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Abstract High quality tags play a critical role in applications involving online multime-
dia search, such as social image annotation, sharing and browsing. However, user-generated
tags in real world are often imprecise and incomplete to describe the image contents, which
severely degrades the performance of current search systems. To improve the descriptive
powers of social tags, a fundamental issue is tag relevance learning, which concerns how to
interpret the relevance of a tag with respect to the contents of an image effectively. In this
paper, we investigate the problem from a new perspective of learning to rank, and develop
a novel approach to facilitate tag relevance learning to directly optimize the ranking per-
formance of tag-based image search. Specifically, a supervision step is introduced into the
neighbor voting scheme, in which the tag relevance is estimated by accumulating votes
from visual neighbors. Through explicitly modeling the neighbor weights and tag correla-
tions, the risk of making heuristic assumptions is effectively avoided. Besides, our approach
does not suffer from the scalability problem since a generic model is learned that can be
applied to all tags. Extensive experiments on two benchmark datasets in comparison with
the state-of-the-art methods demonstrate the promise of our approach.
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1 Introduction

With the rapid development of multimedia and social network technologies, we have wit-
nessed an explosive growth of social images in recent years. This also raises an urgent
demand for smart search technologies to explore large-scale social image collections, such
as Flickr1 and Pinterest2. Distinguished from general Web images with rich contextual
information such as titles and surrounding text on Web pages, social images are frequently
associated with user-generated tags that describe the image contents. Naturally, these tags
can be used to index social images to facilitate the search process. Therefore, tag-based
image search has become the de facto choice to access and browse resources in current
social image repositories [5, 29].

In spite of the increasing popularity of tag-based image search, its performance is still far
from satisfactory. One of the major reasons for this stagnation is due to the inferior quality
of user-generated tags. As reported in [14], only about 50 % of the tags in Flickr truly reflect
the contents of the images. Moreover, due to the limitations of both time and domain knowl-
edge about the labeling process, it is impractical for an ordinary user to annotate an image
comprehensively. In consideration of their characteristics of imprecise and incomplete, the
user-generated tags are incapable of being the qualified indexing keywords for tag-based
image search. Therefore, to enhance tag-based image search, a fundamental challenge is
how to estimate the relevance of a tag with respect to the visual contents of an image, which
is referred to as the problem of tag relevance learning [22].

Considerable research efforts have been invested to address the problem of tag rele-
vance learning. Many methods rely on supervised machine learning algorithms to build
the connection between visual features and semantic concepts [4, 48]. In general, a classi-
fier is first learned for each tag over the training set, and then the relevance of a particular
tag regarding the image contents is estimated by the classifier prediction score. How-
ever, this sort of tag-specific modeling has been widely challenged [19] with the concerns
about its inefficiency when applying models for the huge number of tags in real world.
Besides, how to select high quality training examples at large scale is still an open research
problem [21].

Confronted with the huge amount of emergent social media and tags, many unsupervised
data-driven approaches have been recently developed [1]. Among these approaches, the
neighbor voting [19, 20] scheme has attracted increasing attention and proven to be one of
the most promising solution for tag relevance learning [37]. It is based on the intuition that if
visually similar images share the same tags, these tags are likely to reflect the actual visual
contents. The scheme first finds visually similar neighbors of an image, and then estimates
the relevance of each tag by accumulating votes from visual neighbors. Compared with
the supervised methods aforementioned, the neighbor voting scheme exhibits the advantage
in scalability, since it does not require offline model learning. However, the unsupervised

1http://www.flickr.com/
2http://www.pinterest.com/

http://www.flickr.com/
http://www.pinterest.com/
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nature also makes it difficult to handle some of the key problems in modeling. Existing
methods usually heuristically determine the weights of neighbors by the visual similarity
between images [15], or in a soft manner that performs a random walk over the k-nearest
neighbor graph [50]. These assumptions may not be valid to the same degree in different
situations, and the performance gain obtained by these heuristic weighting strategies also
appears to be limited [50]. In addition, many contextual information such as tag correlations,
which is highly beneficial as shown previously in tag-based applications, has not yet been
fully exploited in current neighbor voting methods [36].

Apart from the above deficiencies of their own, there also remains a common limita-
tion in both existing supervised and unsupervised solutions for tag relevance learning. In
essence, the aim of tag relevance learning is to find out the tags that can be applied as
content descriptors for the images, so that the accuracy of tag-based image search can be
further improved by indexing the images with these reliable tags. However, existing stud-
ies generally perform tag relevance learning without the explicit intention of improving the
performance of tag-based image search. In most cases, the unsupervised techniques rely
on heuristic rules to estimate tag relevance [20], while those supervised counterparts con-
duct the learning process by optimizing the classification accuracy for specific tags [48], or
maximizing the likelihood of the annotations of training images [38]. We argue that these
objectives are not directly related to the search performance, and optimizing them does not
necessarily yield good search results.

Motivated by the earlier discussions, we aim to propose a novel approach for tag
relevance learning to mitigate the limitations of current methods. Towards this end, a super-
vision step is introduced into the neighbor voting scheme. Through this step, the possibility
is offered that utilizing the information from the data collection to reduce the need for
making heuristic assumptions. We explicitly model the individual weight of each visual
neighbor, and the pairwise correlations between tags are also captured through a low-rank
approximation. More importantly, we seek to investigate the problem of tag relevance learn-
ing from a new perspective of learning to rank. Tag relevance is regarded as a ranking
criterion, and the learning process is consequently conducted by directly optimizing the
ranking performance of tag-based image search. Besides, our approach still maintains the
good scalability although the supervision step is introduced. This is because the ground truth
used in training is only for a small number of query tags, but from which a tag-independent
generic model can be learned and applied to predict relevance for all tags.

In literature, social tags denote keywords generated by ordinary users (rather than
experts) to describe the media contents in online social platforms [19, 22]. In this paper,
we target at the problem of tag relevance learning for improving the descriptive power of
social tags with respect to the image contents. Although the proposed methodology could
be adapted to other applications for general data (e.g., image annotation), our main pur-
pose is to demonstrate its effectiveness for real-world user-tagged social images. Extensive
experiments have been conducted on two benchmark datasets by applying our approach to
both applications of tag-based image search and automatic tag recommendation in social
media. The results show that our approach achieves a remarkable improvement over the
state-of-the-art methods from different perspectives.

