
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

5-2017

Who will leave the company?: A large-scale
industry study of developer turnover by mining
monthly work report
Lingfeng BAO

Zhenchang XING

Xin XIA

David LO
Singapore Management University, davidlo@smu.edu.sg

Shanping LI

DOI: https://doi.org/10.1109/MSR.2017.58

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Information Security Commons, and the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
BAO, Lingfeng; XING, Zhenchang; XIA, Xin; LO, David; and LI, Shanping. Who will leave the company?: A large-scale industry
study of developer turnover by mining monthly work report. (2017). 14th IEEE/ACM International Conference on Mining Software
Repositories: MSR 201, Buenos Aires, Argentina, 2017 May 20-21. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3696

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3696&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3696&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3696&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/MSR.2017.58
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3696&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3696&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3696&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Who Will Leave the Company?
A Large-Scale Industry Study of Developer Turnover by Mining Monthly Work Report

Lingfeng Bao∗, Zhenchang Xing†, Xin Xia‡, David Lo§, Shanping Li∗
∗College of Computer Science and Technology, Zhejiang University, China

†Research School of Computer Science, Australian National University, Australia
‡Department of Computer Science, University of British Columbia, Canada

§School of Information Systems, Singapore Management University, Singapore

{lingfengbao, xxia, shan}@zju.edu.cn, zhenchang.xing@anu.edu.au, davidlo@smu.edu.sg

Abstract—Software developer turnover has become a big chal-
lenge for information technology (IT) companies. The departure
of key software developers might cause big loss to an IT company
since they also depart with important business knowledge and
critical technical skills. Understanding developer turnover is very
important for IT companies to retain talented developers and
reduce the loss due to developers’ departure. Previous studies
mainly perform qualitative observations or simple statistical
analysis of developers’ activity data to understand developer
turnover. In this paper, we investigate whether we can predict the
turnover of software developers in non-open source companies by
automatically analyzing monthly self-reports. The monthly work
reports in our study are from two IT companies. Monthly reports
in these two companies are used to report a developer’s activities
and working hours in a month. We would like to investigate
whether a developer will leave the company after he/she enters
company for one year based on his/her first six monthly reports.

To perform our prediction, we extract many factors from
monthly reports, which are grouped into 6 dimensions. We apply
several classifiers including naive Bayes, SVM, decision tree,
kNN and random forest. We conduct an experiment on about
6-years monthly reports from two companies; this data contains
3,638 developers over time. We find that random forest classifier
achieves the best performance with an F1-measure of 0.86 for
retained developers and an F1-measure of 0.65 for not-retained
developers. We also investigate the relationship between our
proposed factors and developers’ departure, and the important
factors that indicate a developer’s departure. We find the content
of task report in monthly reports, the standard deviation of
working hours, and the standard deviation of working hours of
project members in the first month are the top three important
factors.

Keywords-developer turnover, prediction model, mining soft-
ware repositories

I. INTRODUCTION

Software developers are the key asset of an Information

Technology (IT) company. For the continuous and stable

growth of the company, it is crucial to maintain a stable

body of committed and experienced software developers.

Unfortunately, throughout the development of an IT company,

the influx and retreat of software developers, which refer to

turnover, are very frequent. Witaker reports that up to 20% of

IT software developers turnover each year [1]. Jiang and Klein

find that there are almost 25% to 35% turnover rate in a study

Xin Xia is the Corresponding author

of 101 information system professionals [2]. A survey of 1,000

full-time workers conducted by the online recruitment firm

Headhunter.net reports that 78% would take a new position if

the right opportunity comes along and 48% of those who are

employed are looking for new jobs [3].

If developer turnover is not properly handled, it may affect

the success of a software project and cause significant loss

for company, because software developers could depart with

a lot of critical knowledge and experience. Hence, being able

to predict who will leave the company early would enable

the opportunity to retain the talented software developers and

reduce the loss when they leave. Researchers have investigated

developer turnover to understand developers’ motivation of

departure. Many factors can affect developer turnover, such

as personal expectation [4], organizational commitment [5],

developers’ experience and knowledge [6], etc. Some re-

searchers also investigate the impact of developers turnover

on software quality [7], [8]. Mockus also finds a relationship

between developer turnover and productivity in commercial

projects [9].

However, most of existing studies are conducted in the

open source communities, and only perform some qualitative

observations and/or simple quantitative analysis of developers’

activity data collected during software project management.

Different from existing studies, in this paper we want to

investigate whether we can predict the turnover of software

developers in non-open-source companies by analyzing the

developer activity data and leveraging data mining techniques.

There are many different kinds of developer activity data

collected during software project management. In this study,

the data we use is developers’ monthly work reports, which

are from two IT companies (named Company C1 and C2).

Company C1 currently has more than 500 employees and

Company C2 has more than 2000 employees. Both of them are

outsourcing companies, and have a large number of projects

that require different business knowledge and techniques.

These two companies have established business model and

rigorous project management process. They also have close

collaboration with our research group so that we can access

its sensitive developer data for the study. We formulate the

prediction task of developer turnover as a binary classification

problem based on the developers’ monthly work reports.

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.58

430

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.58

170

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.58

170

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.58

170

TABLE I
EXAMPLES OF MONTHLY REPORTS

Example 1 Example 2 Example 3
Month 2011-02 2011-02 2011-10
Employee ID 1 2 3
Employee Name D1 D2 D3
Project Name P1 P2 P3

Tasks

1.Learn the technology about the Flex3, using
Flex Builder3 and taking some exercise.
2.Reading the Screen Design of the 1580 project
and the corresponding usecases.
3.Learning JSF, Primefaces and do exercise.
4.Learning about Maven, Nexus and do some
exercise.

1 Disussed the use cases about the Ruby project
2 Complete UIs of the prototype project
3 Learn something about JSF.

Report Management Development

Hours 128 184 144

Monthly reports in these two companies are submitted at the

end of a month, which usually contain a developer’s major

accomplishments or activities, and the working time in the

month. A developer’s monthly report must be confirmed and

approved by his/her project manager. Notice that the working

hours differences in monthly reports do not affect developers’

salary. Project managers use monthly reports to understand

the activities and workload of each member in the project,

evaluate the project process in current month, and make the

plan for the next month.

Table I shows three examples of monthly reports in the

Company C1. Each monthly report has following fields:

month, employee id, employee name, project name, tasks and
hours. The tasks field refers to the description of work of a

developer in a month written by the developers themselves.

The content of tasks has no strict requirements. Hence, the

writing style of tasks could be very different. For instance, the

tasks field in example 1 and 2 of Table I list the developers’

work in details, while the description of tasks in example 3 is

very short and simple. Moreover, the content of tasks could

be empty. The different written style of tasks may be due

to different reasons, such as the personality of developers,

their attitude towards to the work and monthly report, or

the developer may fill in the monthly report with few details

simply because there is too much other work to do. The hours
field refers to the working time of a developer that he works

for the project in this month. A developer could work for

more than one project in one month. In this situation, the

developer is required to fill a monthly report for each project.

Moreover, working hour is important to a company especially

an outsourcing company, since the company will use it to

charge money from the clients. Also at the end of the project,

project managers will count all of the working hours and check

whether the costs overrun the budget.

