
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

6-2017

Revisiting assert use in GitHub projects
Pavneet Singh KOCHHAR
Singapore Management University, kochharps.2012@phdis.smu.edu.sg

David LO
Singapore Management University, davidlo@smu.edu.sg

DOI: https://doi.org/10.1145/3084226.3084259

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Numerical Analysis and Computation Commons, and the Software Engineering

Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
KOCHHAR, Pavneet Singh and LO, David. Revisiting assert use in GitHub projects. (2017). EASE'17 Proceedings of the 21st
International Conference on Evaluation and Assessment in Software Engineering, Karlskrona, Sweden, 2017 June 15-16. 298-307. Research
Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3740

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/111759937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3740&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3740&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3740&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/3084226.3084259
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3740&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Revisiting Assert Use in GitHub Projects
Pavneet Singh Kochhar

School of Information Systems
Singapore Management University, Singapore

kochharps.2012@smu.edu.sg

David Lo
School of Information Systems

Singapore Management University, Singapore
davidlo@smu.edu.sg

ABSTRACT
Assertions are o�en used to test the assumptions that developers
have about a program. An assertion contains a boolean expression
which developers believe to be true at a particular program point. It
throws an error if the expression is not satis�ed, which helps devel-
opers to detect and correct bugs. Since assertions make developer
assumptions explicit, assertions are also believed to improve under-
standability of code. Recently, Casalnuovo et al. analyse C and C++
programs to understand the relationship between assertion usage
and defect occurrence. �eir results show that asserts have a small
e�ect on reducing the density of bugs and developers o�en add
asserts to methods they have prior knowledge of and larger own-
ership. In this study, we perform a partial replication of the above
study on a large dataset of Java projects from GitHub (185 projects,
20 million LOC, 4 million commits, 0.2 million �les and 1 million
methods). We collect metrics such as number of asserts, number
of defects, number of developers and number of lines changed to a
method, and examine the relationship between asserts and defect
occurrence. We also analyse relationship between developer expe-
rience and ownership and the number of asserts. Furthermore, we
perform a study of what are di�erent types of asserts added and
why they are added by developers. We �nd that asserts have a small
yet signi�cant relationship with defect occurrence and developers
who have added asserts to methods o�en have higher ownership
of and experience with the methods than developers who did not
add asserts.

CCS CONCEPTS
•�eory of computation →Assertions;

KEYWORDS
Assertions, Replication Study, GitHub

1 INTRODUCTION
An assertion is a statement that helps developers test an assump-
tion that they have about a piece of code. An assertion contains a
boolean expression which needs to be satis�ed for the execution of
the subsequent statements; otherwise, an AssertionError would
be raised. Assertions support design by contract (DbC) style of pro-
gramming, where a developer de�nes what a method is supposed to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
EASE’17, Karlskrona, Sweden
© 2017 ACM. 978-1-4503-4804-1/17/06. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3084226.3084259

do and veri�es it during actual execution [37]. Asserts can be used
to enforce preconditions, postconditions and invariants to check
the change in the state caused by a piece of code. O�en, assertions
provide an e�ective way to detect and correct bugs early on in the
development life cycle as an AssertionError can help developers
in quickly �nding the source and reason of an error. An assert
statement can be viewed as a unit test which is directly embedded
in the code and tests the program on real data. �us, assertions
complement unit and integration tests. Assertions also serve as
documentation to help developers understand the working of a
program, thus, improving readability and maintainability. Many
popular languages such as C, C++, and Java provide support for
assertions.

Recently, Casalnuovo et al. study 69 most popular C and C++
projects on GitHub [12]. �ey investigate several questions such as
relationship between asserts and defect occurrence, how assertion
usage relates to developer characteristics such as code ownership
and experience, etc. �ey use hurdle regression model and other
statistical methods such as the Mann-Whitney-Wilcoxon test to
understand the relationship between assertions and defect count.
�ey �nd that assertions have a negative small but signi�cant re-
lationship with defect occurrence and adding asserts to methods
with more developers can reduce the chance of new bugs. �ey
also �nd that asserts are made to a method by developers who have
larger ownership of and more experience with the method.

Casalnuovo et al.’s study provides interesting results; however,
the study investigates only projects wri�en in C and C++ and
results may not generalize to other popular languages like Java.
According to TIOBE programming community index [1], which
takes into consideration factors such as number of skilled engineers
world-wide, courses and third party vendors, in September 2016,
Java is the most popular language. Additionally, Bissyande et al.
�nd that on GitHub there are many more projects wri�en in Java
than any other languages [9]. Moreover, another ranking done by
IEEE Spectrum which uses 12 metrics from 10 data sources such
as GitHub, Stack Over�ow, Twi�er, Reddit, Hacker News etc. also
�nds that Java is the most popular language [13]. �is motivates us
to analyse how developers in open-source Java projects use asserts
and their relationships with defect occurrence.

To understand the usage of asserts in Java projects, we perform
a partial replication of study by Casalnuovo et al. [12]. We repli-
cate the �rst two research questions from the previous study and
examine a new research question. We collect a larger dataset of 185
Apache Java projects hosted on GitHub. We use Apache projects
as they have been extensively studied in the past owing to their
high quality [5, 42, 45]. We write a parser to collect all the methods
changed over the history of the project by analyzing git logs and
gather statistics such as number of asserts added, lines changed
and number of developers of each method. Similar to Casalnuovo

et al. [46], we analyze the commit logs to �nd occurrences of bug
�xing commits. We build regression models and employ statistical
tests to verify several hypotheses, e.g., asserts impact defect occur-
rence. Moreover, we examine the relationships between number
of asserts added to methods and developer ownership and experi-
ence. Furthermore, we perform an in-depth analysis on the types
of asserts added by developers.

We examine the following research questions:
RQ1: How does assertion use relate to defect occurrence?
RQ2: How does assertion use relate to developer characteristics such

as code ownership and experience?
RQ3: How are asserts used by developers?

�e contributions of our work are as follows:
(1) We perform a large-scale replication study to analyze the

impact of usage of asserts on defect occurrence in Java
projects.

(2) We examine the impact of ownership and experience of
developers on assertion usage.

(3) We perform an in-depth qualitative study on 575 distinct
methods, each containing at least one assert statement,
which are randomly extracted from 185 Apache projects,
to understand assert usage pa�erns.

(4) We release our dataset publicly to allow other researchers
to replicate our study and perform complementary studies
to �nd interesting characteristics of assertion usage.

�e structure of the remainder of the paper is as follows. In
Section 2, we brie�y describe the original study and its results. In
Section 3 and Section 4, we explain methodology for data analysis
and �ndings of three research questions, respectively. We discuss
implications of our study and threats to validity in Section 5, related
work in Section 6, and conclusion and future work in Section 7.