The remainder of this paper is organized as follows. Section 2 gives a review of related
work. Section 3 presents the proposed ranking-oriented neighbor voting framework for tag
relevance learning. Section 4 describes the experimental setup. Section 5 reports the exper-
imental results and analysis. Section 6 concludes this work and points out some directions
for future research.
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2 Related work

In this section, we review the existing literature on tag relevance learning, and categorize
the related research into three classes [22]: model-based methods, instance-based methods,
and transduction-based methods.

2.1 Model-based methods

This class of methods rely on training examples to build the parameterized models for tag
relevance learning. Among these model-based methods, two main groups can be identi-
fied: tag-specific modeling and tag-generic modeling. For tag-specific modeling, a typical
paradigm is to formulate tag relevance learning as a classification problem, in which each
tag is treated as a class label and the relevance value is estimated by the classifier pre-
diction score. In [4], linear SVM classifiers were trained with features augmented by
pre-trained classifiers of popular tags for social image search. Zhou et al. [48] employed
social tagged images to learn visual concept detectors that can be applied to recognize con-
cepts at both image-level and image region-level. Shen et al. [30] partitioned each tagged
image into a set of image instances, and developed a multiple instance learning algorithm
for instance label identification by automatically identifying the correspondences between
multiple tags and image instances. A multi-task structured SVM was further developed
for exploiting the inter-tag correlations to achieve more effective learning of inter-related
object classifiers.

Besides the paradigm of building classifiers, Feng et al. [8] aggregated the prediction
models for different tags into a matrix. Instead of learning each prediction model indepen-
dently, they proposed to learn all the prediction models simultaneously by exploring the
theory of matrix recovery, and introduced a trace norm regularization to capture the depen-
dence among different tags and to control the model complexity. In [38], logistic regression
models were built per tag to boost the recall of the weighted nearest neighbor model for
rare tags. In [42], Weston et al. proposed to learn a low-dimensional joint embedding space
for both images and tags through optimizing the precision at the top of the ranked list
of annotations for given images. Frome et al. [9] applied the deep learning technique to
learn a visual-semantic embedding model using both labeled image data as well as seman-
tic information gleaned from unannotated texts. Gong et al. [10] presented a multi-view
embedding approach for images, tags, and their semantics. To keep the learning process
scalable, explicit nonlinear kernel mappings were used to efficiently approximate kernel
CCA (Canonical Correlation Analysis).

For tag-generic modeling, it maintains a uniform modeling configuration for all tags
and consequently is more flexible to adapt to new tags. Wu et al. [43] proposed a multi-
modal tag recommendation method based on both tag and visual correlations. Each modality
was used to generate a ranking feature, and the tag relevance function was an optimal
combination of these ranking features determined with the RankBoost algorithm. Simi-
larly in [41], the authors proposed a semi-supervised learning framework for tag ranking,
which established a ranking projection from the visual word distribution to the tag dis-
tribution. In this paper, our approach is also an example of tag-generic modeling, in
which a supervised neighbor voting model is learned and applied to predict relevance
for all tags.
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2.2 Instance-based methods

This class of methods does not build an explicit model, but directly constructs the hypothesis
by comparing test images with training instances. Representative members of instance-
based methods are the neighbor voting algorithm [19] and its variants [2, 15, 16, 20, 36, 50],
where the tag relevance function is estimated by counting the tag frequency in the visual
neighbors of the image. The set of visual neighbors was typically created with the early
fusion of global features [19], the late fusion of multiple single-feature learners [16, 20],
the distance metric learning to combine different visual features [38], and a cross-modal
representation mapping between visual and tag features [2]. Once the visual neighbors
are determined, the standard neighbor voting algorithm [19] simply let all neighbors vote
equally, while many endeavors have been invested to weight neighbors in terms of their
importance. In [15], visual similarity was directly used as the voting weight. Zhu et al.
[50] modeled the relationships among the neighbors by constructing a k-nearest neighbor
graph, and an adaptive teleportation random walk was subsequently conducted over the
graph to estimate the tag relevance. However, empirical results [50] showed that the perfor-
mance gain obtained by these heuristic weighting strategies appears to be limited. In [36],
the neighbor voting scheme was realized with the use of the contextual information of tag
co-occurrence to boost the accuracy of tag-based image search. Nevertheless, there was no
obvious improvement attained by directly incorporating the tag co-occurrence in the exper-
iments [36]. In this paper, our approach explicitly models the neighbor weights and tag
correlations, and thereby avoids the risk of making heuristic assumptions.

As an alternative to the neighbor voting algorithm, Liu et al. [24] first estimated the initial
tag relevance based on the probability density estimation, and then performed a random
walk over a tag similarity graph to refine the relevance score. In [45], Yang et al. studied
how to establish the mapping between tags and image regions, i.e., to assign tags to image
regions. They extended the group sparse coding technique with region spatial correlations
to reconstruct each test region from the set of training regions. The tag localization task
was then conducted by propagating tags from sparsely selected groups of training regions
to the test region according to the reconstruction coefficients. In [23], image reconstruction
and tag reconstruction were considered in parallel, and the resultant tag relevance scores
produced by the two modalities were linearly combined.

2.3 Transduction-based methods

Different from model-based and instance-based methods producing rules or models that are
directly applicable to a novel instance, this class of methods only performs reasoning from
a given training set to a specific test set. There is no distinction between the training and test
phase, and the output of transduction learning is used as the tag relevance score for a given
image-tag pair. The majority of transduction-based methods are based on matrix factoriza-
tion. Given the observed image-tag association matrix as input, the output is a reconstructed
association matrix, the entries of which are the tag relevance scores. As an early effort,
Liu et al. [25] refined the association matrix with an optimization framework based on the
consistency between the visual similarity and the semantic similarity of social images. Sim-
ilarly in [49], tag refinement was performed by optimizing the association matrix with the
constraints of low-rank, error sparsity, content consistency and tag correlation. In [44], the
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Fig. 1 Architecture of the proposed ranking-oriented neighbor voting framework

authors searched for the optimal reconstructed association matrix that is consistent with the
visual similarity matrix, the tag correlation matrix, and the original observed association
matrix. In [27], the authors proposed a ranking-based multi-correlation tensor factorization
method, to jointly model the ternary relations among users, images and tags, and further to
reconstruct the user-aware image-tag associations.

