
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

9-2016

Automated bug report field reassignment and
refinement prediction
Xin XIA

David LO
Singapore Management University, davidlo@smu.edu.sg

Emad SHIHAB

Xinyu WANG

DOI: https://doi.org/10.1109/TR.2015.2484074

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
XIA, Xin; LO, David; SHIHAB, Emad; and WANG, Xinyu. Automated bug report field reassignment and refinement prediction.
(2016). IEEE Transactions on Reliability. 65, (3), 1094-1113. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3692

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/111759667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3692&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3692&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3692&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TR.2015.2484074
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3692&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3692&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

IEEE TRANSACTIONS ON RELIABILITY 1

Automated Bug Report Field Reassignment
and Refinement Prediction

Xin Xia, Member, IEEE, David Lo, Member, IEEE, Emad Shihab, Xinyu Wang

Abstract–Bug fixing is one of the most important activities
in software development and maintenance. Bugs are report-
ed, recorded, and managed in bug tracking systems such as
Bugzilla. In general, a bug report contains many fields, such
as product, component, severity, priority, fixer, operating system
(OS), platform, etc., which provide important information for the
bug triaging and fixing process. Our previous study finds that
approximately 80% of bug reports have their fields reassigned
and refined at least once, and bugs with reassigned and refined
fields take more time to fix than bugs with no reassigned and
refined fields. Thus, automatically predicting which bug report
fields get reassigned and refined could help developers to save
bug fixing time.

Considering that a bug report could have multiple field reas-
signments and refinements (e.g., the product, component, fixer,
and other fields of a bug report can get reassigned and refined),
in this paper, we propose a multi-label learning algorithm to
predict which bug report fields might be reassigned and refined.
We note that the number of bug reports with some types of
reassignment and refinement (e.g., bugs whose severity fields
gets reassigned and refined) is a small proportion of the whole
bug report collection, indicating the class imbalance problem.
Thus, we propose imbalanced ML.KNN (Im-ML.KNN), which
extends ML.KNN, one of the state-of-the-art multi-label learning
algorithms, to achieve better performance. Im-ML.KNN is a
composite model that combines 3 multi-label classifiers built using
different types of features (i.e., meta, textual, and mixed features).
We evaluate our solution on 4 large bug report datasets including
OpenOffice, Netbeans, Eclipse, and Mozilla containing a total
of 190,558 bug reports. We show that Im-ML.KNN can achieve
an average F-measure score of 0.56-0.62. We also compare Im-
ML.KNN with other state-of-art methods, such as the method
proposed by Lamkanfi et al., ML.KNN, and HOMER-NB. The
results show that Im-ML.KNN, on average, improves the average
F-measure scores of Lamkanfi et al.’s method, ML.KNN, and
HOMER-NB by 119.69%, 9.11%, and 161.08%, respectively.

Index Terms—Bug Report Field Reassignment and Refinement,
Multi-label Learning, Imbalance Learning, Composite Model

ACRONYMS AND ABBREVIATIONS

BRFRR Bug Report Field Reassignment and
Refinement

Im-ML.KNN Imbalanced ML.KNN
NB Naive Bayes
KNN K-nearest Neighbors
LDS Longitudinal Data Setup

Xin Xia and Xinyu Wang are with the College of Computer Sci-
ence and Technology, Zhejiang University, Hangzhou, China. (E-mail: xxi-
a@zju.edu.cn, wangxinyu@zju.edu.cn)

David Lo is with the School of Information Systems, Singapore Manage-
ment University, Singapore. (E-mail: davidlo@smu.edu.sg)

Emad Shihab is with the Department of Computer Science and Software
Engineering, Concordia University, Montreal, QC, Canada. (E-mail: eshi-
hab@cse.concordia.ca)

Xinyu Wang is the corresponding author.

NOTATION

BR A set of bug report collection
bi The ith bug report
wi,j Weight for jth term in bi
L A set of labels
thresholdl Threshold for label l
Pl Precision for label l
Rl Recall for label l
Fl Precision for label l
Ave.P Average Precision for labels in L
Ave.R Average Recall for labels in L
Ave.F Average F-measure for labels in L
Sample Sample size
Meta Meta features
Text Textual features
Mixed Mixed features

I. INTRODUCTION

Bugs are inevitable in the whole lifecycle of software
development and maintenance, and bug fixing is a time-
consuming and costly task. Previous studies from NIST show
that software bugs cost the US economy an estimated $59
billion every year, which is around 0.6% of the gross domestic
product [1]. Bug tracking systems such as Bugzilla are used
to report, record, and manage these bugs. A typical bug report
contains many fields, e.g., the summary and description fields
which provide the textual description of the observed bug,
the status field which shows the current status (e.g., closed
or resolved), the product and component fields where the bug
is detected, the priority and severity fields which mark the
importance of the bug, the version, operating system (OS),
and platform fields which indicate the runtime environment
affected by the bug, and the reporter and fixer fields. These
fields are vital for developers to triage and fix the bug [2], [3].

However, Bug report fields often get reassigned and re-
fined. Various types of bug report field reassignments and
refinements have been investigated in the literature. Shihab
et al. study reopened bugs, and they find that, for Eclipse
Platform 3.0, the average time to resolve a reopened bug is
more than twice the time to resolve a non-reopened bug [4],
[5]. Lamkanfi and Demeyer studied component reassignments
and found that, for Mozilla, it takes a long time to reassign a
bug report to the correct component [6]. Jeong et al. studied
fixer reassignments and refinements in Eclipse and Mozilla,
and found that 37-44% of bugs have their fixer reassigned
and refined [7]. Saha et al. found that 10% of long lived bugs
get their fixers reassigned and refined 5 or more times [8]. In
our previous work, we analyzed bug reports from OpenOffice,

Published in IEEE Transactions on Reliability, September 2016, Volume 65, Issue 3, pp. 1094-1113.
http://doi.org/10.1109/TR.2015.2484074

IEEE TRANSACTIONS ON RELIABILITY 2

Netbeans, Eclipse, and Mozilla, and found that, approximately
80% of bug reports have their fields reassigned [9]. Also,
we found that bug reports with field reassignments have
statistically significantly longer bug fix time than those without
reassignments.

The aforementioned studies indicate that bug reassignments
and refinements are associated to longer bug fixing times.
Some fields are wrongly assigned and this can result in a
delay for a bug to get resolved, while other fields are not
inherently wrong, but need to be adjusted with additional
insights that bug triagers have after they analyze the bugs [10].
For these cases, there is a need for an approach that can help
developers reduce the amount of incorrect assignments, or to
suggest appropriate refinements that developers can consider
to make in the future. Such an approach can reduce the number
of unnecessary reassignments and refinements. Admittedly,
since many factors affect bug fixing time (e.g., difficulty to
reproduce and resolve a bug [8], etc.), such an approach is
not a panacea to make bug fixing time short. Nevertheless, it
helps solve a problem that impacts bug fix time.

To address the above-mentioned need, in this paper, we
develop a tool that leverages multi-label learning algorithms
to automatically predict which bug report fields will be reas-
signed or refined. In the multi-label learning literature, one da-
ta instance (i.e., a bug report) can be assigned to multiple labels
(i.e., fields that are predicted to be reassigned and refined) [11].
It is important to note that our work complements previous
studies such as the work on reopened bug prediction [4], [5]
and component reassignment and refinement prediction [6],
[12], since our work generalizes these studies by considering
the reassignments and refinements of many different fields
in a bug report. Our proposed multi-label learning algorithm
can predict, not only the reassignment and refinement of the
status field or the component field, but also all other fields
simultaneously1. To investigate the usefulness of our tool,
we have checked with several experienced developers from
OpenOffice and NetBeans Project Management Committee,
who have fixed hundreds of bugs and managed the bug reports
in OpenOffice and Netbeans. Some of their comments are as
follows:

“Considering a lot of ”raw” users would submit bug reports
in our community, there would be many errors (wrongly
assigned fields in the bug report), the tool would be possible
to evaluate a ”raw” user submitted report and predict what
fields will be changed.”

“Although human thought was necessary here to decide
what the right component (fields) should be (during bug
fixing process), a tool which assists whether a fields would
get reassigned and refined still relief the workload for a
developer.”

“I think, a reassignment prediction can be useful, especially
when non-developers create bug requests that are not familiar
with the development process and management. Such users

1In the machine learning literature, the problems of reopened bug prediction
and component prediction can be mapped to single-label learning problems.
Single-label learning is a classification problem where one instance (e.g., a
bug report) can only be assigned to one label (e.g., reopened or not reopened,
and reassigned and refined or not reassigned and refined.)

may fill out some fields incorrectly, which could be detected
more easily and help the developers to better assess and
organize the reports.”

To build our tool, we extract the values of important features
from the bug reports when they are initially submitted. The
features extracted from a training set of bug reports, along with
field reassignment and refinement information, are then used to
build a multi-label classifier. We extract field reassignment and
refinement information by analyzing the history of bug reports
to identify fields that are changed after the bug report was
initially submitted. The resultant multi-label classifier serves
as a tool and will be used to predict the fields which would
get reassigned and refined for a new submitted bug report. The
output of our tool is a list of bug report fields which would
get reassigned and refined. With our tool, developers will be
better informed on whether they have assigned the right field
values when they submit a bug report.

To assist in making accurate predictions, one possible
solution is to use ML.KNN [13], one of the state-of-the-
art algorithms used to solve the multi-label learning prob-
lem. However, we find that for many fields, there is only
a very small percentage of bug reports whose fields are
reassigned and refined. For example, in Eclipse, only 9.76%,
18.44%, 9.19%, and 8.14% of bug reports have their product,
component, severity and status fields reassigned and refined
[9]. We refer to this phenomenon as the class imbalance
phenomenon [14]. To improve the overall performance of
ML.KNN, we propose imbalanced ML.KNN (Im-ML.KNN),
which addresses the class imbalance phenomenon experienced
in the bug report field reassignment and refinement task. Im-
ML.KNN is a composite model, which combines 3 multi-
label classifiers built using different types of features (i.e.,
meta, textual, and mixed features). In our paper, meta features
refer to the non-textual fields of a bug report, e.g., reporter,
assignee, product, component, etc, textual features refer to the
proceed terms extracted from the description and summary
field, and mixed features refer to the combination of both meta
and textual features. Im-ML.KNN automatically learns the best
threshold value to predict which fields will be reassigned and
refined in the training data. By default, we set the number of
neighbors K in Im-ML.KNN as 10.

In our previous study, we perform an empirical study on
bug report field reassignment and refinement [9]. This paper
complements our previous work, and our previous work serves
as a motivation to this work. In particular, in this paper we
propose an automated tool to predict which bug report fields
will get reassigned, to help developers reduce bug fixing effort.

We evaluate our Im-ML.KNN algorithm on bug report
datasets from 4 large open source porjects namely - OpenOf-
fice, Netbeans, Eclipse, and Mozilla, containing a total of
190,558 bug reports. The experiment results show that Im-
ML.KNN can achieve an average F-measure score between
0.52-0.67. We also compare Im-ML.KNN with other state-of-
art methods, such as the method proposed by Lamkanfi et al.,
ML.KNN and HOMER-NB [15]. We address the following
research questions:

RQ1 What is the F-measure of Im-ML.KNN? How
much improvement can it achieve over the method

IEEE TRANSACTIONS ON RELIABILITY 3

proposed by Lamkanfi et al. [6], ML.KNN [13],
and HOMER-NB [15]?
The results show that Im-ML.KNN, on average,
improves the F-measure score of Lamkanfi et al.’s
method, ML.KNN, and HOMER-NB by 119.69%,
9.11%, and 161.08%, respectively.

RQ2 Can the F-measure of Im-ML.KNN outperform
those of its constituent components (i.e., meta
classifier, text classifier, and mixed classifier)?
Yes, Im-ML.KNN improves the average F-measure
scores of meta classifier, text classifier, and mixed
classifier by 8.91%, 164.31%, and 9.11%, respective-
ly. The results show that it is beneficial to combine
the 3 classifiers.

RQ3 Do different numbers of neighbors affect the F-
measure of Im-ML.KNN?
No, across the 4 projects, Im-ML.KNN achieves a
relatively stable performance when different numbers
of neighbors are used.

RQ4 What are good predictors of bug report field
reassignments and refinements? Do the predictors
differ for different fields?
Meta features (e.g., product, component, assignee)
make up most of the top-10 features. Among the 4
projects, product, component, reporter, and assignee
are the 4 most important meta features related to
various types of field reassignment.

RQ5 What is the effect of varying the amount of
training data on the effectiveness of Im-ML.KNN?
To reduce the amount of training data, we perform 10
times K-fold cross-validation, with K varied from 2
to 10. When we vary K from 10 to 2, the F-measures
for Eclipse, Mozilla, and Firefox remains relatively
stable (it fluctuates less than 5.68% from the original
value). For OpenOffice, the F-measure reduces by
26.81% when we vary k from 10 to 2.

RQ6 How much time does it take for Im-ML.KNN to
run?
The average model building time and the average
prediction time of Im-ML.KNN is 0.0265 and 0.0158
seconds per bug report, respectively.

The main contributions of this paper are:

• Propose a new algorithm that effectively deals with
the class imbalance problem. Considering the class
imbalance phenomenon, we propose a new algorithm
named imbalanced ML.KNN (Im-ML.KNN) to achieve
better performance when predicting reassigned and re-
fined fields.