In this paper, our goal is to predict whether a developer will

leave the company or not after certain period of time based on

the developers’ monthly report data. Since every new develop-

er in these two companies has a six-month probationary period,

we use the first six monthly reports after the developers enter

into the company to predict the developer turnover. As the

two companies do not keep records of developers’ departure,

we consider a developer has left the company if there are no

monthly reports submitted after certain time point. Therefore,

our prediction task is defined as follows:

Given a developer’s first six monthly report data, can we ef-
fectively predict whether the developer will leave the company
or not (i.e. not-retained vs. retained) after he/she enters the
company for one year?

We collect about 6 years monthly report data from the

two IT companies, which contains 3638 developers and more

than 400 projects. Among these 3638 developers, there are

1045 developers from Company C1 and 2593 developers from

Company C2. We extract 67 features from the monthly report

data which belong to six dimensions: 1) working hours of each

month, 2) overall statistics of working hours, 3) statistics of

task reports, 4) readability of task reports, 5) project statistics

of each month, and 6) overall project statistics. Based on these

extracted features, we would like to investigate the following

three research questions:

RQ1: Can we effectively predict whether a developer will
leave the company after he/she enters the company for one
year based on monthly report data?

We apply several classic classifiers including naive Bayes,

SVM, decision tree, kNN and random forest, and conduct an

experiment on about 6-years monthly report data from two

companies that contains 3,638 developers over time. We find

that we can effectively predict whether a developer will leave

the company based on monthly report data. The random forest

classifier has the best performance which achieves F1-scores

for predicting retained and not-retained developers of 0.86 and

0.65 on the combined dataset, respectively.

RQ2: Do the characteristics of retained and non-retained
developers differ? How these relationships are different
between not-retained and retained developers?

We compare the values of each factors between selected

not-retained developers and retained developers by applying

the Mann-Whitney U test at p−value = 0.01 and calculating

Cliff Delta. We find that developers who leave the company

are significantly different from developers who stay at the

company in 31 out of the 67 factors, including the working

hours of the first and the sixth month, the content of task

report, and the variance of working hours.

RQ3: What are the important factors that could indicate,
with high probability, that a developer will leave the
company?

To compare the importance of the factors, we learn a

random-forest classifier using the factors to identify whether

a developer will leave or not. Correlation and redundancy

analysis are applied to better model the integrated impact of

factors on developers’ departure. We find that the mean of

the number of token in task report, the standard deviation

of working hours, and the standard deviation of working

hours of project members in the first month are the top three

important factors in determining the likelihood of a developer’s

departure.

431171171171

TABLE II
THE MONTHLY REPORT DATA

Company C1 Company C2 C1 + C2
Total 1,045 2,593 3,638
Retained 699 (66.9%) 1,670 (64.4%) 2,369 (65.1%)
Not-Retained 346 (33.1%) 923 (35.6%) 1,269 (34.9%)

Paper Structure: The remainder of the paper is structured

as follows. Section II describes our monthly report data and

experiment setup. Section III presents the results of three re-

search questions. Section VI reviews related work. Section VII

concludes the paper and discusses future directions.

II. CASE STUDY SETUP

A. Monthly Report Dataset

We collect about six year monthly report data from our

two studied companies which ranges from January 2010 to

November 2015. The monthly report dataset contains more

than 5,000 developers who ever submit monthly reports1. We

exclude developers who submit less than 6 monthly reports

since there is no enough data to extract features for prediction

model. In our study, we extract features based on a developer’s

first six month reports then predict whether he/she will leave

in the company in the future. We do so because a developer’s

probationary period is six month in these two companies.

The developers who leave within 6 months do not carry

much knowledge of the company and are likely to be asked

to leave (due to poor performance). Finally, among them,

3,638 developers submit 6 or more monthly reports, including

1,045 developers from Company C1 and 2,593 developers

from Company C2, as shown in Table II. Furthermore, these

developers work for more than 400 projects, which contain

different business knowledge and techniques.

To investigate whether we can predict an developer will

leave the company, we divide the developers in our monthly

report dataset into two groups: those who leave the company

after he/she enters company in one year, and those who still

stay in the company after one year. Finally, There are 1,269

developers (346 and 923 developers from Company C1 and

C2, respectively) who leave the company in one year after

he/she enters the company and 2,369 developers (699 and

1,670 developers from Company C1 and C2, respectively) still

stay at the company after one years work.

B. Factors Potentially Affecting Developers’ Departure

In this study, we consider a developer’s first six month

report data and extract 67 features along six dimensions, that

might be correlated with developers’ departure. We describe

the meaning of each factor in Table III.

Working Hours of Each Month refers to a developer’s

working hours reported in the monthly report for each month.

The working hours are correlated with a developer’s workload.

Software developers are often asked to take heavy workload

and have tight deadlines. Heavy workload might be a factor

which affects a developer’s departure. On the other hand, if a

developer’s working hours are less than normal working hours,

1Due to information security policy of the company, the data is sensitive,
and we cannot provide the detailed number

60

80

100

120

140

160

1 2 3 4 5 6

Ho
ur

Month
Fig. 1. The Average Reported Hours of The First Six Months

he/she might perform other non-work-related stuff and does

not focus on his/her work. This might be an indicator of a

developer’s departure. Figure 1 shows the average reported

hours of the first six month over the whole dataset. We find

the average reported hours of the first month (77.15 hours) are

much less than that of the other months. As discussed with the

HR department of these two companies, we find since there

will be many new employee training courses in the first month,

thus the working hours are greatly reduced. There is also a dip

from the 5th month to the 6th month, this might be because

the employees also need to attend some training courses at the

last part of the probationary period.

Overall Statistics of Working Hours refers to factors that are

based on the overall statistics of working hours in a developer’s

first six month. We calculate five kinds of statistics of working

hours, including the sum, mean, median, standard deviation
and maximum of the first six month working hours for each

developer.

Statistics of Task Report refers to factors that are calculated

based on the text information of task report written by the

developers. The written style of task report could be very

different, which might indicate a developer’s character and

working attitude. For example, a developer, who writes the

monthly report in much detail, is usually very conscientious.

Otherwise, a simple task report might imply that the developer

does not focus on his/her work or is dissatisfied with the

work. We count the length of each monthly report (i.e.

the number of characters in the report), and calculate five

kinds of statistics, including the sum, mean, median, standard
deviation and maximum of length of text of task report for

each developer. Sometimes, some “lazy” developers copy the

text of previous task reports or write similar task reports. So,

we also tokenize and stem the text of task report, and calculate

the sum, mean, median, standard deviation and maximum of

number of distinct tokens in the monthly report for each

developer. In our whole monthly report dataset, the average

values of task len mean and token mean are 40.12 and 6.37,

respectively. This means the length of description of monthly

reports is usually not very long.

Readability of Task Report refers to the ease with which

a reader can understand the task report. The readability of

a text is measured by the number of syllables per word

and the length of sentences. Readability measures can be

used to tell how many years of education a reader should

have before reading the text without difficulties [10], [15].

