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Abstract

In event studies of capital market efficiency, an earnings surprise has historically been
measured by the consensus error, defined as earnings minus the consensus or average of
professional forecasts. The rationale is that the consensus is an accurate measure of the
market’s expectation of earnings. But since forecasts can be biased due to conflicts of
interest and some investors can see through these conflicts, this rationale is flawed and
the consensus error a biased measure of an earnings surprise. We show that the fraction
of forecasts that miss on the same side (FOM), by ignoring the size of the misses, is
less sensitive to such bias and a better measure of an earnings surprise. As a result,
FOM out-performs the consensus error and its related robust statistics in explaining
stock price movements around and subsequent to the announcement date.
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1 Introduction

Economists historically measure the degree to which the market is surprised by an earnings

announcement or macro-economic news, such as inflation, GDP or interest rates, with the

consensus error. It is defined as the difference between the actual and the consensus forecast,

where the consensus is typically calculated using either the mean or median of the available

professional forecasts. The consensus error is a building block of event studies on how

efficiently markets react to news (see Kothari (2001) for a survey) .

For instance, a canonical regression specification in such event studies is that of the

cumulative abnormal return of a stock around the earnings announcement date (or CAR) or

subsequent to the announcement date (or POSTCAR) on the consensus error (or CE): the

more positive the earnings surprise CE the higher is the stock return CAR and also the higher

is the POSTCAR (see, e.g., Bernard and Thomas (1990), Bernard and Thomas (1989)).

These regressions indicate that markets only react to earnings announcements gradually and

have become a linchpin of the behavioral finance literature on inefficient markets.1

The key rationale justifying the ubiquitous use of this measure is that the consensus

forecast is an unbiased measure of the market’s expectation of earnings. But it is well known

that a subset of professional forecasts of earnings and macro-economic variables are biased

due to conflicts of interest or misaligned incentives. For instance, the analysts of banks

that have investment banking business with a company are likely to be optimistically biased

compared to analysts working for investment banks without such a relationship (Michaely

and Womack (1999), McNichols and O’Brien (1997), Lin and McNichols (1998), Lim (2001),

Hong and Kubik (2003)). Similarly, it is optimal for some analysts or even macro-forecasters

to strategically shade their forecasts, whether positively or negatively, away from their un-

biased signal if the rewards to the forecasting tournament are sufficiently convex (see, e.g.,

Keane and Runkle (1998), Hong, Kubik, and Solomon (2000), DellaVigna and Gentzkow
1For instance, under-reaction models of Barberis, Shleifer, and Vishny (1998) and Hong and Stein (1999)

deliver such a delayed reaction. See Hirshleifer (2001) and Barberis and Thaler (2003) for reviews.

1



(2009)).

In the context of earnings forecasts for the stock market, there is compelling evidence

that institutional investors, in contrast to retail investors, adjust for these strategic biases in

forming their earnings expectations (see, e.g., Iskoz (2003), Malmendier and Shanthikumar

(2007), Mikhail, Walther, and Willis (2007)). The end result is that the consensus forecast is

no longer an unbiased or accurate measure of the market’s expectation of earnings. In other

words, the consensus forecast which averages in biased analyst forecasts might significantly

diverge from the expectations of the market since institutional investors, which comprise

the bulk of the market, form their expectations by debiasing these analyst forecasts. In the

context of the CAR and POSTCAR regressions, we ideally want an accurate and unbiased

measure of the true market surprise on the right-hand side. If CE as a proxy for the true

market surprise has substantial measurement error, this translates into poor explanatory

power for CE in these canonical regressions, thereby leaving room for a better measure of

the true market surprise.

The challenge from the point of view of the econometrician is how construct this better

measure given that the econometrician does not have the same information set as institutional

investors. The usual robust statistics such as medians cannot help since these statistics are

meant to deal with outliers and not systemic bias of forecasts. Importantly, it is difficult in

practice to identify ex-ante which of the forecasts are compromised. Otherwise, one could

make an adjustment by subtracting off the bias from the contaminated individual forecasts.

To deal with this problem, we propose a new market surprise measure — the fraction

of forecasts that miss on the same side or FOM, which is far less sensitive to such biased

forecasts and a far superior to the consensus error. Suppose that there are N forecasts and

K is the number of forecasts less than the actual A andM is the number of forecasts greater

than the actual A. Then fraction of misses below the actual is given by

FOM =
K

N
− M

N
,
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which takes on values between -1 and 1—the higher is FOM the more positive the earnings

surprise. For instance, when K = M , then FOM = 0 and there are equal misses on both

sides. When K = N and M = 0, then FOM = 1 and the actual lies above the range

of forecasts, which we will also denote by IActual>All = 1 (0 otherwise). In this case, the

market will be positively surprised and market returns positive around the announcement

date. When K = 0 and M = N , FOM = −1 and everyone has missed above the actual,

which we also denote by IActual<All = 1 (0 otherwise) and the market should be negatively

surprised and market returns negative around the announcement date.

We show below by using a simple model that our FOM better measures the true surprise

than CE when the bias of some forecasts are potentially large and ex-ante unobservable to the

econometrician. When these biased errors are not a big concern, then CE is more accurate

than FOM. In this model, we discuss why FOM is better than a number of alternatives

such as using median instead of mean forecasts or winsorization in the presence of outliers.

We use earnings forecast to frame our model and motivate our empirical analysis but the

methodology and ideas apply equally to any other types of forecasts in the literature.

First, to get an intuitive sense of why FOM is better than CE, consider the following

example. Suppose the market expectation for stock A’s earnings is 10 and stock B’s earnings

is also 10. Suppose there are N = 6 analysts for each stock. If a fraction of the forecasts

are negatively biased, one might see forecasts like -11, -10, 9, 10, 11, and 12 for stock A and

-10, -10, -10, 9, 10, and 11 for stock B. The large negative forecasts are the biased ones.

The mean consensus is 3.5 for stock A and 0 for stock B. Suppose the actual turns out to

be 14 for both stock A and stock B. In other words, the true market surprise is 4 and the

same for both stocks. But using the mean consensus, we get a CE of 10.5 for stock A and

14 for stock B. So using CE as a proxy, we would think there is more of a positive surprise

in stock B’s announcement than in stock A’s announcement, which is a wrong classification.

When we run the regression of CAR or POSTCAR on CE, in which CE is supposed to

be a proxy for the true earnings surprise, we suffer from measurement error and hence the
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coefficient on CE will be downward biased. However, the FOM is 1 for stock A and stock

B, or IActual>All = 1, which is the right classification in terms of ranking that both stock A

and B have the same true earnings surprise and hence we expect that a regression of CAR

or POSTCAR on FOM have superior explanatory power.

Essentially, when some of the forecasts are biased enough, it is better to discard mag-

nitudes and to simply count the fraction of misses. If everyone misses on the same side,

we know that even unbiased forecasts missed on the same side as biased forecasts, which is

enough to know that the market is truly surprised. Taking into account magnitudes, as the

traditional consensus error measure does, when some forecasts are biased leads to sorting on

bias as opposed to sorting on true market surprise.

Second, notice that in the example above, using the median of the forecasts rather than

the mean as the consensus does not help the CE measure. For stock A, the consensus

error using the median is 4.5 for stock A and 14.5 for stock B which is an even worse

classification than using the mean consensus. Third, in practice, event studies are ran using a

transformation of CE into a cross-sectional decile score from 1 to 10, which we call Rank(CE).

The Rank(CE) measure deals with outliers and offers a better fit for CAR and POSTCAR

than CE. But it is nonetheless dominated by our FOM measure as these rankings are a form

of winsorization and deal with outliers but not biases which significantly affect the CE and

the relative rankings of stocks that are considered positive or negative surprises.

Fourth, notice that the dispersion of forecasts in this example is also roughly equal for

both stock A and B. As a result, our findings are not driven by differences in the dispersion

of forecasts across stocks and we show that this is indeed the case. And finally, as long as the

fraction of biased forecasts stays constant with N , which is what it appears to be empirically,

such biases will remain important regardless of N and we expect our FOM measure to be

superior regardless of N .

Using annual forecasts of fiscal year-end earnings, the R2 of a canonical regression of

CAR (measured using the 3-day firm-size-adjusted return around the announcement date)
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on CE is .30% and on its decile rank score Rank(CE) is 2.8%. CE is constructed using mean

of the most recent forecasts for the annual year-end FY1 earnings. So every firm has one

observation per year over the sample period from 1983 to 2011. A one standard deviation

increase in Rank(CE) increases the CAR by around 1.2%, a sizeable economic effect. For

POSTCAR, the portfolio long positive earnings surprise (decile rank score 10) and short

negative earnings surprise (decile rank score 1) yields a return of around 1.7% over the

subsequent four months after the announcement date or around 5% annualized.

Our FOM variable, however, performs better than CE or Rank(CE). For instance, FOM

variable gives an R2 of 4.1%. A one standard deviation increase in FOM increases CAR by

around 1.4%. When we run a horse race of FOM and Rank(CE), the coefficient in front of

FOM is virtually unchanged whereas the one in front of Rank(CE) is no longer significant.

For the POSTCAR, a portfolio long FOM = 1 stocks and short FOM = −1 stocks yields

a four-month subsequent return of 3.8% or nearly 11.4% annualized. Again, in a multiple

regression to explain POSTCAR, our FOM measure remains significant, whereas Rank(CE)

is insignificant.

We go on to verify that our findings remain robust even when controlling for differences

in the dispersion of forecasts across earnings events and that FOM works more consistently

across different sub-samples of analyst coverage. In addition, we show that FOM also predicts

revisions of the consensus forecast although not as well as stock prices since the consensus

forecasts includes some biased forecasts which presumably need not adjust since they are

driven by incentive reasons. However, to the extent there are unbiased forecasts that adjust

and learn from the announcement, we expect FOM to be informative about these revisions,

which it is.