2 SUMMARY OF THE ORIGINAL STUDY
In this section, we provide a brief overview of the original study
design and results [12]. We encourage interested readers to read the
original study for more details. �e original study analyzed 69 C
and C++ projects from GitHub sorted by popularity, to understand
the impact of asserts on defect occurrence. �e authors use git
log to collect several metrics at the method level such as number
of added lines of code, number of developers who have changed a
method, number of bug �x commits associated with a method, and
number of asserts added over the lifetime of a method.

To identify asserts added, the authors use the keyword assert
and to �nd bug �x commits, they use several keywords such as
‘error’, ‘defect’, ‘�aw’, ‘bug’, ‘�x’, ‘issue’, etc. �e authors analyze the
relationship between adding asserts and ownership and experience
of developers with respect to the method. �e authors also build
call graphs of 18 C applications to understand the role of methods
in the overall system and what network positions are associated
with assertions in a call-graph network. Furthermore, the authors
categorize projects into di�erent domains such as applications,
database, framework, library, code analyzer and middleware. �e
authors use hurdle regression models [11] to understand the impact
of presence/absence of number of asserts, added lines of code and,
number of developers on the outcome variable, i.e., number of

defects. To assess the signi�cance of relationships, the previous
study uses Wilcoxon test and computes Cohen’s d for e�ect size.

We brie�y describe the questions investigated by Casalnuovo et
al. and their results:
RQ1: How does assertion use relate to defect occurrence?
�e results show that the asserts have a negative and signi�cant
relationship with defect occurrence. Adding assert has a signi�cant
in�uence on bugs and the e�ect of the �rst assert is more than that
of the subsequent ones.
RQ2: How does assertion use relate to the collaborative/human aspects
of so�ware engineering, such as ownership and experience?
Developers who have added asserts have higher ownership and
experience of methods.
RQ3: What aspects of network position of a method in a call-graph
are associated with assertion placement?
�e results show that methods with asserts have higher hub score
than those without. However, no conclusive results were found for
other network measures such as authority, in-degree, out-degree
and betweeness.
RQ4: Does the domain of application of a project relate to assertion
use?
�e authors �nd that the application domain has no impact on the
number of assertions added.

Our Study: We re-investigate the �rst two research questions
(RQ1 and RQ2) on a large dataset of Java projects. We do not ex-
amine RQ3 and RQ4 as the previous study shows that the results
either show no correlation or are inconclusive. Instead, we perform
an in-depth qualitative study on the usage of asserts by Java devel-
opers. In the following sections, we explain the methodology and
�ndings of our study.

3 METHODOLOGY
In this section, we �rst present our study subjects in Section 3.1.
We then present our data collection procedure in Section 3.2, and
statistical methods we use to analyze the data in Section 3.3.

3.1 Study Subjects
To understand the relationship between assert usage and bug oc-
currence, we �rst collect all Apache Java projects hosted on GitHub.
Since GitHub contains many toy projects (c.f. [29]), we focus on a
subset of projects hosted in GitHub which are owned by Apache
Foundation. Apache projects are o�en of high quality and have
been used in many past studies [5, 42, 45]. �is gives us an initial
set 342 projects. Following Casalnuovo et al. [12], we �lter out
projects which have added less than ten asserts over the lifetime of
the project. In the end, we get 185 projects which include several
popular projects such as Apache Hadoop, H�pClient, Maven, etc.
�ese projects span various categories such as data processing, web
utility, build management, database, etc. and have thousands of
developers spread around the world contributing to them. Table 1
shows the statistics of subjects we analyze.

3.2 Data Processing
Retrieving and pre-processing project evolution history: For
all the projects in our dataset, we collect the full history of all non-
merge commits along with the commit logs, author data, commit

Table 1: Study Subjects.

Project Details

#Projects 185
#Authors 2,791
KLOC 20,033
#Files 201,600
#Methods 1,993,828
#Assert Methods 30,253
Period 12/98 - 04/16

#All Commits Total 4,852,069
With Asserts 7,540

#Bug�x Commits Total 29,867
With Asserts 741

dates and patches, which show all the changes made to �les within
that commit. We use the command git log -U1 -w, where -U1
speci�es git to download the commit patches for the commit and
-w gives the method names for which code has been added. We
use the keyword ‘test’ to �lter out test �les, as assertions used in
test cases are di�erent from the ones used in source code. Similar
to Casalnuovo et al. [12], we use error related keywords: ‘error’,
‘defect’, ‘�aw’, ‘bug’, ‘�x’, ‘issue’, ‘mistake’, ‘fault’, and ‘incorrect’ to
identify bug �x commits. We check the commit messages for the
presence of above keywords to �lter out bug �x commits from non
bug �x ones.

Computing relevant statistics: We run CLOC1 tool on the
latest version of the project to count the total lines of code. CLOC
gives information about the total number of lines of source code,
blank lines and comment lines of �les in a given repository. Fur-
thermore, it also counts the number of �les in a project for each
programming language used by that project. To identify usages of
asserts, following Casalnuovo et al. [12], we develop a parser which
searches for “assert” keyword in the commit patches. Our parser
parses the added and deleted lines (excluding comment lines) to
count the number of asserts added and deleted for each commit.
We sum all the asserts added to each method on a per commit basis.
Similarly, we count the total number of lines added to a method over
its lifetime. Furthermore, we collect the total number of commits
and developers for each method. We collect these statistics for each
method, and each developer who has contributed to the methods.

Open card sort: For each project, we collect methods that have
added an assert statement and are changed in a bug �x commit.
We select these methods as we want to analyze what developers
do to prevent future bugs. �en, we randomly select a maximum
of 10 methods from each project. One thing to note is that some
projects have less than 10 methods which are both edited in a bug
�x commit as well as contain an added assert statement. In total,
we have 575 distinct methods from 185 projects in our dataset.

To analyze why and how asserts are added, we perform an open
card sort to form categories. Open card sort is used to structure
information and form categories [36]. We generate a card for each
method, which contains the commit message, project name, commit
id, class name and the actual method. �e cards were then manually
grouped into several categories similar to what was performed by
LaToza et al. [34]. To categorize a method, we read its commit

1h�p://cloc.sourceforge.net/

message and patch to understand the functionality it is trying to
implement and the context in which assert statements have been
added. Based on the usage of asserts in a method, we put the method
into an existing category or create a new one. �ese categories are
not pre-de�ned but rather chosen during the card sort. At the end of
the card sort, if there were are only few methods in a category, we
combine several related categories to a bigger category. Similarly,
if the number of methods in a category is large, we break it into
several categories. To broaden our perspective, we also involve
non-authors to assist us in the card sort.

3.3 Statistical Methods
We build several regression models and run several statistical tests
to answer our research questions.