Graph-based tag diffusion is another type of transduction-based methods. The basic idea
is to construct a graph wherein each node corresponds to a specific image and each edge
is weighted in terms of the similarity between images. The initial tag relevance score is
assigned to each node, and all nodes then spread their relevance scores to their nearby
neighbors via the weighted graph. In [40], the initial relevance score was estimated based
on the similarity between the given tag and the tag set of the image, and the gaussian ker-
nel was used to compute the visual similarity between images. Tang et al. [34] proposed to
sparsely reconstruct an image from its neighbors in visual feature space, and the reconstruc-
tion coefficients were further used as similarity measurements to perform the graph-based
tag diffusion. Despite encouraging results reported, the main problem of transduction-based
methods lies in their insufficient capacity to adapt to the dynamic changes of social tag-
ging systems. Once a novel image or tag is added, transduction-based methods may need to
re-perform the learning process.

3 Framework

In this section, we present a novel framework to facilitate effective tag relevance learning.
The architecture of our system is illustrated in Fig. 1. It consists of two main components:
(1) tag relevance formulation and (2) ranking-oriented learning. With visual neighbors, a
tag relevance function is formulated by explicitly modeling neighbor weights and tag cor-
relations under the neighbor voting scheme. Based on the formulation, the ranking-oriented
learning determines the parameters to directly optimize the ranking performance of tag-
based image search. In the following, we elaborate on each of the components and give a full
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Table 1 Summary of symbols and definitions

Symbols Definitions

X Social image collection

T Tag vocabulary

x Tagged image, x ∈ X
ti i-th tag in the vocabulary, ti ∈ T
zx
l l-th visual neighbor of x, zx

l ∈ X
vl Weight of zx

l

wij Correlation between ti and tj

sti Number of images tagged with ti

s Number of total images, s = |X |
m Number of unique tags, m = |T |
k Number of visual neighbors

p Dimension of the latent space

ui Representation vector of ti in the latent space

ei Unit vector with 1 in the i-th position

Y Set of all possible rankings over images

Y Ranking over images, Y ∈ Y
Y ∗

q Ground-truth ranking of the images with respect to tq , Y ∗
q ∈ Y

I+
tq

Set of the relevant images with respect to tq

I−
tq

Set of the irrelevant images with respect to tq

n Number of training instances

d Dimension of image feature vector

description of the associated algorithms. For clarity, we first list some important symbols
and their definitions used throughout the paper in Table 1.

3.1 Tag relevance formulation

3.1.1 Visual neighbor search

As a prerequisite to realize the neighbor voting scheme, we first need to find the visual
neighbors of the given image. Visual neighbor search has been extensively studied across
several communities, including multimedia, computer vision and machine learning [7].
Some works are concerned with developing fast indexing and matching techniques to speed
up the search process [18]. Meanwhile, recent years have witnessed a surge of research
efforts in distance metric learning [7], which applies machine learning techniques to opti-
mize distance metrics by exploiting multi-modal information associated with images. It has
been demonstrated that these techniques can significantly improve the performance in visual
neighbor search, but the benefit also comes with the price of high requirements for compu-
tation and storage cost. Therefore, in this paper, we directly leverage content-based image
search techniques to accomplish this task.

The related process comprises two steps: feature extraction and similarity measure. In
the first step, we use five types of low-level visual features to represent each image. These
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features include: (1) 64-dimensional color histogram, (2) 144-dimensional color correlo-
gram, (3) 73-dimensional edge direction histogram, (4) 128-dimensional wavelet texture,
and (5) 225-dimensional block-wise color moment. These features are the standard visual
features provided in the benchmark dataset NUS-WIDE-LITE [6], and they can effectively
characterize images from different perspectives of color, shape, and texture. Besides, these
features are easily extracted and have been widely used by extensive studies, e.g., [24, 25,
40].

There are two general strategies to combine different features, namely the early fusion
and the late fusion [33]. The early fusion strategy integrates individual features before learn-
ing tag relevance scores; while the late fusion strategy uses individual features to learn tag
relevance scores separately, and then integrates the scores. In [16], a systematic analysis
was presented on the two strategies in the context of neighbor voting model, and empirical
results showed that there is no significant difference between them for tag relevance learn-
ing. However, a major disadvantage of the late fusion strategy is its expensiveness in terms
of the learning efforts, as each kind of features requires a separate learning stage, which
inevitably leads to much more computational cost. For this reason, the early fusion strat-
egy is adopted in our approach. Specifically, we concatenate different visual features of an
image into a single vector. Since the range of values varies greatly among different visual
features, we separately normalize each dimension of the feature vector into the [0, 1] range.
Afterwards, we use the Euclidean metric to measure the visual distance between images.
Given an image, all images are ranked by their distance from it and the k nearest neighbors
are subsequently discovered.

3.1.2 Tag relevance function

Our framework formulates a tag relevance function based on the neighbor voting scheme,
where the relevance score of a tag is inferred by the tagging information of the visual neigh-
bors of the given image. We first propose to explicitly model the individual weight of each
visual neighbor. Given a tag ti ∈ T and an image x ∈ X , we define r(ti , x) as the relevance
score of ti with respect to x:

r(ti , x) =
k∑

l=1

vlϕ(zx
l , ti ) , (1)

where zx
l denotes the l-th nearest neighbor of x, and v ∈ R

k×1 is a vector of parameters
whose l-th element vl indicates the weight of zx

l . Note that we treat an image itself as its
first nearest neighbor, i.e., zx

1 = x.
In (1), ϕ(zx

l , ti ) represents the voting power of zx
l concerning ti . Previous works [15, 16]

usually adopt an indicator function to represent the information, that is, the voting power
allocated to a neighbor image is 0 or 1. However, this is an excessively coarse representa-
tion. The tags of an image cannot equally describe the visual contents, and a neighbor image
should have distinct voting powers for different tags. Here, we set ϕ(zx

l , ti ) to be the pres-
ence probability of ti given zx

l , which is approximately estimated by a multiple Bernoulli
process with a beta prior:

ϕ(zx
l , ti ) = μδzx

l ,ti + sti

μ + s
, (2)

where δzx
l ,ti indicates the tagging observation on zx

l , i.e., δzx
l ,ti = 1 if zx

l is tagged with ti in
the image collection and zero otherwise. μ is a smoothing parameter associated with δzx

l ,ti .
sti denotes the number of images tagged with ti , and s is the total number of images.