Our paper proceeds as follows. We present a simple model to contrast the accuracy of our

FOM measure versus the CE measure under various assumptions in Section 2. We describe

our data and how we constructed our key variables of interest in Section 3. We present our

main empirical findings in Section 4. We conclude in Section 5. In the Appendix, we provide
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further discussion and extensions of our model to account for various aspects of the data.

2 Modeling the Performance of CE versus FOM

In this Section, we develop a stylized model to explain why FOM might be different from

CE and Rank(CE) in terms of its effectiveness in capturing market surprises. Our argument

relies on some fraction of analysts’ forecasts being biased but the bias is not known to the

econometrician. This is consistent with the empirical studies cited in the Introduction on the

incentive reasons for why analysts forecasts might be biased. We are able to obtain analytic

solutions and prove that FOM is better than CE when the bias is large enough, which we

use to motivate our empirical work.

But for comparative statics, we need to use numerical calculations and will present these,

after presenting the empirical findings, in the Appendix on Extensions and Simulations.

Moreover, in this baseline model with bias, CE and Rank(CE) are essentially the same thing

and our arguments work for both. But in the data, the correlation of CE and Rank(CE) is

very low due to outliers in CE. The Rank(CE) measure largely takes care of these outliers.

We will add this element of outliers to our model in the Appendix so as to show that the

effectiveness of FOM relative to CE and Rank(CE) extends to a more general setting with

outliers.

2.1 Set-up

We start by assuming that actual (which we refer to as earnings through out but could as

well be macro-variables like inflation or GDP) is given by

A = e+ εA, (1)

where e is the unobserved market expectation and εA ∼ N (0, σ2
A). The difference between

the announced earnings and the market expectation is the market surprise, which is given

6



by

S = A− e. (2)

We then assume that individual forecasts i is the market expectation plus some noise εi

and a possible bias term bi, which is given by

Fi =

 e+ εi with prob. ω0

e+ bi + εi with prob. ω1 = 1− ω0

(3)

where εi ∼ N (0, σ2
F ) and is uncorrelated with εA. Each forecast is unbiased with probability

ω0, and is contaminated by an individual bias term bi with probability ω1 = 1− ω0.

We model the bias in the following manner. For each set of N forecasts an aggregated

bias level B ∼ N (0, σ2
B) is drawn first, and conditional on this realized B individual bias

bi follows N (B, σ2
b ). Note that while ω0 and ω1 are fixed and do not change with N , the

realized number of biased forecasts can be different from its expectation ω1N . Therefore

conditional on each set of N forecasts, on average a fraction of ω1 of them are biased by a

random magnitude. Note that we still have E[Fi] = e+ ω1E[bi] = e+ ω1E[B] = e because B

follows a symmetric distribution around zero.

We can motivate this set-up as the market is able to figure out which forecasts are biased

and has access to information about the mean of earnings e beyond simply using analyst

forecasts. εA is the unexpected shock to earnings which the market cannot know. The bias

bi can be derived in a number of ways. The simplest is as in Lim (2001). We show in the

Appendix an extension where the market’s expectation depends only on the analyst forecasts

and we can derive similar results.
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2.2 Proxies of market surprise

The consensus forecast is defined as

F̄ =
1

N

N∑
i=1

Fi. (4)

A widely used measurement of market surprise then is the consensus error

CE = A− F̄ . (5)

We propose an alternative proxy for market surprises given by the fraction of misses from

below:

FOM =
#{Fi < A} −#{Fi > A}

N
. (6)

Conditional on N forecasts, the higher the realized actual is, the larger consensus error

should be, and the more individual forecasts will fall below the actual. We are interested in

comparing the correlations of CE and FOM to S the market surprise.

2.3 Unbiased Forecasts Benchmark: ω1 = 0

We begin with the unbiased benchmark. We can rewrite CE as

CE = S − 1

N

N∑
i=1

εi.

where the the first term is the market surprise S and the second term of the average of the

individual forecast errors. It is easy then to directly compute the correlation of CE with the
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market surprise S:

Cor[CE, S] =
Cov[CE, S]√

Var[CE] · Var[S]

=
σ2
A√

(σ2
A +

σ2
F

N
) · σ2

A

=
1√

1 + r2
F/N

, (7)

where rF = σF/σA is the ratio between the standard deviation of forecasts and the actual.

We can see that the correlation between CE and S increases with N and decreases with rF .

Indeed, as N gets large, Cor[CE, S] goes to 1 as one would expect from the Law of Large

Numbers.

We then rewrite FOM as:

FOM =
#{εi < S} −#{εi > S}

N

=
1

N

N∑
i=1

Mi, (8)

where

Mi =

 1 if εi < S

−1 if εi > S
(9)

If we work out the math,

Cov[FOM, S] = E[S(
1

N

N∑
i=1

Mi)]− E[S] · E[FOM]

=
1

N

N∑
i=1

E[S · (Iεi<S − Iεi>S)]

= E

[
S ·
(

Φ(
S

σF
)−

(
1− Φ(

S

σF
)

))]
= 2σFE[X · Φ(X)], (10)
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where Φ(·) is the cdf of standard normal and X ∼ N (0, 1/r2
F ). Similarly,

Var[FOM] =
4

N
E[Φ(X)(1− Φ(X))] + 4Var[Φ(X)]. (11)

Combining (10) and (11), we have

Cor[FOM, S] =
rFE[X · Φ(X)]√

E[Φ(X)(1− Φ(X))]/N + Var[Φ(X)]
, (12)

where X ∼ N (0, 1/r2
F ). It is worth noting that (7) and (12) only depend on N and rF ,

namely the number of analysts and the ratio between the standard deviation of the forecasts

and the actual (rather than their respective uncertainty levels).

The comparison we want to make is between Cor[CE, S] and Cor[FOM, S]. We can prove

that in the case where N is big, Cor[CE, S] > Cor[FOM, S], thereby making CE a better

measure of the earnings surprise S than FOM.

Proposition 1: When there is no bias, Cor[CE, S] goes to 1 for any given rF as

N gets large, while Cor[FOM, S] goes to some value strictly less than 1.

The first half of Proposition 1 is obvious when we take N →∞ in (7) for any given rF .

To show the second half, first note that (12) goes to l(rF ) = rF E[X·Φ(X)]√
Var[Φ(X)]

as N → ∞. The

limit l(rF ) can be rewritten as Cov(X,Φ(X))√
Var(X)

√
Var(Φ(X))

, which is the correlation between a normal

random variable X and its transformation Φ(X). This takes the value 1 if and only if

Φ(X) = a+ b ·X for some constants a and b, however using integration by parts

Φ(X) =
1

2
+

1√
2π
e−X

2/2

∞∑
k=0

X2k+1

(2k + 1)!
,

which is nonlinear in X. Therefore l(rF ) must be strictly less than 1. In other words, for N

large and when there is no bias, CE is a better measure of S than FOM.
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While it is analytically difficult to prove, we show using numerical calculations that

Cor[CE, S] > Cor[FOM, S] as one would expect when ω1 = 0.

2.4 Biased Forecasts: ω1 6= 0

To see more directly how bias might affect its correlation with S, we can compute the

correlation of CE with S:

Cor[CE, S] =
1√

1 + (r2
F + ω0ω1r2

B + ω1r2
b )/N + ω2

1r
2
B

, (13)

where rB = σB/σA and rb = σb/σA is the ratio between the standard deviation of the bias

(aggregated or individual level) and the actual. The correlation between CE and S increases

with N and decreases with rF , rB, rb and ω1.

Similar calculations to those leading to (12) yields a formula for the correlation of FOM

with S:

Cor[FOM, S] =
rFE[X · Φω(X, Y )]√

E[Φω(X, Y )(1− Φω(X, Y ))]/N + Var[Φω(X, Y )]
, (14)

where Φω(X, Y ) = ω0Φ(X) + ω1Φ(X̃ − Y ), X̃ = X√
1+r2b/r

2
F

, X ∼ N (0, 1/r2
F ), and Y ∼

N (0,
r2B

r2F +r2b
) independent of X. The correlation between FOM and S also increases with N ,

but its relationship with other parameters is more involved, which we study in more detail

in the Appendix.

We are here simply interested in establishing that FOM does improve over CE in the

sense that its correlation with S is higher when biased forecasts are sufficiently large. To

show that, first observe

Cov[FOM, S] = 2ω0σFE[X · Φ(X)] + 2ω1σFE[X · Φ(X̃ − Y )], (15)

where the first term is ω0 times what we have in (10), the positive relationship under the ideal
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setting. The second term is non-negative because X and Φ(X̃ − Y ) are both monotonically

increasing in X when given Y and must have positive covariance. Therefore,

Cov[FOM, S] ≥ 2ω0σFE[X · Φ(X)]

= ω0 · Cov[FOM, S|ω1 = 0]. (16)

This means the covariance is at least a fraction of that in the ideal case. The more unbi-

ased forecasts (the larger ω0), the more positive relationship preserved. Consequently, the

correlation between FOM and S is bounded from below

Cor[FOM, S] =
Cov[FOM, S]√

Var[FOM] · Var[S]

≥ 2ω0σFE[X · Φ(X)]

σA ·
√

Var[FOM]

≥ 2ω0rFE[X · Φ(X)], (17)

where the last inequality follows from the fact that the variance of any bounded random

variable in [a, b] is at most (b − a)2/4 and FOM takes value between −1 and 1. The above

discussion leads to our following important conclusion.

Proposition 2: When there is bias (0 < ω1 < 1), Cor[CE, S] goes to 0 as rB gets

large, while Cor[FOM, S] is always bounded from below by some positive value.

