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Abstract. The last-mile problem concerns the provision of travel services from the near-
est public transportation node to a passenger’s home or other destination. We study the
operation of an emerging last-mile transportation system (LMTS) with batch demands
that result from the arrival of groups of passengers who desire last-mile service at urban
metro stations or bus stops. Routes and schedules are determined for a multivehicle fleet
of delivery vehicles, with the objective of minimizing passenger waiting time and riding
time. An exact mixed-integer programming (MIP) model for LMTS operations is presented
first, which is difficult to solve optimally within acceptable computational times. Compu-
tationally feasible heuristic approaches are then developed: a myopic operating strategy
that uses only demand information from trains that have already arrived, a metaheuristic
approach based on a tabu search that employs demand information over the entire ser-
vice horizon, and a two-stage method that solves the MIP model approximately over the
entire service horizon. These approaches are implemented in a number of computational
experiments to evaluate the system’s performance, and demonstrate that LMTS is notably
preferable to a conventional service system under certain conditions.
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1. Background and Literature Survey

The last-mile problem (LMP) has attracted growing
attention in the past decade. Generally, it refers to the
design and provision of travel services from a pub-
lic transportation node to a passenger’s final destina-
tion. Several developments have boosted interest in
the problem. First, many cities and governments are
under pressure to increase public transport’s share of
urban trips to reduce road congestion and air pollu-
tion. Urban transport planners have increasingly rec-
ognized that the unavailability of last-mile services—
which offer alternatives to walking to or from the
nearest metro station—is one of the main deterrents to
the use of public transport. Second, an aging popula-
tion in many cities has greatly increased the demand
for such services. Third, legal requirements to ensure
adequate mobility for certain demographic groups,
such as people with physical disabilities or schoolchil-
dren, are becoming more common; these are also the
groups most likely to need last-mile services.

This paper focuses on a generic context, which is
outlined schematically in Figure 1. A last-mile trans-
portation system (LMTS) serves a public transporta-
tion node, such as a rapid-transit metro station, where
trains discharge passengers in large or small groups
(batches). Passengers’ final destinations (homes, work-
places, public institutions, etc.) are spatially distributed

in the urban area served by the node. A set of last-
mile stops (LM stops) has also been specified and
distributed spatially within this urban area. While a
passenger’s final destination can be anywhere within
the area, LM stops are limited to a finite number of
locations that are convenient for loading and unload-
ing passengers, such as existing public transit stops,
entrances to hotels, crossroads near office buildings,
and loading areas adjacent to residential buildings or
complexes. A fleet of vehicles is available to transport
each passenger to the LM stop closest to her final desti-
nation. Empty vehicles then return to the station to pick
up waiting or newly arrived passengers. The routes
and schedules of LMTS vehicles are flexible and can
be changed based on specific last-mile service requests.
Essentially, LMTS is an on-demand urban transporta-
tion system with batch demands. We describe the set-
ting in more detail in Section 2.

Many issues must be addressed when designing and
operating an LMTS. In an earlier paper addressing the
planning side (Wang and Odoni 2016), we focused on
an LMTS from a stochastic and planning perspective,
and provided closed-form approximations for its per-
formance as a function of the system’s fundamental
design parameters. These approximations can be used
for the preliminary planning and design of an LMTS,
and in particular for determining approximate resource
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Figure 1. Schematic of a Last-Mile Transportation System
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requirements, such as the number of vehicles/servers
needed to achieve a specified level of service (LOS).

A large body of literature has generated various
models related to the LMP, with early work dating
to the 1960s and expanding rapidly over the last
15 years. There are two last-mile contexts: freight
LMTS and passenger LMTS. A freight LMTS is usu-
ally referred to as a “last-mile supply chain.” Many
studies have addressed this aspect, given the burgeon-
ing role of e-commerce. By contrast to operations opti-
mization, which we examine here, these studies focus
more on concept discussions and simulations (e.g.,
Punakivi, Yrjold, and Holmstrom 2001); general fulfill-
ment strategies (e.g., Lee and Whang 2001); delivery
options effects (e.g., Esper et al. 2003); demand charac-
teristics effects (e.g., Boyer, Prud’homme, and Chung
2009, Song et al. 2009); and specific application con-
texts, such as Balcik, Beamon, and Smilowitz’s (2008)
study of last-mile distribution geared to the needs of
humanitarian relief chains. As for passenger LMTS,
various case studies have analyzed LMTS in differ-
ent contexts, such as a bicycle-sharing program for an
LMTS in Beijing (Liu, Jia, and Cheng 2012). Personal
rapid transit (PRT), which refers to a variety of trans-
portation systems with characteristics that are simi-
lar, in some respects, to the passenger LMTS we con-
sider here, has also attracted significant attention in the
past decade. Research has been conducted on PRT sys-
tem control frameworks (e.g., Anderson 1998), finan-
cial assessments (e.g., Bly and Teychenne 2005, Berger
et al. 2011), performance approximations (e.g., Lees-
Miller, Hammersley, and Davenport 2009, Lees-Miller,
Hammersley, and Wilson 2010), and case studies (e.g.,
Mueller and Sgouridis 2011). None of these papers
addresses the detailed LMTS operating issues that are
the subject of this paper, in which we focus on a generic
passenger LMTS from an optimization and operational
perspective.