• Accurately predict which bug fields will be reassigned
and refined. We propose a multi-label learning algorithm
to accurately predict which bug fields will be reassigned
and refined. To the best of our knowledge, this is the first
study to use multi-label learning to predict bug report
field reassignments and refinements.

• Perform an extensive empirical study to examine
the effectiveness of Im-ML.KNN in predicting which
bug fields will be reassigned and refined. We inves-

tigate the performance of Im-ML.KNN on 4 large open-
source projects, and the experiment results show that our
method improves existing state-of-the-art methods such
as Lamkanfi et al.’s method and ML.KNN.

The remainder of the paper is organized as follows. We
describe the preliminary materials in Section II. We outline
the overall framework of our bug report field reassignment
and refinement prediction solution in Section III. We elaborate
how the features and labels (i.e., various bug report field reas-
signments and refinements) are extracted from bug reports in
Section IV. We present our multi-label classification approach
Im-ML.KNN in Section V. We report the experiment results
in Section VI. We discuss and present the threats to validity
of our paper in Section VII and VIII. We describe related
work in Section IX. We conclude and mention future work in
Section X.

II. PRELIMINARIES

In this section, we first present the background of bug report
field reassignment and refinementin Section II-A. Next, we
describe ML.KNN, which is the state-of-the-art multi-label
classification algorithm that we build our approach on, in
Section II-B.

A. Background
A typical bug report contains many useful fields, such as

product, component, fixer, summary, description, etc. Howev-
er, in some cases, the fields in the bug report get reassigned
and refined. Figure 1 shows a bug report from Eclipse with
BugID 2210682. We notice that the product, component, fixer,
and status fields of this bug report have been reassigned and
refined. The product was reassigned from WTP Incubator
to WTP Source Editing, and the component was reas-
signed from incubator to wtp.inc.xsl, and finally
it was reassigned to wst.xsl. The fixer was reassigned
from wtp.inc-inbox to doug.satchwell. Moreover,
the bug report in Figure 1 was also a reopened bug, i.e., the bug
report was first resolved and fixed by doug.satchwell,
and then d_a_carver reopened it and changed the status
to new. In this paper, we only consider one type of status
reassignment: resolved or closed to reopen. This is the one of
most important reassignment and refinement. We ignore the
other status reassignments and refinements as in general a bug
report status would eventually get changed (e.g., from open to
closed) as developers are working to fix it.
Observations and Implications. From the above bug report,
we make the following observations:

1) The bug report was created on March 2nd, 2008, and it
was fixed on April 30th, 2009. This bug took approxi-
mately one year to get fixed.

2) The component was reassigned from incubator to
wtp.inc.xsl on June 5th, 2008, by d_a_carver.
However, on March 31st, 2009, webmaster still reas-
signed its component and product fields. Thus, it seems
that even though 9 months had passed, a suitable person
to fix the bug was still to be found.

2https://bugs.eclipse.org/bugs/show bug.cgi?id=221068

IEEE TRANSACTIONS ON RELIABILITY 4

Fig. 1. Reassigned and refined Bug Report of Eclipse Project with BugID
221068.

B. Multi-label Learning

Multi-label learning refers to the task of assigning one or
more labels to a data instance. Traditional classification only
assigns one label to an instance. However, in many situations,
one instance could have more than one label. In our bug report
field reassignment and refinementprediction problem, one bug
report could have several of its fields reassigned and refined.
For example, in Figure 1, the bug report has 4 types of field
reassignments and refinements, i.e., product, component, fixer,
and status field reassignments and refinements.

Formally, multi-label learning is defined as follows. Let χ
denotes the input space (i.e., bug report collection) and let
L denote the set of labels (i.e., 8 types of bug report field
reassignment and refinement). Given a multi-label training
dataset D = {(Xi, Yi)}ni=1, where Xi ∈ χ denotes a bug
report, and YXi = {0, 1}|L| (YXi(l) = 1 indicates that the bug
report Xi is assigned to the lth label (i.e., one of the field
reassignment and refinement types) and YXi

(l) = 0 indicates
otherwise), the goal of multi-label classification is to build a
model h : χ→ 2|L|, which is used to predict the proper label
set for a new instance.

ML.KNN [13] is one of the state-of-the-art algorithms in
the multi-label learning literature. To infer the label set for a
new instance (i.e., bug report) Xnew, ML.KNN follows three
steps: the computation of membership counting scores, the
computation of ML.KNN scores, and the assignment of labels.
We describe each of these steps in the following subsections.

1) Membership Counting Score
ML.KNN first identifies the k-nearest neighbors

knn(Xnew) of the new instance Xnew from the training
dataset. For each label l in the label set L, we count the
number of instances assigned to label l in knn(Xnew).
Formally, we denote membership counting score CXnew

(l) as
the number of instances assigned to label l, i.e.,

CXnew
(l) =

∑
b′∈knn(Xnew)

Yb′(l), l ∈ L (1)

2) ML.KNN Score
With the membership counting score CXnew

(l) for each
label l, we consider two events: H l

1 is the event that Xnew

is assigned to l, and H l
0 is the event Xnew is not assigned

to l. Moreover, El
m denotes the event that there are exactly

m instances that are assigned to label l, among the k nearest
neighbors of Xnew. Then, the ML.KNN score for l is the
probability that the event Xnew is assigned to l, given that
exactly CXnew

(l) instances are assigned to label l, i.e.,

ML.KNNXnew(l) = P (H l
1|El

CXnew (l)) (2)

From Equation (2), and using Bayes rule, we can derive:

ML.KNNXnew
(l) =

P (H l
1)× P (El

CXnew (l)|H
l
1)∑

i∈{0,1} P (H
l
i)× P (El

CXnew (l)|H
l
i)
(3)

The parameters of P (H l
1), P (H0

1), P (El
m|H l

1), and
P (E0

m|H0
1) can be inferred from the training dataset. The

details of the inference process is available in [13].
3) Label Assignment
After the ML.KNN score for each label l is obtained, to

decide whether a label should be assigned to Xnew, ML.KNN
uses the following heuristics: if P (H l

1)×P (El
CXnew (l)|H

l
1) >

P (H0
1)× P (El

CXnew (l)|H
0
1), then l is assigned to Xnew.

III. OVERALL FRAMEWORK

Figure 2 shows the overall framework of Im-ML.KNN. The
framework includes two phases: the model building phase and
the prediction phase. In the model building phase, our goal is
to build a composite model MLComposer, from historical bug
reports, which have known bug report field reassignment and
refinement information. In the prediction phase, this classifier
is used to predict the fields that will get reassigned and refined
for a new bug report.

Our framework first extracts features from the set of training
bug reports (i.e., bug reports with known field reassignments
and refinements) (Step 1). Features are various quantifiable
characteristics of bug reports that could potentially differen-
tiate reports for different fields reassignment. In this paper,
we consider 2 types of features: meta features and textual
features.3 Next, we analyze the history of the training bug
reports, and extract the field reassignment and refinement
information (Step 2). Each field corresponds to a label, and
in total we have 8 labels which corresponds to 8 types of
bug report field reassignments and refinements (i.e., product,
component, severity, priority, OS, version, fixer, and status
reassignment).4 The training set is constructed after the feature
and label extraction.

Next, our framework constructs 3 multi-label classifiers
based on labels and different features of the training set (Step

3For more details, please refer to Section IV-A.
4For more details, please refer to Section IV-B.

IEEE TRANSACTIONS ON RELIABILITY 5

Training Bug
Reports

Model Building Phase Prediction Phase

Features
Extraction

MLComposer

New Bug
Reports

 Features
Extraction

Predicted
Reassigned

Fields

1

Labels
Extraction

Meta Multi-label
Classifier

Text Multi-label
Classifier

Mixed Multi-label
Classifier

Training
Set

4

3

5

6

7

2

Fig. 2. Overall Framework of Im-ML.KNN.

3). In this paper, we use ML.KNN [13] to construct the 3
multi-label classifiers. The meta multi-label classifier is built
based on the meta features of bug reports. The text multi-
label classifier is built based on the textual features of bug
reports. The mixed multi-label classifier is built based on the
two types (i.e., meta features and textual features) of features
of bug reports. A multi-label classifier is a machine learning
model, which assigns a set of labels (in our case: bug report
fields that would get reassigned and refined) to a data point (in
our case: a bug report) based on its features. We then combine
the 3 classifiers together to construct a MLComposer classifier
(Step 4).

After MLComposer is constructed, it is used in the predic-
tion phase to predict the fields that will get reassigned and
refined in a new bug report. For each such bug report, we
first extract features from it as we do in the model building
phase (Step 4). Then, we input the features to MLComposer
(Step 5). This step outputs the prediction results, which is a
set of labels corresponding to the bug report fields that get
reassigned and refined.

IV. FEATURE & LABEL EXTRACTION

In this section, we first describe the features we extracted
from bug reports in Section IV-A. Next, we present the way we
extract the labels from the training bug reports in Section IV-B.

A. Feature Extraction

A bug report contains a large amount of useful information,
such as its textual description, and the values of its many fields.
To predict which bug fields will be reassigned and refined, we
extract many features from bug reports. We divide them into
2 categories: meta features and textual features.

1) Meta Features
Meta features refer to the non-textual fields of a bug report,

e.g., reporter, assignee, product, component, etc. These fields
are important for bug triaging and fixing [2], [3], [16]. Table I
presents the meta features which are used to predict which
bug fields get reassigned and refined. We extract 9 fields, and
we record the values of these fields when a bug is reported -
before any reassignments and refinements (if any). Notice that

TABLE I
META FEATURES FOR BUG REPORT FIELD REASSIGNMENT.

Features Description Example
Reporter The developer who reports the bug. d a carver
Assignee The assignee before this field is

reassigned and refined.
wtp.inc-
inbox

Product The product before this field is re-
assigned and refined.

WTP Incuba-
tor

Component The component before this field is
reassigned and refined.

incubator

Severity The severity before this field is re-
assigned and refined.

normal

Priority The priority before this field is re-
assigned and refined.

p3

OS The OS before this field is reas-
signed and refined.

All

Version The product before this field is re-
assigned and refined.

unspecified

Platform The platform before this field is
reassigned and refined.

PC

the value of the reporter field is unchanged for the whole life
cycle of a bug report- there is no reassignment and refinement
for this field. In Table I, column Example corresponds to
the values of the fields of the example bug report shown in
Figure 1. This bug report has product, component, fixer, and
status reassignments and refinements, so we trace the mixed
values of these 4 fields from its bug history. For the other
fields, we use the values recorded in the final bug report.

2) Textual Features
We extract the text in the summary and description fields,

and then we tokenize them, remove the stop words, stem them
(i.e., reduce them to their root form, e.g., write and written are
reduced to writ) using the Porter stemmer, and represent them
as TD-IDF (i.e., term frequency.inverse document frequency)
vectors [17]. Formally, we represent terms in the ith bug report
as a vector of term weights denoted by bi = 〈wi,1, wi,2...wi,v〉.
The weight wi,j denotes the TD-IDF score [17] for the jth

term in the ith bug report, which is computed as follows:

wi,j =
tfi,j

Num of Terms in bi
×log(Num of BugReports

dfj
)

(4)

IEEE TRANSACTIONS ON RELIABILITY 6

In the above equation, bi denotes the ith bug report in
the bug report collection, tfi,j denotes the term frequency of
the jth term in the ith bug report, dfi denotes the document
frequency of the jth term. Term frequency tfi,j refers to the
number of times the jth term appears in the ith bug report.
The document frequency of the jth term refers to the number
of bug reports in which the jth term appears in. To reduce
noise, we remove terms which appear less than 10 times in
the bug report collection.

B. Label Extraction

For the training bug reports, we need to extract the field
reassignment and refinement information from the bug report
history. Each field corresponds to a label, and in this paper,
we consider 8 types of bug report field reassignments and
refinements considered in our previous study [9], i.e., compo-
nent, product, severity, priority, OS, version, fixer, and status
reassignment and refinement. For each of the training bug
reports, we parse its history, and check whether any of its 8
fields got reassigned and refined. If a field was reassigned and
refined, we set the corresponding label of the field to be “1”;
otherwise “0”. For example, in Figure 1, we notice its product,
component, fixer, and status fields get reassigned and refined.
Thus, we set the corresponding labels of product, component,
fixer, and status to be “1”, and the remaining labels to be “0”.

V. MLCOMPOSER: A COMPOSITE METHOD

ML.KNN is used to construct a multi-label classifier to
predict the fields which would get reassigned and refined for
bug reports. However, as we noted, for each type of field
reassignment and refinement (except for the fixer reassign-
ment), the number of bug reports whose fields have been
reassigned and refined is much smaller than the number of
bug reports without reassignment, i.e., the class imbalance
phenomenon [14] is observed. For example, in Eclipse, only
9.76%, 18.44%, 9.19%, and 8.14% of bug reports have their
product, component, severity and status fields reassigned and
refined; in Mozilla, only 19.27%, 24.68%, 7.23%, and 11.39%
of bug reports have their product, component, severity and
status fields reassigned and refined [9]. To adapt ML.KNN to
work well in imbalanced multi-label data (i.e., having much
less bug reports with reassigned and refined fields than bugs
without reassigned and refined fields), and also considering
that we have multiple types of features, i.e., meta features
and textual features, in this section, we propose MLComposer
which combines 3 multi-label classifiers (ML.KNN classifiers)
built on different types of features and considers the imbalance
phenomenon. In this section, we first define three sets of scores
outputted by the three classifiers. Next, we describe how we
combine these scores together to construct the MLComposer
classifier.