The first claim follows from (13) by letting the bias distortion parameter rB →∞. On the

other hand, the lower bound for Cor[FOM, S] is given by l(rF , ω0) = 2ω0rFE[X · Φ(X)] > 0

as in (17). Although very crude, it does not involve the bias components: no matter how

bad the bias can be, at least a fraction of useful information is preserved. Since Cor[CE, S]

goes to 0 with increasing rB, for any value of ω1 ∈ (0, 1) it will decrease to below l(rF , ω0)

for a large enough rB. That is, whatever value other parameters take, FOM will eventually
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outperform CE as the level of bias distortion increases.

3 Data

The data on analysts’ earnings estimates are taken from the Institutional Brokers Estimate

System (I/B/E/S). We conduct our analysis on the Unadjusted Detailed files. We focus

on forecasts of the fiscal year-end earnings (FY1) for 1983 to 2011 as our base. Stock

returns, prices, and number of outstanding shares are drawn from the Center for Research

in Securities Prices (CRSP) Daily Stocks file. The forecast data are further merged with

actual earnings obtained from I/B/E/S and the CRSP daily stock data. Observations are

dropped if forecast data, earnings data, or stock data are missing.

To calculate the summary statistics of analysts’ forecast, we first extend each forecast

until its revision date.2 For each analyst in a given forecast period, we restrict every forecast

to be made within 90 days to the annual earnings announcements. If an analyst makes more

than one forecast within 90 days to the earnings announcement, we keep the latest forecast

before the announcements. In some record, the revision date precedes the original forecast

announcement date, which is considered an error on the part of I/B/E/S. In this case, we use

the original announcement date. We then calculate the mean, standard deviation, median,

minimum and maximum value of these individual forecasts for each stock in a given fiscal

period. This gives us one entry corresponding to each earnings announcement. In addition,

the FY1 earnings announcements need to fall between 15 to 90 calendar days following the

fiscal period end date. Otherwise, we drop the observations.3

We remove penny stocks with a price of less than $5. To further control for the stock
2There are some rare cases when an analyst makes two different forecasts that have the same revision

date. In this case, we rely on the forecast announcement date. Moreover, if the announcement date of
forecast i equals the revision date for forecast j, we use the forecast i. Also, if announcement date of forecast
i equals that of forecast j, we take the average value of the two forecasts.

3We also consider forecasts of quarterly earnings of the same sample period as a robustness exercise. We
also extend each forecast until the revision date. For each analyst in a given forecast period, we keep the
latest forecast before the quarterly earnings announcements. Relevant summary statistics based on qualified
quarterly forecasts are then calculated. Similarly, the quartelry earnings announcements need to fall between
15 to 90 calendar days following the fiscal period end date.
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split, we delete observations where the number of shares outstanding at date t when the

variables are calculated is larger than the number of shares 20 days prior to the earnings

announcement.

Following the literature, we define consensus error (CE) as the difference between the

actual FY1 earnings and the consensus forecast scaled by the stock price 20 days prior to

the earnings announcement (price(-20)). We consider both mean consensus (arithmetic mean

across individual forecasts) and median consensus (50th percentile of individual forecasts) in

formulating CE. We sort CE into deciles and assign a rank score from 1 to 10 to CE based

on mean consensus. As for CE based on median consensus, which has a value of 0 for over

20% of the data, we apply a more coarse sort by ranking CE into only 6 groups. Analyst

forecast dispersion (DISP) is defined as the standard deviation of analyst forecast scaled by

price(−20). We further sort DISP into deciles and assign a rank score from 1 to 10 to each

batch (Rank(DISP)).

We use two indicator functions, IActual<All and IActual>All, to denote when all analysts

completely miss on the same side. IActual<All equals 1 if the minimum forecast is higher than

the actual earnings. In this case, all analysts are being too positive and make forecasts higher

than the actual earnings. In contrast, IActual>All equals 1 if all analysts are too pessimistic

and the maximum forecast is lower than the actual earnings.

The fraction of misses (FOM) is defined as follows:

FOM =
K

N
− M

N
, (18)

where K is the number of forecasts strictly smaller than the actual earnings, and M is the

number of forecast strictly greater than the actual earnings. N is the total number of analyst

forecasts for stock i in fiscal period y. Notice that K + M doesn’t necessarily equal N. By

construction, FOM equals 1 if IActual>All is 1 and -1 if IActual<All is 1.

Using CRSP, we calculate cumulative abnormal returns (CAR) as follows:
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CAR(i, y) =

t1∏
t=t0

(R(i, t)−R(p, t)), (19)

where R(i, t) is the daily returns of stock i on date t around earnings announcement in year

y. The window to calculate the cumulative abnormal return begins at date t0 and ends at

date t1. R(p, t) is the daily return of the size portfolio to which stock i belongs. The size

deciles are based on CRSP Portfolio Statistics Capitalization Deciles file.

We concentrate on two time windows relative to earnings announcements. The first are

returns cumulative over the three-day window from one trading day before until one day

after the earnings release date (CAR). The second is the cumulative post-announcement

returns (POSTCAR) using trading days +2 to +126 relative to earnings announcement.

Table 1 provides the summary statistics of the variables. In Panel A, notice that the

CE (using the mean consensus) has a mean of -.0031, consistent with the positive bias in

the consensus forecast found in the literature, and a standard deviation of .043. The CE

using the median consensus has similar magnitudes. Rank(CE) using mean consensus has

a mean of 5.49 and a standard deviation of 2.87. Rank(CE) using median consensus has

a mean of 3.46 and a standard deviation of 1.7.4 Our FOM has a mean of .1454 and a

standard deviation of .7. IActual<All has a mean of .12451 and IActual>All has a mean of

.2. In other words, around 32% of the earnings announcement observations in our sample,

everyone misses on the same side. Moreover, notice that CE based on either median or mean

consensus have a correlation of .8447. There is little difference between these two consensus

measures.

In Figure 1, we plot the distribution of FOM across the entire sample. On the x-axis are

the bins for various values of FOM. Notice that nearly 12% of our sample is in the -1 bin

(which denotes IActual<All) and 20% in the 1 bin (which denotes IActual>All). For the bins in

the middle, we have a bin width of .25. The bins with positive FOM’s have around 10% each
4The standard deviation of the Rank(CE) using the median consensus is smaller because as we noted

above we only use 1-6 groups as opposed to 1-10 deciles. The reason is that the median consensus has around
20% of the observations concentrated at 0.
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of the observations. The bins with negative FOM’s have a somewhat smaller representations

at around 5% each.

In Figure 2, we show the FOM distribution conditional on the number of analysts N .

When N = 5 to N = 9, which represents 53% of the sample observations, the fractions of

out of bounds is around 39%. The analogous number for N = 10 to N = 19, which is around

35% of the sample, is around 27%. The number for N ≥ 20, which is around 12% of the

sample, is around 19%. In all these situations, the fraction of out-of-bounds is a non-trivial

fraction of the observations.

In Figure 3, it is also interesting to see the time series of misses on the same side varies

over our period of study from 1983 to 2011. While the total misses on the same side is

consistently high at around 30%, the misses all above the actual has been steadily declining,

while the misses all below the actual has been increasing.

In Panel B, we report the correlation matrix for our variables of interest in which CE is

based on the mean consensus. Notice that the correlation of CE with Rank(CE) is around

0.28 and the correlation of FOM and CE is around .24. As we show in Section 6.2.2, CE

has extreme fat-tails which drive down these correlations. The correlation of FOM with

Rank(CE) is higher at 0.81 but it is far from perfectly correlated. As a result, it will be

interesting to see which of these is more informative for stock returns. We will in our model

below try to capture this difference in correlations. In either event, FOM will have different

information about market surprises than CE and Rank(CE). Results in Panel C using the

median as the consensus forecast are similar. One thing to note is that the outliers make

CE not as effective a measure of market surprises as Rank(CE). But FOM does better than

both.

In Table 2, we provide a real world example in the spirit of the example given in the

Introduction. There are two stocks with ticker symbols CRS and TIF. Notice that the FOM

is 1 in both cases (a big positive surprise under our measure) but their Rank(CE) differ by 2

ranks. Yet, their CAR and POSTCAR do not differ. This example supports our view that
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substantial variation in CE or Rank(CE) is driven by bias as opposed to true surprises. As a

result, the coarser grouping of FOM = 1 or i.e. everyone misses too low is a better predictor

of the market’s reaction, which indicates that they are equally surprised.

It is also useful to do a decomposition of FOM on firm and time characteristics. In a

table which we omit for brevity, we report the R2 of FOM regressions on firm and year

dummies. We consider three models: (1) FOM on firm dummies only, (2) FOM on year

dummies only, and (3) FOM on firm and year dummies. The R2 for specification (1) is

.12, for specification (2) is .045, and for specification (3) is .14. In other words, firm fixed

effects or year dummies explain little of the variation in FOM. FOM is mostly driven by

idiosyncratic events, consistent with the premise of our model.

4 Empirical Findings

4.1 FOM and CAR

In Table 3, we run the canonical earnings announcement event study regression with CAR

as the dependent variable and various permutations of CE, FOM and IActual<All, IActual>All

measures. Included in all regressions are Year Dummies. In column (1), we see that the

coefficient on CE is positive as expected but the R2 is low, at around .3%. In column (2)

FOM attracts a coefficient of .0210 with a t-statistic of 33.86 and R2 of 4.1%. A one standard

deviation increase in FOM increases CAR by around 1.5%, which is a sizeable 3-day move

in stock returns. Using the everyone-misses-on-the-same-side measures, we find that the

coefficient in front of IActual<All is as expected negative with a coefficient of -.021 and a-

statistic of -15.21. For IActual>All , it is positive at .0265 with a t-statistic of 24.37. The

market’s reaction seems fairly symmetric when everyone missed on the same side, whether

it is too high or too low. Again, the market reactions are sizeable — roughly a 2% decrease

in stock prices over 3 days when all analysts miss too high and a 2.6% 3-day increase when

all analysts miss too low. In column (4), we find that FOM is far more informative for CAR
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than CE when we put both variables together in a multiple regression. The coefficient of CE

goes to zero while the coefficient in front of FOM is unchanged. It is in this sense that FOM

dominates CE. The same holds true in column (5) when we compare CE to the everyone

misses on the same side indicators.