Multimed Tools Appl

It is generally observed that better performance can be achieved by mining the informa-
tion of tag correlations in many applications [25, 31, 39]. Inspired by this, we seek to exploit
the potential of tag correlations in the context of neighbor voting. Co-occurrence statistics
and WordNet similarity are the most commonly used correlation measurements. However,
the study in [36] has shown that they do not provide an obvious benefit in tag relevance
learning under the framework of neighbor voting. More importantly, apart from the positive
correlations, there also exist many important negative correlations among tags. For instance,
if the tag ‘desert’ has been assigned to an image, we may have high confidence that the tag
‘fish’ is irrelevant to the visual content of that image. Unfortunately, limited by their non-
negative property, both co-occurrence statistics and WordNet similarity cannot reflect these
potential negative correlations.

Given the drawbacks of existing correlation measurements, we further propose to explic-
itly model the pairwise tag correlations and incorporate them into the neighbor voting model
as follows:

r(ti , x) = wii

k∑

l=1

vlϕ(zx
l , ti ) +

m∑

j=1,j �=i

wij

k∑

l=1

vlϕ(zx
l , tj ) , (3)

where W ∈ R
m×m is a parameter matrix whose (i, j)-th entry wij captures the correlation

between the tag ti and the tag tj , and wii represents the self-correlation of ti . m is the total
number of unique tags. We assume that W is a symmetric matrix, i.e., wij = wji , and
both positive and negative values are allowed in W . It can be intuitively understood that,
when estimating r(ti , x), we exploit not only the relevant confidence of ti inferred with the
neighbors of x, but also the evidences provided by all the other tags. For the simplicity of
the expression, we introduce a supplementary matrix �x ∈ R

k×m whose (l, j)-th entry is
equal to ϕ(zx

l , tj ). As a result, (3) can be written in a concise form:

r(ti , x) = ei
T W�x

T v . (4)

A potential problem with the above formulation is that it requires the huge amount
of parameters to capture the correlation between each pair of tags. From the viewpoint
of statistical learning theory, too many parameters may degrade the model stability and
generalization in performance. The existing work [47] on text information processing has
demonstrated that the semantic space spanned by textual keywords can be approximated by
a smaller set of latent factors. As one kind of text information, image tags are consequently
subject to such low-rank property [49]. In accordance with this principle, we introduce a
low-rank prior into the parameter W with W = UT U , which results in the new formulation
of the relevance function as follows:

r(ti , x) = ei
T UT U�x

T v , (5)

where U ∈ R
p×m and p is the dimensionality of a latent space. Let ui denote the i-th

column of U , which actually corresponds to the representation vector of ti in the latent
space. The correlation wij is thus measured by the dot product of ui and uj in the latent
space, which is commonly used to measure the matching between textual vectors. Because
the intrinsic dimensionality of the latent space is typically much smaller than that of the
original space (i.e., p � m), the number of parameters in (5) is significantly reduced.
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3.2 Ranking-oriented learning

3.2.1 Problem transformation

Our framework seeks to learn the parameters v and U in a supervised fashion. To this pur-
pose, we first consider the relevance function r as a ranking function for tag-based image
search. The image ranking for a query tag is derived by descending the tag relevance of each
image. As a result, the problem of tag relevance learning can be approached from a new
perspective of learning to rank.

Without loss of generality, assume that a set of training instances for the first n tags is
available:

{(tq , Y ∗
q ) ∈ T × Y : q = 1, . . . , n} ,

where tq is a query tag and Y ∗
q is the true ranking of the images with respect to tq . T is the

tag vocabulary and Y is the set of all possible rankings over images. Similar to previous
work [46], we represent any ranking Y ∈ Y as a matrix of pair orderings, where the (i, j)-
th entry yij = +1 if the image xi is ranked ahead of the image xj , yij = −1 if xi is ranked
behind xj , and yij = 0 if xi and xj have equal rank. Note that Y ∗

q is a weak ranking with

only two relevance levels, i.e., relevant and irrelevant. We denote by I+
tq
and I−

tq
the sets of

the relevant and irrelevant images with respect to tq .
Following the setup of learning to rank, our goal is transformed into learning a ranking

hypothesis h : T → Y . For the query tag tq , h(tq) needs to correspond to the image ranking
in descending order of r(tq , x). Towards this end, we first construct a compatibility function
f (tq, Y ) : T × Y → R, which measures how well a possible image ranking Y fits for tq :

f (tq, Y ) =
∑

xi∈I+
tq

∑

xj ∈I−
tq

yij

(
r(tq , xi) − r(tq , xj )

|I+
tq

| · |I−
tq

|

)
(6)

=
∑

xi∈I+
tq

∑

xj ∈I−
tq

yij

(
eq

T UT U(�xi
− �xj

)T v

|I+
tq

| · |I−
tq

|

)
.

Then, h(tq) is defined by maximizing f (tq , Y ) over all possible Y ∈ Y :

h(tq) = argmax
Y∈Y

f (tq , Y ) . (7)

In (6), f (tq , Y ) is decomposed into a series of pairwise components, i.e.,
yij (r(tq , xi) − r(tq , xj )). For a fixed v and U , h(tq) can be attained by maximizing each
component individually: if r(tq , xi) > r(tq , xj ), yij is set to +1; otherwise, it is set to −1.
Note that this is the same procedure as sorting the images by r(tq , x), and h(tq) proves to
be equivalent to the ranking in descending order of r(tq , x).

3.2.2 Optimization formulation

With the set of training instances, we can learn the ranking hypothesis h(tq) (i.e., the
parameters v and U ) by minimizing the empirical ranking risk,

R�(h) = 1

n

n∑

q=1

�(Y ∗
q , h(tq)) , (8)
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where the loss function � : Y × Y → R quantifies the inconsistency between the
derived ranking h(tq) and the true ranking Y ∗

q . In this study, we associate � with specific
ranking evaluation criteria, and the learning process is thus conducted by directly optimiz-
ing the ranking performance of tag-based image search. Specifically, we define � in our
experiments based on the average precision (AP) score:

�(Y ∗
q , h(tq)) = 1 − AP(Y ∗

q , h(tq)) , (9)

and minimizing the empirical risk is equivalent to maximizing the measure of mean average
precision (MAP). Note that other ranking evaluation criteria (e.g., Precision and NDCG)
can also be incorporated into the loss function �.