A. Feature Scores

As illustrated in Figure 2, our proposed framework has 3
different multi-label classifiers (i.e., ML.KNN classifiers built
using each of the three feature types). Let us refer to them as

ML.KNNMeta, ML.KNNText, and ML.KNNMixed. Giv-
en an unknown bug report, ML.KNNMeta, ML.KNNText,
and ML.KNNMixed output the following meta scores, text
scores, and mixed scores, respectively:

Definition 1: (Meta Scores.) Consider a set of training
bug reports BR, its corresponding set of meta feature values
Meta, and its corresponding set of labels L. We build a M-
L.KNN classifier ML.KNNMeta trained on Meta. For a new
bug report br, for each label l ∈ L, we use ML.KNNMeta

to get the likelihood that br will be assigned to the label l
(i.e., the field corresponds to label l would get reassigned and
refined). We refer to the likelihood score as the meta score
for label l, and denote it as ML.KNNMeta(br, l).

Definition 2: (Text Scores.) Consider a set of training bug
reports BR, its corresponding set of text feature values Text,
and its corresponding set of labels L. We build a ML.KNN
classifier ML.KNNText trained on Text. For a new bug
report br, for each label l ∈ L, we use ML.KNNText to
get the likelihood that br will be assigned to the label l. We
refer to the likelihood score as the text score for label l, and
denote it as ML.KNNText(br, l).

Definition 3: (Mixed Scores.) Consider a set of training
bug reports BR, its corresponding set of meta and text feature
values Mixed, and its corresponding set of labels L. We build
a ML.KNN classifier ML.KNNMixed trained on Mixed.
For a new bug report br, for each label l ∈ L, we use
ML.KNNMixed to get the likelihood that br will be assigned
to the label l. We refer to the likelihood score as the mixed
score for label l, and denote it as ML.KNNText(br, l).

B. MLComposer

In this section, we propose MLComposer, a composite
method which uses all of these 3 scores, and also considers the
imbalance phenomenon in bug report field reassignments and
refinements. A linear combination of meta scores, text scores,
and mixed scores is used to compute the final MLComposer
scores.

Definition 4: (MLComposer Score.) Consider a train-
ing bug report collection BR, and its corresponding multi-
label classifiers for meta, description, and mixed features
(ML.KNNMeta, ML.KNNText, and ML.KNNMixed), re-
spectively. For a new bug report br, for each label l ∈ L
we compute its corresponding meta, text and mixed scores,
then its MLComposer score, denoted as MLComposer(br, l),
which is a linear combination of the 3 scores, is defined as
follows:

MLComposer(br, l) = α×ML.KNNmeta(br, l) +

β ×ML.KNNtext(br, l) +

γ ×ML.KNNmixed(br, l) (5)

In the above equations, α ∈ [0, 1], β ∈ [0, 1], and γ ∈ [0, 1],
and α+ β + γ = 1.

To deal with imbalanced data, MLComposer introduces a
threshold for every label. Each threshold is independently fine
tuned based on a sample of a training data so that the bias
introduced by the imbalanced data can be offset. For each label

IEEE TRANSACTIONS ON RELIABILITY 7

l ∈ L, we define a threshold thresholdl. To decide whether a
label l is assigned to a new bug report (aka. an instance) br,
we follow the following equation:

Labelbr(l) =

{
1,

0,

if MLComposer(br, l) ≥ thresholdl
Otherwise

(6)
The value of thresholdl for each label l can be trained from

the training bug report collection. To automatically produce
good α, β, γ, and thresholdl (l ∈ L) values for MLComposer,
we propose a greedy algorithm.

Figure 1 presents the detailed steps to estimate good α, β, γ,
and thresholdl values. We input a bug report collection BR,
label set L (i.e., various types of bug report field reassignmen-
t), sample size Sample, meta features Meta, textual features
Text, mixed features Mixed, and the number of neighbors
K. We first sample a small bug report collection SampBR

according to the sample size Sample (Line 12). Next, we
initialize α, β, γ, and thresholdl (l ∈ L) values to 0 at
Line 13. Then, we build the classifiers (i.e., ML.KNNMeta,
ML.KNNText, and ML.KNNMixed) for meta features,
textual features, and mixed features using BR, and compute
their corresponding meta, text, and mixed scores of bug reports
in SampBR at Lines 14, 15 and 16, respectively. Next, we
incrementally increase α, β, γ, and thresholdl values (Lines
17 to 21). We increase α from 0 to 1, and beta from 0 to
(1−α), in 0.1 increments. The value of γ is set as (1−α−β).
We increase the thresholdl for each label l in L from 0 to
1, in 0.01 increments. We use a finer granularity step to tune
thresholdl since it directly decides whether a bug report will
be assigned to label l. We use a coarser granularity step to
tune α, β, and γ values to reduce the computational cost in
the tuning process. For each configuration of α, β, γ, and
thresholdl values, we build a composite model and compute
the resultant F-measure score using bug reports in SampBR

(Lines 20 to 26). Finally, Algorithm 1 returns α, β, γ, and
thresholdl values resulting in the best average F-measure
scores across all the labels l in L (Line 32).

VI. EXPERIMENTS AND RESULTS

In this section, we evaluate Im-ML.KNN. The experimen-
tal environment is a Windows 7, 64-bit, Intel(R) Xeon(R)
2.53GHz server with 24GB RAM. We first present our ex-
periment setup and 6 research questions. We then present
our experiment results that answer each of the 6 research
questions.

A. Experiment Setup

Table II shows the statistics of the 4 projects we use to
evaluate the performance Im-ML.KNN which are also used in
our previous empirical study [9]. All of the bug reports and
data are downloaded from their corresponding bug tracking
systems. We collect all bug reports with the status “resolved”,
“closed”, and “fixed” following previous studies [5]–[7], [12],
[18]. In Table II, columns Time and # Report correspond to
the time periods the collected bug reports are reported and the

Algorithm 1 Estimation of Good α, β, γ, and thresholdl (l ∈ L)
Values in MLComposer.

1: Estimatevalue(BR, L, Sample, Meta, Text, Mixed,K)
2: Input:
3: BR: Training bug report collection and their labels
4: L: Label set
5: Sample: Sample size (default value: 10% of |BR|)
6: Meta: Meta features
7: Text: Textual features
8: Mixed: Mixed features
9: K: Number of neighbors for ML.KNN

10: Output: α, β, γ, and thresholdl (l ∈ L)
11: Method:
12: Sample a bug report collection SampBR of size Sample from

BR;
13: α=0, β = 0, γ = 0, thresholdl = 0 (l ∈ L);
14: Build ML.KNNMeta for Meta and BR, compute meta scores

for each bug report in SampBR;
15: Build ML.KNNText for Text and BR, compute text scores

for each bug report in SampBR;
16: Build ML.KNNMixed for Mixed and BR, compute mixed

scores for each bug report in SampBR;
17: for all α from 0 to 1, every time increase α by 0.1 do
18: for all β from 0 to (1−α), every time increase β by 0.1 do
19: γ = 1− α− β;
20: for all labels l ∈ L do
21: for all thresholdl from 0 to 1, every time increase

threshold by 0.01 do
22: for all Bug report br in SampBR do
23: Compute MLComposer score according to Defini-

tion 4;
24: Decide whether br is assigned to label l using

Equation 6;
25: end for
26: Compute the F-measure score of the lth label;
27: end for
28: end for
29: Compute the average F-measure score across all the labels

in L.
30: end for
31: end for
32: Return α, β, γ, and thresholdl (l ∈ L), which maximize

average F-measure score across all the labels in L.

number of collected reports, respectively. In total, we collect
190,558 bug reports. Columns # reporter, # fixer, # product,
component, # version, # OS, and # platform correspond
to the number of unique values of the different fields. Notice
that the values of these fields are recorded at the time the bug
report is submitted, i.e., the values of all of these fields are
recorded before the fields of the bug report are reassigned and
refined.

We use 10 times ten-fold cross validation [19] to evaluate
the performance of Im-ML.KNN. We randomly divide the
dataset into 10 folds. Of these 10 folds, 9 folds are used to train
the model, while the remaining one fold is used to evaluate
the performance. The whole process iterates 10 times. The
overall performance score across the 10 iterations is reported.
Also, we run ten-fold cross validation 10 times, and record the
average performance to further reduce the bias due to training
set selection. Cross validation is a standard evaluation setting,
which is widely used in software engineering studies, c.f., [5],
[20]–[24].

IEEE TRANSACTIONS ON RELIABILITY 8

TABLE II
STATISTICS OF COLLECTED BUG REPORTS.

Project Time # Reports # Reporter # Fixer # Product # Component # Version # OS # Platform
OpenOffice 2002-05-17 – 2013-04-07 42,169 5,451 701 140 106 546 45 12
Netbeans 2008-01-01 – 2013-03-13 46,345 5,709 323 112 684 43 26 7
Eclipse 2008-01-01 – 2011-07-19 50,639 5,824 1,021 143 702 220 31 6
Mozilla 2009-06-23 – 2012-02-23 51,405 3,536 696 51 620 107 36 10

We implement Im-ML.KNN on top of Mulan [25], a multi-
label learning Java toolkit. By default, we set the number of
neighbors K = 10 as [13], and the sample size to 10% of the
number of bug reports in the training dataset. For ML.KNN,
we directly use its implementation in Mulan, and we set K =
10 which is the same as Im-ML.KNN.

Lamkanfi et al. propose the usage of Naive Bayes to
predict whether a component field would be reassigned and
refined [6]. The output of their method is only reassigned and
refined or non-reassigned and refined for the component field
of a bug report, which corresponds to the single-label learning
problem in machine learning literature [26]–[28]. Different
from their work, our works focus on predicting the sets of
bug report fields which would get reassigned and refined, the
output of our method is multiple labels which represents the
fields of bug reports, which is a typical multi-label learning
problem. To adapt Lamkanfi et al.’s method, we use their
method to predict the reassignment and refinement of each
field independently, and repeat the process 8 times. In this way,
we build 8 classifiers using Naive Bayes, and each classifier
predict one type of field reassignment. For example, classifier
1 could correspond to the classifier which predict whether the
component field of a bug report would get reassigned and
refined, classifier 2 could correspond to the classifier which
predict whether the product field of a bug report would get
reassigned and refined.

In multi-label learning literature, Tsoumakas et al. propose
HOMER algorithm which also considers the class imbalance
problem [15]. HOMER builds a hierarchy of multi-label
classifiers by leveraging a balanced clustering algorithm, each
one dealing with a much smaller set of labels compared to
the total L labels, and a more balanced example distribution.
Tsoumakas et al. use Naive Bayes as the underlying classifier
of HOMER (referred to in this paper as HOMER-NB). In this
paper, we also compare Im-ML.KNN with HOMER-NB.

B. Evaluation Metrics

To measure the performance of Im-ML.KNN, we use preci-
sion, recall, and F-measure scores as our evaluation metrics.
For each type of bug report field reassignment, and we refer
to this type of bug report field reassignment and refinementas
a label l in multi-label learning literature. Give a label l in
the label set L, for an instance (aka. a bug report), there are
four outcomes: An instance is assigned to the label l when it
is truly assigned to l (true positive, TPl); it assigned to label
l when it is not actually assigned to l (false positive, FPl);
it is not assigned to label l when it is actually assigned to l
(false negative, FNl); or it is not assigned to label l when
it actually is not assigned to l (true negative, TNl). Based

on these possible outcomes, we compute its own F-measure,
precision, and recall, i.e., we have 8 F-measures, precisions,
and recalls, one for each label l:
• Precision for l: the proportion of bug reports (instances)

that are correctly labeled as l among those labeled as l:

Pl =
TPl

TPl + FPl
(7)

• Recall for l: the proportion of bug reports labeled as l
that are correctly labeled.

Rl =
TPl

TPl + FNl
(8)

• F-measure for l: a summary measure that combines both
precision and recall for label l - it evaluates whether an
increase in precision (recall) outweighs a reduction in
recall (precision).

Fl =
2× Pl ×Rl

Pl +Rl
(9)

In addition to the 8 precision, recall, and F-measure scores,
we also compute in the average precision, recall, and F-
measure scores over the 8 precision, recall, and F-measure
scores.

Ave.P = 1
|L|

∑
l∈L

Pl

Ave.R = 1
|L|

∑
l∈L

Rl

Ave.F = 1
|L|

∑
l∈L

Fl

(10)

Notice that the average precision, recall, and F-measure
measure the prediction performance across all the |L| labels,
which are also used in previous software engineering stud-
ies [20], [29], and many multi-label learning studies [26]–[28].

C. Research Questions

We would like to answer the following research questions:
RQ1 What is the F-measure of Im-ML.KNN? How

much improvement can it achieve over the method
proposed by Lamkanfi et al. [6], ML.KNN [13],
and HOMER-NB [15]?

RQ2 Can the F-measure of Im-ML.KNN outperforms
those of its constituent components (i.e., meta
classifier, text classifier, and mixed classifier)?

RQ3 Do different numbers of neighbors affect the F-
measure of Im-ML.KNN?

RQ4 What are good predictors for bug report field
reassignments and refinements? Do the predictors
differ for different fields?