In columns (6)-(10), we repeat the same specifications using the median of the forecasts

as the proxy for the consensus. In every case, the results are virtually unchanged. Using

the median consensus does not help for the reasons we gave above in that the issue is not so

much outliers but systemic bias which the median or winsorization more generally cannot

solve.

In Panel B, we compare the relative power of Rank(CE) and FOM for explaining CAR.

In column (1), we find that Rank(CE) attracts a coefficient of .004 with a t-statistic of 27.15.

The R2 is .028. As expected, it performs much better than CE because CE has outliers which

act as measurement error. The coefficient in column (2) for FOM is similar to that of Panel

A with an R2 of .041 which is higher than that of Rank(CE). The coefficients in front of

the everyone misses indicators in column (3) are similar to Panel A. In column (4), when

we combine both of these explanatory variables, we see that the coefficient in front FOM is

largely unchanged, falling from .021 to .0213 with a t-statistic of 20.45. The coefficient for

Rank(CE) is close to zero and is no longer significant. Moreover, the R2 remains the same as

when FOM is by itself in the regression. In column (5), we find that adding in a horserace of

Rank(CE) with the everyone misses indicators, Rank(CE) retains more explanatory power

but the indicators are still very significant, suggesting indeed that the everyone missed on

the same side indicators are capturing information because bias in forecasts contaminates

and distorts even the Rank(CE).

In columns (6)-(10), we consider Rank(CE) but using the median as the consensus fore-

cast. The coefficient in front of Rank(CE) is .008 with a t-statistic of 30.84 and an R2

of .035, which is better than the Rank(CE) using mean forecasts. But when we combine

Rank(CE) with FOM, we see again that the coefficient in front of Rank(CE) falls .00218
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with a t-statistic of .0028, while the coefficient in front of FOM is .0164 with a t-statistic of

13.89. One way to compare the economic magnitudes is to ask how a one standard deviation

increase in Rank(CE) or FOM increases the CAR. For Rank(CE), its standard deviation is

1.7, while for FOM , it is .72. The implied CAR effect of Rank(CE) is just .0038 compared

to the implied CAR effect for FOM, which is .014. The FOM effect is 3 to 4 times as large as

the Rank(CE) using median forecast effect. It is not surprising that the R2 does not change

much from the FOM univariate case when we add Rank(CE). In column (10), we show the

Rank(CE) and the everyone misses indicators. The results are similar to the case of the

mean consensus. So overall, while the median consensus helps in conjunction with taking

a rank of these medians, FOM is still the best univariate measure by a substantial margin.

This will become even more apparent when we consider POSTCAR next.

But before then, it is helpful to visualize these regressions in Figure 4, where we plot the

average CAR for different Rank(CE) and in Figure 5, where we plot the average CAR for the

different bins of FOM. Notice that an effective earnings surprise measure should generate

a strong positive monotonic relationship between the measure on the x-axis CAR on the

y-axis. In both cases, we see an upward sloping sloping curve. But FOM actually generates

a much bigger spread in CAR than Rank(CE)—from bin -1 to bin 1, we see a movement in

the CAR of -.021 to .0265, consistent with our estimates for everyone missed on the same

side indicators from Table 3. In contrast, Rank(CE) only generates an analogous movement

from decile 1 to decile 10 of -.015 to .02 in CAR. Also, Rank(CE) generates a much more

muted increase in CAR for deciles scores 1 to 3.

4.2 FOM and POSTCAR

In Table 4, we have as the dependent variable POSTCAR. In Panel A, we compare FOM to

the unranked CE. In column (1), we see that CE again attracts a positive coefficient of .606

but is not statistically significant. In column (2), the coefficient in front of FOM is .0135

with a t-statistic of 6.27. In column (3), we see that the coefficients in front of the indicators
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where everyone misses on the same side are -.0137 with a t-statistic of 2.87 and .0151 with

a t-statistic of 3.83. These two coefficients are particularly economically interesting since

we can interpret these as the returns of shorting a portfolio where everyone misses too high

(negative surprise) and longing a portfolio where everyone misses too low (positive surprise).

The four-month return is around 3%, which translates to an annualized return of around

9%, quite an economically interesting magnitude. When we run the multiple regression,

we see that FOM is more informative about POSTCAR than CE. The coefficient in front

of CE gets cut dramatically, while the coefficient in front of FOM is virtually unchanged.

In column (4), we find that FOM best explains POSTCAR. A similar conclusion holds in

column (5) with the everyone missed on the same side indicators. In column (6)-(10), we

use the median forecast to create CE and find virtually identical results.

In Panel B, we compare FOM to the Rank(CE) using means and medians for explaining

the POSTCAR. In column (1), we see that Rank(CE) comes in significantly with coefficient

of .000188 and a t-statistic of 3.45. Columns (2) and (3) are similar to those in Panel A.

In column (4), where we combine Rank(CE) and FOM, Rank(CE) is actually the wrong

sign, while the FOM is even more significant and in the right direction. The coefficient is

.0229 with a t-statistic of 5.98. So here moving from an FOM of -1 to 1 would lead to

an increase in the POSTCAR of nearly 5% per four months or nearly 15% annualized. In

column (5) where we examine how the indicators of everyone-missing-on-the-same-side do

compared to Rank(CE), we see that Rank(CE) is no longer significant and the coefficient

in front of the indicators are virtually unchanged. In columns (6)-(10), we use the median

forecast to construct Rank(CE) instead of the mean forecast and find very similar results. So

for POSTCAR as for CAR, FOM is much better than Rank(CE) in explaining its variability.

To visualize these POSTCAR regressions, we show in Figure 6 the average POSTCAR

for different Rank(CE) and in Figure 7 the average POSTCAR for the different bins of

FOM. Again, we want our earnings surprise measure to generate a monotonic or upward

sloping POSTCAR. Notice that FOM generates a much more upward-sloping and monotonic
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POSTCAR than Rank(CE) and also generates a much more sizeable spread in POSTCAR,

consistent with Table 4.

4.3 Controlling for Dispersion of Forecasts

In Table 5, we add into our baseline regression specifications the dispersion of analysts’

forecasts (DISP) and CE interacted with DISP to see if more complicated models of CE

might take away the explanatory power of FOM. Note that we have already established the

power of FOM over CE and Rank(CE) in all cases. It is interesting to nonetheless consider

whether more complicated Rank(CE) models might attenuate the univariate power of FOM.

More precisely, we implement our regression using Rank(DISP) and Rank(CE). The idea

is that the effect of CE on returns is lower when there is more uncertainty or disagreement

in the forecasts. This is indeed what we find since the coefficient in front of the interaction

term with DISP is negative. However, the coefficients on FOM are little changed from

before. The coefficients in front of IActual<All and IActual>All are still significant but in the

case of POSTCAR’s are less so. This is true both for mean and median consensus forecasts.

Nonetheless, the overall picture is that FOM remains significant throughout.

4.4 Cuts by Analyst Coverage

In Table 6, we run our baseline specifications for stocks of different number of analyst fore-

casts in comparing FOM and Rank(CE) for explaining CAR. Recall that we require a

minimum of 5 analysts to begin with. We divide out sample into 4 groups: from 5 to 9 ana-

lysts, 10 to 14 analysts, 15 to 19 analysts and greater than or equal to 20 analysts. In Panel

A, we consider the mean consensus. In the first row, we see that the effect of Rank(CE)

is fairly similar across all the sub-groups. FOM also has fairly similar effects for all the

sub-groups in the second row. But notice that in each case, the R2 of FOM is higher than

that of Rank(CE). So the baseline effects we establish are not concentrated in a particular

sub-sample. The same applies for the everyone misses on the same side indicators in the third
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row. In fourth row, we run a horse race between Rank(CE) and FOM and find again that

Rank(CE) is not significant in any of the sub-groups once we have FOM in the regression.

The coefficients on FOM are in contrast unchanged. In the fifth row, we run a horse race of

Rank(CE) and the everyone misses on the same side indicators. We obtain similar effects to

the baseline, the Rank(CE) is weakened but not as much as if we had FOM.

In Panel B, we conduct the same analysis but now using median consensus to calculate

Rank(CE). Our conclusions are largely the same. Interestingly, focusing on row (4) where

we run a horserace between Rank(CE) and FOM, we see that FOM does much better and

Rank(CE) is insignificant except for the N equals 5 to 9 case. In other words, recall from our

Table 3 Panel B that the Rank(CE) using median forecast did slightly better compared to

the Rank(CE) using mean forecast compared to FOM. Whereas Rank(CE) using the mean

forecast was entirely wiped out in the horserace, Rank(CE) median survived a bit though

the FOM effect was three times as big. We see here that this differential was coming only

from the group with the fewest analysts. For N big, FOM is much better which fits with

the intuition we developed in the model. When there is a big N , if everyone misses on the

same side, it is very indicative that there was a big surprise since even the unbiased forecasts

must are also missing on the same side. Recall that for CE the fraction of biased forecasts

stays constant with N and hence bias remains just as important for N big.

In Table 7, we consider the same exercise but using POSTCAR. Here the results are

noisier but we can still discern that FOM is much more robust than Rank(CE) in explaining

POSTCAR. In Panel A,we again use the mean forecast to calculate Rank(CE). Notice in the

first row, Rank(CE) is only sporadically significant across the four sub-groups. FOM in the

second row is much more consistent in its performance. In the third row, the indicators for

everyone-missing-on-the-same-side are also less consistent compared to FOM. In the fourth

row, we see that FOM takes out the significance of Rank(CE) in explaining POSTCAR. The

only significant coefficient for Rank(CE) goes the wrong way in the first sub-group.