We adopt the structural SVM [13] as the backbone of our learning algorithm, since it
supports the optimization of various ranking evaluation criteria under a unified framework.
In (6), we notice that the parameters v and U are independent of the summation indices, and
thus f can be rewritten as:

f (tq , Y ) =
〈
UT U ⊗ v, eq ⊗ �(tq, Y )

〉

F
, (10)

�(tq, Y ) =
∑

xi∈I+
tq

∑

xj ∈I−
tq

yij

�xi
− �xj

|I+
tq

| · |I−
tq

| , (11)

where ⊗ denotes the Kronecker product, and 〈·, ·〉F denotes the Frobenius inner product.
�(tq, Y ) encodes the joint feature representation of the input-output pair (tq , Y ). By repre-
senting f as a linear function of �(tq, Y ), the structural SVM is employed to learn v and U

through the following optimization problem [13]:

Optimization Problem 1

min.
v,U,ξ

λ

2
‖v‖22 + λ

2
‖U‖2F + ξ (12)

s.t. ∀(Y1, . . . , Yn) ∈ Yn :
1

n

n∑

q=1

[
f (tq , Y ∗

q ) − f (tq , Yq)
]
� 1

n

n∑

q=1

�(Y ∗
q , Yq) − ξ . (13)

Different from the original structural SVM, our learning method needs to optimize v
and U simultaneously. Therefore, we replace the standard regularization term by λ

2 ‖v‖22 +
λ
2 ‖U‖2F , where ‖·‖F denotes the Frobenius norm. ξ is the only slack variable shared across
all constraints. The constraints enforce the requirement that the average score for the true
rankings should be greater than that for any other set of possible rankings. Note that the
set (Y ∗

1 , . . . , Y ∗
n ) is not excluded from the constraints, because it corresponds to the non-

negative constraint on ξ . It is demonstrated that under these constraints, ξ is an upper bound
on the empirical risk R�. As a result, the parameter λ in the objective function essentially
controls the tradeoff between the model complexity and the corresponding empirical risk.

3.2.3 Learning algorithm

The main difficulty of Optimization Problem 1 lies in that there are as many as |Y |n con-
straints to be considered. To solve it efficiently, we employ the cutting plane algorithm [13].
The basic principle of the cutting plane algorithm is to find a subset of constraints so that
the solution for this subset can also satisfy all the constraints at an error tolerance of ε. The
pseudo-code of the algorithm is presented in Algorithm 1. It starts with an empty working
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set W of active constraints (step 1). Then it iteratively finds the Ŷq which generates the
most violated constraint for each tq with current v and U (step 3–5). If the corresponding
constraints are on average violated by more than ε, the algorithm adds (Ŷ1, . . . , Ŷn) into
the working set W , and re-optimizes (12) over the updated W (step 6–9). The algorithm
terminates when no constraints are added intoW anymore (step 10).

In Algorithm 1, there are two critical issues that remain to be addressed. One is how to
search for the most violated constraint (step 4), i.e., to solve the maximization problem:

Ŷq ← argmax
Y∈Y�(Y ∗

q , Y ) + f (tq , Y ) . (14)

For the MAP-related loss in this study, this step can be accomplished with the algorithm
presented in [46]. Although our problem involves two parameters v andU , the algorithm can
still be easily adapted because the compatibility function f is formulated into the same form
as a linear function of �(tq, Y ). For other loss functions with different ranking measures,
many methods have also been presented to solve the problem, such as [12] for Precision-
related loss and [3] for NDCG-related loss.



Multimed Tools Appl

Table 2 Statistics of the
experimental datasets Statistics Dataset I Dataset II

Number of images 55,615 25,000

Number of tags 1,000 356

Average number of tags per image 7.34 2.08

Number of concepts with ground-truth 75 18

The other key issue is to re-optimize (12) when a new most violated constraint is added
(step 8). Note that by exploiting the low-rank approximation, the problem becomes not
convex. However, since the problem at this step only differs in a single constraint from
iteration to iteration, we can restart the optimizer from the previous optimal values, which
may greatly speed up the convergence rate. In this study, we implement a effective iterative
algorithm adapted from the Pegasos algorithm [28] to solve the problem. At iteration t

of the algorithm, we first compute the subgradients with respect to v and U , respectively.
Note that ξ is the point-wise maximum of a set {ξ1, ξ2, . . .}, where ξi is the margin for the
ith constraint in W . Therefore, the subgradients can be computed in terms of the single
constraint (Ŷ1, . . . , Ŷn) that achieves the current largest margin:

∇v = λv − 1
n

n∑
q=1

δ�(tq, Ŷq)UT Ueq

∇U = λU − 1
n

n∑
q=1

(
vT δ�(tq, Ŷq) ⊗ uq

+eq
T ⊗ Uδ�(tq, Ŷq)

T
v
)

, (15)

where δ�(tq, Ŷq) = �(tq, Y ∗
q ) − �(tq, Ŷq). Then, we update v and U at iteration t with

the step size ηt = 1/(λt). Finally, we project v and U onto the sphere of radius 1/
√

λ to
accelerate the convergence of the algorithm (see [28]). Algorithm 2 describes these steps in
detail.

Once the parameters v and U are learned, the neighbor weights and tag correlations
during the neighbor voting process are fixed. Given a new image, we first find its visual
neighbors following the procedures stated in Section 3.1.1, and the relevance of each tag
with respect to the new image can then be easily estimated by (5).

4 Experimental configuration

This section introduces the experiment configuration for our performance evaluation. All tag
relevance learning methods evaluated in this study have been fully implemented in Matlab
platform and tested on a server equipped with 2.20GHz Intel Xeon processor and 12GB
RAM.

4.1 Data collections

To ensure accuracy and fairness of the empirical results, we adopt two benchmark image
datasets that are collected from Flickr in our evaluation. On both datasets, some concepts
have been manually labeled with ground-truth matching images. These concepts correspond
to some tags in Flickr and can be used as query tags in our approach.
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Dataset I is NUS-WIDE-LITE [6], which consists of 55,615 images with their associ-
ated tags. Since the tags provided in the dataset are rather noisy, a pre-processing step is
performed to filter out these tags. Specifically, the collection of tags is limited to the ones
appearing at least 50 times. Each tag is also matched with entries in the WordNet the-
saurus and those tags that do not exist in the WordNet are subsequently removed. Finally,
1,000 tags are left and the average number of tags per image is 7.34. 75 concepts with their
ground-truth labeled images are provided in the dataset.

