
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

3-2016

A more accurate model for finding tutorial
segments explaining APIs
He JIANG

Jingxuan ZHANG

Xiaochen LI

Zhilei REN

David LO
Singapore Management University, davidlo@smu.edu.sg

DOI: https://doi.org/10.1109/SANER.2016.59

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
JIANG, He; ZHANG, Jingxuan; LI, Xiaochen; REN, Zhilei; and LO, David. A more accurate model for finding tutorial segments
explaining APIs. (2016). 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER): March
14-18, Osaka: Proceedings. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3751

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/111759959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3751&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3751&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3751&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/SANER.2016.59
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3751&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3751&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

A More Accurate Model for Finding Tutorial
Segments Explaining APIs

 He Jiang1,2,3 Jingxuan Zhang1 Xiaochen Li1 Zhilei Ren1 David Lo4

jianghe@dlut.edu.cn jingxuanzhang@mail.dlut.edu.cn li1989@mail.dlut.edu.cn zren@dlut.edu.cn davidlo@smu.edu.sg

1School of Software, Dalian University of Technology, Dalian, China
2Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian, China

3State Key Laboratory of Software Engineering, Wuhan University, Wuhan, China
4School of Information System, Singapore Management University, Singapore

Abstract—Developers prefer to utilize third-party libraries

when they implement some functionalities and Application
Programming Interfaces (APIs) are frequently used by them.
Facing an unfamiliar API, developers tend to consult tutorials as
learning resources. Unfortunately, the segments explaining a
specific API scatter across tutorials. Hence, it remains a
challenging issue to find the relevant segments. In this study, we
propose a more accurate model to find the exact tutorial
fragments explaining APIs. This new model consists of a text
classifier with domain specific features. More specifically, we
discover two important indicators to complement traditional text
based features, namely co-occurrence APIs and knowledge based
API extensions. In addition, we incorporate Word2Vec, a
semantic similarity metric to enhance the new model. Extensive
experiments over two publicly available tutorial datasets show
that our new model could find up to 90% fragments explaining
APIs and improve the state-of-the-art model by up to 30% in
terms of F-measure.

Keywords—Application Programming Interface; Text
Classification;Feature Construction

I. INTRODUCTION

Instead of writing code snippets themselves, developers
usually tend to reuse existing Application Programming
Interfaces (APIs) to accomplish programming tasks [1, 2]. API
anchored programming is a typical software reuse technique
which can speed up developing process [3]. Unfortunately, it is
a challenge for developers to use an unfamiliar API correctly,
thus API learning resources are welcomed for developers. To
be able to use an unfamiliar API without mistakes, developers
usually tend to refer to the API specifications as learning
resources [4, 5]. API specifications explain the preconditions,
parameters, exceptions and return values of the specific APIs
[6]. However, they will not put the specific APIs into some
particular context. In contrast, tutorials are important learning
resources which combine the functional explanations and code
examples together. By referring to tutorials, developers can
quickly know how to use the APIs correctly in specific
situations. As a result, tutorials are key resources to the
developers.

However, there are some challenges for developers to find
the API explanations in the tutorials. First, tutorials are usually
structured as a series of programming topics with APIs mixed
in different sections. As a result, it is hard to find related
sections for a given API in the tutorials. Developers often have

to go through the lengthy tutorials to locate API explanations.
Thus, it is essential to split the whole tutorials into consistent
fragments in terms of content. Second, APIs are often
mentioned in an irrelevant fragment without being the topic of
it. One fragment may contain more than one API, but the
fragment cannot explain all the appeared APIs at the same time.
Developers have to decide whether the fragment is really
talking about the given API, since the API may be listed as an
example or appear to compare against other APIs. In such
situations, the fragment does not explain this API.

Previous works have tried to discover tutorial fragments
explaining APIs using a text classification model [1]. This
model extracts a series of linguistic and structural features from
the API-fragment pairs. These features are divided into five
different groups according to their relevance, including real
valued features, tutorial level, section level, sentence level
features, and dependency based features. Real valued features
detect the frequency of occurrence of the whole API and part
of it. Tutorial level, section level, and sentence level features
are all boolean or binary features which detect a predefined
hypothesis. Dependency based features measure the
dependency between the code-like terms. These features do not
measure the similarity between APIs and fragments, since the
information is unmatched. APIs usually consist of several
terms, while the fragments contain hundreds of terms. After the
features of each API-fragment pair are extracted, and the class
label, namely whether the fragment explains the API or not is
annotated, the training set is fed into the MaxEnt classifier to
train the model. Given a new API-fragment pair, the trained
model can predict the class label for it. The model can discover
the fragments explaining APIs with an average F-measure of
75.6%.

However, the existing model does not consider the domain
specific knowledge of APIs effectively. A given API is usually
introduced along with other APIs which is called co-occurrence
APIs, and the patterns of co-occurrence APIs are important
factors to find explaining fragments for the given API. Besides,
the given API can be treated as both text and code. From the
perspective of text, we can fully mine its implicit meaning and
relevance with the fragments. From the perspective of code, we
can borrow the knowledge and API usage experience from
both the crowds and experts, and these knowledge and
experience can be used to find fragments explaining the given
API. In summary, we have the following observations:

• Several APIs can appear in one fragment at the same time.
When considering one of the APIs, the more co-occurrence
APIs exist, the less possibility the fragment explains the
API. As a result, the co-occurrence APIs are important
indicators to discover fragments explaining an API.

• As a general programming interface, an API can be used by
a large number of developers. The API usage experience
can be discussed and shared in some technical forums, such
as Stack Overflow. The crowd knowledge contained in
Stack Overflow can be leveraged to discover explaining
fragments for APIs.

• Accompanied with the distribution of APIs, the providers
will supply the specifications for the APIs. The
specifications are written by some experienced developers,
and describe the functional properties of the APIs. The
expert knowledge contained in the specifications can also
be exploited.

In this study, we propose a new model of FInding Tutorial
Segments Explaining APIs (FITSEA). FITSEA fully leverages
the above mentioned domain specific knowledge, and follows
the same process as text classification. In FITSEA, we
construct three feature groups from each API-fragment pair.
The first group is raw API feature group, and it digs relevant
information between the raw APIs and fragments. The second
group is co-occurrence API feature group. This group
considers the structural and semantic information of co-
occurrence APIs in the fragments. The last group is API
extension feature group, and it takes advantages of the crowd
knowledge and expert knowledge from Stack Overflow and
API specifications respectively to extend APIs, and finds
connections between API extensions and fragments. Within the
three groups of features, we introduce the Word2Vec [28]
similarity which can measure the semantic similarity and
eliminate the mismatch between APIs and fragments. After all
the features and label of each API-fragment are constructed, a
widely used classifier, namely decision tree is utilized to train
the classification model. The trained model can be used to
predict the labels of new API-fragment pairs.