However, for N greater than or equal to 20, even FOM has limited explanatory power. So
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most of the power of FOM is coming from stocks with fewer analysts. This is not surprising

since Hong, Lim, and Stein (2000) documented that there was far less drift in stock prices

for stocks with more analyst coverage since these stocks are more efficiently priced. The

reason FOM is not working for the POSTCAR is that there is not much drift in prices or

inefficiency to begin with for this group. Of course, also note that FOM does work very well

for the sub-group with lots of analysts using CAR since this captures the reaction of the

market to the surprise. The POSTCAR is the delayed reaction or inefficiency in the market.

In Panel B, we reach very similar conclusions for the POSTCAR.

4.5 FOM and Revision of Consensus

In Table 8, we compare the relative performance of Rank(CE) and FOM in explaining

revisions of analysts expectations (between two adjacent fiscal years) in the same direction

as market returns. In other words, if both Rank(CE) and FOM are picking up surprises, we

should see that positive surprises are followed by positive revisions of the consensus forecast.

But when it comes to comparing which is more powerful, any conclusion becomes more

involved since we know from our analysis that a subset of analyst forecasts are biased and

that these biased forecasts influence the consensus. So it really also depends on how the

biased analysts revise their expectations, which is difficult to say. In any event, we would

expect that since part of the consensus is unbiased and similar to the market, we expect

FOM to still have power to predict the revision of the consensus. This is indeed what

we find. If we look at the economic significance of the coefficients in front of Rank(CE)

and FOM and perform our comparative statics of one standard deviation shock to these

two variables and see what it implies for the consensus revision, we still find that FOM is

stronger than Rank(CE) in both Panels A and B. But the difference is far smaller than

when it comes to predicting stock returns. Nonetheless, it is comforting that FOM and the

everyone-misses-on-the-same-side indicators are picking up revisions of the consensus.
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4.6 Additional Robustness Exercises

In the Internet Supplementary Appendix, we provide additional results. In our baseline

results, we focus on forecasts for year-end earnings that has to be within 90 days before

the announcement date. In the Appendix we also report the results when there are no such

screen. We also provide results using quarterly instead of annual year-end earnings forecasts

and find very similar results. We also report results where the benchmark excess return is the

Daniel, Grinblatt, Titman, and Wermers (1997) returns accounting for size, book-to-market

and momentum. The results hardly differ from our size-adjusted returns.

5 Conclusion

Capital markets event studies are an important tool in financial economics research. The key

to these studies is capturing whether or not the market is surprised. The traditional measure

is the difference between realized earnings and the consensus forecast, defined as the average

or median of individual forecasts. We argue, however, that the fraction of forecasts that miss

on the same side often does a superior job of explaining stock returns than the consensus

error. We develop a model to show that the reason is that when analysts forecasts are biased

the consensus forecast is more sensitive to this bias than the fraction of same-sided misses.

While our paper has focused on earnings forecast, the methodology we have laid out can be

applied equally well to any type of forecasts such as on macro-variables. We believe that our

new methodology can be used to improve the precision of event studies of capital market

efficiency which are a most basic tool for economists.
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6 Appendix

6.1 Numerical Calculations and Extensions

In this section, we provide more color on how bias affects the relative performance of CE,

Rank(CE) and FOM and why FOM is a robust measure of surprises S.

6.1.1 Unbiased Forecasts Benchmark: ω1 = 0

We start with the unbiased benchmark. In the earlier model section, we had established

some results for N large but have also done extensive calculations over wide parameter

ranges. To evaluate their relative performance (CE compared to FOM), we can compute the

exact value of (7) and (12) for any given pair of parameters. Figure 8 shows the contour

plot of the correlation between CE and S minus the correlation between FOM and S (i.e.,

Cor[CE, S]− Cor[FOM, S]) as a function of rF and N . Although we cannot prove it in full

generality, we searched over a sufficiently large space with realistic parameter values and the

difference stays positive, so we conclude that CE is superior than FOM for practical use in

this ideal case.

The relative performance of CE and FOM changes with rF and N in a nonlinear manner.

But we can try to get some intuition and a flavor of what drives this difference in performance.

If we take a horizontal slice of this contour by fixingN , the difference is the smallest at around

rF = 1 and when rF is huge (see the bottom right corner). The intuition behind the first

observation is that FOM tries to gauge one realization of S by using N realized noise as a

benchmark, i.e., counting how many εi’s are above or below it. If S and εi’s have roughly

the same distribution, it gives the most accurate account for the location of S in its own

unobserved distribution. This in our case leads to rF = σF/σA ∼ 1 (the exact maximal point

depends on N). On the other hand, as rF increases, the correlation of both measures drop

and they become equally bad. Figure 9 shows the pattern when N = 10, which is rather

representative of different N ’s.
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6.1.2 Biased Forecasts: ω1 > 0

While CE can be large simply due to the existence of one very negative Fi, FOM is much

less affected because each observation only contributes as 1 or −1 in the sum (8) regardless

of its magnitude. One consequence is that CE and FOM are no longer highly correlated.

While we observe a rather low correlation (around 0.28) in earnings data, which is also due

to other reasons as we argue in Section 6.2.2, here we use simulations to reveal part of the

dynamic caused by biased forecasts. We simulate data according to the model and calculate

the correlations using 50, 000 samples, where the key parameters ω1 and rB vary over their

range, and the others fixed at N = 20, rF = 1/2 and rb = rB/5. Figure 10 shows how the

correlation decreases with rB, the relative uncertainty level of the bias component B. In

terms of ω1, recall it is the proportion of biased forecasts, so the correlation first decreases

with the introduction of biased forecasts as soon as ω1 becomes nonzero, and then picks up

when both measures get equally bad.

Along with the lower correlation between these two measures, the discrepancy between

their performance measuring market surprise also widens, mainly due to their different resis-

tance to bias. We have shown earlier (Proposition 2) that FOM will eventually outperform

CE as bias becomes more significant, because FOM’s correlation with S has a positive lower

bound whereas Cor(CE, S) can be reduced to zero quickly. Indeed this is what we observe in

simulation studies. As an illustration, again let the key parameters ω1 and rB vary over their

range, with the others fixed at rF = 1/2, rb = rB/5 and N = 20. We directly compute the

correlation between CE and S in (13) and simulate 100, 000 samples of X and Y to compute

the correlation between FOM and S in (14). Figure 11 shows a representative pattern of their

relative performance as a function of ω1 and rB, where the difference between Cor[CE, S]

and Cor[FOM, S] becomes negative (i.e., FOM outperforms) as the relative dispersion of bias

rB = σB/σA increases.
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6.1.3 CE and Rank(CE)

In practice, people use Rank(CE), i.e., sort CE into 10 deciles in order to be robust to outliers.

However, this global adjustment may not work in the presence of bias. For example, one

single large biased forecast can still move CE from decile 10 down to decile 1 and mess up the

ordering. Figure 12 shows a representative pattern of the difference in the performance of

Rank(CE) and FOM (i.e., Cor[Rank(CE), S]−Cor[FOM, S]) as a function of ω1 and rB with

the same set of parameters as in Section 6.1.2, where each Cor[Rank(CE), S] is computed

using 50,000 simulated samples. Comparing with Figure 11, there is some improvement when

rB is not too large. However, the essence of the analysis on CE carries over to Rank(CE)

because when CE is greatly contaminated, the coding of Rank(CE) does not help much: the

damage is already done. In this sense, FOM measure does the robustness adjustment on a

local level, so the impact from bias is alleviated when aggregating N forecasts, instead of

afterwards. Therefore, FOM improves over Rank(CE) for the same reason as it does over

CE, the reason being their sensitivity to large bias. That being said, Rank(CE) does have

better property when treating the few outliers that overthrow CE, and Section 6.2.2 develops

this aspect of the relationship between CE and Rank(CE) in an extended model.

6.2 Winsorized Mean and Median

In order to be robust to the noisy forecasts, one may also Winsorize the forecasts, for example,

a 5% Winsorization would set all forecasts below the 5th percentile set to the 5th percentile,

and data above the 95th percentile set to the 95th percentile. The average of the resulting

data is the Winsorized mean of forecasts. Similarly, we can define the Winsorized consensus

error as

CEwin
λ = A− F̄win

λ ,
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where λ is the percentage of data on each tail being replaced. Note that when λ = 50%, the

Winsorized mean becomes median:

CEwin
50% = CEmed = A−median(Fi).

However, such measures do not show much, if any, improvement in our regression results of

earnings announcement event study. This is not surprising because although Winsorization is

designed to remove the two tails in a set of forecasts, it is by no means equivalent to removing

the biased ones. Since the realization of bias is unknown in each draw, it is impossible for

Winsorization to correctly pick up all the bad forecasts without sacrificing the good ones. In

the same spirit as the analysis of consensus errors, the Winsorized measures by definition still

strongly depend on the magnitude of forecasts, which inevitably leads to their vulnerability

to bias. The more volatile B is, the harder it is for Winsorization to achieve consistent

performance. Figure 13 illustrates how the performance drops with increasing rB through

5000 simulations, where the other parameters in the model are set as ω1 = 0.3, rF = 1/2,

rb = rB/5 and N = 20.

Furthermore, the performance also depends on the fraction of biased forecasts and the

choice of λ for Winsorization. Unfortunately, the fraction of biased forecasts ω1 is usually

unknown in practice and may even be varying, so it is hard if not impossible to set λ, the

single important parameter for Winsorization, and an inappproriate choice might result in

undesirable performance. This is illustrated in Figure 14, where the relative performance

of different Winsorized measures changes with the fraction of biased forecasts ω1, and the

other parameters in the model are set as rB = 10, rF = 1/2, rb = rB/5 and N = 20.

6.2.1 Remark on the Model

A key assumption in our model is that for each stock a fraction of analysts are biased.