Dataset II is MIRFlickr [11], which contains 25,000 images and 1,386 tags. We perform
the same pre-processing steps as on Dataset I to filter out the tags, and 356 unique tags
are consequently retained. Each image is annotated with an average of 2.08 tags. Ground-
truth labeling for 18 concepts is also available in the dataset. Table 2 summarizes the basic
information about our datasets.

4.2 Methodology and evaluation metrics

In order to conduct a comprehensive performance comparison of different methods, the
proposed framework and the competitors are tested on the following two tasks.

4.2.1 Task I: Tag-based image search

We first evaluate on a tag-based search scenario. For a test query tag, we sort images by
descending predicted tag relevance of each image. We study the performance of different
methods with regard to the number of the visual neighbors, i.e., the hyper-parameter k.

For our approach, on Dataset I, we take half of the total concepts as query tags during
training, and keep the rest for testing. On Dataset II, in order to verify the generalization
ability of our approach, we conduct a cross-set evaluation as suggested by [22]. Specifically,
we learn our model using the training data of Dataset I, and directly test it on Dataset II. In
other words, all concepts on Dataset II are only used for testing.

We use the mean average precision (MAP) as the evaluation metric. Let π∗ be the
ground-truth ranking and π the predicted ranking, the average precision (AP) is defined as:

AP(π∗, π) = 1

r

∑

j :rel(j)=1

Precision@j ,

where r is the number of relevant images in π∗, Precision@j is the percentage of relevant
images in the top j images of π , and rel(j) is an indicator function equaling 1 if the j th
image in π is relevant and zero otherwise. MAP is the mean of the average precision scores
over all query tags.

4.2.2 Task II: Automatic tag recommendation

Although the proposed tag relevance learning framework is formulated to optimize the per-
formance of tag-based image search, we still want to examine whether it is applicable to
other applications. To this end, we compare different methods in the scenario of automatic
tag recommendation.

The process of automatic tag recommendation does not require users to provide initial
tags [24]. Given an image, different from the setting of previous methodologies [1, 22, 37]
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Table 3 Guidelines for rating a recommended tag for a test image

Relevance Level Description

Relevant I affirm that the tag is saliently present in or applicable to the contents of the image.

Partially Relevant I think that the tag is in some way relevant to the contents of the image,

but could not be entirely confident.

Irrelevant I believe that the tag is totally irrelevant to the contents of the image.

where the recommendation candidates are restricted to only those concepts with ground-
truth, in this evaluation, all tags are taken into account and ranked in descending order
by their relevance regarding the image. The top 10 ranked tags are then added into the
recommendation list. Through this way, we can test the generalization capability of our
learned tag relevance model across a broad range of tags. We randomly choose 1,000 images
from the two datasets as evaluation testbed. According to the scheme used in [11], five
volunteers are invited to rate each recommended tag with one of the three relevance levels:
Relevant (score 3), Partially Relevant (score 2) and Irrelevant (score 1). The guidelines for
rating are shown in Table 3.

As the ground-truth tag ranking for a single image is not available, the discounted cumu-
lative gain (DCG) is used to evaluate the quality of the recommendation list. The DCG at
the n-th position is computed as:

DCG@n =
n∑

i=1

2rel(i) − 1

log(1 + i)
,

where rel(i) is the relevance level of the i-th tag. The average value of DCG@n (n = 5, 10)
over all test images is reported to evaluate the overall performance.

4.3 Competitors for performance comparison

We compare our approach with several state-of-the-art methods on tag relevance learning.
For these methods, the parameters are tuned via 5-fold cross validation. Specifically, the
competitors are:

– Baseline: This method simply treats the raw user tagging information as a relevance
indicator, i.e., the relevance of each tag to an image is 0 or 1.

– NVote [19]: NVote is the original neighbor voting algorithm which assesses tag rele-
vance by counting the difference between tag frequency in the local neighbor set and
the entire image collection.

– WVote [15]: WVote goes a step further than NVote by assigning different weights to the
visual neighbors. The weight of a neighbor is set according to its visual distance to the
given image.

– Graph [40]: Graph adopts a semi-supervised learning method to predict the tag rele-
vance by leveraging the tag diffusion over the k-nearest neighbor graph of labeled and
unlabeled images.

– SVM [17]: This method uses SVM to learn a binary classifier for each tag and esti-
mates tag relevance by the classifier output score. The SVM classifier is trained
with χ2 kernel, which has been shown to achieve superior performance for visual
categorization.
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– TagProp [38]: TagProp employs neighbor voting plus distance metric learning. It auto-
matically finds the optimal combination of distances to define the visual neighbors,
which are then assigned with rank or distance-based weights. The parameters in the
model are learned by maximizing the likelihood of the annotations of training images.

– RankVote: Our proposed framework for tag relevance learning.

In task I, we compare the performance of all methods listed above. Note that our approach
finds out reliable tags of images through tag relevance learning, and directly applies these
tags as indexing keywords for tag-based image search. Our approach is different from those
prior efforts, which focus on the automatic detection of indexing keywords from various
contextual information of images. It is an important issue to study the automatic detec-
tion of indexing keywords, but the topic is beyond the scope of this paper. For this reason,
the methods on the automatic detection of indexing keywords are excluded from the com-
parative study. In task II, SVM is excluded from the evaluation because of its excessive
computational cost in the need of learning a separate classifier for each tag.

4.4 Parameter settings

There are several hyper-parameters in our framework. For the parameter μ in (2), we exper-
iment with several values and find that the performance of our approach is not very sensitive
to its change, so we set μ = 4s empirically where s denotes the size of the image set. For
the dimensionality of the latent space p in (5), we use p = 100 for most of our results, and
its effect on the performance will be discussed later. For the trade-off parameter λ in (12),
we choose λ = 100 via 5-fold cross validation on both datasets. In task II, the parameter
k = 300 is fixed for all the competing methods, as suggested in [38].