Amazon.com uses readability measures to inform customers

about the difficulty of books. We use readability features of

432172172172

TABLE III
FACTORS POTENTIALLY AFFECTING DEVELOPER DEPARTURE

Dimension Factor Name Explanation
Working Hours of Each Month hour{N} working hours of one month, N is from 1 to 6 (to indicate the 1st to 6th month)

Overall Statistics of Working Hours

hour sum the sum of the first six month working hours
hour mean the average of the first six month working hours
hour median the median of the first six month working hours
hour std the standard deviation of the first six month working hours
hour max the maximum working hours in the first six month

Statistics of Task Report

task len sum the sum of length of text of task reports
task len mean the mean of length of text of task reports
task len median the median of length of text of task reports
task len std the standard deviation of length of text of task reports
task len max the maximum of length of text of task reports
task zero the number of monthly report whose lenght of task is 0
token sum the sum of the token number of task reports
token mean the mean of the token number of task reports
token median the median of the token number of task reports
token std the standard deviation of the token number of task reports
token max the maximum of the token number of task reports

Readability of Task Report

flesch

these metrics are used to measure the readability of a text using different
formulas which are usually based on the the number of syllables per word
and the length of sentences [10]–[17]

smog
kincaid
coleman liau
automated readability index
dale chall
difficult words
linsear write
gunning fog

Project Statistics of Each Month

p{N} person the number of persons in the project that the developer is working for in N th month
, where N is from 1 to 6

p{N} hour mean the mean of working hours of project members in N th month

p{N} hour sum the sum of working hours of project members in N th month

p{N} hour std the standard deviation of working hours of project members in N th month

p{N} person change the number of changed person compared with the previous month in N th month

Overall Project Statistics

project num the number of projects which a developer works for in the first six month
multi project whether the developer works for multiple projects in one month
avg person change the average changed person number in projects in the first six month
less zero the number of month in which the changed person number in projects is less than 0
equal zero the number of month in which the changed person number in projects is equal than 0
larger zero the number of month in which the changed person number in projects is larger than 0

task report as a complementary of statistics features of task

report since we think readability could also be an indicator

of a developer’s working attitude. In our study, we use the

following nine readability measures: Flesch [10], SMOG (sim-

ple measure of gobbledygook) [11], Kincaid [12], Coleman-

Liau [13], Automated Readability Index [14], Dale-Chall [15],

difficult words [15], Linsear Write [16], Fog [17]. We calculate

these readability measures using a python package named

textstat [18]. In our monthly report dataset, the average value

of Flesch is 98.97, which indicates very easy to read. The

result is very close to other readability metrics.

Project Statistics of Each Month refers to factors that

represent the information of a project which a developer is

working on for each month. The working environment and

other members in the project might have very important effect

on a developer’s working experience. For example, the good

collaboration with other members in the project can improve a

developer’s work efficiency and experience. For each month,

we calculate the following measures of the project which the

developer is working for: the number of project members, the

sum, mean and standard deviation of working hours of project

members, and the number of changed developers. The number

of project members is an indicator of project size. Small

project size usually means more workload to each individual

in the project. The working hours of project members could

reflect the overall workload in the project. And the number of

changed developers might indicate the stability of the project.

The developers often prefer stay at a stable project. Notice that

sometimes a developer could work for more than one project

in a month. In this situation, we only consider the project on

which the developer spends longest time.

Overall Project Statistics refers to factors that are based

on the overall project statistics in a developer’s first six

months of work. We count the number of project in the

first six months for each developer (project num) and check

whether a developer take part in more than one project in

a month (multi project), since the experience of working for

multiple projects is different from that of working for only

one project and multiple projects might mean higher workload.

We also count the number of developer changed in the project

which a developer works for (avg person change, less zero,

equal zero, larger zero), since the stability of the project

might have impact on the working experience of a developer.

C. Prediction Model

For our monthly report data, we use our proposed factors

to train a classifier to predict whether a developer will leave

the company after he/she enters the company in one year.

We study different classifiers which are widely used in soft-

ware engineering research [19]–[23], including Naive Bayes,

Support Vector Machine (SVM), Decision Tree, K-Nearest

Neighbor (kNN), and Random Forest.

Naive Bayes: Naive Bayes classifiers [24] are a family of

simple probabilistic classifiers based on applying Bayes’ the-

433173173173

orem with strong (naive) independence assumptions between

the features. The major advantage of naive Bayes classification

is its short computational training time, since it assumes

conditional independence.

SVM: Support Vector machine (SVM) [25] is developed from

statistical learning theory, and it constructs a hyperplane or

a set of hyperplanes in a high- or infinite-dimensional space,

which are used for classification. SVM selects a small number

of critical boundary instances as support vectors for each label

(in our case, the labels are not-retained and retained), and

builds a linear or non-linear discriminant function to form

decision boundaries with the principle of maximizing the

margins among training instances belonging to the different

labels.

Decision Tree: C4.5 is one of the most popular decision tree

algorithms [24]. A decision tree contains nodes and edges;

each node in the decision tree represents a factor in the input

factor space, while each branch in the decision tree represents

a condition value for the corresponding node. A decision tree

algorithm classifies data points by comparing their factor with

various conditions captured in the nodes and branches of the

tree.

K-Nearest Neighbor: K-Nearest Neighbor is an instance-

based algorithm for supervised learning, which delays the

induction or generalization process until classification is per-

formed [24]. We use the Euclidean distance as the distance

metric, and since the performance of kNN may be impacted

by different values of k, we set k from 1 to 10, and report the

best performance (in terms of F1-score) among the 10 values

of k.

Random Forest: Random forest is a kind of combination

approach, which is specifically designed for the decision tree

classifier [26]. The general idea behind random forest is to

combine multiple decision trees for prediction. Each decision

tree is built based on the value of an independent set of random

vectors. Random forest adopts the mode of the class labels

output by individual trees.

D. Evaluation Metric

For each developer, there would be 4 possible outcomes:

a developer is classified as not-retained when he/she truly

leaves the company in one year (true positive, TP); he/she

can be classified as not-retained when he/she does not leave

the company in one year (false positive, FP); he/she can be

classified as retained when he/she truly leaves the company

in one year (false negative, FN); or he/she can be classified

as retained when he/she does not leave the company in one

year (true negative, TN). Based on these possible outcomes, we

calculate the accuracy, precision, recall, F1-score for each label

to evaluate the performance of classifiers which are introduced

in II-C.

Accuracy: the number of correctly classified developers (both

not-retained and retained) over the total number of developers,

i.e. Acc = TP+TN
TP+FP+TN+FN .

Not-Retained Precision: the proportion of developers that are

correctly labeled as not-retained among those labeled as not-
retained developers, i.e. P (L) = TP

TP+FP .

Not-Retained Recall: the proportion of not-retained develop-

ers that are correctly labeled, i.e. R(L) = TP
TP+FN .

Retained Precision: the proportion of developers that are

correctly labeled as retained among those labeled as retained
developers, i.e. P (NL) = TN

TN+FN

Retained Recall: the proportion of retained developers that

are correctly labeled, i.e. R(NL) = TN
TP+FP .

F1-score: summary measure that combines both precision

and recall - it evaluates if an increase in precision (recall)

outweighs a reduction in recall (precision). For F-measure

of not-retained developers, it is F (L) = 2×P (L)×R(L)
P (L)+R(L) .

And for F-measure of retained developers, it is F (NL) =
2×P (NL)×R(NL)
P (NL)+R(NL) . We compare the prediction results using

the F1-score, which is the harmonic mean of precision and

recall. This follows the setting used in many software analytics

studies [19]–[21], [27]–[31].

AUC: In addition to the F1-score, we also use the Area Under

the Receiver Operating Characteristic Curve (AUC) to evaluate

the effectiveness of our approach. AUC is a commonly-used

measure to evaluate classification performance, and many oth-

er software engineering studies also use AUC as an evaluation

metric [22], [23], [30], [32]. The larger the AUC is, the better

is the performance of a classification algorithm.