Experiment results over the dataset created by Gayane et al.
[1] show that, FITSEA can achieve an average F-measure of
82.82% which outperforms the state-of-the-art model by 7.2%.
To generalize the effectiveness of FITSEA, we annotate new
dataset of Android API tutorials. Results on the newly
annotated dataset also show the advantages of FITSEA model.
For example, the F-measure is between 60% and 74% over the
new dataset which is superior to the state-of-the-art model.

In summary, this study makes the following contributions:

• We propose a new model, namely FITSEA to discover the
tutorial fragments explaining APIs. It fully leverages
domain specific knowledge, and incorporates the
Word2Vec semantic similarity. This model shows better
results than the state-of-the-art model.

• We conduct a series of experiments to show the
effectiveness of FITSEA. The experiment results indicate
that FITSEA can achieve the F-measure of 82.82% and
67.22% over the two tutorial datasets on average, and

outperforms the state-of-the-art model by 7.2% and 12.2%
respectively.

• We construct a new manually annotated tutorial dataset
related to Android APIs. The new tutorial dataset consists
of four tutorials including 430 API-fragment pairs in total.
The new tutorial dataset is made publicly available to
researchers and developers.

This paper is structured as follows. In section II, we present
the usage scenario. In section III, we show the tutorial datasets
used in the experiments. We describe the overall framework of
FITSEA in section IV. The experimental setup and results are
introduced in section V and VI. Then, section VII and VIII
show the threats to validity and related work respectively. Last,
we conclude this study in section IX.

II. USAGE SCENARIO

In this section, we demonstrate the usage scenario of
discovering tutorial fragments explaining APIs.

When developers want to accomplish some programming
tasks, they usually tend to reuse functionalities provided by
third party libraries through APIs [21]. In such a situation,
developers often know which specific APIs they should use,
due to the meaningful name of the APIs. However, they often
do not know how to use them in particular programming
context. The aforementioned situation is of concern to us.
Actually, there exists the situation which developers do not
know which APIs they can use. However, many studies
address the problem of API usage recommendation in the
literature [7, 8, 9], and they can resolve this problem effectively.
Hence, we do not take this situation into consideration.

For the above API usage scenario, we choose the
granularity of the considered APIs at the class or interface level
to discover the tutorial fragments as [1]. Tutorials usually
introduce some programming topics by using a series of
methods of some classes. Besides, developers usually want to
know some behaviors of classes or interfaces rather than the
functional feature of only one method [1]. As a result, Class or
interface level is the best level of granularity.

By discovering the explaining tutorial fragments for an API,
we can show the tutorial fragments to developers when they
have no idea about the API. Fig.1 shows the usage scenario. If

public class MyView extends View

{
......

@Override
protected void onMeasure
(

int widthMeasureSpec,
int heightMeasureSpec

)
{

setMeasuredDimension(150,50);
}

......

}

1. View Layers

In all versions of Android, views have had the
ability to render… See More

2. How Property Animation Different from View?

The view animation system provides the
capability to only animate… See More

3. Animating Views

The property animation system allows
streamlined animation… See More

……

Fig. 1 An example of usage scenario

See fragments in tutorials:

developers do not know how to use “android.view.View”, we
will recommend some fragments explaining it in the right panel.
After reading the summary and the first sentence, developers
can check more information by clicking “See More”. In this
way, developers will quickly learn how to use the API without
much effort.

III. TURORIAL DATASETS

It is necessary to find or construct tutorial datasets to study
the process of discovering explaining fragments for APIs.
There are two tutorial datasets used in this study. In the
following subsections, we introduce the two tutorial datasets
respectively, especially the process of constructing the Android
tutorial dataset.

A. McGill Tutorial Dataset

The first tutorial dataset denoted as McGill tutorial dataset
is created by McGill University which is made publicly
available. McGill tutorial dataset consists of five tutorials
which explain JodaTime, Math, Collections and Smack APIs.
They are diverse in the tutorial size and format, so they are
well-suited for research study. Table 1 shows the statistical
information of McGill tutorial dataset. We can see from the
table that the number of API-fragment pairs ranges from 68 to
220, and the average length of fragments is less than 250 words.
The relevant column shows the number of pairs in which the
fragments really explain the APIs, and it is between 30 and 56.

B. Android Tutorial Dataset

In order to contribute more tutorial datasets to research and
development study, we construct another tutorial dataset
explaining Android APIs, and name it as Android tutorial
dataset. Android development is gradually booming these years,
and developers are pouring into Android development. As a
result, there is a high demand to discover explanatory tutorial
fragments related to various Android APIs. This pushes us to
build Android API tutorial dataset ourselves. As a complement
for McGill tutorial dataset, Android tutorial dataset can be used
to generalize the effectiveness of FITSEA model. We can find
from Table 1 that there are four tutorials in Android tutorial
dataset, namely Graphics, Resources, Text and Data for
Android APIs. There is no big difference between McGill
tutorial dataset and Android tutorial dataset in statistics, except
that the lengths of tutorials in the Android dataset are much
longer. The Android tutorial dataset is publicly available in the
following website: http://oscar-lab.org/paper/API/.

C. Construction Steps

There are mainly four steps to complete the construction of
Android tutorial dataset, namely tutorial download, tutorial
fragmentation, API identification and manual annotation. We
will introduce each step in detail in the following paragraphs.

1) Tutorial Download
In the first step, we need to download the tutorials from the

official Android development websites [33]. There are several
tutorials in the websites, and we select four of them to crawl,
namely Graphics, Resources, Text and Data. We choose these

Table 1. Statistical information of datasets

Dataset Tutorial API Fragment Pairs Length Relevant

McGill
Tutorial
Dataset

JodaTime 36 29 68 140 30

Math Library 73 41 98 203 54

Col. Official 59 57 220 172 56

Col. Jenkov 28 69 150 141 42

Smack 40 47 86 229 56

Android
Tutorial
Dataset

Graphics 70 38 138 411 43

Resources 63 46 140 674 45

Text 31 24 76 352 25

Data 37 25 76 365 28

tutorials for the following reasons. First, they explain basic
Android development topics which are relevant to many
developers. Second, these four tutorials are easy to understand
so that they can be manually annotated quickly and accurately.
Third, they have different lengths and formats of fragments
which can simulate different situations. We download the
webpages of these tutorials for further processing.

2) Tutorial Fragmentation
To help developers in finding useful information for an

API quickly, we need to split the tutorials into short fragments.
The contents in each fragment should be cohesive, so that they
can concentrate on only one topic. Since the contents of the
tutorials are all stored in HTML files, a basic idea is to split
the tutorials based on HTML header tags. We find that the
structures of these HTML files are the same, and the header
tags are in four levels, namely <h1>, <h2>, <h3> and <h4>.
Consequently, we decide to split the tutorials based on the
lowest level, namely <h4>. By using regular expressions, we
can split the tutorials.