5 Experiment results

5.1 Result for image search

Figure 2 shows the results of different methods for tag-based image search on Dataset I.
Note that the variation of k does not affect the performance of Baseline and SVM. Perhaps
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Fig. 2 Performance comparison for tag-based image search on Dataset I with the variation of k
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surprising, we notice that the existing approaches on tag relevance learning all fall behind
Baseline with most values of k. In comparison to Baseline, they suffer at least 10 % relative
drops on average. The results suggest that these approaches do not offer potential benefits
to current tag-based search systems in terms of MAP. As stated in Introduction, we believe
the reason lies in that they do not target at improving the performance of image search when
predicting tag relevance, and thus the resultant relevance scores do not necessarily yield
good search results. On the other hand, RankVote consistently achieves the best performance
in all cases, reaching at least 20 % relative improvement over Baseline. To further analyze
the results, we perform paired t-test [32] to compare the difference between RankVote and
the other methods, and find that the improvement of RankVote is statistically significant at
a significance level of 0.05. Besides, RankVote is also more robust to the number of visual
neighbors. For example, even though tested with only 10 neighbors, RankVote still remains
a relatively high performance level of 49.9 %. The best result is gained when k is around
500, and the performance keeps relatively steady with larger values of k.

Figure 3 shows the comparison results on Dataset II. As expected, although we only use
the model without training on Dataset II, RankVote still outperforms the other competitors
with statistically significant improvement in most cases, which is also verified with paired
t-test. For example, in the case of k = 800, on average, around 38.1 % relative improvement
can be gained from RankVote. The findings indicate that the proposed method can learn
a good tag relevance function and the learned relevance model can also be generalized
well in real applications. Besides, it is clearly shown that all the existing approaches yield
better performance than Baseline with different values of k. One possible reason is that the
images are associated with relatively few tags on Dataset II, which increases the difficulty
for Baseline to only rely on these tags to achieve the good search performance. The results
also verify the necessity of tag relevance learning for tag-based image search, especially
when the original tagging information is limited.

5.2 Result for tag recommendation

Table 4 reports the empirical results of different methods for automatic tag recommenda-
tion. It is clearly shown that RankVote outperforms the other approaches with statistical
significance in both evaluation criteria. More precisely, the maximum relative increases are
36.4 % and 25.8 % in terms of DCG@5 and DCG@10, whereas the minimum gains still
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Fig. 3 Performance comparison for tag-based image search on Dataset II.
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Table 4 Results of different methods for automatic tag recommendation, where the best performance is
highlighted in boldface and + indicates it is significantly better than the runner-up by paired t-test

Methods

Evaluation Criteria Baseline NVote WVote Graph TagProp RankVote

DCG@5 7.11 7.15 6.88 5.97 7.18 8.14+

DCG@10 9.82 10.32 9.99 9.00 10.36 11.32+

achieve 13.4 % and 9.3 %, respectively. Moreover, the relative improvements on DCG@5
are more significant than those on DCG@10, which is a nice property as users are usually
more interested in the top results in recommendation. From above, we can conclude that the
proposed method is a highly effective technique for automatic tag recommendation.

Except for Baseline, all the methods compared above rely on the effectiveness of the
visual neighbor search. Therefore, we further study how the methods behave at different
accuracy levels of the visual neighbor search. Since manually assessing the accuracy of
neighbor search results for each test image is laborious, we estimate the accuracy as follows.
For each test image, we gather the recommended tags rated as “Relevant”, and regard them
as the ground-truth tags of the test image. Following the setting in [19], we consider a
neighbor image accurate if it shares at least one of the ground-truth tags with the test image.
In this way, we count the number of accurate neighbors and subsequently compute the
accuracy of the visual neighbor search. We categorize the accuracy of the visual neighbor
search into three levels, i.e., low (accuracy < 0.05), medium (0.05 ≤ accuracy ≤ 0.20), and
high (accuracy > 0.20).

Table 5 summarizes the performance comparison in terms of DCG@5 given different
visual neighbor search accuracies. We can observe that RankVote substantially outperforms
the other competitors when the neighbor search accuracy is low and medium, leading to
more than 33.1 % and 7.5 % relative improvement, respectively. Note that the majority
of the test images have unsatisfactory neighbor search results (40.8 % low and 45.4 %
medium). Therefore, we believe that RankVote is more practical in real applications. In the
environment of high neighbor search accuracy, all the methods obtain obvious performance
gains, and the difference among their results is rather small. The observation implies that the
higher accuracy in visual neighbor search plays a critical role in improving the performance
for these methods.

Table 5 Performance comparison in terms of DCG@5 given different neighbor search accuracies, where
the best performance is highlighted in boldface and + indicates it is significantly better than the runner-up
by paired t-test

Methods

Neighbor Accuracy NVote WVote Graph TagProp RankVote

Low 3.88 3.84 3.69 4.20 5.59+

Medium 8.14 7.73 6.31 8.17 8.78+

High 13.54 13.06 11.58 12.75 13.55
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5.3 Analysis on computational efficiency

In this subsection, we examine the efficiency of the proposed framework. Our analysis
leaves out the operations of visual feature extraction and tag preprocessing, which only need
to be executed once in an offline manner.

To build upon the neighbor voting scheme, an imperative computation is to search the
visual neighbors from the image collection, which has a complexity of O(sd + k log s) per
image. Note that this complexity is drawn from a straightforward implementation of the
nearest neighbor search, and it can also be substantially reduced by adopting more effi-
cient techniques [26]. The most computational cost of our approach results from the time
for training. Theoretically, the cutting plane algorithm, as shown in Algorithm 1, loops
for O( 1

λε
) iterations. In actual experiments, it usually terminates within 5 iterations under

λ = 100 and ε = 0.01. In each iteration, the algorithm for searching the most violated
constraint is called O(n) times, whose time complexity is O(s log s) [46]. To further eval-
uate the efficiency quantitatively, we report the runtime of training phase for RankVote in
comparison with that of the other supervised competitors, i.e., Graph, SVM and TagProp on
Dataset I. The runtime is measured with k = 500, since all the competitive methods yield
relatively good performance under this setting. Figure 4 lists the empirical results of differ-
ent methods. Clearly, RankVote shows substantial reduction in the runtime of training phase
in comparison with Graph and SVM. Compared with TagProp, RankVote takes over 1.5
times longer for training, but it has a significant superiority in accuracy as shown in Figs. 2
and 3. We believe the gain outweighs the loss. Moreover, it is worth noting that the training
process of our algorithm can still be speeded up by adopting the recently developed more
efficient optimizers [35] or using the standard C implementation3 of SVMstruct .

Once training is completed, given a test image, our approach can first find its nearest
neighbors in O(sd +k log s) time, and then predict the relevance of each tag with respect to
the image within O(mk) time. According to the measured elapsed time during testing, we
find that our approach takes an average of 0.53 seconds to produce the image ranking for a

3http://www.cs.cornell.edu/people/tj/svm light/svm struct.html

http://www.cs.cornell.edu/people/tj/svm_light/svm_struct.html
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Fig. 5 Comparison between different variants of our framework on Dataset I

query tag in the task of tag-based image search. This means that our trained model can be
used interactively by users without any perceived delay.