III. EXPERIMENT RESULTS

In this section, we present and discuss the answer to three

research questions we proposed in Section I.

A. (RQ1) Can we effectively predict whether a developer will
leave after he/she enters the company for one year based on
monthly report data?

Motivation: In order to retain talented software developers

and reduce the loss due to the departure of key developers,

we would like to effectively predict whether developers will

leave company after they enter the company for certain time

period. Therefore, we use our proposed factors extracted from

developers’ monthly report and apply different prediction

models to examine whether it is feasible to build accurate

models that help to predict developers’ departure.

Approach: We use the Weka tool [33] to implement these

prediction models. We use 10-fold cross validation to estimate

the results of these prediction models. In 10-fold cross vali-

dation we randomly divide the dataset into ten folds. Of these

ten folds, nine folds are used to train the classifier, while the

remaining one fold is used to evaluate the performance. The

class distribution in the training and testing datasets is kept

the same as the original dataset to simulate real-life usage of

the algorithm. To evaluate their perfomance, we use accuracy,

precision, recall, F1-score, and AUC metrics. The reported

performance of the models is the average of 10-fold cross

validation. The above approach is applied both on the monthly

434174174174

TABLE IV
THE ACCURACY AND AUC OF PREDICTION MODELS

Accuracy AUC
Company C1 Company C2 C1 + C2 Company C1 Company C2 C1 + C2

Random Prediction 50.0% 50.0% 50.0% 0.50 0.50 0.50

Naive Bayes 66.6% 55.8% 57.7% 0.70 0.70 0.70
SVM 67.2% 64.7% 65.5% 0.51 0.51 0.51
Decision Tree 74.5% 71.5% 71.9% 0.74 0.68 0.68
KNN 77.5% 72.9% 74.6% 0.75 0.71 0.72
Random Forest 81.7% 79.5% 79.7% 0.84 0.81 0.82

TABLE V
PRECISION, RECALL, AND F1-SCORE ON RETAINED DEVELOPERS FOR FIVE PREDICTION MODELS

Company C1 Company C2 C1 + C2
Precison Recall F1 Precison Recall F1 Precison Recall F1

Random Prediction 0.67 0.50 0.57 0.64 0.50 0.56 0.65 0.50 0.57

Naive Bayes 0.81 0.65 0.72 0.82 0.40 0.54 0.82 0.45 0.58
SVM 0.67 0.99 0.80 0.65 0.99 0.79 0.65 0.99 0.79
Decision Tree 0.81 0.81 0.81 0.77 0.79 0.78 0.78 0.80 0.79
KNN 0.83 0.83 0.83 0.79 0.79 0.79 0.80 0.81 0.81
Random Forest 0.81 0.94 0.79 0.93 0.85 0.87 0.79 0.93 0.86

TABLE VI
PRECISION, RECALL, AND F1-SCORE ON NOT-RETAINED DEVELOPERS FOR FIVE PREDICTION MODELS

Company C1 Company C2 C1 + C2
Precison Recall F1 Precison Recall F1 Precison Recall F1

Random Prediction 0.33 0.50 0.40 0.36 0.50 0.42 0.35 0.50 0.41

Naive Bayes 0.50 0.70 0.58 0.44 0.84 0.58 0.44 0.81 0.57
SVM 0.80 0.01 0.02 0.79 0.01 0.02 0.88 0.01 0.02
Decision Tree 0.62 0.60 0.61 0.61 0.58 0.59 0.60 0.58 0.59
KNN 0.66 0.66 0.66 0.62 0.62 0.62 0.64 0.63 0.63
Random Forest 0.83 0.57 0.67 0.81 0.55 0.66 0.81 0.55 0.65

report data from Company C1 and Company C2. Furthermore,

we combine the two companies’ monthly report data into a

single dataset, then apply the same approach on it. We also

choose a baseline model, i.e. random prediction, to compare

our proposed prediction models. In random prediction, it

randomly predicts developers’ departure. The precision for

random prediction is the percentage of not-retained or retained
developers in the data set. Since the random prediction model

is a random classifier with two possible outcomes (e.g., not-
retained or retained developers), its accuracy, AUC, and recall

are 0.50.

Results: Table IV shows the accuracy and AUC of the five

different prediction models we apply. We find that the accura-

cies and AUCs of all 5 classifiers are larger than the baseline

model, i.e. random prediction. For the results of accuracy, we

find that the accuracies of 3 out of 5 classifiers, i.e., decision

tree, KNN and random forest, are larger than 70% on all of

three datasets. Moreover, the random forest classifier has the

highest accuracy on all of three datasets. For the results of

AUC, we also find the random forest achieves the highest AUC

among these five classifiers. The AUCs of the random forest

on these three datasets are all larger than 0.8, while all AUCs

of other four classifiers are less than 0.8. We also find that the

results of accuracy and AUC on the two company datasets and

the combined dataset is very close. From Table IV, we can see

the random forest achieves the best overall performance.

Table V shows the precision, recall, F1-score of the baseline

model and these 5 classifiers for predicting retained develop-

ers. The number with bold text in the table is the largest for

each column. We find all classifiers have good performance

on the dataset of Company C1, i.e. all F1-scores are larger

than 0.7, and are also much larger than that of the baseline

model. On the dataset of Company C2 and the combined

dataset, all classifiers also have very good performance except

Naive Bayes, since the recall of Naive Bayes is very low, only

0.45. All other classifiers’ F1-scores for predicting retained
developers are very high, which are close to or higher than

0.80, which is much larger than that of the baseline model. In

short, we think the random forest classifier achieves the best

performance, since it has the highest F1-score on the dataset

of Company C2 and the combined dataset, i.e. 0.87 and 0.86,

respectively, and its F1-score on the dataset of Company C1 is

0.79, which is very close to the highest F1-score, 0.83, which

is from KNN classifier.

Table VI shows the precision, recall, F1-score of the base-

line model and these 5 classifiers for predicting not-retained
developers. We find that the results of these 5 classifiers for

predicting not-retained developers on the two company dataset

and the combined dataset is very similar. The random forest

classifier also has the best performance which has the highest

F1-scores on all the three dataset. While the SVM classifier has

very bad performance as its recalls are very low, which are all

lower than 0.1. The F1-scores of other 3 classifiers are close to

or higher than 0.60, while the F1-score of the baseline model

is only about 0.40. In summary, we find that the random forest

has the best performance on predicting whether a developer

will leave the company after he/she enters the company in one

year or not.

To measure whether the improvement of these 5 classifiers

over random prediction is statistically significant, we apply

435175175175

TABLE VII
RELATIONSHIP BETWEEN FACTORS AND DEVELOPERS’ DEPARTURE WITH

SIGNIFICANT DIFFERENCE

Dimension Factor Name Rel. d-value
Working Hours
of Each Month

hour1 - 0.194
hour6 - 0.153

Overall Statistics
of Working Hours

hour sum - 0.192
hour mean - 0.192
hour std + 0.290

Statistics of
task report

task len sum - 0.317
task len mean - 0.320
task len median - 0.294
task std - 0.255
task len max - 0.297
task zero + 0.312
token sum - 0.305
token mean - 0.308
token median - 0.280
token std - 0.245
token max - 0.291

Readability of
task report

flesch + 0.283
kincaid - 0.287
coleman liau - 0.313
automated readability index - 0.292
dale chall - 0.313
difficult words - 0.297
linsear write - 0.298
gunning fog - 0.289

Project Statistics
of Each Month

p1 hour mean - 0.148
p1 hour std + 0.247
p2 hour std + 0.192
p3 hour std + 0.188
p4 hour std + 0.187
p5 hour std + 0.164
p6 hour std + 0.190

Wilcoxon signed-rank test [34] at 95% significance level on 10

folds of F1-scores. We also use Bonferroni correction [35] to

counteract the results of multiple comparisons. We find all p-

values are smaller than 0.05 which indicates the improvement

is statistically significant at the confidence level of 95%.