We use regression analysis to understand the relationship be-
tween a dependent variable and a set of independent variables
considering a set of control variables. We use the same dependent,
independent and control variables as used by Casalnuovo et al. [12].
�e variables in our data are counts, e.g., number of asserts, number
of developers, and number of bug �xing commits. �e values of
some of these variables are zero for many methods since many
methods have no asserts or no defects. �us, our data consists of
methods with zero-assert/zero-defect and methods with non-zero
asserts/non-zero defects. Following Casalnuovo et al. [12], we use
hurdle regression model in R, which consists of two components:
a hurdle component and a count component. �e hurdle compo-
nent models overcoming a hurdle, i.e., the e�ect of going from
zero defect to one defect, and the second part (count component)
models the e�ect of going from a non-zero value to another non-
zero value. To check for excessive multi-collinearity, we measure
variance in�ation factors (VIFs), which shows how much the vari-
ances of the coe�cients are in�ated due to linear dependencies
between independent and control variables. We use the commonly
accepted threshold value of 5 to �lter out correlated variables [15].
All models that we create in this study satisfy this threshold.

We use Wilcoxon test, which is a non-parametric test, to compare
the di�erence between two distributions. We also compute Cohen’s
d, to measure the e�ect sizes and use boxplots to visualize the
distributions.

4 FINDINGS
In this section, we describe �ndings to answer our research ques-
tions.

4.1 RQ1: How does assertion use relate to
defect occurrence?

Motivation: Assertions are used by developers to check the state
of a program with the purpose of �nding bugs early and prevent-
ing future bugs by making program assumptions explicit in code.
Casalnuovo et al. have shown that a weak negative correlation
between assertion use and number of defects exists among C and
C++ program [12]. Unfortunately, it is unclear if the same weak
correlation exists for Java programs. �is motivates us to revisit
the same research question that Casalnuovo et al. investigate but
with di�erent subject programs.

Table 2: Hurdle model comparing number of bug �xing commits in a method (as dependent variable) with number of asserts
in the method (as independent variable) considering number of lines of code modi�ed (LOC) and number of developers as
control variables.

Hurdle Component Count Component
total bug (as binary) total bug

logistic poisson
Coe�. Std. Error z-val Pr(> |z |) Coe�. Std. Error z-val Pr(> |z |)

log(LOC) 0.051 0.002 27.105 < 2e−16 *** 0.295 0.002 130.247 < 2e−16 ***
developers 0.425 0.002 212.346 < 2e−16 *** 0.156 0.001 149.061 < 2e−16 ***
asserts -0.032 0.004 -8.806 < 2e−16 *** -0.013 0.003 -4.085 4.4e−05 ***
constant -2.462 0.005 -523.708 < 2e−16 *** -1.609 0.007 -245.402 < 2e−16 ***
observations 1,903,098 4,201
log likelihood -1,051,000
AIC 2,101,677
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 3: Regression models for methods changed by many and fewer developers.

Many Developers Fewer Developers
Coe�. Std. Error z-val Pr(> |z |) Coe�. Std. Error z-val Pr(> |z |)

log(LOC) 0.227 0.026 8.785 < 2e−16 *** 0.385 0.028 13.603 < 2e−16 ***
developers 0.154 0.007 22.314 < 2e−16 *** 0.498 0.073 6.837 8.11e−12 ***
asserts -0.012 0.005 -2.179 0.029 * -0.007 0.005 -1.297 0.195
constant -1.248 0.099 -12.509 < 2e−16 *** -2.647 0.146 -18.113 < 2e−16 ***
observations 1354 2847
AIC 3865.529 3651.301
log likelihood -1929 -1822
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Methodology: We use the hurdle model described in Section 3.3
with the number of asserts in a method and number of times a
method is changed in bug �x commits as independent and depen-
dent variable respectively. �e control variables are number of lines
changed in and number of developers contributed to a method.
Findings: Table 2 shows the coe�cients of the hurdle model. �e
�rst column shows the coe�cients of the hurdle component and the
second one for the count component. Hurdle component models
dependent variable changing from 0 to 1, whereas count component
models values changing from a non-zero value to another non-zero
value.

For the hurdle component, we can note that the coe�cient cor-
responding to the assert variable is negative. �us adding the �rst
assert is negatively correlated to the number of bugs. To estimate
the impact of asserts, we can take the exponential of the assert
coe�cient. Adding the �rst assert to a method leads to an expected
reduction to the number of bugs by a factor of exp(-0.032) = 0.968
or 3.2%. �e p-value is less than 0.001 showing that the result is
statistically signi�cant. �is shows that adding the �rst assert to
a method has a signi�cant impact on the defect occurrence of the
method.

For the count component, the coe�cient corresponding to the
assert variable is also negative, and the p-value is also less than 0.001.
By taking the exponential of the assert coe�cient, we can �nd that a
unit increase in the number of asserts relates to a decrease in defect
occurrence by a factor of exp(-0.013) = 0.987 or 1.3%. Comparing
the results of the count and hurdle components, we can observe

that adding the �rst assert has almost double the impact on the
number of defects compared to adding subsequent asserts. Our
results corroborate the �ndings of Casalnuovo et al. [12]. �ey also
�nd that adding the �rst assert has a prominent e�ect; however,
our results show a stronger negative correlation for asserts added
a�er the �rst one.

To further examine the impact of non-zero asserts on non-zero
defects, we use 4,201 methods which have at least one assert added
and one defect found over the history of the methods. We divide
the dataset into two parts based upon the median of number of
developers. One group contains methods with the number of devel-
opers less than or equal to the median, while the other group has
methods with more than the median number of developers. Similar
to Casalnuovo et al. we use Poisson regression to build a regression
model for each group. Note that we do not need to use the Hurdle
model for this se�ing since all methods have non-zero asserts and
non-zero defects. Table 3 shows the coe�cients of the regression
models built.

From the assert coe�cients of the models and the p-values, we
can observe that adding asserts has a signi�cant e�ect only when
many developers are involved. For methods with many developers
contributing to them, adding an assert leads to decrease in the
bug �xing commits by a factor of exp(-0.012) = 0.988 or 1.2%. For
methods with fewer developers, the coe�cient of number of asserts
is negative but insigni�cant. �us, adding asserts to methods with
many developers ma�ers more than adding asserts to methods
with fewer developers. Our results are similar to the �ndings by

(a) Ownership (b) Experience

Figure 1: Distribution of ownership and experience for developers who added and did not add asserts.

Casalnuovo et al. on C and C++ programs; they also �nd that asserts
have a signi�cant e�ect only when many developers are involved.

Adding asserts to methods can lead to lower defect occurrence, with
the �rst assert being more important than the subsequent ones. Asserts
added to methods with many developers has a larger e�ect on the number
of defects compared to those added to methods with fewer developers.