A large body of research also concerns demand
responsive transit (DRT), which is another type of
on-demand service. Some papers focus on DRT con-
cept discussions, practical implementation, and assess-
ment of simulations in case studies, such as Horn
(2002a), Mageean and Nelson (2003), Brake, Nelson,
and Wright (2004), Enoch et al. (2004), Engles and
Iacometti (2004), Palmer, Dessouky, and Abdelmaguid
(2004), and Quadrifoglio, Dessouky, and Ordoériez
(2008), among others. For example, Mageean and
Nelson (2003) introduce the concept of telematics-
based DRT services and present the results of their
evaluation of a set of DRT technologies and opera-
tions at urban and rural sites across Europe. Palmer,
Dessouky, and Abdelmaguid (2004) present the results
of a nationwide study of DRT involving 62 transit
agencies, which suggests that the use of a paratran-
sit computer-aided dispatching system and agency
service delivery is beneficial for productivity. Other
papers focus on approximations of the performance of
DRT from a stochastic viewpoint. Models have been
developed to assist in system design and regulation;
for example, Diana, Dessouky, and Xia (2006) study
how to determine the number of vehicles needed to
provide a DRT service of prespecified quality, in which
service quality is evaluated in terms of waiting times at
stops and maximum allowed detours. Daganzo (1978)
presents an analytic model to predict average waiting
and riding times in urban transportation systems, such
as dial-a-ride buses and taxis, and Wilson and Hen-
drickson (1980) critically review models to predict the
performance of such flexibly routed transportation ser-
vices. A few papers also discuss DRT routing options
in specific contexts, such as an insertion algorithm with
the objective of minimizing total vehicle travel time
or maximizing total ridership (Horn 2002b) and an
evolutionary heuristics approach with a mixed objec-
tive (Chevrier et al. 2012). To some extent, the LMTS
studied in this paper is a specific variant of a broadly
defined DRT concept—namely, a demand responsive
transportation system that addresses last-mile service
requests with batch passenger demand and a shared
passenger origin. Unlike most papers in the literature,
we also focus on LMTS routing and scheduling from
an optimization and operational perspective, and eval-
uate the performance of LMTS by applying alternative
operational approaches.

Routing and scheduling problems have long been
studied, and they comprise a large body of literature;
we will mention here only a few of the most influen-
tial papers that are relevant to our problem. The vehi-
cle routing problem with time windows (VRPTW) has
been the subject of intensive study, using both heuris-
tic and exact optimization approaches. A good review
of the VRPTW literature can be found in Brdysy and
Gendreau (2005a, b). The dial-a-ride problem (DARP)



and related variations have also been extensively inves-
tigated by, e.g., Jaw et al. (1986) and Lei, Laporte, and
Guo (2012). Cordeau and Laporte (2007) provide a
good critical review of the DARP literature. In addi-
tion, scheduling for multiserver vehicle systems is an
important problem that has been studied in diverse
contexts; examples include Liu and Liu (1998), Zee,
Harten, and Schuur (2001), and Lee, Mazumdar, and
Shroff (2006).

By contrast to the systems and problems that have
been studied previously, routing and scheduling for
LMTS has the following features:

(1) passengers requesting last-mile service arrive in
batches at the metro station, instead of individually,
and passengers in the same batch have the same service
time window;

(2) passengers requesting last-mile service share a
last-mile origin (which is also the vehicle depot)—i.e.,
the metro station at which they were discharged from
trains;

(3) the objective is to improve LOS by minimizing
passenger waiting time and riding time, rather than to
reduce operating costs; the latter is the main goal, for
instance, of VRPTW.

In summary, LMTS presents a general-capacity,
multivehicle routing and scheduling problem, with
successive batches of passengers having the same
time windows and a shared origin. These features
provide intuitive groupings of the relevant opera-
tional decisions and provide incentives to identify
heuristic approaches. For example, batch demands
inspire grouping of route decisions between successive
batches, which we use in a tabu search metaheuris-
tic (definition of solution attributes in Section 5) and
a two-stage method (definition of first-stage decision
variables in Section 6).