We can effectively predict whether a developer will leave the
company based on monthly report data. The random forest
classifier has the best performance which achieves F1-score
for retained and not-retained developers of 0.86 and 0.65
on the combined monthly report data, respectively.

B. (RQ2) Do the characteristics of retained and non-retained
developers differ? How these relationships are different be-
tween retained and not-retained developers?

Motivation: We have proposed 67 factors that could potential-

ly affect a developer’s departure. In this research question, we

are interested in investigating how each factor is related with

the developers’ departure. The company leader and manager

can use the results of this question to understand whether the

characteristics of retained and non-retained developers differ

and take proactive actions.

Approach: We compare the values of each factors between

selected not-retained developers and retained developers. We

first analyze the statistical significance of the difference be-

tween the two groups of developers, i.e. not-retained develop-

ers and retained developers, by applying the Mann-Whitney

U test at p − value = 0.01. To show the effect size of the

difference between the two groups, we calculate Cliff Delta,

which is a non-parametric effect size measure. Cliff defines a

delta of less than 0.147, between 0.147 to 0.33, between 0.33

and 0.474, and above 0.474 as negligible, small, medium, and

large effect size, respectively.

Results: Table VII shows the factors that have p − value <
0.01 and d > 0.147 (i.e., statistically significant difference

with at least a small effect size). In Table VII, the column Rel.

is short for relationship, “+” means developers who leave the

company have significantly higher value on this factor while “-

” means developers who stay in the company have significantly

higher value on this factor. We find that the not-retained and

retained developers have significant difference in 31 out of the

67 factors. The effect size is small for all the factors. Note that

relationship between factors and developers’ departure with

non-significant difference is not included in the table.

For working hours of each month dimension, the working

hours of the first and sixth month can differentiate not-retained
developers from retained developers. This suggests that the

company might pay attention to the work of developers in the

first month and the last month of probation period. For overall

statistics of working hours dimension, the retained developers

have significantly higher value on factors hour sum and

hour mean while the not-retained developers have signifi-

cantly higher value on factor hour std. We find that the total

working hours of not-retained developers are less than those of

retained developers and the variance of working hours of not-
retained developers is larger than that of retained developers.

For statistics of task report dimension and readability of

task report dimension, most of the factors have statistically

significant difference except smog. Notice that the lower value

of flesch means more difficult to read, which is opposite from

all other readability metrics. So, only flesch shows positive

correlation with developers’ departure. Not-retained develop-

ers usually write less content of task and are more prone to

submit empty monthly report than retained developers. The

readability of task report of not-retained developers is often

worse than those of retained developers.

For project statistics of each month dimension, the average

working hours of project members in the first month can

differentiate not-retained developers from retained developers.

Furthermore, not-retained developers have significantly higher

value on the variance of working hours of project members for

each month. This might suggest us that the working environ-

ment has big impact on developers’ departure. If the workload

among project members is very different, the turnover of the

project may increase. Therefore, project managers should pay

attention to balance the workload between project members.

Not-retained developers are significantly different from re-
tained developers in 31 out of 67 factors. Generally, not-
retained developers have less working hours in the first and
the sixth month (i.e., the start and end of the probation
period), write less content in task report of monthly reports.
Moreover, there is larger variance of working hours of
project members in their projects for not-retained develop-
ers.

436176176176

TABLE VIII
GROUPS OF VARIABLES THAT HAVE CORRELATIONS LARGER THAN 0.7

Group
hour median, hour sum, hour mean
linsear write, token sum, token std, task len mean, token mean,
token median, automated readability index, dale chall, task len std,
coleman liau, task len sum, task len max, kincaid, task len median,
flesch, difficult words, token max, gunning fog, task zero
p5 hour sum, p6 person, p6 hour sum, p2 person, p3 person,
p4 person, p5 person, p2 hour sum, p4 hour sum, p3 hour sum

C. (RQ3) What are the important factors that could indicate,
with high probability, that a developer will leave the company?

Motivation: Although a developer’s departure is impacted by

multiple factors, some factors might be more influential on

developers’ departure than others, which need more attention.

Therefore, in this research question, we would like to find out

these important factors. Companies can use these important

factors to make proactive plan to retain developers and prevent

risks which are caused by developers’ departure.

Approach: Random forest has been proved to have the best

performance on predicting a developer’s departure in RQ1.

Therefore, we only consider to identify the most impor-

tant factors in the random forest model. Comparing with

the random forest model in RQ1, we first perform variable

selection to build another random forest classifier because

correlated variables might lead to poor models which are hard

to interpret [36]. Variable selection process contains two steps:

Step 1: Correlation Analysis. We use a variable clustering

analysis, implemented in a R package named Hmisc, to

construct a hierachical overview of the correlations among the

factors. For sub-hierarchies of factors with correlation larger

than 0.7, which is the same setting to a previous study [37], we

select only one variable from the sub-hierarchy for inclusion

in our model. In particular, out of 67 factors, there are 32

factors which are belong to three groups of variables that have

correlations larger than 0.7 (see Table VIII). We use three

variables and remove other variables from the relevant group,

i.e. hour mean, token mean, p5 hour sum. There are 38

factors left after correlation analysis. The final hierarchical

overview is presented in Figure 2.

Step 2: Redundancy Analysis. Correlation analysis reduces

collinearity among the factors, but it may not detect all of

redundant factors, i.e., factors that do not have a unique

signal relative to the other factors. Redundant factors in an

explanatory model will interfere with one another, distorting

the modeled relationship between the factors and predictors.

We remove redundant factors by using the implementation

provided by the redun function in the rms R package. In

particular, from the leftover 38 factors through correlation

analysis, we remove hour4, equal zero because they can be

represented using other factors.

After two steps of removing redundant variables, we have

36 remaining factors. Then we use the bigrf R package to

implement the random forest classifier. We also use 10-fold

cross validation to evaluate the effectiveness of the model.