4.2 RQ2: How does assertion use relate to
developer characteristics such as code
ownership and experience?

Motivation: In this research question, we investigate the character-
istics of developers who introduce asserts to methods. Asserts are
not trivial to write as o�en they require conceptual understanding
of the code. �us, we hypothesize that developers adding asserts
have high degree of understanding of the logic as compared to de-
velopers who just change code. �is research question investigates
if this hypothesis is supported based on our data. A similar question
was investigated by Casalnuovo et al. for C and C++ programs,
while we consider Java programs.
Methodology: To answer RQ2, we �rst calculate the ownership
and experience of developers for each method similar to Casalnuovo
et al. Ownership is calculated as the percentage of changes made
to a particular method by a developer. For example, if there are
500 commits made to a methodm over its lifetime and of those 500
commits, developer d made 100 commits, then d’s ownership of
m is 0.2. We calculate the experience of a developer to a method
by counting the total number of commits made by the developer
to the method. Next, for each method m, we separate developers
into two groups: those who have added asserts and those who did
not. If any of the groups is empty, we omit the method from the
rest of the analysis. We then calculate the median ownership and
experience of each group of developers for each method and use
box plot to compare these two groups.
Findings: Figure 1a shows the distribution of median ownership
of developers who have added asserts to methods and the ones who
did not. From the boxplot, we can observe that developers who
have added asserts have larger ownership. �e median value for

ownership of developers for methods with added asserts is 0.50,
whereas the corresponding value for methods without asserts is 0.33.
�e lower and upper quartile values for ownership of developers
for methods with added asserts are 0.33 and 0.60, whereas the
corresponding values for methods without asserts are 0.24 and 0.50,
respectively. We perform Wilcoxon test and �nd that the di�erence
between the two groups is signi�cant with a p-value of less than
2.2e−16. We have also computed Cohen’s d and �nd that the e�ect
size is medium. �is suggests that users with higher ownership to
a method have higher likelihood of adding asserts.

Figure 1b shows a box plot which compares the distribution of
median experience of developers of the two groups for each method.
�e lower and upper quartile values for experience of developers
for methods with added asserts are 0.00 and 0.69, whereas the
corresponding values for methods without asserts are 0.00 each.
�e median values for the two groups are zeroes as large number
of methods are changed by only one developer. We �nd that 79.17%
of the methods for which no assert was added were changed by
only one developer, thus, the lower quartile, upper quartile and
median values are the same. As such, we observe that the box
for experience values of developers for methods without asserts
reduces to a line. Wilcoxon test con�rms that there is a di�erence
between the mean of the median experiences of developers of these
two groups (p-value is less than 2.2e−16). We have also computed
Cohen’s d and �nd that the e�ect size is small. �is suggests that
users with higher experience to a method have higher likelihood
of adding asserts.

Developers who have added asserts to methods o�en have higher owner-
ship of and experience with the methods than developers who did not
add asserts.

4.3 RQ3: How are asserts used by developers?
Motivation: From our �ndings to the previous research questions,
we �nd that adding asserts has a signi�cant e�ect on defect occur-
rence and developers who add asserts have high ownership and
experience. In this research question (which was not investigated
by Casalnuovo et al.), we want to investigate the types of asserts
added by developers. A be�er understanding of asserts will help
future developers to add asserts which are more likely to �nd bugs.

Methodology: To answer RQ3, we collect methods in which de-
velopers added asserts. To get a representative sample from all
projects in our dataset while limit the manual e�ort involved in
the card sorting process, we randomly select a maximum of ten
distinct methods, which have at least one assert and are related to at
least one buggy commit, from each project in our dataset. However,
some projects have less than ten methods which satisfy the above
criteria. In those cases, we select all the methods in that project.
Next, we manually analyze 575 distinct methods and perform open
card sort, which is described in Section 3, to �nd categories.
Findings: We highlight eight categories that emerge from our card
sort below.
A. Null Condition Check:

During the card sort, we �nd that many of the methods check for
null deferences using assertion in two main ways: by using of the
inequality operand, e.g., assert 〈variable〉 != null, and by invoking
the assertNotNull method from the Assert class. We analyze
the data �ow from all the sampled methods within this category
and �nd that developers make use of the variable under test at
the later part of the method a�er checking for null dereferences.
An example that belongs to this category is the following method
from Apache Geronimo GShell2, a framework for building rich
command-line applications, which encrypts a given string and
outputs its corresponding bytes. �e method �rst checks if the
bu�er and the encrypting key are not null. If both these values are
not null, only then the method proceeds further.

Title - Assert checks for null condition.
Project - Apache Geronimo GShell
Class - org.apache.geronimo.gshell.remote.message.
CryptoAwareMessageSupport.java
Commit - b216e35b4843b78f3834c60a7e08abbd5dedba30
+ protected void encryptString(final ByteBuffer out, final

Key key, final String str) throws Exception {

+ assert out != null;

+ assert key != null;

+ ...

+ }

B. Process State Check:
Asserts are o�en used to enforce that a process is in a particular

state (e.g., whether a process is still running or it has terminated
successfully) before certain operations are performed. In the follow-
ing example from Apache Reef3, the assert checks the state of a job
driver, which can be INIT, WAIT EVALUATOR, READY, RUNNING
etc. �e method onNext proceeds only if the job driver is in the
WAIT EVALUATOR state.

Title - Assert checks for state of job driver.
Project - Apache Reef
Class - org.apache.reef.examples.scheduler.SchedulerDriver.java
Commit - 10f96514379179b8b2cf11fcf350418787302078
+ public void onNext(ActiveContext context) {

+ synchronized (lock) {

2h�p://geronimo.apache.org/gshell/
3h�ps://reef.apache.org/

+ assert (state == State.WAIT_EVALUATOR);

+ ...

+ }

+ }

C. Initialization Check:
We �nd that developers also o�en use asserts to check if a re-

source has been initialized. �e following code shows an example
from Apache ActiveMQ Apollo4, a messaging broker which trans-
lates a message from one messaging protocol to another. In this
example, the method add adds element E to the queue controller.
�e method uses synchronized to ensure that only one thread can
execute the code enclosed and then checks if the queue is initialized
using an assert statement.

Title - Assert checks for Initialization of queue
Project - Apache ActiveMQ Apollo
Class - org.apache.activemq.queue.ExclusivePersistent�eue.java
Commit - 3131481436673062ee49c69a4ab120f373af671e
+ public void add(E elem, ISourceController<?> source) {

+ synchronized (this) {

+ assert initialized;

+ ...

+ }

+ }

D. Resource Check:
Developers o�en perform operations on resources such as �les

and directories. Prior to such operations it is important to check if
the �le or directory the code is trying to use exists or not. Our anal-
ysis shows that developers use assert statements to verify presence
of resources. In the following example from Apache Tentacles5,
which automates interactions with the repository releases contain-
ing large number of artifacts, the assert statement added to the
method checks if the �le is a directory.