3) API Identification
After splitting the tutorials into short fragments, we need to

find the APIs in each fragment. Detecting the APIs is not a
hard thing, since HTML files have already given the links to
specific APIs. What we need do is to detect the “href” links in
each fragment. By analyzing the link addresses, we can
identify the exact APIs a fragment contains.

4) Manual Annotation
As we have already explained, not all the occurred APIs

are explained by the fragment. After detecting the APIs in
each fragment, we can combine them into API-fragment pairs.
As a result, we need to annotate the class label of each pair by
our subjective judgment.

We employ 6 master students to annotate Android tutorial
dataset. They all major in software engineering, so it is not
hard for them to annotate API related dataset. Before the
annotation, each annotator is given a detailed annotation guide,
and they are required to learn the guide until they know the
whole annotation process. The annotation guide explains the
aim of the annotation, the annotation procedures, the
annotation standards and some tips to speed up the annotation.
An example is also described in the annotation guide so that
the annotators could get familiar with the annotation quickly.

By reading an API-fragment pair, the annotators should decide
whether the fragment explains the API. If yes, then the API-
fragment pair is relevant, otherwise it is irrelevant. To make
the annotation more reliable, each API-fragment pair is
annotated by two different annotators. If there is a conflict
between them when judging one API-fragment pair, they
should discuss to reach a consensus. After the annotation
process is finished, we collect the annotation results and
construct Android tutorial dataset.

IV. FRAMEWORK

In this section, we illustrate FITSEA model, text similarity
approaches, and the features that we use to characterize API-
fragment pairs.

A. FITSEA Model

FITSEA is a typical text classification model which is
shown in Fig. 2. There are three stages in the whole
framework. The first stage is the preprocessing stage which
aims to construct the knowledge base from crowds and experts
extracting from Stack Overflow and API specifications
respectively. The second stage is the training stage which aims
to transfer the API-fragment pairs into feature vectors with the
assistance of a knowledge base and train a classifier. Each
API-fragment pair has a class label, namely relevant or
irrelevant. The third stage is the testing stage. After
transforming the API-fragment pairs with unknown labels into
feature vectors, the trained classifier can predict the class
labels of the feature vectors in test set.

B. Text Similarity Approaches

Since some text similarity methods are used as features or
comparative methods in the experiments, we first describe the
details of these methods. Texts can be similar in two ways,
namely lexically and semantically [10]. Texts are similar
lexically if they share a sequence of characters or terms (i.e.,
words), while texts are similar semantically if they show the
same meaning. Lexical similarity can be further divided into
character-based similarity and term-based similarity.

 In this study, we utilize one of the semantic similarity
methods, namely Word2Vec similarity. First, Word2Vec
learns the vector representations of words. Then the vector
representations of words in text can be merged together to
form the final vector which can be treated as the semantic
representation of the text. The similarity can be calculated
based on the fixed-length vectors. In such a way, the
mismatched length between two texts can be eliminated. To
demonstrate the effectiveness of Word2Vec, we set up a
research question to compare it against the other four lexical
similarity methods, namely Bi-Gram, Levenshtein, Jaccard
and Cosine similarity. Among them, Bi-Gram and Levenshtein
are character-based similarity, while Jaccard and Cosine
Similarity are term-based similarity. These text similarities
can be calculated as follows.

1) Word2Vec Similarity
Before calculating similarity, we first need to train the

vector representation of each word. Word2Vec takes in a text
corpus and outputs the vectors of all the words [34]. The text
corpus is composed of all the words from the tutorial datasets,
Stack Overflow, and API specifications. After the word
vectors are obtained, we average the values in each dimension
of each word vector in the text to form the text vector. The
similarity between two text vectors is calculated as follows:

S(T1,T2)= ∑ (T1)i (T2)in
i=1∑ V(T1)i2n

i=1 ∑ V(T2)i2n
i=1

 (1)

where T1 and T2 are two different texts, and V(T1)i and
V(T2)i show the text vector of T1 and T2 at the ith dimension
respectively.

2) Bi-Gram Similarity
Bi-Gram is a type of N-Gram which splits the text into a

sequence of characters with length 2 [11]. For example, the
Bi-Gram of “student” is {st, tu, ud, de, en, nt}.The Bi-Gram
similarity score is defined as the ratio of the number of shared
Bi-Gram between two texts to the total number of Bi-Gram in
both texts:

Classifier

Knowledge
Base

API
Specifications

Fig. 2. Workflow of FITSEA

Feature
Extractor

APIFre CodeFre SubjectFre … Label

5 19 11 … relevant

7 35 5 … irrelevant

16 2 1 … relevant

… … … … …

API Fragment Label

java.util.List As a rule… ?

java.util.Set This section … ?

java.util.HashSet As you can … ?

… … …

Model
Learner

Preprocessing
T

raining

Method Summary

Modifier and Type Method and Description

boolean add (E e)
 Appends the specified element to …

void add(int index, E element)
 Inserts the specified element at the…

boolean addAll (Collection<? Extends E> c)
 Appends all of the elements in the …

I’m trying to find an implementation of java.util.List and
java.utils.Set at the same time in Java. I want this class to
allow only unique elements (as Set) and preserve their order
(like List). Does it exist in JDK 6?

TreeSet is sorted by element order; LinkedHashSet retains
insertion order. Hopefully one of those is what you were
after :)
EDIT: Okay, now you’ve specified that you want to be able to
insert at an arbitrary location, I suspect you’ll have to write
your own – just create a class containing a HashSet<T> and

APIFre CodeFre SubjectFre … Label

7 9 5 … ?

4 11 4 … ?

1 2 3 … ?

… … … … …

Feature
Extractor

API Fragment Label

java.util.Iterator Each of the … relevant

java.util.Vector The fact that … irrelevant

java.util.Hashtable If you need… relevant

… … …

T
esting

APIFre CodeFre SubjectFre … Label

7 9 5 … relevant

4 11 4 … relevant

1 2 3 … irrelevant

… … … … …

S(T1,T2)= 2×|Bi(T1)∩Bi(T2)|

|Bi(T1)|+|Bi(T2)|
 (2)

where Bi(T1) and Bi(T2) are the Bi-Gram of T1 and T2
respectively.

3) Levenshtein Similarity
Levenshtein similarity calculates the minimum edit

operations needed to change one text into another. The edit
operation includes insertion, deletion and substitution. The
equation of it can be:

S(T1,T2)=1-
MinOper(T1,T2)

Max	(T1,T2)
 (3)

where MinOper(T1,T2) stands for the number of minimum
edit operations, and the Max(T1,T2) measures the maximum
length of T1 and T2.

4) Jaccard Similarity
Jaccard similarity measures the size of intersection divided

by the size of union in terms of words, and it can be calculated
as follows:

S(T1,T2)= |S(T1)∩S(T2)|
|S(T1)∪S(T2)| (4)

where S(T1) and S(T2) are the set of terms in T1 and T2.