To identify the important factors in determining developers’

pr
oj

ec
t_

nu
m

m
ut

li_
pr

oj
ec

t
p6

_p
er

so
n_

ch
an

ge
p5

_h
ou

r_
su

m
p1

_p
er

so
n

p1
_h

ou
r_

su
m

le
ss

_z
er

o
eq

ua
l_

ze
ro

p4
_p

er
so

n_
ch

an
ge

p5
_p

er
so

n_
ch

an
ge

p1
_p

er
so

n_
ch

an
ge

p2
_p

er
so

n_
ch

an
ge

p3
_p

er
so

n_
ch

an
ge

av
g_

pe
rs

on
_c

ha
ng

e
la

rg
er

_z
er

o
ho

ur
4

ho
ur

5
ho

ur
_m

ax
ho

ur
6

p6
_h

ou
r_

m
ea

n
ho

ur
2

ho
ur

_m
ea

n
ho

ur
3

p3
_h

ou
r_

m
ea

n
to

ke
n_

m
ea

n
sm

og
p1

_h
ou

r_
st

d
p2

_h
ou

r_
st

d
p5

_h
ou

r_
st

d
p6

_h
ou

r_
st

d
p3

_h
ou

r_
st

d
p4

_h
ou

r_
st

d
ho

ur
1

ho
ur

_s
td

p4
_h

ou
r_

m
ea

n
p5

_h
ou

r_
m

ea
n

p1
_h

ou
r_

m
ea

n
p2

_h
ou

r_
m

ea
n

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
0

Sp
ea

rm
an

 ƿ
2

Fig. 2. Cluster factors after correlation analysis

departure, we use the varimp function in bigrf package to

compute the importance of a factor in training process based

on out of the bag (OOB) estimates, which is an internal error

estimate of a random forest classifier [38]. The underlying

idea is to permute each factor randomly one by one and see

whether the OOB estimates will be reduced significantly or

not.

For each run of the 10-fold cross validation, we get an

importance value for each factor. To determine the factors

that are the most important for the whole dataset, we take

the important values from all 10 runs and apply the Scott-

Knott test [39]. This test takes as input a set of distributions

(one for each variable) and identifies groups of variables that

are statistically significantly different from one another.

Results: The 10-fold cross validation shows the random forest

using selected factors can infer retained developers with an

F1-measure of 0.857 and not-retained developers with an F1-

measure of 0.664. This result is similar with that of the random

forest using all proposed factors in RQ1.

Figure 3 shows the Scott-Knott test results when comparing

the importance value of factors. Different groups of variable

whose importance values are statistically significant different

from other groups of variables (p−value < 0.05). We find that

the mean of the number of token in task report (token mean),

the standard deviation of working hours (hour std), and the

standard deviation of working hours of project members in

the first month (p1 hour std) are the top three important

factors that influence the random forest model. This result is

consistent with the results in RQ2 (see section III-B). The

effect size of these three factors is bigger than that of other

factors (see Table VII).

Notice that we use the factor token mean to represent

factors that are related to task report but removed in correlation

analysis step. The more content written in the task report of

monthly report, the more likely a developer stay in the compa-

ny. The detailed task report might indicate that a developer is

more conscientious on work and prefers to stay in the company

and grows up with the company together. Larger variance of

working hours may imply the working state of the developer is

not very stable and such kinds of developers are more likely to

leave the company. Moreover, the imbalance of working hours

of project members in the first month might leave a bad first

impression on the project and the company. This implies that

working environment has big impact on developer turnover.

These factors help most in determining the developer who

leaves the company after he/she enters the company for one

year.

437177177177

M
ea

ns
5.

3
27

.1
48

.9
70

.8
92

.6 Means grouped by color(s)

Fig. 3. Scott-Knott test results when comparing the importance values
of factors, divided into distinct groups that have a statistically significant
difference in the mean (p− value < 0.05)

The mean of the number of token in task report, the standard
deviation of working hours, and the standard deviation of
working hours of project members in the first month are the
top three important factors in determining the likelihood of
a developer’s departure

IV. THREATS TO VALIDITY

Threats to internal validity refer to errors in our code and

experiment bias. We use the default setting in Weka to train our

classifiers, which is similar to the setting of prior work [30].

We also double check our code, however, there may exist some

errors that we do not notice. Moreover, to mitigate the bias

of results selection, we run the 10-fold cross-validation and

present the average performance. Another threat to internal

validity is the setting that we use the first six monthly reports

to predict a developer’s departure after he/she enters the

company for one year. This is because every developer in the

studied companies has a six-month probationary period and

most of them at least submit six monthly reports. Admittedly,

excluding developers who do not submit 6 monthly reports

might skew the dataset.

Threats to external validity relate to the generalizability of

our findings. In this study, our monthly reports are from two

IT companies. Thus, it is unclear whether the same results

still hold for other developers from other companies. However,

we analyze more than 3,000 developers’ monthly reports and

these developers belong to more than 400 projects which

use different programming languages and business knowledge.

Moreover, monthly report is a common practice and often used

in project management.

Another threats to external validity relate to the general-

izability of our extracted features. In this paper, we extract

67 factors which are categorized into 6 dimensions from two

independent companies. These two companies use different

monthly reporting systems, and we focused on the general

factors, and tried to avoid to extract the specific factors which

only exist to a specific monthly reporting system. After we

extracted the factors, we also discuss with the people in the

HR departments2 whether these factors are reasonable and

available to other IT companies. And all of them agree that

it is possible to extract the similar features from other IT

2Some HRs worked in multiple IT companies before they join C1 or C2.

companies. Regarding the factors that we have considered,

there might be additional factors that could be more relevant to

developers’ departure. In the future, to reduce these threats, we

plan to investigate more developers from different companies

and consider more factors.

Threats to construct validity refer to the suitability of

our evaluation measures. We use F1 and AUC scores which

are also used by prior studies to evaluate the effectiveness

of various software engineering studies [19]–[23]. Thus, we

believe there is little threat to construct validity.

V. DISCUSSION

First, previous studies often use survey or interview to inves-

tigate the factors that have impact on developer turnover [40].

In this study, we show that data-driven approach can be used to

effectively predict developer turnover by mining some kinds of

activity data of developers, i.e. monthly report of developers.

Comparing with previous studies that use survey or interview,

the data-driven approach is more quantitative and objective.

Second, our findings might be complementary of previous

studies. The factors found in our study is low level and easily

calculated. The high level factors considered in prior studies

(e.g. person expectation, job satisfaction, etc) are usually hard

to measure. Moreover, we believe our low level factors may

reflect some high level factors; for example, more working

hours, which usually means more pressure on developers, is

like to decrease job satisfaction of developers. In the future, we

will investigate the connection between our low level factors

and high level factors. Furthermore, we believe that more

data from developers’ daily work can be used to extract more

features to help us study developer turnover and understand

the underlying motivations of developers staying or leaving a

company. Such daily work data can be tracked using software

application instrumentation methods [41]–[45]. For example,

MYLAR (currently referred to as MYLYN) listens to Eclipse

IDE selection and view services to monitor programmer

activities in the Eclipse workbench [46]. ActivitySpace can

unobtrusively tracks developer interaction with the working

environment during the work [47]. We can use such kinds

of developer interaction data for various studies on developer

behavior and company management, including the study of

developer turnover. We can also investigate the behavior of

developers who are predicted to leave the company using more

interaction data.

Third, monthly report is a very common practice in many

IT companies, however, there are limited investigations on

mining monthly report. Our paper presents the first study on

how to leverage knowledge behinds monthly reports to predict

developer turnover. We hope our study can inspire more

researches on mining monthly reports. Also, based on monthly

reports, we can also develop other automated tools, e.g., we

can use topic modelling [48] to analyze the development trends

of a project, and we can even predict whether a project will be

successful by aggregating project members’ factors extracted

from monthly reports.

438178178178

Finally, our tool can also help to reduce the potential risks

in a project team, and help to detect and train potential

excellent employees. For example, if our tool predict that a

developer will leave the company, his/her project manager

can: (1) encourage and communicate with him/her frequently,

and increase the salary or bonus to retain the developer (if

he/she has much potential and is hardworking); (2) involve

another developer as a backup, to avoid the risk due to the

developer resignation. On the other hand, if a developer is

predicted to stay at the company, the PM could consider to

give him/her more resources (e.g., increase salary or bonus)

and train him/her to be a potential leader of a project team.