IEEE TRANSACTIONS ON RELIABILITY 9

TABLE VI
AVERAGE PRECISION (AVE. PRECISION) AND RECALL (AVE. RECALL) OF

IM-ML.KNN, LAMKANFI EL AL.’S METHOD, ML.KNN, AND
HOMER-NB.

Project Algorithms Ave. Precision Ave. Recall

OpenOffice

Im-ML.KNN 0.6090 0.6406
Lamkanfi el al.’s 0.2237 0.8379

ML.KNN 0.8030 0.5491
HOMER-NB 0.2711 0.4115

Netbeans

Im-ML.KNN 0.6113 0.5914
Lamkanfi el al.’s 0.2636 0.6010

ML.KNN 0.7352 0.4697
HOMER-NB 0.3378 0.2996

Eclipse

Im-ML.KNN 0.5671 0.5613
Lamkanfi el al.’s 0.1929 0.8154

ML.KNN 0.6923 0.4318
HOMER-NB 0.2279 0.3788

Mozilla

Im-ML.KNN 0.5739 0.5899
Lamkanfi el al.’s 0.2194 0.2194

ML.KNN 0.7776 0.4775
HOMER-NB 0.2588 0.4664

RQ5 What is the effect of varying the amount of
training data on the effectiveness of Im-ML.KNN?

RQ6 How much time does it take for Im-ML.KNN to
run?

Answering RQ1 sheds light on the effectiveness of Im-
ML.KNN to predict bug report fields that get reassigned and re-
fined, compared to existing state-of-the-art solutions [6], [13].
Answering RQ2 highlights the effectiveness of our approach
compared to each of its individual classifiers. Answering RQ3
sheds light on the sensitivity of Im-ML.KNN when using
various settings of its parameter, i.e., the number of neighbors.
The answer of RQ4 presents the top features that best indicate
bug report field reassignments and refinements, which can be
used by software practitioners to determine, early on, which
fields are most likely to be reassigned and refined. The answer
to RQ5 determines the impact of reducing the amount of
training data on the performance of our approach. The answer
to RQ6 examines the model building time and prediction time
for Im-ML.KNN.

D. RQ1: F-measure Scores of Im-ML.KNN

Tables III, IV and V present the experimental results of Im-
ML.KNN compared with the method proposed by Lamkanfi
et al. [6], ML.KNN [13], and HOMER-NB [15], respectively.
We also list the average precision and recall of Im-ML.KNN,
Lamkanfi el al.’s method, ML.KNN and HOMER-NB in
Table VI. Notice that for Netbeans, no bug report has its
severity reassigned and refined, therefore the precision, recall,
and F-measure for severity reassignment and refinement is 0.

Precision and recall are both important metrics for reas-
signed and refined bug prediction since they measure quality
in two aspects. If the precision is low, then the developer would
not use the technique, due to a high number of false alarms.
On the other hand, if the recall is low, which means that
most reassigned and refined bug reports are not successfully
detected, developers would also not use the technique. There
is a trade off between precision and recall [19]. One can
increase precision by sacrificing recall (and vice versa). One

simple way to increase recall is to predict all the bug reports
as reassigned and refined, then the recall would be 1 but
the precision would be 0. In our method, we can sacrifice
precision (recall) to increase recall (precision), by manually
lowering (increasing) the value of the thresholdl parameter in
Equation 6. F-measure, which is a weighted harmonic mean of
precision and recall, is often used to judge whether an increase
in precision outweighs a loss in recall (and vice versa) [19].
Thus, in many existing papers, e.g., [22], [30]–[32], it is often
used as a summary measure. In Figure 1, the thresholdl
parameter is automatically tuned to maximize the F-measure
for each type of bug report field reassignment and refinementin
the training data.

From Table III, we note that the improvement of our method
over Lamkanfi et al.’s method is substantial. We improve the
average F-measure of the method proposed by Lamkanfi et al.
by 127.17%, 98.30%, 139.39%, and 113.87% for OpenOffice,
Netbeans, Eclipse, and Mozilla, respectively. Averaging across
the four datasets, the average improvement achieved by Im-
ML.KNN is 119.69%.

From Table IV, the improvement of our method over
ML.KNN is substantial. We improve the average F-measure of
ML.KNN by 0.98%, 15.03%, 9.85%, and 10.57% for OpenOf-
fice, Netbeans, Eclipse, and Mozilla, respectively. Averaging
across the four datasets, the average improvement achieved by
Im-ML.KNN is 9.11%. We also notice that ML.KNN does not
work well for imbalanced data, for example, ML.KNN’s F-
measures for predicting status reassignment and refinementare
quite low, i.e., 0.4739, 0.0004, 0.0000, and 0.0340 for OpenOf-
fice, Netbeans, Eclipse, and Mozilla, respectively. Our method
overcomes the weakness of ML.KNN and it can achieve better
results for each type of bug report field reassignment.

From Table V, we note that the improvement of our
method over HOMER-NB is substantial. We improve the
average F-measure of HOMER-NB by 164.90%, 148.67%,
188.95%, and 141.80% for OpenOffice, Netbeans, Eclipse, and
Mozilla, respectively. Averaging across the four datasets, the
average improvement achieved by Im-ML.KNN is 161.08%.
We also notice that HOMER-NB does not work well for
OS reassignment, the F-measures for OS reassignment and
refinementare quite low, i.e., 0.1242, 0.1171, 0.1040, and
0.2252 for for OpenOffice, Netbeans, Eclipse, and Mozilla,
respectively. Notice the numbers of bug reports whose OS
get reassigned and refined are quite small compared to other
types of field reassignment and refinement– OS reassignment
and refinementonly happens for 5.78%, 4.79%, 4.55%, and
12.34% of OpenOffice, Netbeans, Eclipse, and Mozilla bug
reports respectively.

E. RQ2: Benefits of Composition
Table VII presents the average F-measure scores of Im-

ML.KNN compared to the meta classifier, text classifier, and
mixed classifier. We notice the improvement of Im-ML.KNN
over the 3 classifiers are substantial. On average across the 4
projects, Im-ML.KNN improves the average F-measure scores
of meta classifier, text classifier, and mixed classifier by 8.91%,
164.31%, and 9.11% respectively. The results show that it is
beneficial to combine the 3 classifiers.

IEEE TRANSACTIONS ON RELIABILITY 10

TABLE III
EXPERIMENT RESULTS OF Im-ML.KNN COMPARED WITH THE METHOD PROPOSED BY LAMKANFI EL AL. [6]. WE CONSIDER MACRO-AVERAGE

F-MEASURE (AVE. F-MEA.) AND THE F-MEASURE FOR EACH TYPE OF BUG REPORT FIELD REASSIGNMENT. AVE. = AVERAGE, PRO. = PRODUCT, COM. =
COMPONENT, SEV. = SEVERITY, PRI. = PRIORITY, VER. = VERSION, FIX. = FIXER, STAT. = STATUS.

Projects Algorithms Ave.F-mea Comp.F-mea. Pro.F-mea. Sev.F-mea. Pri.F-mea. OS F-mea. Ver.F-mea. Fix.F-mea. Stat.F-mea.

OpenOffice
Im-ML.KNN 0.6204 0.7284 0.7944 0.7551 0.2954 0.3583 0.6522 0.9056 0.4742

Lamkanfi el al.’s 0.2731 0.2729 0.3044 0.0190 0.1993 0.1165 0.2122 0.6269 0.4335
Improvement. 127.17% 166.91% 160.98% 3874.08% 48.22% 207.51% 207.37% 44.46% 0.38%

Netbeans
Im-ML.KNN 0.5963 0.9304 0.8693 0.0000 0.2856 0.5306 0.5821 0.7788 0.1971

Lamkanfi el al.’s 0.3007 0.5064 0.4952 0.0000 0.2792 0.0936 0.0936 0.4132 0.1918
Improvement. 98.30% 83.73% 75.54% 0.00% 2.28% 466.84% 521.93% 88.49% 2.76%

Eclipse
Im-ML.KNN 0.5597 0.6365 0.7334 0.2577 0.5413 0.6606 0.6341 0.8667 0.1475

Lamkanfi el al.’s 0.2338 0.3190 0.1858 0.1758 0.2052 0.0904 0.2311 0.5123 0.1505
Improvement. 139.39% 99.54% 294.74% 46.60% 163.77% 630.80% 174.36% 69.19% -2.01%

Mozilla
Im-ML.KNN 0.5796 0.7395 0.8123 0.2392 0.4817 0.7301 0.5843 0.8685 0.1813

Lamkanfi el al.’s 0.2710 0.4174 0.3380 0.1420 0.2206 0.2404 0.1907 0.4463 0.1724
Improvement. 113.87% 77.18% 140.31% 68.48% 118.36% 203.70% 206.40% 94.59% 5.17%

TABLE IV
EXPERIMENT RESULTS OF Im-ML.KNN COMPARED WITH ML.KNN [13].

Projects Algorithms Ave.F-mea Comp.F-mea. Pro.F-mea. Sev.F-mea. Pri.F-mea. OS F-mea. Ver.F-mea. Fix.F-mea. Stat.F-mea.

OpenOffice
Im-ML.KNN 0.6204 0.7284 0.7944 0.7551 0.2954 0.3583 0.6522 0.9056 0.4742

ML.KNN 0.6144 0.8272 0.8652 0.7769 0.1075 0.2314 0.7058 0.9271 0.4739
Improvement. 0.98% -11.95% -8.18% -2.80% 174.67% 54.84% -7.59% -2.31% 0.05%

Netbeans
Im-ML.KNN 0.5963 0.9304 0.8693 0.0000 0.2856 0.5306 0.5821 0.7788 0.1971

ML.KNN 0.5184 0.9407 0.8866 0.0000 0.0141 0.4729 0.5296 0.7845 0.0004
Improvement. 15.03% -1.10% -1.95% 0.00% 1929.89% 12.18% 9.93% -0.72% 49175.00%

Eclipse
Im-ML.KNN 0.5597 0.6365 0.7334 0.2577 0.5413 0.6606 0.6341 0.8667 0.1475

ML.KNN 0.5095 0.6456 0.7523 0.0365 0.5274 0.6296 0.6147 0.8699 0.0000
Improvement. 9.85% -1.41% -2.51% 606.69% 2.64% 4.93% 3.15% -0.36% ∞

Mozilla
Im-ML.KNN 0.5796 0.7395 0.8123 0.2392 0.4817 0.7301 0.5843 0.8685 0.1813

ML.KNN 0.5242 0.7834 0.8554 0.0128 0.3221 0.7139 0.5979 0.8743 0.0340
Improvement. 10.57% -5.60% -5.04% 1770.54% 49.55% 2.27% -2.27% -0.67% 433.80%

TABLE V
EXPERIMENT RESULTS OF Im-ML.KNN COMPARED WITH HOMER-NB [15].

Projects Algorithms Ave.F-mea Comp.F-mea. Pro.F-mea. Sev.F-mea. Pri.F-mea. OS F-mea. Ver.F-mea. Fix.F-mea. Stat.F-mea.

OpenOffice
Im-ML.KNN 0.6204 0.7284 0.7944 0.7551 0.2954 0.3583 0.6522 0.9056 0.4742
HOMER-NB 0.2342 0.3551 0.3130 0.0203 0.1850 0.1242 0.2554 0.2411 0.3803

Improvement. 164.90% 105.11% 153.84% 3621.76% 59.70% 188.58% 155.35% 275.69% 24.69%

Netbeans
Im-ML.KNN 0.5963 0.9304 0.8693 0.0000 0.2856 0.5306 0.5821 0.7788 0.1971
HOMER-NB 0.2398 0.5099 0.3289 0.0000 0.1971 0.1171 0.1060 0.2291 0.1907

Improvement. 148.67% 82.46% 164.28% 0.00% 44.89% 353.12% 449.02% 239.96% 3.36%

Eclipse
Im-ML.KNN 0.5597 0.6365 0.7334 0.2577 0.5413 0.6606 0.6341 0.8667 0.1475
HOMER-NB 0.1937 0.2891 0.2088 0.1557 0.2491 0.1040 0.1937 0.2031 0.1468

Improvement. 188.95% 120.16% 251.25% 65.55% 117.33% 535.32% 227.35% 326.75% 0.48%

Mozilla
Im-ML.KNN 0.5796 0.7395 0.8123 0.2392 0.4817 0.7301 0.5843 0.8685 0.1813
HOMER-NB 0.2397 0.4050 0.3972 0.1446 0.2441 0.2252 0.2460 0.0950 0.1613

Improvement. 141.80% 82.58% 104.53% 65.48% 97.37% 224.19% 137.55% 814.01% 12.40%

TABLE VII
AVERAGE F-MEASURE OF IM-ML.KNN COMPARED WITH EACH OF 3

MULTI-LABEL CLASSIFIERS, I.E., META CLASSIFIER, TEXT CLASSIFIER,
AND MIXED CLASSIFIER.