Title - Assert checks if a �le is a directory.
Project - Apache Tentacles
Class - org.apache.creadur.tentacles.Files.java
Commit - e96309356c2cb4e5c91dc1c8f04f0aed1d3e7170

public static void mkdirs(File file) {

+ final boolean isDirectory = file.isDirectory();

+ assert isDirectory : "Not a directory: " + file;

}

E. Resource Lock Check:
Developers o�en check if a resource is locked by another pro-

cess before performing any operation. In the following code from
Apache ManifoldCF solr-3.x Integration, the method close removes
all references to SegmentReader and commits any pending changes
but before performing any operation, it checks if the thread has
locked the current instance of class IndexWriter. Only if there is
a lock on the object, the subsequent statements will be executed
otherwise the program will throw an AssertionError.

4h�ps://activemq.apache.org/apollo/
5h�p://creadur.apache.org/tentacles/

Title - Assert checks for lock on IndexWriter object
Project - Apache ManifoldCF solr-3.x Integration
Class - org.apache.lucene.index.IndexWriter.java
Commit - a27b2c434adbece0e04c1a91b1c6163f0097ad98

synchronized void close() throws IOException {

+ assert Thread.holdsLock(IndexWriter.this);

...

}

F. Minimum and Maximum Value Constraint Check:
We �nd several examples of asserts which are used to check

if a given value is above certain minimum limit or less than a
certain maximum value. Such criteria checks are done to ensure
that the program does not behave unexpectedly when the given
value is used. In the following example from Apache AsterixDB
Hyracks6, the method validate checks if the value of lowRangeTuple
and highRangeTuple are less than and more than the frameTuple
value, respectively.

Title - Assert checks for minimum and maximum value.
Project - Apache AsterixDB Hyracks
Class - org.apache.hyracks.storage.am.btree.frames.
BTreeNSMInteriorFrame.java
Commit - 3b89343c7d02388c836128f65401d133629d761e
+ public void validate(PageValidationInfo pvi) throws

HyracksDataException {

+ if (!pvi.isLowRangeNull) {

+ assert cmp.compare(pvi.lowRangeTuple, frameTuple) <

0;

+ }

+ if (!pvi.isHighRangeNull) {

+ assert cmp.compare(pvi.highRangeTuple, frameTuple) >=

0;

+ }

+ }

G. Collection Data and Length Check:
Collections such as arrays, lists and maps are commonly used

in programming to store data. Before accessing the values of a
collection using a data structure operation, asserts are at times
used to check if the operation is valid. For example, for an array,
assertion can be used to check if the index used to access one of
its elements is still within the bound of the array. In the following
example from Apache Mahout7, which provides a programming
environment for creating scalable machine learning applications,
the method mergeR accepts two two-dimensional array and merges
their values. �e assert method ensures that the length of the input
arrays are equal before iterating over these collections to perform
further operations.

Title - Assert checks for array length.
Project - Apache Mahout
Class - org.apache.mahout.math.hadoop.stochasticsvd.
Givens�inSolver.java
Commit - 151de0d737501af5dcfee8a21bc7d18�6edddc8

6h�p://incubator.apache.org/projects/asterixdb.html
7h�p://mahout.apache.org/

+ public static void mergeR(double[][] r1, double[][] r2) {

+ int kp = r1[0].length;

+ assert kp == r2[0].length;

+ double[] cs = new double[2];

+ for (int v = 0; v < kp; v++) {

+ for (int u = v; u < kp; u++) {

+ ...

+ }

H. Implausible Condition Check:
Asserts are also used in switch-case and if-else statements to

check for implausible condition. In the following example from
Apache Felix8, an open-source implementation of OSGi Framework
and Service platform9, the method matches a character variable
in the switch statement. If none the conditions satisfy, the default
condition will be selected and assert false statement will be executed.
�is statement informs the developer that a supposedly implausible
condition has happened. Such information will help developer
to check the value of the variable being matched in the switch
statement and prevent any unwanted program behaviors.

Title - Assert informs of implausible situation.
Project - Apache Felix
Class - org.apache.felix.gogo.runtime.shell.Tokenizer.java
Commit - c578f444bb3c2bc192ee74294398fdfac8a237a9
+ private CharSequence group(){

+ switch (ch)

+ {

+ case '{':

+ ...

+ default:

+ assert false;

+ }

+ }

Asserts are used for several purposes such as null check, resource lock
check, initialization check, implausible condition check among many
others.

5 DISCUSSION
5.1 Implications

For Researchers:
In this study, we highlight the impact of asserts on defect oc-

currence. Our results show that asserts have a signi�cant e�ect
on the number of bugs and strengthen the �ndings of Casalnuovo
et al [12] by investigating a di�erent programming language and
larger dataset. From our qualitative analysis of assert usage, we �nd
that developers make use of asserts in di�erent ways to help them in
debugging and preventing future bugs. We �nd that a large number
of asserts are used to check for null condition. �is is intuitive since
null check is the most basic condition check before performing
8h�p://felix.apache.org/
9h�ps://www.osgi.org/developer/speci�cations/

operations on a variable. Our results corroborate previous studies
which �nd wide usages of null check [19, 47]. Many static analysis
tools have been developed to check for null dereferences [20, 26, 27].
However, static analysis tools have several drawbacks such as scal-
ability issues, limited interprocedural analysis, etc. [40]. Further
research is required to assist developers in �nding locations where
asserts need to be added to prevent null dereferences. Furthermore,
developers use assertions for many other purposes. Our study sheds
light on these di�erent usages. Schiller et al. argue that there is
a need to curate best industry practices for usages of contracts as
design pa�erns [47]. Our study takes one step in that direction
by identifying 8 categories of how assertions are used in practice.
Further studies are needed though to fully understand assert usage
pa�erns in di�erent projects and programming languages, which
will help in establishing design pa�erns for contracts in general.
Just like object-oriented design pa�erns have been helpful by pro-
viding best solutions to common problems faced by developers
during so�ware development [2, 48, 51], contract design pa�ern
can provide similar bene�t and achieve similar impact.

Moreover, further studies are required to understand the percep-
tion of developers on the usefulness of asserts. As writing asserts
requires knowledge of the surrounding code, it would be worth-
while to examine how much e�ort goes into understanding and
adding asserts to programs. O�en, books and online articles con-
tend that asserts improve the readability of programs, however,
research studies are required to verify these claims. Current studies
on asserts have mainly looked into the relationship between assert
and code quality [4, 10, 12, 33, 39].