Besides, project manager can use the results of our tool as

a complement to productivity measures, since developers who

want to leave the company may not focus on their work and

tend to write poor quality code. Project manager can give more

training to developers who are predicted to stay in a team,

and care less about developers who are predicted to leave the

company.

VI. RELATED WORK

In this section, we briefly review the related works on the

reasons and impact of developer turnover.

A. Reasons of Developer Turnover

Researchers have developed a number of significant theo-

retical models to better understand employee turnover, such

as Price-Mueller model [49] and Jackofsky and Slocum’s

integrated process model [50]. According to Mobley [51], the

determinants of employee turnover can be simplified into four

general classes: 1) the external economy, which affects the

availability of alternative jobs; 2) organizational factors, such

as leadership, the reward system, and job design; 3) indi-

vidual non-work variables, like a spouse’s career and family

considerations; 4) individual work-related variables, such as

values, expectations, abilities, satisfaction, commitment, and

intentions.

A lot of studies have been conducted to understand de-

veloper turnover in software engineering community. Yu et
al. find that the objective attribute of open source software

(OSS) project and personal expectations are the two most

important factors to predict turnover [4]. Schilling et al.
analyze the contribution behavior of former Google Summer

of Code and report that the level of development experience

and conversational knowledge is strongly associated with

developer retention [6]. Hynninen et al. conduct a survey

with developers and find that developer turnover can be an

important manifestation of low commitment [5]. Sharma et
al. consider both the developer and project level factors and

suggest that past activity, developer role, project size and

project age are important predictors of turnover [52]. Different

from previous studies which mainly focus on open source

projects, we extract a number of factors from monthly work

reports which are used for project management in an industrial

company and use data mining technique to predict developer

turnover.

B. Impact of Developer Turnover

Obviously, employee turnover could cause economic loss

to companies. Pekala reports that firms in the U.S pay more

than $140 billion annually in recruiting, training, and ad-

ministrative expenses to replace employees who leave [3].

In online communities and collaborative platforms, such as

Wiki projects, the departure of contributors has a negative

effect on the community and causes social capital losses [53].

However, employee turnover could be a good opportunity

for organizations, as leavers are those most dissatisfied with

the current organization, and those who remain enjoy better

conditions and performance [54]. Moderate levels of turnover

could bring fresh level of activities, novel knowledge, and

liveliness for the online communities [55], [56].

Developer turnover could cause knowledge loss in software

development group. Izquierdo-Cortazar et al. propose some

measures of knowledge loss [57], such as the evolution of

orphan lines of code lastly edited by a developer who left

the team. Fronza et al. propose a wordle to visualize the

level of cooperation of a team and mitigate the knowledge

loss due to turnover [58]. According to a survey conducted

by Hall et al. [59], developer turnover might be related

to project success. Developer turnover also has impact on

software quality [7], [8]. Mockus finds that only leavers have

relationship with software quality since the loss of knowledge

and experience [7]. On the contrary, Foucault et al. find that

newcomers have a relationship with quality and leavers do not

have such relationship [8].

VII. CONCLUSION

In this paper, based on large-scale monthly work reports

from two IT companies, we use data mining technique to

investigate whether a developer will leave the company after

he/she enters into the company for one year. The monthly

reports we used are submitted by 3,638 developers in about

6 year period. Our study reveals the most effective classifier

(i.e., random forest) for the prediction of developers’ depar-

ture. Our study also identifies the key relationship between

various dimensions of factors and developers’ departure, and

the important factors which indicate a developer’s departure.

The model from our work can potentially help a company

to effectively predict the potential of a developer’s departure

and take proactive actions to retain talented developers; for

example, by better managing workload variance among project

members. In the future, we will collect more monthly reports

to verify our approach. We will also consider more activity

data from developers and extract more factors to investigate

developer turnover in more IT companies.

ACKNOWLEDGMENT

This research was supported by NSFC Program (No.

61602403 and 61572426), and National Key Technology R&D

Program of the Ministry of Science and Technology of China

(No. 2015BAH17F01).

439179179179

REFERENCES

[1] A. Whitaker, “What causes it workers to leave,” Management Review,
vol. 88, no. 9, p. 8, 1999.

[2] J. J. Jiang and G. Klein, “Supervisor support and career anchor impact
on the career satisfaction of the entry-level information systems profes-
sional,” Journal of management information systems, vol. 16, no. 3, pp.
219–240, 1999.

[3] N. Pekala, “Holding on to top talent,” Journal of Property management,
vol. 66, no. 5, pp. 22–22, 2001.

[4] Y. Yu, A. Benlian, and T. Hess, “An empirical study of volunteer
members’ perceived turnover in open source software projects,” in 45th
Hawaii International Conference on System Science (HICSS). IEEE,
2012, pp. 3396–3405.

[5] P. Hynninen, A. Piri, and T. Niinimaki, “Off-site commitment and
voluntary turnover in gsd projects,” in IEEE International Conference
on Global Software Engineering. IEEE, 2010, pp. 145–154.

[6] A. Schilling, S. Laumer, and T. Weitzel, “Who will remain? an eval-
uation of actual person-job and person-team fit to predict developer
retention in floss projects,” in Proc. HICSS. IEEE, 2012, pp. 3446–
3455.

[7] A. Mockus, “Succession: Measuring transfer of code and developer
productivity,” in Proc. ICSE. IEEE, 2009, pp. 67–77.

[8] M. Foucault, M. Palyart, X. Blanc, G. C. Murphy, and J.-R. Falleri,
“Impact of developer turnover on quality in open-source software,” in
Proc. FSE. ACM, 2015, pp. 829–841.

[9] A. Mockus, “Organizational volatility and its effects on software defect-
s,” in Proc. FSE. ACM, 2010, pp. 117–126.

[10] R. F. Flesch, How to write plain English: A book for lawyers and
consumers. Harpercollins, 1979.

[11] G. H. Mc Laughlin, “Smog grading-a new readability formula,” Journal
of reading, vol. 12, no. 8, pp. 639–646, 1969.

[12] J. P. Kincaid, R. P. Fishburne Jr, R. L. Rogers, and B. S. Chissom,
“Derivation of new readability formulas (automated readability index,
fog count and flesch reading ease formula) for navy enlisted personnel,”
DTIC Document, Tech. Rep., 1975.

[13] M. Coleman and T. L. Liau, “A computer readability formula designed
for machine scoring.” Journal of Applied Psychology, vol. 60, no. 2, p.
283, 1975.

[14] R. Senter and E. A. Smith, “Automated readability index,” DTIC
Document, Tech. Rep., 1967.

[15] E. Dale and J. S. Chall, “A formula for predicting readability: Instruc-
tions,” Educational research bulletin, pp. 37–54, 1948.

[16] “Linsear write,” http://www.csun.edu/∼vcecn006/read1.html#Linsear.
[17] R. Gunning, “{The Technique of Clear Writing},” 1952.
[18] “textstat,” https://pypi.python.org/pypi/textstat.
[19] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in Proc.