5) Cosine Similarity
Texts can be transformed into word vectors, after a series

of steps, such as tokenization, stemming and stop words
removal. Cosine similarity measures the cosine of the angle
between two word vectors, after transforming the texts into
word vectors with the term weight of term frequency-inverted
document frequency (tf-idf). The calculation formula can be:

S(T1,T2)= cos(θ)=
∑ T1iT2i

n
i=1∑ T1i

2n
i=1 ∑ T2i

2n
i=1

 (5)

where T1i and T2i are word vectors of T1 and T2 at the ith
dimension respectively.

C. Feature Design

We design and extract 17 features from each API-fragment
pair by taking co-occurrence APIs and API extensions into
consideration. These features are divided into three groups,
namely raw API features, co-occurrence API features, and API
extension features respectively. Raw API features dig relevant
information between raw APIs and fragments. Co-occurrence
API features mine relationships between co-occurrence APIs
and fragments. API extension features make use of the
knowledge and usage experience from Stack Overflow and
API specifications to find relevant facts. These groups of
features all combine both linguistic and semantic properties
between APIs and fragments. Some features have real values,
while the others have boolean values. Table 2 shows the
summary of these features. We will clarify all the features of
each API-fragment pair in detail for the rest of this subsection.

1) Raw API Features
WholeAPIFre: This feature measures the frequency of the

complete API name occurred in the fragment. The complete
API name is the name from the root package, for example, the
complete API name of “Iterator” is “java.util.Iterator”. The

Table 2. Summary of features

Feature Description
Group 1: Raw API features

WholeAPIFre How strongly a whole API is associated to the fragment.
PartAPIFre How strongly a part API is associated to the fragment.
ContainCodeFre How many code snippets the fragment contains.
InstantiationFre Frequency with which an API is initialized as an object.
SubjectFre How many times the API acts as subject of each sentence.
InConditionSen Whether the API appears in the condition sentences.
EmergeParaLoc The minimum location the API appears in each paragraph.
Word2VecSimi Word2Vec similarity between API and fragment.

Group 2: Co-occurrence API features

CoAPIFre
How many co-occurrence APIs are contained in the
fragment.

CoAPIFreInCode
How many co-occurrence APIs are contained in code
snippets.

wholeCoAPIFre
How strongly co-occurrence APIs are associated to the
fragment.

CoAPISenPro
The proportion of sentences which contain co-occurrence
APIs.

CoWord2VecSimi
Word2Vec similarity between sentences containing co-
occurrence APIs and not.

Group 3: API extension features

MethodFre
How many methods in specification based API extension are
contained in the fragment.

IsMethodInTitle
Whether the methods in specification based API extension
are contained in the title.

ClueWordCount
How many clue words occurred in Stack Overflow based
API extension.

ExWord2VecSimi
Word2Vec similarity between Stack Overflow based API
extension and the fragment.

rational is that the more times the complete API name appears,
the more chances the fragment explains the API.

PartAPIFre: An API name may be composed of several
single words following CamelCasing convention. This feature
measures the frequency of component words of API name in
the fragment. For the same rational as the first feature, the
more times the component words appear, the more chances the
fragment explains the API.

ContainCodeFre: This feature computes code snippets
frequency contained in the fragment. The code snippets can be
found by the HTML tags, like “<codeblock>” or “<codebox>”.
The more code snippets exist in the fragment, the more
chances the fragment concentrates on the API and its context.

InstantiationFre: This feature calculates how many times
the API is initialized as an object. The more times it is
initialized as an object, the more chances the fragment
explains the constructors of the API.

SubjectFre: This feature calculates the frequency of which
the API acts as the subjects of all the sentences. We use the
Stanford Parser [12] to detect the subject of each sentence. If
the API is the subject of a sentence, the sentence will pay
much attention on it.

InConditionSen: This is a boolean feature which tries to
detect whether the API exists in condition sentences. We
detect the condition sentences with some phrases, such as “for
example”, “such as”, “for instance” etc.

EmergeParaLoc: the minimum location where the API
occurred in each paragraph of the fragment. If the API appears
in the front of one paragraph, the paragraph will pay much
attention on the API.

Word2VecSimi: The Word2Vec similarity between API
name and fragment. The calculation method is introduced in
part B of section IV.

2) Co-occurrence API Features
CoAPIFre: This feature detects the frequency of the co-

occurrence APIs in the fragment in total. The more times the
co-occurrence APIs appear, the less chances the fragment
explains the API.

CoAPIFreInCode: The feature is calculated by counting
the number of appearances of co-occurrence APIs in code
snippets. The rational is the same as CoAPIFre.

WholeCoAPIFre: This feature combines both the complete
co-occurrence APIs and part of them. If a complete co-
occurrence API appears once, the value is increased by 1,
while part of co-occurrence API (the component word)
appears once, the value is increased by 0.5.

CoAPISenPro: This feature measures the proportion of
sentences which contain co-occurrence APIs to all the
sentences. The larger proportion of sentences containing co-
occurrence, the less chance the fragment explains the API.

CoWord2VecSimi: The feature calculates the Word2Vec
similarity between sentences which contain co-occurrence
APIs and sentences do not.

3) API Extension Features
In the first place, we illustrate how to extend API from

crowds and experts based on Stack Overflow and API
specifications. Then, we show how to calculate features based
on the API extensions.

Knowledge contained in Stack Overflow can be leveraged
by many tasks [13, 14]. We follow the same method to
discover crowd knowledge for APIs from Stack Overflow [15].
The APIs are treated as the queries, and the pairs of question
and best answer are treated as documents to be retrieved. The
ranking criteria are based on two aspects: the text similarity
between the queries and the documents, and the quality of the
documents. The text similarity is calculated using Lucene’s
[29] similarity, while the quality of the pairs of question and
best answer can be measured by the user rating score of both
question and best answer. The final ranking value is the
average of text similarity and the quality of each pair of
question and best answer. Through a series of experiments in
[15], it has been proved to be an effective method for finding
crowd knowledge from Stack Overflow. In FITSEA, we try to
find crowd knowledge from Stack Overflow for APIs, and the
first ranked pair of question and best answer is retained as
Stack Overflow based API extension.

Besides, we parse the official API specifications, and
extract the methods for each API. The specification based API
extension consists of these methods. The following features

are calculated using Stack Overflow based API extension or
specification based API extension.

MethodFre: This feature calculates the frequency of the
methods in specification based API extension appears in the
fragment. The more times the methods exist, the higher
chances the fragment explains the API.

IsMethodInTitle: This feature measures whether one of the
methods in specification based API extension appears in the
title of the fragment. If true, then the fragment will pay much
attention on the API.