Project Im-ML.KNN Data Type ML.KNN Improvement

OpenOffice 0.6204
Meta 0.6197 0.11%
Text 0.1972 214.60%

Mixed 0.6144 0.98%

Netbeans 0.5963
Meta 0.5333 11.81%
Text 0.2691 121.59%

Mixed 0.5184 15.03%

Eclipse 0.5597
Meta 0.5061 10.59%
Text 0.1977 183.11%

Mixed 0.5095 9.85%

Mozilla 0.5796
Meta 0.5124 13.11%
Text 0.2436 137.93%

Mixed 0.5242 10.57%

To investigate which classifier plays an important role in
Im-ML.KNN, we presents the average weights of the meta
classifier, text classifier, and mixed classifier in Table VIII.
Note that we run 10-fold cross-validation 10 times, and for
each fold we have a set of weights. In total, we have 100 sets
of weights, and we record the average weights across the 100
sets. From Table VIII, we observe that the mixed classifier
plays the most important role in Im-ML.KNN, followed by
meta classifier and text classifier.

F. RQ3: Sensitivity of Im-ML.KNN on Optimal Setting

Since the number of neighbors can impact the performance
of the algorithm, we investigate the effect of varying the
number of neighbors K on the performance of Im-ML.KNN.

IEEE TRANSACTIONS ON RELIABILITY 11

Fig. 3. Experiment Results of Im-ML.KNN for OpenOffice with Number of
Neighbors K Varied from 5 to 45. Ave. = Average, Pro. = Product, Comp. =
Component, Sev. = Severity, Pri. = Priority., Ver. = Version, Stat. = Status.

Fig. 4. Experiment Results of Im-ML.KNN for Netbeans with Number of
Neighbors K Varied from 5 to 45.

Fig. 5. Experiment Results of Im-ML.KNN for Eclipse with Number of
Neighbors K Varied from 5 to 45.

TABLE VIII
AVERAGE WEIGHTS FOR THE META CLASSIFIER, TEXT CLASSIFIER, AND

MIXED CLASSIFIER.

Projects Meta Classifier Text Classifier Mixed Classifier
OpenOffice 0.35 0.14 0.51
Netbeans 0.24 0.16 0.60
Eclipse 0.28 0.18 0.54
Mozilla 0.30 0.23 0.47

Fig. 6. Experiment Results of Im-ML.KNN for Mozilla with Number of
Neighbors K Varied from 5 to 45.

We vary the number of neighbors (i.e., K in Algorithm 1)
from 5 to 45.

We plot the resultant F-measure scores for OpenOffice,
Netbeans, Eclipse, and Mozilla in Figure 3, 4, 5, and 6,
respectively. For Openoffice, the average F-measure scores
vary from 0.6073 (K = 5) to 0.6215 (K = 20). For Netbeans,
the average F-measure scores vary from 0.5814 (K = 5) to
0.0.6007 (K = 20). For Eclipse, the average F-measure scores
vary from 0.5540 (K = 45) to 0.5629 (K = 15). For Mozilla,
the average F-measure scores vary from 0.5763 (K = 5) to
0.5860 (K = 15). The results show that the performance
of Im-ML.KNN is relatively stable with various numbers of
neighbors. Across the 4 projects, Im-ML.KNN achieves the
best performance with the number of neighbors K set to 15
or 20.

G. RQ4: Indicators of Bug Field Reassignment

From the bug reports, we extract thousands of features
(i.e., meta features and textual features). To understand which
features are important to classify field reassignment, we extract
discriminative features from the thousands of features. We
extract top-5 features per label based on their information gain
scores [19].

Table IX presents the top-10 most discriminative features.
We notice that the meta features (e.g., product, component,
assignee) make up most of the top-10 features. Notice that we
use the value of the meta features before they are reassigned
and refined (i.e., the first values of these features). We find that
the first/initial values of these features can be good indictors to
predict which fields would get reassigned and refined. Among
the 4 projects, product, component, reporter, and assignee are
the 4 most important meta features related to various types

IEEE TRANSACTIONS ON RELIABILITY 12

TABLE IX
TOP-10 DISCRIMINATIVE FEATURES BASED ON INFORMATION GAIN SCORES. THE META FEATURES ARE UNDERLINED.

Projects Product Component Severity Priority OS Version Fixer Status

OpenOffice

Product Product Severiry Reporter Reporter Product Assignee Product
Reporter Reporter Version Assignee OS Reporter Reporter Reporter
Assigee Assigee Reporter Priority Assignee Assignee Product Assignee

Component Component Assignee Version Version Version Version Component
Version Version OS Product Product Component Component Version

chart chart Component Component Component chart OS chart
ac ac Product OS Platform ac docum ac

star checkap attachm crash docum star Platform star
checkap star Platorm Platorm writer) checkap http checkap
diction OS gbuild docum spreadsheet sockes distribut diction

Netbeans

Product Component null Reporter Reporter Version Assignee Product
Component Severity null Component OS Reporter Reporter Component

Reporter Reporter null Assignee Component Component Component Reporter
Assignee Product null Priority Assignee Assignee Product Assignee
Severity Assignee null Product Product Product Version Severity
Version Version null Version Version disgram Severity Version

OS Plaform null project stacktrac macksic diagram OS
bpel OS null OS Severity Platform OS bpel

Platform attachm null sunflow environm Priority scenari Platform
client sever null start comment layoutdesign makeproj client

Eclipse

Assignee Component Reporter Reporter Reporter Reporter Assignee Reporter
Component Assignee Assignee Assignee Assignee Assignee Reporter Assignee

Reporter Reporter Component Component Component Component Component Component
Product Product Product Product Platform Product Product Product
Version Version Version Version Product Version Version Version
consmo cosmo Severity clon OS identif OS OS

jsdt step mylyn init Version cosmo step respons
cmdb reproduc task creat descript reproduc descript reassign

wikitext build OS tptp coco mozil build clon
inform inform tptp OS birt geck reproduc atricl

Mozilla

Component Component Reporter Component Reporter Reporter Assignee Reporter
Reporter Reporter Component Reporter OS Component Reporter Component
Product Product Assignee Product Component Product Component Assignee

Assignee Assignee Product Assignee Assignee “agent” Product Product
“pag” “firefox” OS Version Product “identif” Version Version
local Version Version OS geck Version OS mim
attach thank Severity thank identif geck transl altern
thank html agent commis agent Assignee patch localecod
text local reproduc pleas Platform reproduc repositor plain
fil text identif min Version user attach iphon

of field reassignment. For example, to predict whether the
product field would get reassigned and refined, the value of
the meta feature product is a good indictor, since the initial
value of the product field maybe wrong, corresponds to a non-
existent product, or is a default value that most likely would
get changed later. Aside from these meta features, some textual
features, corresponding to stemmed words that appear in bug
reports, are also good indicators to various field reassignments
and refinements. Note that, in Table IX, the set of top-10
features for Netbeans corresponding to label Severity is empty;
this is the case since none of the Netbeans bug reports has its
severity field reassigned and refined.

To further investigate why the most discriminative features
differs for different types of bug report field reassignment
and refinement, we also perform a simple qualitative analysis.
Notice that the fields in a bug report are related; some feature
combinations are good indicators for the field reassignment
and refinement. For example, the combinations of product,
component are important indicators to find the suitable fixers
during the bug triaging process [6]. For some product and

component combinations, it is easy to find suitable fixers. For
some other combinations, it might be hard to find suitable
fixers, which results in bugs being “tossed” among multiple
fixers. Thus, the combinations of the product and component
fields can help to decide whether the fixer field would get
reassigned. For example, in the collected dataset of OpenOf-
fice, the combination of product =“Writer”, and component
=“code” appears 2,308 times, and there are total of 1,892 times
that the fixer fields are reassigned under this combination. In
the collected dataset of Mozilla, the combination of product
=“mozilla.org” and component =“Server Operations” appears
3,066 times, and there are a total of 2,914 times where the
fixer fields are reassigned under this combination.

The feature combinations are also good indicators for other
types of field reassignment and refinement. For example, in
Netbeans, we notice that certain combinations of reporter,
component, and assignee are good indicators for priority re-
finement. In the collected dataset of Netbeans, the combination
of reporter =“soldatov”, component =“code”, and assignee

IEEE TRANSACTIONS ON RELIABILITY 13

=“issue” appear 166 times, and there is a total of 120 times
that the priority fields are reassigned under this combination

To simulate the decision process of an experienced bug
triager who needs to decide what bug report fields will get
reassigned and refined, we create a baseline approach that
infers reassigned and refined fields based on the statistics of
the top-10 discriminative features for each field reassignment
and refinement. Since there are two types of features, i.e.,
meta features and textual features, we compute the statistics
for these two types of features in different ways.

For a meta feature m, the baseline approach computes the
probability for a field f to be reassigned and refined as follows:
given a value v of the meta feature m, suppose the number
of times v appears in the training bug reports is denoted as
total, and the number of times v appears in the training bug
reports whose field f get reassigned and refined is denoted
as reassign, the probability that field f of a bug report with
value v of meta feature f , to get reassigned, which is denoted
by probf,t, and is computed by reassign

total .
For a textual feature t, and for a field f , we compute the

number of bug reports in the training data whose field f is
reassigned or refined (denoted as totalf), and also the number
of bug reports in the training data whose field f is reassigned
or refined and contains term t (denoted as reassignf,t). Based
on the these numbers, we compute the probability for f to be
reassigned given textual feature t, which is denoted as probf,t,
by taking the ratio of reassignf,t and totalf .

To predict whether a field f will get reassigned and refined
in a new bug report, the baseline approach first computes
a probability for each of the top-10 discriminative features,
considering the values of these features in the new bug report.
If one of the probabilities is larger than or equal to 0.5, the
baseline approach predicts that field f will get reassigned and
refined; else it predicts that f will not be reassigned or refined.

Table X presents the F-measure scores of Im-ML.KNN
compared with the baseline approach. We improve the av-
erage F-measure of the baseline approach by 7.32%, 28.71%,
29.87%, and 51.06% for OpenOffice, Netbeans, Eclipse, and
Mozilla, respectively. Averaging across the four datasets, the
average improvement achieved by Im-ML.KNN is 29.24%.

H. RQ5: Varying the Amount of Training Data

In the previous research questions, we use 10-fold cross
validation, which means that 90% of the bug reports are used
as training data. In this research questions, we would like to
investigate the impact of reducing the amount of training data
on the evaluation of our approach. In K-fold cross validation,
k−1
k ∗ 100% of the data is used to train a model, and the

remaining 1
k ∗ 100% of the data is used to test the model. K-

fold cross validation is a standard approach. To answer this
research question, we try to reduce the number of folds to
reduce the amount of training data. We vary the number of K
from 2 to 10, and for each value of K, we perform 10 times K-
fold cross-validation, and record the average F-measure scores.

Figure 7 presents the average F-measure scores of Im-
ML.KNN for OpenOffice, Netbeans, Eclipse, and Mozilla with
various amount of training bug reports. The average F-measure

scores vary from 0.4541 – 0.6226, 0.5624 – 0.5963, 0.5296
– 0.5683, and 0.5652 – 0.5956, for OpenOffice, Netbeans,
Eclipse, and Mozilla, respectively. When we vary K from 10
to 2, the F-measure for Eclipse, Mozilla, and Firefox remains
relatively stable (it fluctuates less than 5.68% of the original
value). For OpenOffice, the F-measure reduces by 26.81%
when we vary K from 10 to 2.

Fig. 7. Average F-measure of Im-ML.KNN for OpenOffice, Netbeans,
Eclipse, and Mozilla with various amount of training bug reports.

I. RQ6: Time Efficiency of Im-ML.KNN
The time efficiency of Im-ML.KNN may affect its usability,

therefore, we also investigate Im-ML.KNN’s time efficiency.
In this question, we investigate whether the runtime of Im-
ML.KNN is reasonable. To answer this research question, we
investigate the average amount of time that is needed by Im-
ML.KNN and the baseline approaches to process a bug report
during the model building phase, and the average amount of
time it needs to predict the fields which would get reassigned
and refined for a new bug report during the prediction phase.
We use a Windows 7, 64-bit, Intel(R) Xeon(R) 2.53GHz server
with 24GB RAM.

Table XI shows the average model building time and
prediction time per bug report for Im-ML.KNN, Lamkanfi el
al.’s approach, ML.KNN, and HOMER-NB. We notice that the
average model building time and the average prediction time
of Im-ML.KNN are 0.0265 and 0.0158 seconds per bug report,
respectively. Comparing with the other 3 baseline approaches,
the average model building time and the average prediction
time of Im-ML.KNN are better than those of Lamkanfi el al.’s
approach and HOMER-NB, and worse than those of ML.KNN.
Still, the time taken by Im-ML.KNN is reasonable. Note that
the model building phase can be done offline (e.g., overnight).
Also, a learned model can be used to predict reassigned and
refined fields of many new bug reports, it is normal to spend
a few hours to process hundreds of thousands of bug reports
to initially build a model, since the model can be reused and
the process can be done offline.

VII. DISCUSSION

A. Longitudinal Data Setup
To investigate whether Im-ML.KNN can be used to solve

the problem in the same setting as the one in practice,

IEEE TRANSACTIONS ON RELIABILITY 14

TABLE X
EXPERIMENT RESULTS OF Im-ML.KNN COMPARED WITH THE BASELINE APPROACH.

Projects Algorithms Ave.F-mea Comp.F-mea. Pro.F-mea. Sev.F-mea. Pri.F-mea. OS F-mea. Ver.F-mea. Fix.F-mea. Stat.F-mea.