Recall that under our modelling, the forecasts come from a mixture composed of two normal

28



distributions, one centred around the unknown market expectation e and the other biased

by a magnitude of the realized B. While the aggregated bias magnitude B can be huge or

moderate, ω1 the weight of the biased distribution in the mixture is with respect to N so the

number of biased analysts scales with the total number and makes the law of large numbers

fail. In this normal mixture framework, the bias component is essential and we have shown

how it drives the behaviour of different measures that is consistent with our observations.

If we remove the bias part of the modelling and instead introduce bad forecasts by having

large variance in one of the distributions, it will fail to represent some important features in

the real data. More specifically, suppose the forecasts are given by

Fi = e+ εi, (20)

where εi’s follow a mixture of two normal distributions: N (0, σ2
0) with probability ω0 and

N (0, σ2
1) with probability ω1 = 1 − ω0, and σ2

1 > σ2
0. Notice that this is actually a limiting

case of our specification (3) by setting σB = 0, which means B is always 0 so that its impact

disappears. Under this alternative modelling, even though individual forecasts can be very

volatile, the variance of the average forecast error is given by:

Var[
1

N

N∑
i=1

εi] =
1

N
(ω0σ

2
0 + ω1σ

2
1), (21)

so CE still converges to S by the law of large numbers. That is, although σ2
1 can be large,

the distortion from fat-tails is greatly discounted and the variance decreases linearly in N ,

unlike in (??) the second term never vanishes no matter how big N is. This implies that

CE or Rank(CE) should be better for larger N under the alternative model, which does not

quite match what we see in the real data (recall Table 6).

Furthermore, in the absence of random bias all the forecasts are centered around the real

market expectation e, so it is much easier for Winsorisation to filter the bad forecasts. As a

comparative example to Figure 13, Figure 15 illustrates the much stronger performance of
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Winsorized mean and median through 5000 simulations, which is again different from what

we see in the empirical study and undermines the validity of this alternative modelling.

6.2.2 Extension Allowing for Outliers in CE

Although by comparing Figure 11 and 12 we show that Rank(CE) has slight improvement

over CE, so far in our analysis they play a very similar role. Consequently, when our model

generates a low correlation between CE and FOM, Rank(CE) and FOM are also much

less correlated. However in real data we find the correlation between CE and Rank(CE)

is merely over 0.28, which leads to a low Cor(CE,FOM) around 0.24 and a rather high

Cor(Rank(CE),FOM) over 0.81. As we further delve into data, we find rare events when

most analysts or even everyone miss by quite a margin, which produces huge CE that has

a magnitude multiple times more than the regular majority (e.g., the 3% on two tails is 30

times of the central 97% in average absolute value). Note that our CE is scaled by stock

price and controlled for split, so this is not an issue about firm heterogeneity. These large

values are able to drive the correlation between CE and other measures down. For example,

Figure 16 shows how the extreme tails of CE diminish its covariation with Rank(CE) in the

regular region, that is, when we zoom in and conditional on Rank(CE) being 2 to 9 only,

the correlation bounces back to 0.72.

Recall that in our model ω1 is a constant and B follows a normal distribution, we clearly

are not able to generate the tail events of huge CE within a reasonable range of parameter

values. In order to close this gap with the real data, we introduce a tail event scenario with

a small probability. That is, with probability 1 − θ the forecasts follow the original model

as in (3); with probability θ which is supposed to be very small, all the forecasts are off by

a magnitude possibly huge:

Fi = e+ b̃i + εi, i = 1, · · · , N (22)
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where εi ∼ N (0, σ2
F ), and conditional on B̃ ∼ N (0, σ2

B̃
), we have b̃i ∼ N (B̃, σ2

b ). σB̃ should be

large relatively to σB, and we use σB̃ = 30·σB which seems a reasonable scale to represent the

real data. As argued above, this formulation helps to explain the low correlation between

CE and Rank(CE) as well as FOM, and its poor performance as a proxy of the market

surprise S. On the other hand, the impact on Rank(CE) and FOM is very limited as long as

θ is small. Since huge values of CE only translate to the boundary points in Rank(CE) and

FOM, their distortion is not magnified by the magnitude. By a similar argument as in the

case of FOM with respect to biased forecasts, the behaviour of Rank(CE) and FOM should

not deviate too much from their respective θ = 0 case.

We now confirm our hypothesis through simulation studies. Throughout this section, the

correlations are computed using 100, 000 simulated samples for each pair of parameters θ

and rB, with the others fixed at ω1 = 0.3, rF = 1/2, rb = rB/5 and N = 20. Figure 17 and

18 show how the correlation between CE and other measures decreases dramatically with

the introduction of θ. On the other hand, the relationship between Rank(CE) and FOM are

rather stable, indicated by the horizontal stripes in Figure 19. In terms of the performance

as a proxy of market surprise, the gap between FOM and CE widens because of the tail

scenario that undermines CE (Figure 20), while the improvement of FOM over Rank(CE)

remains as in θ = 0 case (Figure 21).

6.3 Extended Model

Our model above assumes that the market’s expectation conditions on information outside

the set of analyst forecasts. But we can model the market’s expectation as dependent just

on the set of analysts’ forecasts and obtain the same results.

Suppose now that A ∼ N(0, σ2
A) for simplicity. There are i = 1, ..., N forecasts. We then
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assume that individual forecasts i is given by

Fi =

 A+ εi with prob. ω0

A+ bi + εi with prob. ω1 = 1− ω0

(23)

where εi ∼ N (0, σ2
F ) and is uncorrelated with εA. Each forecast is unbiased with probability

ω0, and is contaminated by an individual bias term bi with probability ω1 = 1 − ω0. We

model the bias in the same manner as before. For each set of N forecasts an aggregated

bias level B ∼ N (0, σ2
B) is drawn first, and conditional on this realized B individual bias bi

follows N (B, σ2
b ).

We assume that investors are able to de-bias whereas the econometrician cannot. Hence,

the market’s posterior of A is given by

Â =
1

N

N∑
i=1

F ∗i , (24)

where F ∗i = A + εi is the debiased forecasts. This follows from the usual Kalman Filtering

results in linear-normal models where each forecast can be interpreted as a linear signal of

the actual A. Since each signal has equal precision, there is then equal weighting of the

signals in forming the posterior Â. The market surprise then is given by

S = A− Â (25)

Notice that CE is now given by

CE = A− 1/N
N∑
i=1

Fi (26)

and FOM is now given by

FOM =
1

N

N∑
i=1

(IF1<A − IFi>A) (27)

We want to compare again the correlation of CE and FOM with the market surprise S,
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respectively,

We can calculate that

Cor(CE, S) =
1√

1 + ω0ω1r2
B + ω1r2

b + ω2
1r

2
BN

(28)

where rB = σB/σF and rb = σb/σF . We can also show that

Cor(FOM,S) =
ω0

1√
2π

+ ω1E[XΦ(X̃ − Y )]√
ω0

2
(1− ω0

2
) + ω2

1E[Φ(X̃ − Y )(1− Φ(X̃ − Y ))] + Var[Φ(X̃ − Y )]
(29)

where X ∼ N(0, 1) and X̃ = X/rb which is orthogonal to Y ∼ N(0,
r2B
r2b

).

Since Cor(FOM,S) ≥ w0

√
2/π√

1+ω2
1N

, it follows then that if rB gets large, then Cor(CE, S)

drops below Cor(FOM,S). This then confirms our results in our baseline model.
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Table 1 (cont’d): Summary Statistics

Panel B: Correlation matrix (CE based on mean consensus)
CE DISP Rank(CE) Rank(DISP) FOM IActual<All IActual>All

CE 1
DISP -0.5184 1
Rank(CE) 0.284 -0.0414 1
Rank(DISP) -0.1015 0.138 -0.1175 1
FOM 0.2414 -0.0402 0.8103 -0.1881 1
IActual<All -0.247 0.0195 -0.4774 0.073 -0.6032 1
IActual>All 0.1305 -0.0291 0.5317 -0.1722 0.597 -0.1896 1

Panel C: Correlation matrix (CE based on median consensus)
CE DISP Rank(CE) Rank(DISP) FOM IActual<All IActual>All

CE 1
DISP -0.124 1
Rank(CE) 0.2853 -0.025 1
Rank(DISP) -0.1002 0.138 -0.0547 1
FOM 0.2672 -0.0402 0.8473 -0.1881 1
IActual<All -0.2746 0.0195 -0.4709 0.073 -0.6032 1
IActual>All 0.1357 -0.0291 0.5231 -0.1722 0.597 -0.1896 1
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Table 2: An Example: When CE and CAR (POSTCAR) are at odds and FOM
does a better job.

In this table we hand pick two stocks, which have fairly different CE. By having equal FOM, the CAR and
POSTCAR are shown to be similar.

Ticker = CRS Ticker = TIF
Fiscal period = 6/30/2003 Fiscal period = 1/31/1999
EA date = 7/24/2003 EA date = 3/3/1999
EPS = 0.17 EPS = 2.51

Analyst Forecast date Forecast Analyst Forecast date Forecast
1 5/28/2003 0.01 1 1/11/1999 2.45
2 6/5/2003 -0.01 2 1/11/1999 2.42
3 7/9/2003 0.01 3 1/8/1999 2.44
4 7/22/2003 0.050000001 4 1/13/1999 2.40
5 6/9/2003 -0.06 5 1/8/1999 2.42

6 1/11/1999 2.44
7 1/8/1999 2.42
8 1/8/1999 2.45
9 1/11/1999 2.35
10 1/8/1999 2.42
11 1/11/1999 2.45
12 1/11/1999 2.44
13 1/12/1999 2.42
14 1/8/1999 2.43
15 2/5/1999 2.35
16 1/14/1999 2.45
17 1/11/1999 2.45
18 2/25/1999 2.35

Mean consensus 0.00 Mean consensus 2.42
CE 0.0109 CE 0.0016
Rank(CE) 10 Rank(CE) 8
FOM 1 FOM 1
CAR 0.1171 CAR 0.1236
POSTCAR 0.4376 POSTCAR 0.4609
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Table 6: Number of Analysts, CAR, FOM, out-of-bound dummies, and Rank(CE)

This table presents the ordinary least squares estimates of the sensitivity of earnings announcement stock
returns (CAR) to Rank(CE), FOM, IActual<All, and IActual>All by further classifying stocks into 4 groups
based on the number of analyst coverage. Group 1 includes stocks with 5 to 9 analysts, group 2 is 10 to 14,
group 3 is 15 to 19, and group 4 is stocks with more than 20 analysts. The dependent variable is CAR. The
independent variables are Rank(CE), FOM, IActual<All, and IActual>All, as defined in Table 3. In Panel A,
Rank(CE) is calculated based on mean consensus. In panel B, Rank(CE) is based on median consensus. All
standard errors are clustered by stocks. t statistics are in parentheses.