ClueWordCount: The clue words are the 10 highest
frequent words [16] in the fragment. This feature measures
how many clue words exist in the Stack Overflow based API
extension.

ExWord2VecSimi: The feature calculates the Word2Vec
similarity between the Stack Overflow based API extension
and the fragment.

V. EXPERIMENTAL SETUP

In this section, we detail the experiment related issues.
First, we show our Research Questions (RQs) to explore the
performances of FITSEA. Second, we describe the two
comparative models used in the experiments. Third, the
evaluation method used in the experiments is introduced. Last,
the evaluation metrics are explained.

A. Research Questions

In this study, we investigate the following three RQs:

RQ1: How will FITSEA perform when using different
groups of features?

As described above, features are divided into three groups.
In this RQ, we want to explore the performances of FITSEA
when applying different groups of features.

RQ2: Does it achieve better results when using Word2Vec
semantic similarity than other similarity methods?

In each group of features, there exists one feature which
measures semantic similarity based on Word2Vec. To explore
whether it is superior to other similarity measurements, we try
four other methods based on lexical information, namely Bi-
Gram, Levenshtein, Jaccard and Cosine similarity.

RQ3: Can FITSEA perform better than the other models
over the two tutorial datasets?

In this RQ, we want to explore whether FITSEA could
discover more explaining fragments for APIs than the other
models. We compare FITSEA against the state-of-the-art
model which was introduced in [1] and an information
retrieval model.

B. Comparative Models

There are two comparative models in the literature [1]. The
first model is proposed by [1] which we name it as GMR
(constructed by concatenating the first character of each
author’s name). The second model is the traditional

information retrieval model which we name it as IR. In the
following part, we will detail the workflow of the two models.

1) GMR Model
The GMR model is a typical text classification model, and

it is the first work which tries to discover explaining fragments
for APIs. GMR model extracts 20 features from each API-
fragment pair. The 20 features are linguistic and structural
features, and they are divided into five groups. The training set
is used to train a MaxEnt classifier, and the class labels of
API-fragment pairs in test set can be predicted by the trained
classifier.

2) IR Model
The IR model tries to resolve this task by using

information retrieval method [27]. Since there is mismatch
between information in APIs and fragments, the APIs should
be extended using descriptions in the API specifications. The
rational is that, the more conjoint words occurred in both API
descriptions and fragment, the more likely the fragment
concentrates on and explains the API. In such a situation, the
API descriptions are treated as the queries, and the fragments
are treated as the documents to be searched. The similarity is
calculated using cosine similarity with tf-idf term weight.

We consider a fragment explains an API, if the cosine
similarity between the fragment and the API descriptions is
greater than a predefined threshold. The threshold is defined
according to the following process: the top N fragments are
received for each API, where N is the number of relevant
fragments according to the annotation. The average value of
each lowest similarity of the top N fragments is treated as the
threshold. In such a way, IR model can also be evaluated in
the same way as text classification model.

C. Evaluation Method

In this subsection, we discuss the evaluation method when
we perform text classification.

We use the same the evaluation method as in [1], namely
Leave-One-Out Cross Validation (LOOCV) to test the results
of each tutorial in all the experiments. More specifically, in
each run, only one API-fragment pair is chosen as the test set.
All the remaining pairs are treated as training set. Then, the
pairs in training set are fed into the classifier to train the model.
The trained model can be used to predict the class label of
API-fragment pair in test set. After all the pairs are chosen as
the test set, we calculate the final results. There are several
advantages for using LOOCV. It could use as many pairs as
the training set as possible, so the whole dataset can be
effectively covered in each run. Besides, the results are more
reliable and reproducible.

D. Evaluation Metrics

In this study, widely used Precision, Recall and F-measure
are employed to evaluate the performances of different models.
Precision, Recall and F-measure are typical metrics to evaluate
a classification model [16]. In the task of finding fragments
explaining APIs, these metrics are also commonly used [1].

Table 3. Confusion matrix

True Condition

Positive Negative

Predicted
Condition

Positive TP FP

Negative FN TN

In the classification task, the True Positives (TP), True
Negatives (TN), False Positives (FP) and False Negatives (FN)
are computed to compare the results between true condition
and predicted condition. Positive and negative refer to the
prediction of the classifier, while true and false refer to
whether the prediction corresponds to the true condition. The
confusion matrix shown in Table 3 defines these terms.

Based on the confusion matrix, the Precision and Recall
can be calculated as follows:

Precision=
TP

TP+FP
 (6)

Recall=
TP

TP+FN
 (7)

F-Measure tries to combine and balance the Precision and
Recall which can be calculated as follows:

F-Measure=
2×Precision×Recall

Precision+Recall
 (8)

VI. EXPERIMENTAL RESULTS

In this section, we detect the experimental results of each
RQ. Through these RQs, we can evaluate different properties
and performances of FITSEA.

A. Investigation to RQ1

As mentioned before, we will investigate the results when
using different groups of features. Different groups of features
may have different contributions to the classifier. Through this
RQ, we can also detect whether the co-occurrence API
features and API extension features can improve the results
effectively, as complements for the raw API features. Various
combinations of the three groups are tested in each run. The
results of each combination of groups of features over McGill
dataset are listed in Table 4.

We can see from the table that different combinations of
groups of features show different results over the five tutorials.
For each separate group, the raw API feature group shows the
best results on average. For example, the F-measure of
JodaTime is 82.76% when using raw API feature group, while
it’s only 63.33% and 35.29% when only considering co-
occurrence API features and API extension features
respectively. For the combinations of two groups of features,
the results are improved compared with only one group of
features on average. For example, when combining raw API
feature group with co-occurrence API feature group, the F-
measure of Smack is 86.49%, while it’s only 78.90% and
77.14% when considering one of them respectively. When the
three groups of features are all considered, the results are the
best on average. For instance, the F-measure of Col. Jenkov is
85.37% which is the best results. In summary, from the
perspective of feature groups, there is no dominant or idle
feature group. As more features are used, the results are
improved on average.

Table 4. Classification results for different groups of features

When comparing different tutorials, we can see that even

using the same feature group, different tutorials show different
results. The F-measure is from 72.90% to 90% when using all
the features among these tutorials. Col. Official is the most
difficult tutorial to classify, the reason may be that the number
of relevant and irrelevant API-fragment pairs is the most

imbalance one. While JodaTime is the easiest tutorial to
classify, since the number of relevant and irrelevant API-
fragment pairs is the most balance one. We can see that, the
more the data is balanced, the better the results are.

Answer to RQ1: With the increasing of the feature groups,
the results get better on average. Co-occurrence API feature
group and API extension feature group are good indicators for
classification, and they are good complements for raw API
feature group.