OpenOffice
Im-ML.KNN 0.6204 0.7284 0.7944 0.7551 0.2954 0.3583 0.6522 0.9056 0.4742

Baseline 0.5781 0.6913 0.7756 0.8848 0.1140 0.1001 0.6863 0.8553 0.5374
Improvement. 7.32% 5.37% 2.43% -12.68% 159.20% 257.82% -4.97% 5.88% -11.76%

Netbeans
Im-ML.KNN 0.5963 0.9304 0.8693 0.0000 0.2856 0.5306 0.5821 0.7788 0.1971

Baseline 0.4633 0.7878 0.7208 0.0000 0.0970 0.0852 0.8223 0.6840 0.0460
Improvement. 28.71% 18.09% 20.60% 0.00% 194.53% 522.87% -29.21% 13.86% 328.54%

Eclipse
Im-ML.KNN 0.5597 0.6365 0.7334 0.2577 0.5413 0.6606 0.6341 0.8667 0.1475

Baseline 0.4310 0.5992 0.6862 0.0760 0.4890 0.2175 0.5459 0.7866 0.0438
Improvement. 29.87% 6.23% 6.88% 239.28% 10.69% 203.68% 15.37% 10.19% 236.74%

Mozilla
Im-ML.KNN 0.5796 0.7395 0.8123 0.2392 0.4817 0.7301 0.5843 0.8685 0.1813

Baseline 0.3837 0.6585 0.6776 0.0461 0.2631 0.2169 0.3875 0.7989 0.0211
Improvement. 51.06% 12.31% 19.88% 419.14% 83.08% 236.68% 50.80% 8.71% 760.84%

TABLE XI
AVERAGE MODEL BUILDING TIME, AND PREDICTION TIME, PER BUG REPORT, FOR IM-ML.KNN, LAMKANFI EL AL.’S APPROACH, ML.KNN, AND

HOMER-NB (IN SECONDS).

Projects Model Building Time Prediction
Im.ML-KNN Lamkanfi el al.’s ML.KNN HOMER-NB Im.ML-KNN Lamkanfi el al.’s ML.KNN HOMER-NB

OpenOffice 0.0270 0.0333 0.0043 0.0299 0.0136 0.0330 0.0045 0.0317
Netbeans 0.0263 0.0348 0.0046 0.0391 0.0153 0.0344 0.0046 0.0296
Eclipse 0.0291 0.0443 0.0059 0.0382 0.0182 0.0435 0.0061 0.0389
Mozilla 0.0234 0.0384 0.0050 0.0346 0.0162 0.0420 0.0053 0.0348

Average. 0.0265 0.0377 0.0050 0.0355 0.0158 0.0382 0.0051 0.0338

we performed an experiment using a longitudinal data setup
following Tamrawi et al. and Bhattacharya and Neamtiu [18],
[33]. We sorted the bug reports in the order they are received
(i.e., temporally) and split them into 11 non-overlapping time
windows of equal sizes, numbered 0 to 10. The process then
proceeds as follows: First, in fold 1, we train using bug reports
in window 0, and test the trained model using the bug reports
in window 1. Then, in fold 2, we train using bug reports in
window 1, and test the trained model using the bug reports in
window 2, and so on. We proceed in a similar manner for the
next folds. In the final fold (i.e., fold 10), we train using bug
reports in window 9, and test using the bug reports in window
10. We record the average performance across the 10 folds.

Table XII presents the average F-measure of Im-ML.KNN
compared with Lamkanfi el al.’s, ML.KNN, and HOMER-NB.
The average F-measure of Im-ML.KNN are 0.4187, 0.4848,
0.4154, and 0.4708 for OpenOffice, Netbeans, Eclipse, and
Mozilla, respectively. The improvement of our method over
Lamkanfi et al.’s method is substantial. We improve the
average F-measure of the method proposed by Lamkanfi et
al. by 54.20%, 53.17%, 73.87%, and 61.57% for OpenOffice,
Netbeans, Eclipse, and Mozilla, respectively. Averaging across
the four datasets, the average improvement achieved by Im-
ML.KNN is 60.70%.

The improvement of our method over the ML.KNN method
is substantial for Netbeans, Eclipse, and Mozilla. We improve
the average F-measure of ML.KNN by 6.68%, 25.43%, and
17.25%, and 11.12% for OpenOffice, Netbeans, Eclipse, and
Mozilla, respectively. Averaging across the four datasets, the
average improvement achieved by Im-ML.KNN is 15.12%.

The improvement of our method over the HOMER-NB
method is substantial for Netbeans, Eclipse, and Mozilla. We
improve the average F-measure of HOMER-NB by 63.94%,

TABLE XII
AVERAGE F-MEASURE OF IM-ML.KNN COMPARED WITH LAMKANFI EL

AL.’S, ML.KNN, AND HOMER-NB USING A LONGITUDINAL DATA
SETUP. THE LAST ROW SHOW THE AVERAGE PERFORMANCE ACROSS THE

4 PROJECTS.

Projects Im-ML.KNN Lamkanfi el al.’s Improvement.
OpenOffice 0.4187 0.2715 54.20%
Netbeans 0.4848 0.3165 53.17%
Eclipse 0.4154 0.2389 73.87%
Mozilla 0.4708 0.2914 61.57%

Average. 0.4474 0.2796 60.70%

Projects Im-ML.KNN ML.KNN Improvement.
OpenOffice 0.4187 0.3925 6.68%
Netbeans 0.4848 0.3865 25.43%
Eclipse 0.4154 0.3543 17.25%
Mozilla 0.4708 0.4237 11.12%

Average. 0.4474 0.3892 15.12%

Projects Im-ML.KNN HOMER-NB Improvement.
OpenOffice 0.4187 0.2554 63.94%
Netbeans 0.4848 0.2836 70.90%
Eclipse 0.4154 0.2218 87.31%
Mozilla 0.4708 0.2761 70.56%

Average. 0.4474 0.2592 73.18%

70.90%, 87.31%, and 70.56% for OpenOffice, Netbeans, E-
clipse, and Mozilla, respectively. Averaging across the four
datasets, the average improvement achieved by Im-ML.KNN
is 73.18%.

Figure 8, 9, 10, and 11 present the average F-measure scores
of Im-ML.KNN, Lamkanfi el al.’s approach, ML.KNN, and
HOMER-NB for OpenOffice, Netbeans, Eclipse, and Mozilla,
respectively. We note that the average F-measure scores of
Im-ML.KNN outperform those of other approaches for most
folds for the majority of the projects. Also, in OpenOffice,

IEEE TRANSACTIONS ON RELIABILITY 15

Fig. 8. Experiment Results of Im-ML.KNN, Lamkanfi el al.’s approach,
ML.KNN, and HOMER-NB for OpenOffice with different folds.

Fig. 9. Experiment Results of Im-ML.KNN, Lamkanfi el al.’s approach,
ML.KNN, and HOMER-NB for netbeans with different folds.

we notice there is a remarkable drop on Folds 8 and 9 for
Im-ML.KNN, we double check the results, and it is the case.

B. Cost Analysis

Here, we analyze the cost of Im.ML-KNN. For a field f ,
if we correctly predict that the field will get reassigned and
refined, let us assume that the time saved for bug fixing is sf ;
else if we wrongly predict that the field would get reassigned
and refined, we assume that the extra time needed for bug
fixing is wf . Suppose we have n bug reports, and among the
n bug reports, we correctly predict whether field f would get
reassigned in m bug reports and incorrectly predict whether f
would get reassigned in k bug reports, then the cost for Im-
ML.KNN is (m× sf)− (k × wf). If (k × wf) ≤ (m× sf),
then our approach could help developers save time.

Table XIII presents the cost of Im-ML.KNN. We denote
the time saved due to the correct prediction of componen-
t, product, severity, priority, os, version, fixer, and status
reassignments and refinements as sc, sp, ss, spri, so, sv, sf ,
and sst, and the time wasted due to wrong prediction as
wc, wp, ws, wpri, wo, wv, wf , and wst. For simplicity, let us
assume that the time saved for each correct prediction is the

Fig. 10. Experiment Results of Im-ML.KNN, Lamkanfi el al.’s approach,
ML.KNN, and HOMER-NB for Eclipse with different folds.

Fig. 11. Experiment Results of Im-ML.KNN, Lamkanfi el al.’s approach,
ML.KNN, and HOMER-NB for Mozilla with different folds.

same, i.e., sc = sp = ss = spri = so = sv = sf = sst = s,
and the time wasted for each wrong prediction is the same,
i.e., wc = wp = ws = wpri = wo = wv = wf = wst = w.
Then, the net savings for OpenOffice, Netbeans, Eclipse, and
Mozilla are 298045×s−39307×w, 297323×s−45092×w,
358063 × s − 47049 × w, and 269939 × s − 141301 × w,
respectively. For OpenOffice, Netbeans, Eclipse, and Mozilla,
when s > 0.1319×w, s > 0.1614×w, s > 0.1314×w, and
s > 0.5235 × w, respectively, Im-ML.KNN could help save
bug fixing time.

C. Impact of Default Assignment in Fixer Field

When a bug report is initially submitted, its fixer field could
be assigned to a default address. For example, in OpenOffice,
the fixer fields of some bug reports are set to “issues” when
they are first submitted. It is easy to know that the fixer fields
set to a default address will eventually get reassigned. Thus,
we would like to investigate the effectiveness of Im-ML.KNN
when we omit these default developer assignments.

To do so, we first remove bug reports whose fixers are
initially set to default addresses. In OpenOffice and Netbeans,
we remove bug reports whose fixers are initially set to default

IEEE TRANSACTIONS ON RELIABILITY 16

TABLE XIII
COST OF IM-ML.KNN.

Projects Component Product Severity Priority
OpenOffice 38883× sc − 3286× wc 39649× sp − 2520× wp 41988× ss − 181× ws 33544× spri − 8625× wpri

Netbeans 42232× sc − 4113× wc 42624× sp − 3721× wp 0 34001× spri − 12344× wpri

Eclipse 43917× so − 6722× wo 48251× sv − 2388× wv 42327× ss − 8312× ws 45257× spri − 5382× wpri

Mozilla 31085× sc − 20320× wc 28524× sp − 22881× wp 37982× ss − 13423× ws 31016× spri − 20389× wpri

Projects OS Version Fixer Status
OpenOffice 38615× so − 3554× wo 39019× sv − 3150× wv 36044× sf − 6125× wf 30303× sst − 11866× wst

Netbeans 44471× so − 1874× wo 44302× sv − 2043× wv 35671× sf − 10674× wf 36022× sst − 10323× wst

Eclipse 49174× so − 1465× wo 46390× sv − 4249× wv 41531× sf − 9108× wf 41216× sst − 9423× wst

Mozilla 30298× so − 21107× wo 34582× sv − 16823× wv 38780× sf − 12625× wf 37673× sst − 13732× wst

TABLE XIV
AVERAGE F-MEASURE OF IM-ML.KNN COMPARED WITH

IM-ML.KNNDefault USING 10 TIMES 10-FOLD CROSS VALIDATION
SETUP. THE LAST ROW SHOW THE AVERAGE PERFORMANCE ACROSS THE

4 PROJECTS.

Projects Im-ML.KNN Im-ML.KNNDefault

OpenOffice 0.6204 0.5038
Netbeans 0.5963 0.5555
Eclipse 0.5597 0.5965
Mozilla 0.5796 0.5279

Average. 0.5890 0.5459

addresses such as “issues”, “UNKNOWN”, “spreadsheet”,
and “support”. In Eclipse, we remove bug reports whose
fixers are initially set to default addresses which end with
“inbox”. In Mozilla, we remove bug reports whose fixers are
initially set to default addresses such as “nobody”, “timeless”,
“accounts”, and “bugzilla”. In total, we have 35,934, 32,938,
12,801, and 11,416 bug reports remaining for OpenOffice,
Netbeans, Eclipse, and Mozilla, respectively. We run Im-
ML.KNN on these datasets, and denote the resultant results
as Im-ML.KNNDefault.

Table XIV and XV present the average F-measure of
Im-ML.KNN compared with Im-ML.KNNDefault using 10
times 10-fold cross validation setup, and the longitudinal
data setup, respectively. On average across the 4 projects,
Im-ML.KNNDefault achieves average F-measures 0.5459 and
0.4087 in the cross validation setup and longitudinal data
setup respectively. We notice the average F-measures of Im-
ML.KNNDefault, but the differences are relatively small (i.e.,
< 0.05).

From the intution, removing the bug reports whose fixer
fields are set to a default address may remove the bug reports
submitted by users, and leave the reports that were created by
developers, since the developers are the ones with the project
knowledge to assign to something other than default. We also
investigate whether it is the case. For example, in OpenOffice,
we find a developer Frank Schonheit has reported 1,150 bug
reports, and fixed 146 bug reports. But still 7 out of the 1,150
reported bugs are assigned to the default address “issue”. Also,
a user deye only has reported 1 bug report 102816, but the
fixer field is set to “ab@bregas.de” initially. Thus, users and
developers in the community all have the chance to set the
fixer field to a default address.

TABLE XV
AVERAGE F-MEASURE OF IM-ML.KNN COMPARED WITH

IM-ML.KNNDefault USING A LONGITUDINAL DATA SETUP. THE LAST
ROW SHOW THE AVERAGE PERFORMANCE ACROSS THE 4 PROJECTS.

Projects Im-ML.KNN Im-ML.KNNDefault

OpenOffice 0.4187 0.4494
Netbeans 0.4848 0.4565
Eclipse 0.4154 0.4036
Mozilla 0.4708 0.3254

Average. 0.4474 0.4087

D. Evaluation

In this paper, we automatically identify good α, β, γ, and
thresholdl values for Im-ML.KNN following the algorithm
presented in Figure 1. The values are optimized (and thus are
different) for different datasets and different training frames
in our 10-fold cross validation and longitudinal data setup.