Panel A: Rank(CE) is based on mean consensus
N = 5 to 9 N = 10 to 14 N = 15 to 19 N ≥ 20

(1) Rank(CE) 0.00465*** 0.00420*** 0.00356*** 0.00282***
(22.03) (12.54) (8.28) (7.92)

Year effect Yes Yes Yes Yes
R2 0.032 0.026 0.019 0.018
N 18,405 7,929 4,201 4,324

(2) FOM 0.0226*** 0.0213*** 0.0187*** 0.0153***
(26.77) (16.04) (11.32) (10.72)

Year effect Yes Yes Yes Yes
R2 0.044 0.040 0.034 0.032
N 18,405 7,929 4,201 4,324

(3) IActual<All -0.0210*** -0.0218*** -0.0271*** -0.0133***
(-11.84) (-6.33) (-5.74) (-3.85)

IActual>All 0.0272*** 0.0287*** 0.0202*** 0.0222***
(18.54) (12.88) (6.80) (7.60)

Year effect Yes Yes Yes Yes
R2 0.038 0.036 0.025 0.020
N 18,405 7,929 4,201 4,324

(4) Rank(CE) 0.000188 -0.000345 -0.000909 -0.000804
(0.52) (-0.63) (-1.13) (-1.43)

FOM 0.0219*** 0.0224*** 0.0216*** 0.0179***
(15.01) (10.26) (6.94) (7.80)

Year effect Yes Yes Yes Yes
R2 0.044 0.040 0.034 0.032
N 18,405 7,929 4,201 4,324

(5) Rank(CE) 0.00212*** 0.00184*** 0.00179*** 0.00175***
(7.56) (4.56) (3.54) (4.30)

IActual<All -0.0138*** -0.0152*** -0.0206*** -0.00697
(-7.04) (-4.11) (-4.09) (-1.91)

IActual>All 0.0198*** 0.0227*** 0.0146*** 0.0167***
(11.34) (8.85) (4.40) (5.20)

Year effect Yes Yes Yes Yes
R2 0.041 0.038 0.028 0.024
N 18,405 7,929 4,201 4,324
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Table 6 (cont’d): Number of Analysts, CAR, FOM, out-of-bound dummies, and
Rank(CE)

Panel B: Rank(CE) based on median consensus
N = 5 to 9 N = 10 to 14 N = 15 to 19 N ≥ 20

(1) Rank(CE) 0.00869*** 0.00808*** 0.00712*** 0.00562***
(24.57) (14.59) (9.84) (9.56)

Year effect Yes Yes Yes Yes
R2 0.039 0.034 0.028 0.025
N 18,405 7,929 4,201 4,324

(2) FOM 0.0226*** 0.0213*** 0.0187*** 0.0153***
(26.77) (16.04) (11.32) (10.72)

Year effect Yes Yes Yes Yes
R2 0.044 0.040 0.034 0.032
N 18,405 7,929 4,201 4,324

(3) IActual<All -0.0210*** -0.0218*** -0.0271*** -0.0133***
(-11.84) (-6.33) (-5.74) (-3.85)

IActual>All 0.0272*** 0.0287*** 0.0202*** 0.0222***
(18.54) (12.88) (6.80) (7.60)

Year effect Yes Yes Yes Yes
R2 0.038 0.036 0.025 0.020
N 18,405 7,929 4,201 4,324

(4) Rank(CE) 0.00258*** 0.00186 0.00147 0.000241
(3.70) (1.84) (1.07) (0.21)

FOM 0.0171*** 0.0174*** 0.0156*** 0.0148***
(10.25) (7.15) (5.01) (5.25)

Year effect Yes Yes Yes Yes
R2 0.045 0.040 0.034 0.032
N 18,405 7,929 4,201 4,324

(5) Rank(CE) 0.00532*** 0.00482*** 0.00480*** 0.00423***
(11.47) (7.35) (5.85) (6.28)

IActual<All -0.0104*** -0.0117** -0.0166*** -0.00402
(-5.30) (-3.17) (-3.36) (-1.09)

IActual>All 0.0164*** 0.0193*** 0.0114*** 0.0146***
(9.53) (7.61) (3.50) (4.57)

Year effect Yes Yes Yes Yes
R2 0.045 0.042 0.034 0.029
N 18,405 7,929 4,201 4,324
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Table 7: Number of Analysts, POSTCAR, FOM, out-of-bound dummies, and
Rank(CE)

This table presents the ordinary least squares estimates of the sensitivity of post earnings announcement
stock returns to Rank(CE), FOM, IActual<All, and IActual>All by further classifying stocks into 4 groups
based on the number of analyst coverage. Group 1 includes stocks with 5 to 9 analysts, group 2 is 10
to 14, group 3 is 15 to 19, and group 4 is stocks with more than 20 analysts. The dependent variable is
POSTCAR. The independent variables are Rank(CE), FOM, IActual<All, and IActual>All, as defined in
Table 4. In Panel A, Rank(CE) is calculated based on mean consensus. In panel B, Rank(CE) is based on
median consensus. All standard errors are clustered by stocks. t statistics are in parentheses.

Panel A: Rank(CE) based on mean consensus
N = 5 to 9 N = 10 to 14 N = 15 to 19 N ≥ 20

(1) Rank(CE) 0.00170* 0.00223 0.00144 0.00282*
(2.16) (1.88) (0.98) (2.20)

Year effect Yes Yes Yes Yes
R2 0.002 0.002 0.006 0.020
N 17,696 7,659 4,075 4,214

(2) FOM 0.0143*** 0.0143** 0.0121* 0.0110*
(4.60) (3.05) (2.16) (2.25)

Year effect Yes Yes Yes Yes
R2 0.003 0.003 0.007 0.020
N 17,696 7,659 4,075 4,214

(3) IActual<All -0.0125 -0.0210* -0.0137 -0.00796
(-1.93) (-1.98) (-0.89) (-0.67)

IActual>All 0.0183*** 0.0132 0.00205 0.00992
(3.32) (1.67) (0.20) (0.94)

Year effect Yes Yes Yes Yes
R2 0.003 0.003 0.006 0.019
N 17,696 7,659 4,075 4,214

(4) Rank(CE) -0.00401** -0.00203 -0.00332 0.00173
(-2.84) (-1.03) (-1.29) (0.79)

FOM 0.0281*** 0.0210** 0.0230* 0.00540
(5.06) (2.73) (2.33) (0.65)

Year effect Yes Yes Yes Yes
R2 0.003 0.003 0.007 0.020
N 17,696 7,659 4,075 4,214

(5) Rank(CE) -0.00124 0.000426 0.00110 0.00290
(-1.11) (0.28) (0.60) (1.86)

IActual<All -0.0167* -0.0195 -0.00968 0.00258
(-2.25) (-1.63) (-0.58) (0.20)

IActual>All 0.0227*** 0.0118 -0.00140 0.000805
(3.38) (1.28) (-0.12) (0.07)

Year effect Yes Yes Yes Yes
R2 0.003 0.003 0.006 0.020
N 17,696 7,659 4,075 4,214
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Table 7 (cont’d): Number of Analysts, POSTCAR, FOM, out-of-bound dummies,
and Rank(CE)

Panel B: Rank(CE) based on median consensus
N = 5 to 9 N = 10 to 14 N = 15 to 19 N ≥ 20

(1) Rank(CE) 0.00419** 0.00477* 0.00394 0.00550*
(3.17) (2.36) (1.58) (2.55)

Year effect Yes Yes Yes Yes
R2 0.002 0.003 0.006 0.021
N 17,696 7,659 4,075 4,214

(2) FOM 0.0143*** 0.0143** 0.0121* 0.0110*
(4.60) (3.05) (2.16) (2.25)

Year effect Yes Yes Yes Yes
R2 0.003 0.003 0.007 0.020
N 17,696 7,659 4,075 4,214

(3) IActual<All -0.0125 -0.0210* -0.0137 -0.00796
(-1.93) (-1.98) (-0.89) (-0.67)

IActual>All 0.0183*** 0.0132 0.00205 0.00992
(3.32) (1.67) (0.20) (0.94)

Year effect Yes Yes Yes Yes
R2 0.003 0.003 0.006 0.019
N 17,696 7,659 4,075 4,214

(4) Rank(CE) -0.00392 -0.00138 -0.00178 0.00580
(-1.49) (-0.35) (-0.37) (1.34)

FOM 0.0226*** 0.0171 0.0158 -0.000834
(3.69) (1.90) (1.44) (-0.08)

Year effect Yes Yes Yes Yes
R2 0.003 0.003 0.007 0.020
N 17,696 7,659 4,075 4,214

(5) Rank(CE) 0.000666 0.00245 0.00415 0.00597*
(0.37) (0.93) (1.34) (2.28)

IActual<All -0.0111 -0.0158 -0.00463 0.00519
(-1.52) (-1.34) (-0.28) (0.40)

IActual>All 0.0170** 0.00848 -0.00553 -0.000914
(2.58) (0.91) (-0.48) (-0.08)

Year effect Yes Yes Yes Yes
R2 0.003 0.003 0.006 0.020
N 17,696 7,659 4,075 4,214
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Table 8: Sensitivity of forecast revision to Rank(CE), FOM, IActual<All and
IActual>All

This table presents the ordinary least squares estimates of the sensitivity of analysts’ forecast revision to
Rank(CE), FOM, IActual<All, and IActual>All. The dependent variable is the forecast revision (the difference
in mean (median) consensus between two adjacent fiscal years). The independent variables are Rank(CE)
(the rank score of consensus errors, from 1 to 10 for Rank(CE) based on mean consensus and 1 to 6 for
Rank(CE) based on median consensus), FOM ( K

N −
M
N , where K (M) is the number of forecasts strictly

smaller (greater) than the actual earnings, and N is the total number of analysts), IActual<All (a dummy
variable which equals 1 when all analysts’ forecasts are higher than the actual earnings), and IActual>All

(a dummy variable which equals 1 when all analysts’ forecasts are lower than the actual earnings). 27,701
observations are in each of the regression models.