B. Investigation to RQ2

When designing some features, we introduce Word2Vec to
calculate the similarity. We design this RQ to test whether it is
a more effective method than the others. In this RQ, we try the
other four similarity methods to compare, namely Bi-Gram,
Levenshtein, Jaccard and Cosine similarity. We only replace
the features which calculate Word2Vec similarity with one of
these methods, and the other features stay the same. Fig. 3, 4
and 5 show the Precision, Recall and F-measure of each
tutorial over McGill tutorial dataset.

We can see that, the best results are achieved when using
Word2Vec similarity. For example, the F-measure is 90%
when using Word2Vec, while it is only 59.65% when using
Jaccard in JodaTime tutorial. In other cases, Word2Vec also
achieves better results than the other four similarity methods
except for the Recall value in Math Library using VSM. By
observing the results in different tutorials, we can find that,
even one similarity method shows different effects. The F-
measure cross all the tutorials is from 72.9% to 90% when
using Word2Vec which shows the best results. The reason
may be that, Word2Vec is a similarity method which can
calculate the semantic similarity rather than lexical similarity.
Even using different words, Word2Vec can capture the same
meaning behind them. Besides, Word2Vec can learn fix-
length vector representations of words, thus it can overcome
the shortcomings of information mismatch.

Answer to RQ2: As a semantic similarity method,
Word2Vec can measure the similarity much better than other
methods. Word2Vec may be effective when the length of two
texts is unmatched.

C. Investigation to RQ3

In this RQ, we try to compare FITSEA with the other two

JodaTime
Math

Library
Col.

Official
Col.

Jenkov
Smack

Word2Vec 90.00% 76.36% 76.47% 87.50% 87.93%

VSM 76.67% 74.14% 65.91% 81.58% 86.21%

Jaccard 62.96% 67.86% 76.00% 83.78% 87.50%

Edit 60.00% 70.18% 73.08% 81.58% 86.21%

Bi-Gram 64.29% 70.18% 72.00% 79.49% 86.44%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%
Precision

Fig. 3. Precision of different similarity methods

JodaTime
Math

Library
Col.

Official
Col.

Jenkov
Smack

Word2Vec 90.00% 76.36% 69.64% 83.33% 91.07%

VSM 76.67% 78.18% 51.79% 73.81% 89.29%

Jaccard 56.67% 69.09% 67.86% 73.81% 87.50%

Edit 60.00% 72.73% 67.86% 73.81% 89.29%

Bi-Gram 60.00% 72.73% 64.29% 73.81% 91.07%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%
Recall

Fig. 4. Recall of different similarity methods

JodaTime
Math

Library
Col.

Official
Col.

Jenkov
Smack

Word2Vec 90.00% 76.36% 72.90% 85.37% 89.47%

VSM 76.67% 76.11% 58.00% 77.50% 87.72%

Jaccard 59.65% 68.47% 71.70% 78.48% 87.50%

Edit 60.00% 71.43% 70.37% 77.50% 87.72%

Bi-Gram 62.07% 71.43% 67.92% 76.54% 88.70%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%
F-Measure

Fig. 5. F-measure of different similarity methods

Group
JodaTime Math Library Col. Official Col. Jenkov Smack

P (%) R (%) F-M (%) P (%) R (%) F-M (%) P (%) R (%) F-M (%) P (%) R (%) F-M (%) P (%) R (%) F-M (%)

1 85.71 80.00 82.76 66.15 78.18 71.67 80.00 71.43 75.47 82.86 69.05 75.32 81.13 76.79 78.90

2 63.33 63.33 63.33 67.11 92.73 77.86 53.13 30.36 38.64 75.00 7.14 13.04 64.29 96.43 77.14

3 42.86 30.00 35.29 75.44 78.18 76.79 36.36 7.14 11.94 81.25 30.95 44.83 70.00 100.00 82.35

1+2 90.00 90.00 90.00 70.59 65.45 67.92 75.51 66.07 70.48 86.84 78.57 82.50 87.27 85.71 86.49

1+3 83.33 83.33 83.33 67.35 60.00 63.46 78.43 71.43 74.77 83.78 73.81 78.48 81.36 85.71 83.48

2+3 51.72 50.00 50.85 84.48 89.09 86.73 52.63 35.71 42.55 58.14 59.52 58.82 68.83 94.64 79.70

1+2+3 90.00 90.00 90.00 76.36 76.36 76.36 76.47 69.64 72.90 87.50 83.33 85.37 87.93 91.07 89.47

P: Precision, R: Recall, F-M: F-measure 1: raw API feature group, 2: co-occurrence API feature group, 3: API extension feature group

models, namely GMR model and IR model. To show the
effectiveness of FITSEA, we compare these models over both
McGill tutorial dataset and Android tutorial dataset.

1) Results on McGill Tutorial Dataset
According to [1], GMR model is the state-of-the-art model

which shows better results than IR model over McGill tutorial
dataset. Fig 6, 7 and 8 show the Precision, Recall and F-
measure respectively over McGill tutorial dataset.

We can see from the figures that, FITSEA shows better
results on average than the two comparative models. In terms
of Precision, FITSEA can achieve up to 90%, while GMR and
IR can only reach up to 87% and 74% respectively. As for
Recall, IR achieves better results than GMR while poorer than
FITSEA. For example, we can see that IR can come to 94% on
Col. Official. This is because the threshold is defined much
smaller in IR model. As a result, a lot of fragments are
retrieved. From the F-measure viewpoint, we can see FITSEA
is better than the other two models on the whole.

2) Results on Android Tutorial Dataset
To make more contributions to the researchers and

developers, we annotate the Android tutorial dataset. To
demonstrate the generalization ability of FITSEA, we also
compare FITSEA with GMR model and IR model over the
Android tutorial dataset. Fig 9, 10 and 11 show the values of
the three evaluation metrics over Android tutorial dataset.

We can see from the figures that FITSEA outperforms the
other two comparative models. FITSEA doesn’t achieve better
results than GMR in some cases in Precision, but it shows
better results than IR. In terms of Recall, FITSEA performs
favorably to the comparative models. IR shows better results
than GMR while poorer results than FITSEA on average. In
particular, when it comes to F-measure, FITSEA reaches up to
74% and beyond GMR by up to 30% which shows absolute
advantages.

After we have demonstrated the effectiveness of FITSEA,
we would stress the underlying reasons why FITSEA works. It
fully leverages the domain specific knowledge of APIs. Not

JodaTime
Math

Library
Col.

Official
Col.

Jenkov
Smack

FITSEA 90.00% 76.36% 76.47% 87.50% 87.93%

GMR 81.00% 69.00% 71.00% 84.00% 87.00%

IR 73.00% 67.00% 30.00% 33.00% 74.00%

20.00%

40.00%

60.00%

80.00%

100.00%
Precision

Fig. 6. Precision on McGill tutorial dataset

JodaTime
Math

Library
Col.

Official
Col.