For Practitioners:
Our study shows that adding asserts can lead to lower defect

occurrence for Java projects. �is result can serve as a motivation
for Java developers to add asserts to their code as it can potentially
lead to an improvement in so�ware quality. Our results shed light
on the di�erent usage pa�erns of asserts. Apart from commonly
used null check, we �nd that developers employ asserts for a wide
range of purposes such as resource lock check, initialization check,
minimum and maximum value constraint check, implausible con-
dition check, among many others. �ese usage pa�erns can assist
developers to be�er use asserts. New so�ware developers are of-
ten unsure on how to become be�er engineers [6]. A past study
shows that developers must have certain skills like passionate,
open-minded, creative, adaptable, hardworking, knowledgeable,
productive etc. [35]. Apart from having these non-technical skills,
developers have to continuously update their technical know-how.
Our results, in complement with a previous study [12], can moti-
vate practitioners to make use of concepts like asserts as they are
shown to lead to reduction in defects in three di�erent languages,
i.e., C, C++ and Java, and results are possibly generalizable to other
languages that support asserts.

For Educators:
Assertions are o�en taught as part of programming courses

in undergraduate curriculum. However, students mention that
learning assertions is di�cult [49] and they o�en face problems
in writing pre- and post-conditions due to insu�cient background
in mathematics [23]. Our �ndings inform that assertions are help-
ful in debugging and reducing the number of bugs. �us, more

e�ort is needed to improve learning of these concepts. Past studies
show that there is need to restructure computer science curriculum
to help students understand complex topics like discrete mathe-
matics and usage of tools that assist students in writing pre- and
post-conditions, thus, helping them ensure the correctness of meth-
ods [23]. Many students prefer learning programming by referring
to examples and by repetitive practice than by simply listening
to lectures [50]. We present several examples of usages of asserts
which can guide educators and students in understanding di�erent
usage pa�erns and logic on how to write be�er asserts.

5.2 �reats to Validity
Our study uses a similar methodology that was used by Casalnuovo
et al. [12]. �us, our study shares many threats to validity as this
prior work.

ConstructValidity: First, we use bug �xing commits as a proxy for
defect occurrences. We choose not to use number of issue reports
as a proxy because not all the projects we investigate use an issue
tracking system and not all bugs are logged in the issue tracking
system [8]. Still, we acknowledge that a bug may be represented by
more than one bug �xing commits. Furthermore, some bug �xing
commits may not be described as such in commit logs and thus may
be missed in our study. It is also possible that a commit is incorrectly
associated with a bug. Unfortunately, manually identifying the
exact number of bugs for a large dataset like ours is very di�cult.

External Validity: We consider projects hosted on GitHub. As
such, our results may not be valid for projects on other platforms.
However, we reduce this threat by analysing a large number of
projects. Also, we consider only projects from Apache So�ware
Foundation. As such, our results might not generalize to other
open-source projects. However, we consider a large dataset and
Apache projects are spread out over various domains, which can
mitigate this threat to some extent. Many past studies have also
only focused on Apache projects [42, 44, 45].

6 RELATEDWORK
In this section, we explain the related work on assertions and their
impact on quality. We also highlight related works that perform
replication studies.

6.1 Studies on Assertion Usage and Impact on
�ality

Hoare seminal work introduces a method of reasoning about cor-
rectness of a program, also known as Hoare logic [25]. Hoare’s
technique allows programmers to express program properties that
can be automatically checked. �is work in�uences research in au-
tomated reasoning about so�ware correctness. Chalin et al. conduct
a survey and investigate assertion usage in various projects [14].
�e participants of the survey consist of over 200 industry develop-
ers and questions related to the developers’ use of assertion in their
projects as well as the reporting format of discovered errors are
asked. �e survey results highlight that many of the participants
have used assertions in their work. It is also reported that a majority
of the assertions are pre- and post-condition checks. Jones at al.
conduct a separate study on 21 Java, Ei�el and C# projects [19].

�ey �nd a correlation between the number of assertions used and
the size of a project. Similar to Chalin et al., they �nd that a majority
of the assertions are pre- and post-condition checks.

Polikarpova et al. perform a study to compare automatically-
generated assertions and human-wri�en assertions. More specif-
ically, they compare automatically-generated assertions that are
produced by Daikon (a contract inference tool) with human-wri�en
assertions [41]. �ey report that automatically-generated asser-
tions are valuable since they can supplement human-wri�en ones.
Schiller et al. has also conducted a comparative study between
Daikon’s automatically-generated assertions and human-wri�en as-
sertions [47]. �ey report that the majority of the human-wri�en as-
sertions are on checking null dereferences and Daikon’s automatically-
generated assertions are more varied expressing invariants on state
updates and conditional properties among others.

Briand et al. conduct studies to locate the source of errors with
and without the use of assertions [10]. It is reported that by using
assertions, developers are able to detect between 75% - 80% of
the errors and developers appreciate the use of assertions as it
aids in their debugging. If more �ne-grained assertions are added,
developers can detect an extra 10% of the errors. However, they
report that this could result in extra e�ort from the developers
and may not seem justi�able. In a separate study, Baudry et al.
has reported a similar �nding [4]. Developers report that the use
of assertions generally eases their debugging. However, it is also
reported that the quality of assertions ma�er more to developers
than their quantity. Muller et al. conduct a study to investigate
the relationship between the use of the assertions and developer’s
quality and productivity [39]. �ey observe that the use of assertion
increases developer’s productivity and the wri�en code is more
robust. Kudrjavets et al. study two commercial project components
from Microso� [33].

Our study builds upon the above mentioned studies by analyzing
the relationship between assertion usage and defect occurrence fur-
ther. We replicate the study by Casalnuovo et al. [12] by analyzing
a total of 185 Java projects. �is is much more than the projects
analyzed by the above-mentioned studies. Additionally, we also
investigate additional research questions which investigate the re-
lationship between developer ownership and experience with the
introduction of assertions, and various usage pa�erns of assertions.

6.2 Replication Studies
Bird et al. examine the relationship between ownership and so�-
ware failure for Windows Vista and Windows 7 and �nd that high
levels of ownership are associated with less defects [7]. Foucault
et al. perform a replication of the above study on 7 open-source
projects and �nd contradicting results, i.e., fault-proneness is af-
fected more by module size than ownership metrics [21]. Herzig et
al. replicate the above two studies and de�ne several new owner-
ship metrics [24]. �eir �ndings con�rm the results observed in the
original study by Bird et al [7]. Mockus examines a project from
Avaya to study the impact of organizational volatility on customer
reported defects [38]. �e results show that departures from the
organization leads to higher defects while adding new members has
no impact on so�ware quality. Donadelli et al. replicate the above
study by Mockus on Google Chrome and �nd di�ering results, i.e.,

a�er normalizing by the highly correlated number of co-owners,
the number of people who leave or join the project both lead to
lower post-release defects [17].