The paper’s contributions are twofold: first, the de-
velopment of routing and scheduling approaches for
an innovative urban transportation system concept—
the LMTS—and second, the assessment of the perfor-
mance of these approaches and of the LMTS concept,
in general. Specifically, from an operational and opti-
mization perspective, we formulate an exact mixed-
integer programming (MIP) model for optimizing
routing and scheduling decisions for a generic LMTS.
Next, from an operational and optimization perspec-
tive, we develop three computationally feasible heuris-
tics that employ different types of demand informa-
tion: a myopic approach for the case in which no
advanced demand information is available; and a tabu
search metaheuristic and a two-stage MIP heuristic,
both of which employ full advance demand informa-
tion. Last, we evaluate the performance of LMTS under
these routing and scheduling approaches, and com-
pare them with the performance of a conventional ser-
vice system with fixed routes and schedule.

The paper is organized as follows. In Section 2,
we describe in detail the operational LMTS problem
and discuss the associated fundamental assumptions.
In Section 3, we propose an exact MIP model for
the LMTS routing and scheduling problem. Section 4
describes a myopic operating strategy that uses only
demand information from trains that have already
arrived, and could easily be implemented and used
in practice; the strategy provides a default solution,
which is particularly valuable when advance demand
information is not available. Section 5 presents a fast
tabu search metaheuristic that employs demand infor-
mation over the entire service horizon and, in most
contexts, is superior to the solution provided by the
myopic operating strategy. Section 6 proposes a two-
stage heuristic method for solving the exact MIP model
presented in Section 3 over the entire service hori-
zon. Section 7 defines a set of test instances and per-
forms a number of computational experiments to eval-
uate the performance of LMTS and demonstrate the
approaches described in Sections 3-6 in a number of
settings. Finally, Section 8 contains a summary and
concluding remarks.

2. Problem Description

We now describe in more detail the problem depicted
in Figure 1. The LMTS, which serves a transit metro
station, operates as follows: Any passenger who needs
last-mile service is required to register in a service-
reservation system (either via a smartphone applica-
tion or website), by selecting the LM stop closest to her
final destination. The passenger can provide advance
notice of her arrival time at the metro station—i.e., the
time at which she will need last-mile service. In prac-
tical terms, advance notice could be generated in a
number of ways, with each entailing different length
of advance notices and service horizons. For example,
at one extreme, consider the case in which all passen-
gers are regular subscribers. Each passenger follows a
known schedule every day (e.g., Request last-mile ser-
vice from metro station X to LM Stop 1 at 6:00 r.m.
from Monday to Friday), and the metro service is punc-
tual and reliable. This offers the LMTS operator lengthy
advance notice of each passenger’s service requirement
and a service horizon that could span a sequence of
many metro arrivals (e.g., We will serve about 65 pas-
sengers every afternoon, with known destinations, who
will arrive in a sequence of six metro trains that reach
the station between 5:00 and 6:00 p.m.). In this environ-
ment, the LMTS operator aims to optimize service to the
entire (known) set of passengers over the entire service
horizon (in this instance, 5:00-6:00 p.m.).

By contrast, if service subscribers have schedules
that vary from day to day (or if the metro system
is crowded and unreliable), service requests may be
known only a short time before passengers arrive at
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the station. In that case, a passenger could use a smart-
phone application or tap a smart card on a special-
purpose screen to send the service request when she
enters any station for the purpose of traveling to the
specific station with last-mile service or when she
enters her train. The resulting message to the LMTS
includes her arrival time at the metro station with
last-mile service (which is easy to predict once the
passenger boards a train) and her ultimate LM stop.
Thus, the advance notice is on the order of 10-20 min-
utes, and the LMTS operator can plan the service only
for passengers arriving on one of the incoming (e.g.,
one to three) metro trains. In an extreme case, if passen-
gers cannot provide advance notice and cannot reserve
LMTS service in advance (due to a lack of reserva-
tion systems or because of highly uncertain schedules
for both passengers and metros), the LMTS operator is
forced to plan service using solely demand information
from trains that have already arrived at the station.

Since the number of LM stops served by the LMTS
is finite, the number of possible vehicle routes (i.e.,
sequences of LM stops in a delivery trip, or route)
is also finite (although potentially large). We assume
that, based on the service region’s geometry and his-
torical demand data, we can preselect a set of feasible
routes that are practical in the sense of satisfying some
typical constraints, such as limits on the maximum
number of LM stops on a single route or the route’s
maximum travel distance or travel time. For each fea-
sible route, a traveling salesman problem (TSP) heuris-
tic or exact algorithm can be used to obtain the opti-
mal sequence for LM stops (with shortest total travel
distance/time as the criterion) and the corresponding
travel distance/time to each LM stop.