Jenkov
Smack

FITSEA 90.00% 76.36% 69.64% 83.33% 91.07%

GMR 73.00% 74.00% 62.00% 76.00% 80.00%

IR 73.00% 65.00% 94.00% 88.00% 52.00%

20.00%

40.00%

60.00%

80.00%

100.00%
Recall

Fig. 7. Recall on McGill tutorial dataset

JodaTime
Math

Library
Col.

Official
Col.

Jenkov
Smack

FITSEA 90.00% 76.36% 72.90% 85.37% 89.47%

GMR 77.00% 71.00% 67.00% 80.00% 83.00%

IR 73.00% 66.00% 45.00% 48.00% 61.00%

20.00%

40.00%

60.00%

80.00%

100.00%
F-Measure

Fig. 8. F-measure on McGill tutorial dataset

Graphics Resources Text Data

FITSEA 63.64% 75.00% 60.00% 73.08%

GMR 74.80% 87.00% 63.00% 42.50%

IR 35.80% 40.32% 33.33% 37.21%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%
Precision

Fig. 9. Precision on Android tutorial dataset

Graphics Resources Text Data

FITSEA 65.12% 73.33% 60.00% 67.86%

GMR 58.00% 55.90% 37.20% 37.80%

IR 67.44% 55.56% 44.00% 57.14%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%
Recall

Fig. 10. Recall on Android tutorial dataset

Graphics Resources Text Data

FITSEA 64.37% 74.16% 60.00% 70.37%

GMR 65.34% 68.07% 46.78% 40.01%

IR 46.77% 46.73% 37.93% 45.07%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%
F-Measure

Fig. 11. F-measure on Android tutorial dataset

only it mines the knowledge from Stack Overflow which can
be called crowd knowledge, but also it borrows the expert
knowledge from API specifications. Besides, through data
inspection, we find that the more co-occurrence APIs exist, the
less likely the fragment explains the API. Based on the
observations, we design two groups of features which can
improve the results. Last but not least, more advanced
technologies have been used to help us, for example,
Word2Vec semantic similarity.

Answer to RQ3: FITSEA shows better results than the
state-of-the-art model over the two public datasets. FITSEA
can find tutorial fragments explaining APIs more accurately.

VII. THREATS TO VALIDITY

In this section, we discuss the threats to validity which
include threats to internal validity and external validity.

A. Threats to Internal Validity

In order to contribute more dataset used for discovering
tutorial fragments explaining APIs and generalize the
effectiveness of FITSEA, we employ annotators to create
Android tutorial dataset. The annotation largely depends on
the subjective judgment. Different annotators may have
different viewpoints to the same thing due to their different
backgrounds of computer and programming. To make it more
reliable, the annotators are given a rigorous training. They are
given a detailed guidance with examples to show the
annotation process, criterions and so on. Besides, each API-
fragment pair is annotated by two different annotators. If they
have disagreements, they are required to discuss to reach a
consensus. We believe that the above measures can eliminate
the bias to some extent.

B. Threats to External Validity

In this study, we employ two public open datasets to test
the performances of FITSEA. It is still uncertain how FITSEA
will perform on other tutorial datasets. Since the features can
be defined and calculated accurately, FITSEA can show stable
performances over different tutorial datasets. In the future, we
plan to introduce more tutorial datasets to generalize FITSEA.

VIII. RELATED WORK

In this section, we introduce two main related works,
namely API usage patterns mining and text summarization.

A. API Usage Patterns Mining

In addition to the recent studies in API documentation and
discovery, APIs are hard to be used [18, 19, 20]. An API
method is usually used along with the other methods to
implement specific functionality. The patterns of co-usage
relationships between methods of APIs are important for
developers. Saied et al. [21] proposed a new method to mine
multi-level API usage patterns. The usage patterns are created
in a hierarchical way, and can be used by a variety of API
client programs. Wang et al. [22] proposed an approach named
UP-Miner which can find the unpopular usage patterns, and
effectively reduce the number of redundant usage patterns.

API usage patterns can be used for different purposes, for
example, API usage visualization [23, 24] and API usage
example recommendation or code completion [25, 26]. When
the patterns are discovered, the API usage patterns can be
visualized to enhance understanding. If the database of API
usage patterns can be constructed, they can be recommended
to complete code snippets automatically.

B. Text Summarization

This study relies heavily on natural language processing
and text classification techniques. Finding tutorial fragments
explaining APIs is similar to text summarization, especially
extractive text summarization [16]. Extractive text
summarization techniques have been used to many kinds of
texts in software engineering, including meetings [30],
telephone conversations [31] and bug reports [16, 32].
Software tasks around bug reports are popular topics these
years [35, 36, 37]. Taking bug reports as examples, extractive
text summarization can be resolved by supervised methods
and unsupervised methods. Supervised methods train a
classifier with various types of features to learn whether a
sentence belongs to summary or not. Rastkar et al. [16] design
24 features to characterize sentences in bug reports. Time and
location information are taken into account in these features.
Unsupervised methods try to find summary without using a
trained model. Mani et al. [32] compare four unsupervised
methods for bug summarization, and introduce a noise reducer
to filter out different types of sentences.

IX. CONCLUSION

Finding tutorial fragments explaining APIs is significant to
the developers which will speed up the development process.
In this study, we propose a more accurate model, namely
FITSEA to help developers finding tutorial fragments when
facing an unfamiliar API. FITSEA fully leverages the domain
specific knowledge to find two important indicators for
classification, namely co-occurrence APIs and API extensions.
Besides, it also introduces the usage of an effective semantic
similarity method, namely Word2Vec. By investigating three
RQs, we demonstrate the performances and effectiveness of
FITSEA. The results show that FITSEA can outperform the
state-of-the-art model by up to 13% and 30% on McGill
tutorial dataset and Android tutorial dataset respectively in
terms of F-measure.

ACKNOWLEDGMENT

We greatly thank Petrosyan, Robillard, and Mori in McGill
University for sharing their McGill tutorial dataset. We also
thank the annotators who devote their time on annotating
Android tutorial datasets. This work is supported in part by the
National Program on Key Basic Research Project under Grant
2013CB035906, the New Century Excellent Talents in
University under Grant NCET-13-0073, the National Natural
Science Foundation of China under Grants 61370144 and
61403057, the Fundamental Research Funds for the Central
Universities under Grant DUT14YQ203.

REFERENCE

[1] G. Petrosyan, M. P. Robillard, and R. de Mori, “Discovering information
explaining API types using text classification,” in Proceedings of the
37th International Conference on Software Engineering, 2015, pp. 869-
879.

[2] W. Maalej and M. P. Robillard, “Patterns of knowledge in API reference
documentation,” IEEE Transactions on Software Engineering, vol. 39,
no. 9, pp. 1264-1282, 2013.

[3] B. Dagenais and M. P. Robillard, “Recovering traceability links between
an API and its learning resources,” in Proceedings of the 34th
IEEE/ACM International Conference on Software Engineering, 2012,
pp. 47-57.