Zimmermann et al. use network analysis to analyze dependen-
cies between di�erent pieces of code to help managers �nd units
that are more defect-prone [53]. �ey �nd that network measures
can predict 60% of the binaries considered as critical by developers
and models using network measures have 10% higher recall than
the ones using complexity metrics. Premraj and Herig perform a
replication of [53] on 3 open-source Java projects and �nd that re-
sults are the same using similar experimental setup [43]. However,
using setups more commonly used in industry such as forward-
release and cross-project prediction, network measures do not o�er
any advantage. Erdogmus et al. performed a study on students
to analyze two groups: one which wrote test-driven development
(TDD) while other followed conventional technique [18]. �ey
found that group using TDD wrote more tests and was more pro-
ductive. Fucci et al. performed a replication of Erdogmus et al. [18]
and further analyze the relationship of process conformance and
so�ware quality [22]. �ey �nd that in TDD there is a correlation
between process conformance and quality, but not with produc-
tivity. Apart from these replications, there are studies that look
into various aspects of replication such as concepts, classi�cations,
guidelines, and other themes [3, 16].

6.3 Large Scale Studies on GitHub
Kochhar et al. investigate thousands of projects to investigate
the correlations between number of test cases and various project
development characteristics, including the lines of code and the
size of development teams [30, 31]. In another study, Kochhar et
al. analyse 628 projects from GitHub to investigate the impact
of using multiple languages on so�ware quality [32]. Jiang et al.
collect thousands of forks from GitHub to understand the forking
phenomenon in GitHub [28]. Zhang et al. propose an approach
to detect similar repositories and evaluate their approach on 1000
popular Java repositories on GitHub [52].

7 CONCLUSION AND FUTUREWORK
Assertions help developers test assumptions about the code. Asser-
tions are supported by many programming languages such as C,
C++, Java, Python, etc. Not only assertions help in debugging and
�xing errors, they also serve as documentation to inform develop-
ers about what the code does. In this replication study, we collect
185 Apache Java projects, which contains over 20M LOC, 0.2M
�les, 1M methods and 4M commits, to analyze the usage of asserts.
We perform several regression analyses to observe the impact of
assertions on defect occurrence as well how assertion use relates to
developer ownership and experience. Furthermore, we perform an
open card sort on 575 distinct methods from projects in our dataset
to understand how asserts are used by developers.

Our empirical study leads to the following �ndings:
(1) Adding asserts to a method have a small yet signi�cant

relationship with defect occurrence.
(2) Developers who have added asserts to a method o�en have

high experience with and larger ownership of the method
than developers who did not.

(3) Developers o�en use asserts to check for null condition,
initialization, process state, resource lock, implausible con-
dition, etc.

As a future work, we want to perform a larger study by inves-
tigating many more projects wri�en in many more programming
languages. We also plan to investigate the relationships between
each of the di�erent types of assert and defect occurrence. We
also want to augment our study with a developer survey to get a
comprehensive insight on the usefulness and limitations of asserts,
as well as common usage pa�erns that are perceived to be the most
useful.

DATASET
Our dataset is made publicly available and it can be downloaded
from: h�ps://github.com/smusis/assert-usage

REFERENCES
[1] Last accessed - Jan 31, 2016. TIOBE Programming Community index Jan 2016.

h�p://www.tiobe.com/tiobe-index/.
[2] Giuliano Antoniol, Gerardo Casazza, Massimiliano Di Penta, and Roberto Fiutem.

2001. Object-oriented design pa�erns recovery. Journal of Systems and So�ware
59, 2 (2001), 181–196.

[3] Maria Teresa Baldassarre, Je�rey Carver, Oscar Dieste, and Natalia Juristo. 2014.
Replication Types: Towards a Shared Taxonomy. In EASE. 18:1–18:4.

[4] Benoit Baudry, Yves Le Traon, and Jean-Marc Jézéquel. 2001. Robustness and
Diagnosability of OO Systems Designed by Contracts. In METRICS. 272.

[5] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Se-
bastiano Panichella. 2015. How the Apache Community Upgrades Dependencies:
An Evolutionary Study. Empirical So�ware Engineering 20, 5 (2015), 1275–1317.

[6] Andrew Begel and Beth Simon. 2008. Novice So�ware Developers, All over
Again. In ICER. 3–14.

[7] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and
Premkumar Devanbu. 2011. Don’T Touch My Code!: Examining the E�ects of
Ownership on So�ware �ality. In ESEC/FSE. 4–14.

[8] Tegawendé F. Bissyandé, David Lo, Lingxiao Jiang, Laurent Réveillère, Jacques
Klein, and Yves Le Traon. 2013. Got issues? Who cares about it? A large scale
investigation of issue trackers from GitHub. In ISSRE. 188–197.

[9] Tegawendé F. Bissyandé, Ferdian �ung, David Lo, Lingxiao Jiang, and Lau-
rent Réveillère. 2013. Popularity, Interoperability, and Impact of Programming
Languages in 100,000 Open Source Projects. In COMPSAC. 303–312.

[10] L. C. Briand, Y. Labiche, and H. Sun. 2002. Investigating the Use of Analysis
Contracts to Support Fault Isolation in Object Oriented Code. In ISSTA. 70–80.

[11] A Colin Cameron and Pravin K Trivedi. 2013. Regression Analysis of Count Data.
Number 53. Cambridge Univrsity Press.

[12] Casey Casalnuovo, Prem Devanbu, Abilio Oliveira, Vladimir Filkov, and
Baishakhi Ray. 2015. Assert Use in GitHub Projects. In ICSE. 755–766.

[13] Stephen Cass. Last accessed - September 30, 2016. �e 2015 Top Ten Program-
ming Languages. h�p://spectrum.ieee.org/computing/so�ware/the-2015-top-ten-
programming-languages.

[14] P. Chalin. 2005. Logical foundations of program assertions: what do practitioners
want?. In SEFM. 383–392.

[15] Jacob Cohen, Patricia Cohen, Stephen G. West, and Leona S. Aiken. 2003. Applied
Multiple Regression/correlation Analysis for the Behavioral Sciences. Lawrence
Erlbaum (2003).

[16] Cleyton V. C. de Magalhães, Fabio Q. B. da Silva, and Ronnie E. S. Santos. 2014.
Investigations About Replication of Empirical Studies in So�ware Engineering:
Preliminary Findings from a Mapping Study. In EASE. 37:1–37:10.

[17] Samuel M. Donadelli, Yue Cai Zhu, and Peter C. Rigby. 2015. Organizational
Volatility and Post-release Defects: A Replication Case Study Using Data from
Google Chrome. In MSR. 391–395.

[18] Hakan Erdogmus, Maurizio Morisio, and Marco Torchiano. 2005. On the E�ec-
tiveness of the Test-First Approach to Programming. TSE 31, 3 (2005), 226–237.

[19] H. Christian Estler, Carlo A. Furia, Martin Nordio, Marco Piccioni, and Bertrand
Meyer. 2014. FM 2014: Formal Methods: 19th International Symposium. Springer
International Publishing, Chapter Contracts in Practice, 230–246.

[20] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. 2002. Extended Static Checking for Java. In PLDI. 234–
245.