Panel A: Rank(CE) is based on mean consensus
(1) (3) (2) (5) (4)

Rank(CE) 0.189*** 0.121*** 0.165***
(27.27) (10.28) (18.22)

FOM 0.736*** 0.334***
(29.00) (7.78)

IActual<All -0.676*** -0.0992
(-11.60) (-1.53)

IActual>All 0.792*** 0.251***
(17.97) (4.89)

Year effects Yes Yes Yes Yes Yes
R2 0.035 0.033 0.021 0.037 0.036

Panel B: Rank(CE) is based on median consensus
(1) (3) (2) (5) (4)

Rank(CE) 0.182*** 0.103*** 0.155***
(26.63) (7.75) (17.47)

FOM 0.736*** 0.369***
(29.00) (7.57)

IActual<All -0.676*** -0.125
(-11.60) (-1.92)

IActual>All 0.792*** 0.283***
(17.97) (5.64)

Year effects Yes Yes Yes Yes Yes
R2 0.033 0.033 0.021 0.035 0.034
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Figure 1: The distribution of FOM over the whole sample. FOM is the fraction of misses
defined as K

N
− M

N
, where K(M) is the number of forecasts strictly smaller (greater) than the

actual earnings, and N is the total number of analysts.
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N = 5 to 9 (53% of whole sample)
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N = 10 to 19 (35% of whole sample)
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N >= 20 (12% of whole sample)

0%

10%

−1

(−
1,

−0
.7

5]
(−

0.
75

,−
0.

5]
(−

0.
5,

−0
.2

5]

(−
0.

25
,0

]

(0
,0

.2
5]

(0
.2

5,
0.

5]

(0
.5

,0
.7

5]

(0
.7

5,
1) 1

Figure 2: The distribution of FOM over the whole sample and conditional on different
number of analysts N . FOM is the fraction of misses defined as K

N
− M

N
, where K(M) is the

number of forecasts strictly smaller (greater) than the actual earnings, and N is the total
number of analysts.
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Figure 3: The time series of the percentage of misses on the same side.
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Figure 4: Average CAR against Rank(CE). CAR is the cumulative abnormal return from
trading day −1 to 1 around annual earnings announcement dates, and Rank(CE) is the rank
score 1 to 10 of consensus errors CE based on mean consensus.
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Figure 5: Average CAR against FOM. CAR is the cumulative abnormal return from trading
day −1 to 1 around annual earnings announcement dates, and FOM is the fraction of misses
defined as K

N
− M

N
, where K(M) is the number of forecasts strictly smaller (greater) than the

actual earnings, and N is the total number of analysts.
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Figure 6: Average POSTCAR against Rank(CE). POSTCAR is the cumulative abnormal
return from trading day 2 to 126 post annual earnings announcement dates, and Rank(CE)
is the rank score 1 to 10 of consensus errors CE based on mean consensus.
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Figure 7: Average POSTCAR against FOM. POSTCAR is the cumulative abnormal return
from trading day 2 to 126 post annual earnings announcement dates, and FOM is the fraction
of misses defined as K

N
− M

N
, where K(M) is the number of forecasts strictly smaller (greater)

than the actual earnings, and N is the total number of analysts.
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Figure 8: The contour plot of Cor[CE, S]−Cor[FOM, S] as a function of rF andN in unbiased
forecasts benchmark case. The contour value is the difference between the correlations of
consensus errors CE and fraction of misses FOM to S the market surprise, the y-axis is N the
number of analysts, and the x-axis is rF = σF/σA the ratio between the standard deviation
of forecasts and the actual (shown in log-scale).
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actual (shown in log-scale).
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Figure 10: The contour plot of Cor[CE,FOM] as a function of the key parameters ω1 and
rB in biased forecasts case. The contour value is the correlation between consensus errors
CE and fraction of misses FOM, the y-axis is ω1 the proportion of biased forecasts, and
the x-axis is rB = σB/σA the ratio between the standard deviation of aggregated bias and
the actual (shown in log-scale). The other parameters in the model are set as rF = 1/2,
rb = rB/5 and N = 20.
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Figure 11: The contour plot of Cor[CE, S]− Cor[FOM, S] as a function of the key param-
eters ω1 and rB in biased forecasts case. The contour value is the difference between the
correlations of consensus errors CE and fraction of misses FOM to S the market surprise,
the y-axis is ω1 the proportion of biased forecasts, and the x-axis is rB = σB/σA the ratio
between the standard deviation of aggregated bias and the actual (shown in log-scale). The
other parameters in the model are set as rF = 1/2, rb = rB/5 and N = 20.
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Figure 12: The contour plot of Cor[Rank(CE), S] − Cor[FOM, S] as a function of the key
parameters ω1 and rB in biased forecasts case. The contour value is the difference between
the correlations of the rank score of consensus errors Rank(CE) and fraction of misses FOM
to S the market surprise, the y-axis is ω1 the proportion of biased forecasts, and the x-axis
is rB = σB/σA the ratio between the standard deviation of aggregated bias and the actual
(shown in log-scale). The other parameters in the model are set as rF = 1/2, rb = rB/5 and
N = 20.
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Figure 13: The comparison between the correlations of fraction of misses FOM and different
Winsorized measures CEwinλ to S the market surprise as a function of rB in biased forecasts
case, where rB = σB/σA is the ratio between the standard deviation of aggregated bias and
the actual (shown in log-scale). The other parameters in the model are set as ω1 = 0.3,
rF = 1/2, rb = rB/5 and N = 20.
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Figure 14: The comparison between the correlations of fraction of misses FOM and different
winsorized measures CEwinλ to S the market surprise as a function of ω1 in biased forecasts
case, where ω1 is the proportion of biased forecasts. The other parameters in the model are
set as rB = 10, rF = 1/2, rb = rB/5 and N = 20.
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Figure 15: The comparison between the correlations of fraction of misses FOM and different
winsorized measures CEwinλ to S the market surprise as a function of σ1/σA (shown in log-
scale) under the alternative modelling without introducing bias, where σ1 is the variance of
bad forecasts. The other parameters in the model are set as ω1 = 0.3, σ0/σA = 1/2 and
N = 20.
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Figure 16: Average CE against Rank(CE) in earnings data. Left: over the whole sample;
Right: conditional on Rank(CE) not being in the top or bottom decile.
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Figure 17: The contour plot of Cor[CE,Rank(CE)] as a function of the key parameters
θ and rB under the extended model allowing for outliers in CE. The contour value is the
correlation between consensus errors CE and its rank score Rank(CE), the x-axis is θ the
probability of tail events as defined in Section 6.2.2, and the y-axis is rB = σB/σA the ratio
between the standard deviation of aggregated bias and the actual (shown in log-scale). The
other parameters in the model are set as ω1 = 0.3, rF = 1/2, rb = rB/5 and N = 20.
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Figure 18: The contour plot of Cor[CE,FOM] as a function of the key parameters θ and rB
under the extended model allowing for outliers in CE. The contour value is the correlation
between consensus errors CE and fraction of misses FOM, the x-axis is θ the probability
of tail events as defined in Section 6.2.2, and the y-axis is rB = σB/σA the ratio between
the standard deviation of aggregated bias and the actual (shown in log-scale). The other
parameters in the model are set as ω1 = 0.3, rF = 1/2, rb = rB/5 and N = 20.
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Figure 19: The contour plot of Cor[FOM,Rank(CE)] as a function of the key parameters
θ and rB under the extended model allowing for outliers in CE. The contour value is the
correlation between fraction of misses FOM and the rank score of consensus errors Rank(CE),
the x-axis is θ the probability of tail events as defined in Section 6.2.2, and the y-axis is
rB = σB/σA the ratio between the standard deviation of aggregated bias and the actual
(shown in log-scale). The other parameters in the model are set as ω1 = 0.3, rF = 1/2,
rb = rB/5 and N = 20.
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Figure 20: The contour plot of Cor[CE, S]−Cor[FOM, S] as a function of the key parameters
θ and rB under the extended model allowing for outliers in CE. The contour value is the
difference between the correlations of consensus errors CE and fraction of misses FOM to S
the market surprise, the x-axis is θ the probability of tail events as defined in Section 6.2.2,
and the y-axis is rB = σB/σA the ratio between the standard deviation of aggregated bias
and the actual (shown in log-scale). The other parameters in the model are set as ω1 = 0.3,
rF = 1/2, rb = rB/5 and N = 20.
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Figure 21: The contour plot of Cor[Rank(CE), S] − Cor[FOM, S] as a function of the key
parameters θ and rB under the extended model allowing for outliers in CE. The contour value
is the difference between the correlations of the rank score of consensus errors Rank(CE) and
fraction of misses FOM to S the market surprise, the x-axis is θ the probability of tail events
as defined in Section 6.2.2, and the y-axis is rB = σB/σA the ratio between the standard
deviation of aggregated bias and the actual (shown in log-scale). The other parameters in
the model are set as ω1 = 0.3, rF = 1/2, rb = rB/5 and N = 20.
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