[4] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API
documentation,” in Proceedings of the 36th ACM/IEEE International
Conference on Software Engineering, 2014, pp. 643-652.

[5] S. Endrikat, S. Hanenberg, R. Robbes, and A. Stefik, “How do
api documentation and static typing affect api usability?” in
Proceedings of the 36th International Conference on Software
Engineering, 2014, pp. 632-642.

[6] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar,
“Inferring method specifications from natural language API
descriptions,” in Proceedings of the 34th IEEE/ACM International
Conference on Software Engineering, 2012, pp. 815-825.

[7] L. Wang, L. Fang, L. Wang, G. Li, B. Xie, and F. Yang, “Apiexample:
An effective web search based usage example recommendation system
for java apis,” in Proceedings of the 26th International Conference on
Automated Software Engineering, 2011, pp. 592-595.

[8] E. Duala-Ekoko and M. P. Robillard, “Using structure-based
recommendations to facilitate discoverability in apis,” in Proceedings of
the European Conference on Object-oriented Programming, 2011, pp.
79-104.

[9] R. P. L. Buse and W. Weimer, “Synthesizing api usage examples,” in
Proceedings of the 34th International Conference on Software
Engineering, 2012, pp. 782-792.

[10] W. H. Gomaa and A. A. Fahmy, “A survey of text similarity
approaches,” International Journal of Computer Applications, vol. 68,
no. 13, pp. 13-18, 2013.

[11] G. Kondrak, “N-gram similarity and distance,” in SPIRE, 2005, pp. 115-
126.

[12] D. Chen and C. D. Manning, “A fast and accurate dependency parser
using neural networks,” in Proceedings of EMNLP, 2014.

[13] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Leveraging crowd
knowledge for software comprehension and development,” in In
Proceedings of CSMR 2013 (17th IEEE European Conference on
Software Maintenance and Reengineering), 2013, pp. 59-66.

[14] S. Wang, D. Lo, and L. Jiang, “An empirical study on developer
interactions in stackoverflow,” in Proceedings of the 28th Annual ACM
Symposium on Applied Computing, 2013, pp. 1019-1024.

[15] L. B. L. de Souza, E. C. Campos, and M. D. A. Maia, “Ranking crowd
knowledge to assist software development,” in Proceedings of the 22nd
International Conference on Program Comprehension, 2014, pp. 72-82.

[16] S. Rastkar, G. C. Murphy, and G. Murray, “Summarizing software
artifacts: A case study of bug reports,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, 2010,
pp. 505-514.

[17] J. Mylopoulos, A. Borgida, and E. Yu, “Representing software
engineering knowledge,” Automated Software Engineering, vol. 4, no.
3, pp. 291-317, 1997.

[18] M. A. Saied, H. Sahraoui and B. Dufour, “An observational study on
API usage constraints and their documentation,” in Proceedings of the

22nd IEEE International Conference on Software Analysis, Evolution,
and Reengineering, 2015, pp. 33-42.

[19] M. P. Robillard and Y. B. Chhetri, “Recommending reference API
documentation ,” Empirical Software Engineering, 2015, pp. 1558-1586.

[20] H. A. Nguyen, R. Dyer, T. N. Nguyen, and H. Rajan, “Mining
preconditions of APIs in large-scale code corpus,” in 22nd International
Symposium on Foundations of Software Engineering, 2014, pp. 166-
177.

[21] M. A. Saied, O. Benomar, H. Abdeen and H. Sahraoui, “Mining multi-
level API usage patterns,” in Proceedings of the 22nd IEEE International
Conference on Software Analysis, Evolution, and Reengineering, 2015,
pp. 23-32.

[22] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang, “Mining
succinct and high-coverage API usage patterns from source code,” in
Proceedings of the 10th Working Conference on Mining Software
Repositories, 2013, pp. 319-328.

[23] E. Moritz, M. Linares-Vasquez, D. Poshyvanyk, M. Grechanik, C.
McMillan, and M. Gethers, “Export: Detecting and visualizing api
usages in large source code repositories,” in Proceedings of the 28th
International Conference on Automated Software Engineering, 2013, pp.
646-651.

[24] C. De Roover, R. Lammel, and E. Pek, “Multi-dimensional exploration
of api usage,” in Proceedings of the International Conference on
Program Comprehension, 2013, pp. 152-161.

[25] J. E. Montandon, H. Borges, D. Felix, and M. T. Valente, “Documenting
apis with examples: Lessons learned with the apiminer platform,” in
Proceedings of the Working Conference on Reverse Engineering, 2013,
pp. 401-408.

[26] D. Hou and D. M. Pletcher, “An evaluation of the strategies of sorting,
filtering, and grouping api methods for code completion,” in
Proceedings of the International Conference on Software Maintenance,
2011, pp. 233-242.

[27] C. D. Manning, P. Raghavan, and H. Sch¨utze, Introduction to
Information Retrieval. Cambridge University Press, 2008.

[28] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of
Word Representations in Vector Space,” in Proceedings of Workshop at
ICLR, 2013.

[29] A. Bialecki, R. Muir, and G. Ingersoll, “Apache lucene 4,” in SIGIR
2012 Workshop on Open Source Information Retrieval, 2012, pp. 1-8.

[30] K. Zechner. “Automatic summarization of open-domain multiparty
dialogues in diverse genres,” Computational Linguistics, vol. 28, no. 4,
pp. 447-485, 2002.

[31] X. Zhu and G. Penn, “Summarization of spontaneous conversations,” in
Proceedings of the 9th International Conference on Spoken Language
Processing, 2006, pp. 1531-1534.

[32] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey, “Ausum: approach
for unsupervised bug report summarization,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, 2012, pp. 1-11.

[33] http://developer.android.com/.

[34] https://code.google.com/p/word2vec/.

[35] J. Xuan, H. Jiang, Z. Ren and W. Zou, “Developer Prioritization in Bug
Repositories,” in Proceedings of the 34th IEEE/ACM International
Conference on Software Engineering, 2012, pp. 25-35.

[36] J. Xuan, H. Jiang, Y. Hu, Z. Ren, W. Zou, Z. Luo, and X. Wu, “Towards
Effective Bug Triage with Software Data Reduction Techniques,” IEEE
Trans. Knowledge and Data Engineering, vol.27, no.1, pp.264-280, 2015.

[37] J. Xuan, H. Jiang, Z. Ren, Z. Luo, “Solving the Large Scale Next
Release Problem with a Backbone Based Multilevel Algorithm,” IEEE
Transactions on Software Engineering, vol. 38, no. 5, pp. 1195-1212,
2012.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	3-2016

	A more accurate model for finding tutorial segments explaining APIs
	He JIANG
	Jingxuan ZHANG
	Xiaochen LI
	Zhilei REN
	David LO
	Citation

	untitled