Also, for each label l, which corresponds to a type of
bug report field reassignment, our Im-ML.KNN automatically
identify good thresholdl from the training bug reports. Thus,
the decision boundaries (aka. thresholds) of Im-ML.KNN are
fixed, i.e., the precision and recall would not be varied with
different threshold values. We believe our Im-ML.KNN could
help developers to use our tool in practice, since they do
not need to consider the effect of the threshold values to the
performance of our tool.

In single-label learning literature, receiver operating char-
acteristic (ROC) curve is a graphical plot which shows the
performance of a binary classifier when its threshold is var-
ied [34]. Notice in our paper, we do not analyze the ROC
curve due to 3 reasons:

• Im-ML.KNN automatically identifies good thresholds for
each of the 8 types of field reassignment, which makes
the thresholds fixed. Thus, there is only one point in the
ROC curve for each of the 8 types of field reassignment.

• In multi-label learning literature, ROC curve is rarely
used to evaluate the performance of a multi-label learning
algorithm, c.f., [13], [26]–[28]. Normally, researchers
prefer to use precision, recall, and F-measure to measure
the performance of a multi-label learning algorithm.

• In our paper, there are in total 8 types of field reassign-
ment, which correspond to 8 labels. If for each label, we
plot its ROC curve, then there would be too many curves.

IEEE TRANSACTIONS ON RELIABILITY 17

TABLE XVI
AVERAGE F-MEASURE OF IM-ML.KNN COMPARED WITH HOMER-KNN

USING 10-FOLD CROSS VALIDATION SETUP. THE LAST ROW SHOW THE
AVERAGE PERFORMANCE ACROSS THE 4 PROJECTS.

Projects Im-ML.KNN HOMER-KNN Impovement.
OpenOffice 0.6204 0.5974 3.85%
Netbeans 0.5963 0.5409 10.24%
Eclipse 0.5597 0.5309 4.44%
Mozilla 0.5796 0.5667 2.28%

Average. 0.5890 0.5602 5.20%

TABLE XVII
AVERAGE F-MEASURE OF IM-ML.KNN COMPARED WITH HOMER-KNN

USING A LONGITUDINAL DATA SETUP. THE LAST ROW SHOW THE
AVERAGE PERFORMANCE ACROSS THE 4 PROJECTS.

Projects Im-ML.KNN HOMER-KNN Improvement.
OpenOffice 0.4187 0.3851 8.71%
Netbeans 0.4848 0.4300 12.73%
Eclipse 0.4154 0.3905 6.37%
Mozilla 0.4708 0.4245 10.93%

Average. 0.4474 0.4075 9.68%

E. Im-ML.KNN vs. HOMER-KNN

In the previous section, we use Naive Bayes as the underly-
ing classifier for HOMER, which is also used by Tsoumakas
et al. [15]. We notice HOMER could also use other underlying
classifiers. Thus, we also use kNN as the underlying classifier
of HOMER (denoted as HOMER-KNN) as we do in Im-
ML.KNN, and we set the number of neighbors in kNN as 10
as Im-ML.KNN.

Table XVI and XVII present the average F-measure of Im-
ML.KNN compared with HOMMER-KNN using 10 times
10-fold cross validation setup, and longitudinal data setup,
respectively. From Table XVI, we note that the improvement
of our method over HOMER-KNN is substantial. We improve
the average F-measure of HOMER-KNN by 3.85%, 10.24%,
4.44%, and 2.28% for OpenOffice, Netbeans, Eclipse, and
Mozilla, respectively. Averaging across the four datasets, the
average improvement achieved by Im-ML.KNN is 5.20% in the
10-fold cross validation setup. From Table XVII, We improve
the average F-measure of HOMER-KNN by 8.71%, 12.73%,
6.37%, and 10.93% for OpenOffice, Netbeans, Eclipse, and
Mozilla, respectively. Averaging across the four datasets, the
average improvement achieved by Im-ML.KNN is 9.68% in
the longitudinal data setup.

F. Qualitative Analysis

Here, we perform a qualitative analysis on why the features
that we consider are relevant, how our Im-ML.KNN could
potentially help reduce bug fixing time, and why we need to
combine the 3 classifiers. We take status reassignment and
refinement (i.e., a bug report is reopened) and component
reassignment and refinementas examples.

Features: Table XVIII, XIX, XX and XXI present 4 bug
reports from Netbeans. These 4 bug reports are chose from
the prediction results of our Im-ML.KNN, Lamkanfi el al.’s,
ML.KNN, and HOMER-NB. Also, since our Im-ML.KNN is
a nearest neighbor based approach, it would be easy to explain

TABLE XVIII
BUG REPORT #137543 OF NETBEANS.

Summary: Red information message in ”New Database Connec-
tion” dialog

Description: According http://wiki.netbeans.org/InformationIcons
1. Start IDE. Open ”Services” window.
2. Rightclick ”Databases” node and choose ”New Con-
nection...”.
Result: ”New Database Connection” dialog appears with
”Please specify a value for the required field Database:”
message in the bottom. This message is RED and looks
like error message. View will be better if message is
not red (probably just black).

Product: db
Component: UI
Reporter: Roman Mostyka
Assignee: davidvc
Version: 6.X
Priority: P4
Platform: ALL
OS: Windows XP

TABLE XIX
BUG REPORT #137600 OF NETBEANS.

Summary: I18N - some driver names in New Connection dialog
drop-down not localized

Description: using new db connection dialog, the word Host does
not come from the pseudo localized bundle file - the
word host is in these bundles, but its not coming from
the localized bundle as is all the other labels.
this label is in bundle file org-netbeans-modules-
db/NewConnectionHost =&Host:

Product: db
Component: UI
Reporter: Ken Frank
Assignee: davidvc
Version: 6.X
Priority: P2
Platform: ALL
OS: Sun

TABLE XX
BUG REPORT #144020 OF NETBEANS.

Summary: Ugly New Database connection dialog UI
Description: Please, fix all UI issues in New Database connection

dialog like, incorrect alignment of UI components,
the size of components, spacing, See the attached
screenshot.

Product: db
Component: UI
Reporter: Petr Blaha
Assignee: davidvc
Version: 6.X
Priority: P3
Platform: ALL
OS: ALL

why our approach outperforms the baseline approaches if some
fields of the bug reports are similar. Note that we record the
values of fields in these bug reports when they are first reported
- before any reassignments and refinements (if any). The status
and component fields in these 4 bug reports get reassigned and
refined. We notice there are many similarities among these 4
bug reports:

• Many values of meta features in these 4 bug reports are
the same. For example, the product, component, assignee,

IEEE TRANSACTIONS ON RELIABILITY 18

TABLE XXI
BUG REPORT #149041 OF NETBEANS.

Summary: Wrong size for some fields in created table
Description: 1. Connect to ”travel” Java DB.

2. Rightclick ”Tables” and choose ”Create Table...”.
3. Set table name, column name, choose INTEGER
type, set size to 3 and press ”OK”.
Result: Table with column is created, but size of column
is 10, not 3 as it was set. I guess it can be true not only
for INTEGER type.

Product: db
Component: UI
Reporter: Roman Mostyka
Assignee: davidvc
Version: 6.X
Priority: P3
Platform: ALL
OS: ALL
Creation
Date:

2008-10-03

Fixed Date: 2009-05-12

and version fields for these 4 bug reports are “db”, “UI”,
“davidvc”, and “6.X”, respectively. Also, for bug report
#137543 and #149041, their reporter are the same, i.e.,
“Roman Mostyka”.

• The description of these 4 bug reports are similar, i.e.,
their textual features are similar. These 4 bug reports are
all about UI issues and they share some common terms,
such as “dialog” and ”connection”.

From the observation, we notice that if we consider both
the meta and textual features, the performance of Im-ML.KNN
could be further improved.

Reducing Bug Fixing Time: Notice that bug report #149041
in Table XXI takes a long time to be fixed. It is created in
“2008-10-03”, and is only fixed in ”2009-05-12”. The bug
fixing time is more than half a year. The component and
status fields of this bug report are reassigned and refined.
These reassignments and refinements mean that the component
that this bug affects is wrongly reported (which leads to
the component reassignment) and the bug is initially fixed
incorrectly and needs to be re-fixed (which leads to status
reassignment). These reassignments and refinements are likely
to increase bug fix time. If our system is deployed, it can
predict that the component field is likely to be reassigned and
refined, and the bug report is likely to be reopened (which
implies that the bug is hard-to-fix). This can guide developers
to first find the right component before attempting to fix the
bug, and to be more careful in performing the fix, as the fix
is likely to be a risky one. As a result, the bug fixing time
is likely to be reduced. Note that the model building time for
our Im-ML.KNN is only several hours at most (and it could
be trained offline), and the typical prediction time for a bug
report is less than a second. Thus, from developers’ point of
view, they can get alert information in just less than a second.

Composing Classifiers: Note that we have 3 classifiers in
Im-ML.KNN, and the prediction results for the 3 classifiers
could be different. The combination of these 3 classifiers
could utilize the advantages of each classifier, and achieve a
better performance. For example, if we predict the fields which

would get reassigned and refined for bug report #149041, we
notice that the meta features for #149041 are very similar to
the other 3 bug reports (#137543, #137600, and #144020),
however its textual features are less similar to the other 3 bug
reports. Thus, the meta classifier predicts that the component
and status fields would get reassigned and refined; on the other
hand, the textual classifier does not predict any of these 2 fields
would get reassigned and refined, while the mixed classifier
predicts that only the component field would get reassigned
and refined. By combining these 3 classifiers, Im-ML.KNN
predicts that the component and status fields of bug report
#149041 would get reassigned and refined.

VIII. THREATS TO VALIDITY

In this section, we highlight threats to internal validity,
external validity, and construct validity.
Threats to internal validity. Threats to internal validity
relate to bias and errors in our experiments. To reduce the
risk of this threat, we have double checked our datasets and
our experiments, however there could still be errors that we
did not notice. Also, to reduce training set selection bias, we
have applied 10-fold cross-validation 10 times, and recorded
the average performance. And we have also evaluated Im-
ML.KNN using the longitudinal data setup.
Threats to external validity. Threats to external validity
relate to the generalizability of our results. To reduce this risk,
we have analyzed 190,558 closed and fixed bug reports from 4
open source software projects, and investigate 8 types of bug
report field reassignment. Analyzing a substantial proportion
of bug reports in selected projects is important for the gen-
eralizability of the findings. Past studies also only investigate
similar number of bug reports from these projects [33], [35]–
[38]. In the future, we plan to reduce this threat further
by analyzing more bug reports from more software projects,
including commercial and open source projects.
Threats to construct validity. Threats to construct validity
refer to the suitability of our evaluation measures. We use
the average F-measure score as the main evaluation metric
which is also used by past studies to evaluate the effectiveness
of a prediction technique in various software engineering
studies [20], [22], [31], [39]. Thus, we believe there is little
threat to construct validity.

IX. RELATED WORK

In this section, we briefly review studies on bug report field
reassignments in Section IX-A, and multi-label learning in
software engineering in Section IX-B.

A. Bug Report Field Reassignment

The most related work to our paper is the empirical study
we perform [9]. In the empirical study, we analyze the root
causes of bug report field reassignment by sending emails to
developers in open source software projects. We also analyze
various field reassignments that happen in 190,558 bug reports
in 4 open-source software projects. We find that approximately
80% of the bug reports have one or more of their fields reas-
signed, and the bug reports whose fields get reassigned require

IEEE TRANSACTIONS ON RELIABILITY 19

more time to be fixed than those without field reassignments.
This work complements our previous work, and our previous
work serves as a motivation to this work. In particular, in
this paper we propose an automated tool to predict which bug
report fields would get reassigned, to help developers reduce
bug fixing effort.

There have been a number of other studies on bug report
field reassignments. Guo et al. perform an empirical study
on fixer reassignments, and they find five primary reasons
for fixer reassignments, i.e., difficulty to identify the root
cause, ambiguous ownership of components, poor bug report
quality, difficulty to determine the proper fix, and workload
balancing [40]. Jeong et al. investigate fixer reassignments in
Mozilla and Eclipse, and they propose a method which uses
fixer reassignment graph to improve the performance of bug
triaging [7]. Bhattacharya el at. extend Jeong et al.’s work to
improve the accuracy of bug triaging by using multi-feature
fixer reassignment graph [33]. Shihab et al. study reopened
bugs in Eclipse, Apache HTTP, and OpenOffice, and find that
the average time to resolve a reopened bug is approximately
twice as much as the time to resolve a non-reopened bug [4],
[5]. They propose a machine learning based method to predict
reopened bug reports; they extract 4 groups of features, related
to work habits, bug report fields, bug fix, and people, contain-
ing a total of 24 features. Sureka investigates the component
reassignment problem in Eclipse and Mozilla, and proposes the
use of machine learning algorithms to predict the components
of bug reports [12]. Lamkanfi et al. also study the component
reassignment problem, and find that the proportion of bug
reports whose component field gets reassigned varies between
8.3% to 32.7% in Eclipse and Mozilla [6]. They propose the
usage of Naive Bayes to predict whether the component of a
bug report would be reassigned, and their method achieves
precision and recall between 0.58-0.94 and 0.54-1 for bug
reports of several products of Eclipse and Mozilla. Our work
generalizes the above studies; whereas previous studies focus
on single bug report field reassignment, our work considers
all field reassignments simultaneously.