ASE. IEEE, 2013, pp. 279–289.
[20] S. Kim, E. J. Whitehead Jr, and Y. Zhang, “Classifying software changes:

Clean or buggy?” IEEE Transactions on Software Engineering, vol. 34,
no. 2, pp. 181–196, 2008.

[21] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Proc. ICSE.
IEEE Press, 2013, pp. 382–391.

[22] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
severity of a reported bug,” in Proc. MSR. IEEE, 2010, pp. 1–10.

[23] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed frame-
work and novel findings,” IEEE Transactions on Software Engineering,
vol. 34, no. 4, pp. 485–496, 2008.

[24] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

[25] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, S. Y. Philip et al., “Top 10 algorithms in
data mining,” Knowledge and information systems, vol. 14, no. 1, pp.
1–37, 2008.

[26] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[27] X. Xia, D. Lo, E. Shihab, X. Wang, and B. Zhou, “Automatic, high ac-
curacy prediction of reopened bugs,” Automated Software Engineering,
vol. 22, no. 1, pp. 75–109, 2015.

[28] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang, “Hydra: Mas-
sively compositional model for cross-project defect prediction,” IEEE
Transactions on Software Engineering, vol. 42, no. 10, pp. 977–998,
2016.

[29] X. Xia, D. Lo, X. Wang, and X. Yang, “Collective personalized
change classification with multiobjective search,” IEEE Transactions on
Reliability, vol. 65, no. 4, pp. 1810–1829, 2016.

[30] X. Xia, E. Shihab, Y. Kamei, D. Lo, and X. Wang, “Predicting crashing
releases of mobile applications,” in Proc. ESEM. ACM, 2016, p. 29.

[31] X. Xia, D. Lo, E. Shihab, and X. Wang, “Automated bug report
field reassignment and refinement prediction,” IEEE Transactions on
Reliability, vol. 65, no. 3, pp. 1094–1113, 2016.

[32] X. Yang, D. Lo, X. Xia, and J. Sun, “Condensing class diagrams with
minimal manual labeling cost,” in Computer Software and Applications
Conference (COMPSAC), 2016 IEEE 40th Annual, vol. 1. IEEE, 2016,
pp. 22–31.

[33] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[34] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[35] H. Abdi, “Bonferroni and šidák corrections for multiple comparisons,”
Encyclopedia of measurement and statistics, vol. 3, pp. 103–107, 2007.

[36] M. N. Audris Mockus and H. Sharp, “Best practices and pitfalls for
statistical analysis of se data,” in Proc. ICSE. IEEE, 2014.

[37] Y. Tian, M. Nagappan, D. Lo, and A. E. Hassan, “What are the charac-
teristics of high-rated apps? a case study on free android applications,”
in Proc. ICSME. IEEE, 2015, pp. 301–310.

[38] D. H. Wolpert and W. G. Macready, “An efficient method to estimate
bagging’s generalization error,” Machine Learning, vol. 35, no. 1, pp.
41–55, 1999.

[39] “Scott-knott test,” https://cran.r-project.org/web/packages/ScottKnott/
ScottKnott.pdf.

[40] S. G. Westlund and J. C. Hannon, “Retaining talent: Assessing job sat-
isfaction facets most significantly related to software developer turnover
intentions,” Journal of Information Technology Management, vol. 19,
no. 4, pp. 1–15, 2008.

[41] T.-H. Chang, T. Yeh, and R. Miller, “Associating the visual represen-
tation of user interfaces with their internal structures and metadata,” in
Proc. UIST, 2011, pp. 245–256.

[42] A. N. Dragunov, T. G. Dietterich, K. Johnsrude, M. McLaughlin, L. Li,
and J. L. Herlocker, “TaskTracer: a desktop environment to support
multi-tasking knowledge workers,” in Proc. IUI, 2005, p. 75.

[43] E. Harpstead, B. A. Myers, and V. Aleven, “In search of learning:
facilitating data analysis in educational games,” in Proc. CHI, 2013,
p. 79.

[44] W. C. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless, “Edit wear
and read wear,” in Proc. CHI, 1992, pp. 3–9.

[45] J. H. Kim, D. V. Gunn, E. Schuh, B. C. Phillips, R. J. Pagulayan, and
D. Wixon, “Tracking real-time user experience (TRUE): a comprehen-
sive instrumentation solution for complex systems,” in Proc. CHI, 2008,
pp. 443–451.

[46] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model for
IDEs,” in Proc. AOSD, 2005, pp. 159–168.

[47] L. Bao, D. Ye, Z. Xing, X. Xia, and X. Wang, “Activityspace: a
remembrance framework to support interapplication information needs,”
in Proc. ASE. IEEE, 2015, pp. 864–869.

[48] D. M. Blei, “Probabilistic topic models,” Communications of the ACM,
vol. 55, no. 4, pp. 77–84, 2012.

[49] J. L. Price, “Reflections on the determinants of voluntary turnover,”
International Journal of manpower, vol. 22, no. 7, pp. 600–624, 2001.

[50] E. F. Jackofsky and J. W. Slocum, “A causal analysis of the impact
of job performance on the voluntary turnover process,” Journal of
Organizational Behavior, vol. 8, no. 3, pp. 263–270, 1987.

[51] W. H. Mobley, “Employee turnover: Causes, consequences, and control,”
1992.

[52] P. N. Sharma, J. Hulland, and S. Daniel, “Examining turnover in open
source software projects using logistic hierarchical linear modeling
approach,” in IFIP International Conference on Open Source Systems.
Springer, 2012, pp. 331–337.

[53] X. Qin, M. Salter-Townshend, and P. Cunningham, “Exploring the
relationship between membership turnover and productivity in online
communities,” arXiv preprint arXiv:1401.7890, 2014.

[54] D. Krackhardt and L. W. Porter, “When friends leave: A structural
analysis of the relationship between turnover and stayers’ attitudes,”
Administrative science quarterly, pp. 242–261, 1985.

440180180180

[55] S. Ransbotham and G. C. Kane, “Membership turnover and collaboration
success in online communities: Explaining rises and falls from grace in
wikipedia,” MIS Quarterly-Management Information Systems, vol. 35,
no. 3, p. 613, 2011.

[56] L. Dabbish, R. Farzan, R. Kraut, and T. Postmes, “Fresh faces in the
crowd: turnover, identity, and commitment in online groups,” in Proc.
CSCW. ACM, 2012, pp. 245–248.

[57] D. Izquierdo-Cortazar, “Relationship between orphaning and produc-
tivity in evolution and gimp projects,” ence, Eindhoven University of

Technology, The Netherlands., p. 6.
[58] I. Fronza, A. Janes, A. Sillitti, G. Succi, and S. Trebeschi, “Cooperation

wordle using pre-attentive processing techniques,” in Proc. CHASE.
IEEE, 2013, pp. 57–64.

[59] T. Hall, S. Beecham, J. Verner, and D. Wilson, “The impact of staff
turnover on software projects: the importance of understanding what
makes software practitioners tick,” in Proceedings of the 2008 ACM
SIGMIS CPR conference on Computer personnel doctoral consortium
and research. ACM, 2008, pp. 30–39.

441181181181

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	5-2017

	Who will leave the company?: A large-scale industry study of developer turnover by mining monthly work report
	Lingfeng BAO
	Zhenchang XING
	Xin XIA
	David LO
	Shanping LI
	Citation

	Who Will Leave the Company?: A Large-Scale Industry Study of Developer Turnover by Mining Monthly Work Report