[21] Ma�hieu Foucault, Jean-Rémy Falleri, and Xavier Blanc. 2014. Code Ownership
in Open-source So�ware. In EASE. 39:1–39:9.

[22] Davide Fucci, Burak Turhan, and Markku Oivo. 2014. Conformance Factor in
Test-driven Development: Initial Results from an Enhanced Replication. In EASE.

22:1–22:4.
[23] Timothy S. Gegg-Harrison, Gary R. Bunce, Rebecca D. Ganetzky, Christina M. Ol-

son, and Joshua D. Wilson. 2003. Studying Program Correctness by Constructing
Contracts. In ITiCSE. 129–133.

[24] Michaela Greiler, Kim Herzig, and Jacek Czerwonka. 2015. Code Ownership and
So�ware �ality: A Replication Study. In MSR. 2–12.

[25] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun.
ACM 12, 10 (1969), 576–580.

[26] David Hovemeyer and William Pugh. 2004. Finding Bugs is Easy. SIGPLAN
Notices 39, 12 (2004), 92–106.

[27] David Hovemeyer and William Pugh. 2007. Finding More Null Pointer Bugs, but
Not Too Many. In PASTE. 9–14.

[28] Jing Jiang, David Lo, Jia-Huan He, Xin Xia, Pavneet Singh Kochhar, and Li Zhang.
2017. Why and how developers fork what from whom in GitHub. Empirical
So�ware Engineering 22, 1 (2017), 547–578.

[29] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. 2014. �e Promises and Perils of Mining GitHub.
In MSR. 92–101.

[30] Pavneet Singh Kochhar, Tegawendé F. Bissyandé, David Lo, and Lingxiao Jiang.
2013. Adoption of So�ware Testing in Open Source Projects-A Preliminary Study
on 50, 000 Projects. In CSMR. 353–356.

[31] Pavneet Singh Kochhar, Tegawendé F. Bissyandé, David Lo, and Lingxiao Jiang.
2013. An Empirical Study of Adoption of So�ware Testing in Open Source
Projects. In QSIC. 103–112.

[32] Pavneet Singh Kochhar, Dinusha Wijedasa, and David Lo. 2016. A Large Scale
Study of Multiple Programming Languages and Code �ality. In SANER. 563–
573.

[33] Gunnar Kudrjavets, Nachiappan Nagappan, and �omas Ball. 2006. Assessing the
Relationship Between So�ware Assertions and Faults: An Empirical Investigation.
In ISSRE. 204–212.

[34] �omas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining Mental
Models: A Study of Developer Work Habits. In ICSE. 492–501.

[35] Paul Luo Li, Andrew J. Ko, and Jiamin Zhu. 2015. What Makes a Great So�ware
Engineer?. In ICSE. 700–710.

[36] Bella Martin, Bruce Hanington, and Bruce M. Hanington. 2012. Universal Methods
of Design: 100 Ways to Research Complex Problems, Develop Innovative Ideas, and
Design E�ective Solutions. Rockport,.

[37] Bertrand Meyer. 1992. Applying ”Design by Contract”. Computer 25, 10 (1992),
40–51.

[38] Audris Mockus. 2010. Organizational Volatility and Its E�ects on So�ware
Defects. In FSE. 117–126.

[39] M. M. Muller, R. Typke, and O. Hagner. 2002. Two controlled experiments
concerning the usefulness of assertions as a means for programming. In ICSM.
84–92.

[40] Mangala Gowri Nanda and Saurabh Sinha. 2009. Accurate Interprocedural
Null-Dereference Analysis for Java. In ICSE. 133–143.

[41] Nadia Polikarpova, Ilinca Ciupa, and Bertrand Meyer. 2009. A Comparative
Study of Programmer-wri�en and Automatically Inferred Contracts. In ISSTA.
93–104.

[42] Daryl Posne�, Vladimir Filkov, and Premkumar Devanbu. 2011. Ecological
Inference in Empirical So�ware Engineering. In ASE. 362–371.

[43] R. Premraj and K. Herzig. 2011. Network Versus Code Metrics to Predict Defects:
A Replication Study. In ESEM. 215–224.

[44] Foyzur Rahman, Daryl Posne�, and Premkumar Devanbu. 2012. Recalling the
”Imprecision” of Cross-project Defect Prediction. In FSE. 61:1–61:11.

[45] Foyzur Rahman, Daryl Posne�, Israel Herraiz, and Premkumar Devanbu. 2013.
Sample Size vs. Bias in Defect Prediction. In ESEC/FSE. 147–157.

[46] Baishakhi Ray, Daryl Posne�, Vladimir Filkov, and Premkumar Devanbu. 2014.
A Large Scale Study of Programming Languages and Code �ality in Github. In
FSE. 155–165.

[47] Todd W. Schiller, Kellen Donohue, Forrest Coward, and Michael D. Ernst. 2014.
Case Studies and Tools for Contract Speci�cations. In ICSE. 596–607.

[48] Alan Shalloway and James R Tro�. 2004. Design pa�erns explained: a new
perspective on object-oriented design. Pearson Education.

[49] M. Sivasakthi and R. Rajendran. 2011. Learning di�culties of ’object-oriented
programming paradigm using Java’: students’ perspective. Indian Journal of
Science and Technology 4, 8 (2011), 983–985.

[50] Phit-Huan Tan, Choo-Yee Ting, and Siew-Woei Ling. 2009. Learning Di�culties
in Programming Courses: Undergraduates’ Perspective and Perception. In ICCTD.
42–46.

[51] John Vlissides, Richard Helm, Ralph Johnson, and Erich Gamma. 1995. Design
pa�erns: Elements of reusable object-oriented so�ware. Reading: Addison-Wesley
49, 120 (1995), 11.

[52] Yun Zhang, David Lo, Pavneet Singh Kochhar, Xin Xia, �anlai Li, and Jianling
Sun. 2017. Detecting similar repositories on GitHub. In SANER. 13–23.

[53] �omas Zimmermann and Nachiappan Nagappan. 2008. Predicting Defects
Using Network Analysis on Dependency Graphs. In ICSE. 531–540.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	6-2017

	Revisiting assert use in GitHub projects
	Pavneet Singh KOCHHAR
	David LO
	Citation

	Abstract
	1 Introduction
	2 Summary of the Original Study
	3 Methodology
	3.1 Study Subjects
	3.2 Data Processing
	3.3 Statistical Methods

	4 Findings
	4.1 RQ1: How does assertion use relate to defect occurrence?
	4.2 RQ2: How does assertion use relate to developer characteristics such as code ownership and experience?
	4.3 RQ3: How are asserts used by developers?

	5 Discussion
	5.1 Implications
	5.2 Threats to Validity

	6 Related Work
	6.1 Studies on Assertion Usage and Impact on Quality
	6.2 Replication Studies
	6.3 Large Scale Studies on GitHub

	7 Conclusion and Future Work
	References