B. Multi-Label Learning

There have been a number of studies on multi-label learning
in software engineering [20], [21], [36], [41]. Xia et al. pro-
pose TagCombine to recommend tags in software information
sites [21]. Xia et al. propose DevRec to recommend bug
resolvers [36]. Each of these two studies makes use of a multi-
label learning algorithm. Banerjee et al. propose the usage of
multi-label learning algorithms to select suitable duplicated
bug report detection techniques, and combine them to achieve
a better performance [41]. Xia el al. propose a composite
method MLL-GA which combines different multi-label learn-
ing algorithms by leveraging genetic algorithms, to achieve a
better performance for software behavior learning [20]. Our
work is orthogonal to the above studies since we study a
different problem - we focus on predicting which bug report
fields would get reassigned rather than recommending a set of
tags, resolvers, and duplicated bug report detection techniques,
and predicting the fault types of a failure. Also, different from

the above studies, in this study we consider the class imbalance
problem, and adapt ML.KNN to handle this problem.

X. CONCLUSION AND FUTURE WORK

In this paper, we develop a tool which leverages multi-label
learning algorithms to automatically predict which bug report
fields would be reassigned and refined. We propose imbal-
anced ML.KNN (Im-ML.KNN), which extends ML.KNN, by
considering the class imbalance phenomenon. Im-ML.KNN is
a composite model, which combines 3 multi-label classifiers
built on different types of features (i.e., meta, textual, and
mixed features). We evaluate the performance of Im-ML.KNN
on 4 large-scale open source projects which contain 190,558
bug reports in total. Experiment results show that Im-ML.KNN
could achieve an average F-measure score of 0.56-0.62. We
also compare Im-ML.KNN with other state-of-art methods,
such as the method proposed by Lamkanfi et al., ML.KNN,
and HOMER. The results show that Im-ML.KNN on average
improves the average F-measure scores of Lamkanfi et al.’s
method, ML.KNN, and HOMER-NB by 119.69%, 9.11%, and
161.08%, respectively. We show that the performance of Im-
ML.KNN remains relatively stable across a wide range of
parameter settings thus showing that it is not sensitive on the
optimal setting of its parameter.

In the future, we plan to evaluate Im-ML.KNN with more
bug reports from more software projects, and develop a
better technique which could improve the bug report field
reassignment and refinementprediction further.

ACKNOWLEDGMENT

This research was supported by the National Basic Re-
search Program of China (the 973 Program) under grant
2015CB352201, National Key Technology R&D Program of
the Ministry of Science and Technology of China under grant
2014BAH24F02, and the Fundamental Research Funds for the
Central Universities.

REFERENCES

[1] M. Newman, “Software errors cost us economy $59.5 billion annually,”
NIST Assesses Technical Needs of Industry to Improve Software-Testing,
2002.

[2] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss, “What makes a good bug report?” Software Engineering, IEEE
Transactions on, vol. 36, no. 5, pp. 618–643, 2010.

[3] T. Zimmermann, R. Premraj, J. Sillito, and S. Breu, “Improving bug
tracking systems,” in Software Engineering-Companion Volume, 2009.
ICSE-Companion 2009. 31st International Conference on. IEEE, 2009,
pp. 247–250.

[4] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,
A. E. Hassan, and K.-i. Matsumoto, “Predicting re-opened bugs: A case
study on the eclipse project,” in Reverse Engineering (WCRE), 2010 17th
Working Conference on. IEEE, 2010, pp. 249–258.

[5] ——, “Studying re-opened bugs in open source software,” Empirical
Software Engineering, pp. 1–38, 2012.

[6] A. Lamkanfi and S. Demeyer, “Predicting reassignments of bug reports-an
exploratory investigation,” in Software Maintenance and Reengineering
(CSMR), 2013 17th European Conference on. IEEE, 2013, pp. 327–330.

[7] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
bug tossing graphs,” in Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. ACM, 2009,
pp. 111–120.

IEEE TRANSACTIONS ON RELIABILITY 20

[8] R. K. Saha, S. Khurshid, and D. E. Perry, “An empirical study of long
lived bugs,” in Software Maintenance, Reengineering and Reverse Engi-
neering (CSMR-WCRE), 2014 Software Evolution Week-IEEE Conference
on. IEEE, 2014, pp. 144–153.

[9] X. Xia, D. Lo, M. Wen, E. Shihab, and B. Zhou, “An empirical study of
bug report field reassignment,” in Software Maintenance, Reengineering
and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week-
IEEE Conference on. IEEE, 2014, pp. 174–183.

[10] S. Mani, S. Nagar, D. Mukherjee, R. Narayanam, V. S. Sinha, and A. A.
Nanavati, “Bug resolution catalysts: identifying essential non-committers
from bug repositories,” in Proceedings of the 10th Working Conference
on Mining Software Repositories, MSR ’13, San Francisco, CA, USA,
May 18-19, 2013, 2013, pp. 193–202.

[11] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,”
International Journal of Data Warehousing and Mining (IJDWM), vol. 3,
no. 3, pp. 1–13, 2007.

[12] A. Sureka, “Learning to classify bug reports into components,” in
Objects, Models, Components, Patterns. Springer, 2012, pp. 288–303.

[13] M.-L. Zhang and Z.-H. Zhou, “Ml-knn: A lazy learning approach to
multi-label learning,” Pattern Recognition, vol. 40, no. 7, pp. 2038–2048,
2007.

[14] H. He and E. A. Garcia, “Learning from imbalanced data,” Knowledge
and Data Engineering, IEEE Transactions on, vol. 21, no. 9, pp. 1263–
1284, 2009.

[15] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Effective and efficient
multilabel classification in domains with large number of labels,” in
Proc. ECML/PKDD 2008 Workshop on Mining Multidimensional Data
(MMD?8), 2008, pp. 30–44.

[16] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proceedings of the 28th international conference on Software engineering.
ACM, 2006, pp. 361–370.

[17] R. A. Baeza-Yates and B. A. Ribeiro-Neto, Modern Information Re-
trieval, 2011.

[18] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, “Fuzzy
set and cache-based approach for bug triaging,” in Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering. ACM, 2011, pp. 365–375.

[19] J. Han, M. Kamber, and J. Pei, Data mining: concepts and techniques.
Morgan kaufmann, 2006.

[20] X. Xia, Y. Feng, D. Lo, Z. Chen, and X. Wang, “Towards more ac-
curate multi-label software behavior learning,” in Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software
Evolution Week-IEEE Conference on. IEEE, 2014, pp. 134–143.

[21] X. Xia, D. Lo, X. Wang, and B. Zhou, “Tag recommendation in software
information sites,” in Proceedings of the Tenth International Workshop on
Mining Software Repositories. IEEE Press, 2013, pp. 287–296.

[22] Y. Tian, J. Lawall, and D. Lo, “Identifying linux bug fixing patches,”
in Software Engineering (ICSE), 2012 34th International Conference on.
IEEE, 2012, pp. 386–396.

[23] T. Menzies and A. Marcus, “Automated severity assessment of software
defect reports,” in Software Maintenance, 2008. ICSM 2008. IEEE
International Conference on. IEEE, 2008, pp. 346–355.

[24] F. Thung, D. Lo, and J. L. Lawall, “Automated library recommendation,”
in WCRE, 2013, pp. 182–191.

[25] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas,
“Mulan: A java library for multi-label learning,” Journal of Machine
Learning Research, 2011.

[26] G. Tsoumakas, I. Katakis, and L. Vlahavas, “Random k-labelsets for
multilabel classification,” Knowledge and Data Engineering, IEEE Trans-
actions on, vol. 23, no. 7, pp. 1079–1089, 2011.

[27] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for
multi-label classification,” Machine learning, vol. 85, no. 3, pp. 333–359,
2011.

[28] M. Zhang and Z. Zhou, “A review on multi-label learning algorithms,”
Knowledge and Data Engineering, IEEE Transactions on, vol. 26, no. 8,
pp. 1819–1837, Aug 2014.

[29] Y. Feng and Z. Chen, “Multi-label software behavior learning,” in Pro-
ceedings of the 2012 International Conference on Software Engineering.
IEEE Press, 2012, pp. 1305–1308.

[30] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: recovering links
between bugs and changes,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software
engineering. ACM, 2011, pp. 15–25.

[31] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Multi-
layered approach for recovering links between bug reports and fixes,” in
Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering. ACM, 2012, p. 63.

[32] F. Peters and T. Menzies, “Privacy and utility for defect prediction:
Experiments with morph,” in Software Engineering (ICSE), 2012 34th
International Conference on. IEEE, 2012, pp. 189–199.

[33] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental learning
and multi-feature tossing graphs to improve bug triaging,” in Software
Maintenance (ICSM), 2010 IEEE International Conference on. IEEE,
2010, pp. 1–10.

[34] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters,
vol. 27, no. 8, pp. 861–874, 2006.

[35] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in
Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering. ACM, 2007, pp. 34–43.

[36] X. Xia, D. Lo, X. Wang, and B. Zhou, “Accurate developer recommen-
dation for bug resolution,” in Reverse Engineering (WCRE), 2013 20th
Working Conference on. IEEE, 2013, pp. 72–81.

[37] S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance
bugs: a case study on firefox,” in Proceedings of the 8th working
conference on mining software repositories. ACM, 2011, pp. 93–102.

[38] X. Xia, D. Lo, E. Shihab, X. Wang, and B. Zhou, “Automatic, high
accuracy prediction of reopened bugs,” Automated Software Engineering,
pp. 1–35, 2014.

[39] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Proceedings
of the 2013 International Conference on Software Engineering. IEEE
Press, 2013, pp. 382–391.

[40] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Not my bug!
and other reasons for software bug report reassignments,” in Proceedings
of the ACM 2011 conference on Computer supported cooperative work.
ACM, 2011, pp. 395–404.

[41] S. Banerjee, Z. J. Syed, J. Helmick, and C. Bojan, “A fusion approach
for classifying duplicate problem reports,” in ISSRE, 2013, pp. 208–217.

Xin Xia received his PhD degree from the College of Computer Science and
Technology, Zhejiang University, China in 2014. He is currently a research
assistant professor in the college of computer science and technology at
Zhejiang University. His research interests include software analytic, empirical
study, and mining software repository. He is a member of the Institute of
Electrical and Electronics Engineers.

David Lo received his PhD degree from the School of Computing, National
University of Singapore in 2008. He is currently an assistant professor in
the School of Information Systems, Singapore Management University. He
has close to 10 years of experience in software engineering and data mining
research and has more than 130 publications in these areas. He received
the Lee Foundation Fellow for Research Excellence from the Singapore
Management University in 2009. He has won a number of research awards
including an ACM distinguished paper award for his work on bug report
management. He has published in many top international conferences in
software engineering, programming languages, data mining and databases,
including ICSE, FSE, ASE, PLDI, KDD, WSDM, TKDE, ICDE, and VLDB.
He has also served on the program committees of ICSE, ASE, KDD, VLDB,
and many others. He is a steering committee member of the IEEE International
Conference on Software Analysis, Evolution, and Reengineering (SANER)
which is a merger of the two major conferences in software engineering,
namely CSMR and WCRE. He will also serve as the general chair of ASE
2016. He is a leading researcher in the emerging field of software analytics and
has been invited to give keynote speeches and lectures on the topic in many
venues, such as the 2010 Workshop on Mining Unstructured Data, the 2013
Gnie Logiciel Empirique Workshop, the 2014 International Summer School on
Leading Edge Software Engineering, and the 2014 Estonian Summer School
in Computer and Systems Science.

IEEE TRANSACTIONS ON RELIABILITY 21

Emad Shihab is an Assistant Professor in the Department of Computer
Science and Software Engineering at Concordia University. He received his
PhD from Queen’s University and his MASc. and BEng. from the University
of Victoria. Dr. Shihab’s research interests are in Software Engineering, Soft-
ware Quality Assurance, Empirical Software Engineering, Mining Software
Repositories, Mobile Applications and Software Architecture. He worked as
a software research intern at Research In Motion in Waterloo, Ontario and
Microsoft Research in Redmond, Washington. He held an NSERC Alexander
Graham Bell Canada Graduate Scholarship (CGS-D3) and the PhD research
achievement award from the School of Computing at Queens University.
He served as organizer to a number of events related to Mining Software
Repositories (MSR) and Mobile Applications, including serving as program
chair of the MSR 2012 Challenge Track and the MSR 2013 Data Showcase
Track. Dr. Shihab regularly serves on the programming committee of Software
Engineering conferences and journals such as ICSME, MSR, ICPC, SANER
(formerly WCRE/CSMR), OSS, TSE and EMSE.

Xinyu Wang received the bachelors and PhD degrees in computer science
from Zhejiang University of China, in 2002 and 2007. He was a research
assistant in Zhejiang University, during 2002-2007. He is currently an as-
sociate professor in the College of Computer Science, Zhejiang University.
His research interests include software engineering, formal methods, and very
large information systems.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	9-2016

	Automated bug report field reassignment and refinement prediction
	Xin XIA
	David LO
	Emad SHIHAB
	Xinyu WANG
	Citation

	tmp.1504688295.pdf.OpC8V

