number of redundant usage patterns.  

API usage patterns can be used for different purposes, for 
example, API usage visualization [23, 24] and API usage 
example recommendation or code completion [25, 26]. When 
the patterns are discovered, the API usage patterns can be 
visualized to enhance understanding. If the database of API 
usage patterns can be constructed, they can be recommended 
to complete code snippets automatically. 

B. Text Summarization 

This study relies heavily on natural language processing 
and text classification techniques. Finding tutorial fragments 
explaining APIs is similar to text summarization, especially 
extractive text summarization [16]. Extractive text 
summarization techniques have been used to many kinds of 
texts in software engineering, including meetings [30], 
telephone conversations [31] and bug reports [16, 32]. 
Software tasks around bug reports are popular topics these 
years [35, 36, 37]. Taking bug reports as examples, extractive 
text summarization can be resolved by supervised methods 
and unsupervised methods. Supervised methods train a 
classifier with various types of features to learn whether a 
sentence belongs to summary or not.  Rastkar et al. [16] design 
24 features to characterize sentences in bug reports. Time and 
location information are taken into account in these features. 
Unsupervised methods try to find summary without using a 
trained model. Mani et al. [32] compare four unsupervised 
methods for bug summarization, and introduce a noise reducer 
to filter out different types of sentences. 

IX. CONCLUSION 

Finding tutorial fragments explaining APIs is significant to 
the developers which will speed up the development process. 
In this study, we propose a more accurate model, namely 
FITSEA to help developers finding tutorial fragments when 
facing an unfamiliar API. FITSEA fully leverages the domain 
specific knowledge to find two important indicators for 
classification, namely co-occurrence APIs and API extensions. 
Besides, it also introduces the usage of an effective semantic 
similarity method, namely Word2Vec. By investigating three 
RQs, we demonstrate the performances and effectiveness of 
FITSEA. The results show that FITSEA can outperform the 
state-of-the-art model by up to 13% and 30% on McGill 
tutorial dataset and Android tutorial dataset respectively in 
terms of F-measure. 
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