5.4 Benefit from explicit modeling

In the proposed framework, both neighbor weights and tag correlations are explicitly mod-
eled simultaneously. To investigate the efficacy of each modeling component, we design the
following three variants of our original framework, and compare them with RankVote in the
task of tag-based image search:

– RankVote-V: This method is a simplified version of RankVote that only models the
neighbor weights. That is, the tag relevance function is defined only with the parameter
v as in (1).

– RankVote-Co: Different from RankVote explicitly learning the tag correlations in
a supervised manner, this method simply uses the co-occurrence statistics as the
correlation measurement.

– RankVote-Wn: It is similar to RankVote-Co, but uses the WordNet similarity instead of
the co-occurrence statistics.

Figure 5 summarizes the empirical study on Dataset I. In comparison with the results
of NVote and WVote shown in Fig. 2, we can see that RankVote-V enjoys an average
of 117.6 % and 76.6 % relative increases, respectively. The results point clearly to the
importance of explicitly modeling the neighbor weights for the neighbor voting scheme.
When adopting the existing measurements to capture the tag correlations, RankVote-Co
does not exhibit substantial performance gains over RankVote-V, whereas RankVote-Wn
even experiences a sharp degradation in performance and falls far behind RankVote-V. As
we mentioned in Introduction, the significant degradation of RankVote-Wn may result from
the fact that WordNet similarity cannot directly reflect how people tag images. Many tags
frequently appearing together in social tagging are often weakly related according to the
WordNet ontology. On the contrary, RankVote consistently maintains superior performance
over RankVote-V, resulting in more than 5.1 % relative gains on average, which is statisti-
cally significant at a significance level of 0.05. The above results confirm the importance
of explicitly modeling the tag correlations to achieve the effectiveness of tag relevance
learning.
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Fig. 6 Comparison between different variants on Dataset II

Figure 6 shows the comparison results on Dataset II. Again, RankVote outperforms the
variants with different values of k. One thing worth noting is that the average relative gains
of RankVote over RankVote-V increase from 5.1 % on Dataset I to 6.7 % on Dataset II. We
believe that the gains arise because RankVote uses twice the number of training instances
on Dataset II during training, from which it can get additional hints to model the tag corre-
lations more accurately. This observation also reveals that when sufficient training data is
available, it is necessary to exploit both information of neighbor weights and tag correlations
for obtaining a desirable model.

5.5 Illustration of learned parameters

To the best of our knowledge, this is the first study that effectively estimates the tag
relevance, while jointly learning the neighbor weights and tag correlations in a unified
framework. In this subsection, we investigate the latent properties of the neighbor weights
and tag correlations discovered by our approach.

Figure 7 plots the learned weights of the visual neighbors on a log-log scale. The x-
axis represents the sequence of the top 1,000 nearest neighbors, and the y-axis refers to the
individual weight of each neighbor. We can see that the variation trend of neighbor weights
is in accordance with the intuition that close neighbors are more important than distant ones.
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Fig. 7 Illustration of the learned individual weight of each visual neighbor
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Fig. 8 Illustration of the learned pairwise correlations between tags

More precisely, we find that the weight of a neighbor conditioned on its rank in the neighbor
sequence can be well fitted by a power-law relationship, which has been indicated by a red
line. Intuitively, this property implies that the relevance of a tag is dominantly determined by
its relevant confidence regarding the top nearest neighbors. It also explains why even though
with a limited number of neighbors, our approach can still maintain acceptable performance
as shown in Figs. 2 and 3. In addition, we notice that the weight of the first nearest neighbor
greatly exceeds those of the other neighbors. Recall that the first nearest neighbor is fixed
to be the given image itself. Its high weight suggests that, although many of them may be
inaccurate and subjective, the user-generated tags of an image are still the most valuable
evidences for tag relevance learning. We believe the above findings are helpful to guide
further research on neighbor voting.

Figure 8 illustrates the learned pairwise correlations among a group of frequent tags,
where a color map is used to indicate the magnitude of the correlations. Note that the range
of the learned correlation values is asymmetric between the positive and negative sides. As
expected, the relatively higher values are assigned to the diagonal elements which represent
the self-correlation of each tag. Among the pairwise elements, the higher correlations are
also assigned to the pairs of tags that commonly co-occur such as (sky, clouds), (ocean,
beach) and (leaf, flowers), or the tags with the same or similar meanings such as (road,
street) and (water, ocean). On the other hand, those rarely co-occurring tags like (sunset,
leaf) and (ocean, town) are assigned with lower negative correlation values. From the figure,
we may conclude that the learned correlations can properly encode the various kinds of
relationships among tags.

5.6 Effect of latent space dimension

To gain a good understanding of the performance of the parameter p used in (5), which
denotes the dimensionality of the latent space, we conduct a robustness test to examine
whether the key results remain consistent when changing p value from 10 to 200. 5-fold
cross validation is applied to the experiment. Due to space limits, we only report the exper-
iments for tag-based image search. Figure 9 plots the results, where five curves fluctuate,
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Fig. 9 Effect of p for tag-based image search.

indicating the effects of p when using k = 50, 100, 300, 500 and 800, respectively. All
curves start from a low MAP value and gradually go up with the increase of p. The per-
formance peaks when p is 75 or 100 and keeps relatively steady with larger p values. This
demonstrates the robustness of our approach to the changes in p values.

6 Conclusions

In this paper, we investigated the problem of tag relevance learning from a new perspective
of learning to rank, and sought the improved accuracy through introducing a supervision
step into the neighbor voting scheme. The individual weight of each visual neighbor was
explicitly modeled, and the pairwise correlations between tags were also captured through
a low-rank approximation. The learning process was conducted by directly optimizing the
ranking performance of tag-based image search. Extensive experiments were conducted
on two benchmark datasets in comparison with the state-of-the-art methods. Experimental
results demonstrated the effectiveness of our approach.

Our future work will focus on three directions. Firstly, we plan to gather additional train-
ing instances for more robust modeling. Secondly, we intend to incorporate the distance
metric learning techniques for discovering more accurate visual neighbors. Finally, we will
further exploit more efficient optimization algorithms such that the proposed approach can
work on larger datasets.
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