Once the set of preselected routes is specified, the
LMTS operations problem consists of determining, for
each problem instance, the vehicle routes and sched-
ules that will actually be used to deliver passengers to
their LM stops. Operational decisions include assign-
ment of each passenger to a vehicle, route selection,
and each vehicle’s schedule. If a route is selected in
the final operational decision, a vehicle will be dis-
patched to visit all of the LM stops specified on that
route, according to a corresponding schedule; if there
are no passengers destined for a particular LM stop, the
system will choose a route that does not include that
stop. Drivers are given a detailed plan that specifies
the route, schedule, and number of passengers for each
LM stop on every service trip (e.g., Depart the station
at 6:36 pm. on the Stop 3-Stop 1-Stop 2 route; deliver 4
passengers to Stop 3, 2 passengers to Stop 1, and 3 pas-
sengers to Stop 2). Each passenger will receive a mes-
sage (on her smartphone or by tapping her smart card
on a screen when she arrives at the station) with the
vehicle she has been assigned to, the scheduled depar-
ture time from the station, the route, and the scheduled

arrival time at her LM stop (e.g., Board Vehicle #123,
which will depart the station at 6:36 pm.; the route will
be Stop 3-Stop 1-Stop 2; you will arrive at your desti-
nation, LM Stop 1, at 6:41 pm.). After completing each
trip, the vehicle returns to the station to pick up pas-
sengers for its next trip.

We summarize our assumptions: (1) LM stops are
prespecified; (2) a sufficiently large set of feasible
routes for LMTS vehicles is preselected based on
geometry, demand patterns, and some practical con-
straints; (3) with advance notice of demand, each pas-
senger’s arrival time and destination LM stop (ie.,
demand information) will be known for a prespecified
time period; and (4) the delivery fleet consists of m
vehicles, each with integer capacity c. We aim to create
a detailed plan for fleet operations, with the objective
of minimizing a weighted sum of passenger’s waiting
time before boarding a vehicle and in-vehicle riding
time. We will then evaluate the system’s performance
compared to a conventional service.

As noted earlier, aside from demands that have al-
ready arrived at the station, the length of advance
notice depends on the practical implementation and
service-reservation requirements of the LMTS. In this
paper, we assume that if a demand becomes known
through advance notice (whether 10 minutes or hours
before arrival at the station), that demand will materi-
alize exactly as expected. In some contexts, this “deter-
ministic” version of the LMTS operations problem is
a reasonable approximation to reality. Its solution can
also serve as a benchmark for contexts that contain
stochastic variability.

3. MIP Formulation

In this section, we present an exact MIP model for
the LMTS operations problem described in Section 2,
assuming that the LMTS operator receives advance
notice of every passenger’s service requirement and
has a service horizon that spans a sequence of several
metro arrivals. The LMTS operator aims to optimize
service to the entire (known) set of passengers over
the entire service horizon. We introduce the following
notation in Table 1.

In this formulation, we discretize the time into inter-
vals of one minute so that we can approximate what
will happen in practice. The objective function (1) is
defined as minimizing the weighted sum of the time
spent by all passengers in the LMTS—i.e., waiting time
before boarding a vehicle and in-vehicle riding time

minimize ﬁinZr;+ﬁVZZthkZ;k' 1)
r F7 K

For example, since we discretize the time into one-
minute intervals and r/t, counts the unserved passen-
gers at the end of time ¢, if r]f = 20 for some t, this



Table 1. Notation for the Exact MIP Model

Parameters

J:  number of prespecified LM stops

K:  number of preselected routes

i+ number of passengers with destination at LM stop j arriving
at the station at time f; obtained from train schedules and
the last-mile’s service-reservation system

¢ 1if LM stopj is served by route k; zero otherwise

te:  total service time of route k

ty:  travel time to LM stop j on route k

m:  number of vehicles in the fleet (fleet size)

c: maximum number of passengers served by a vehicle (vehicle
capacity)

B.: weight of passenger waiting time before boarding in the
objective function

B,:  weight of passenger in-vehicle riding time in the objective
function

Decision variables

z]’.k: number of passengers with destination at LM stop j assigned
to route k at time ¢

w;: number of trips on route k initiated at time ¢

Intermediate variables
ri: number of unserved passengers with destination at LM stop j
waiting at the station at the end of time ¢

j
t number of available vehicles at the station at the end of time ¢

(%

means that 20 minutes of waiting were added during
the minute ¢ for passengers going to stop j. If 8, = §,,
the objective is to minimize the sum of total passenger
waiting and riding times. This, of course, is equivalent
to minimizing the average elapsed time from a passen-
ger’s arrival at the station to her final delivery at the
destination LM stop.

The formulation has the following constraints:

(a) Passenger flow constraints: Since all passengers
have one shared origin (the metro station), expres-
sions (2)—(4) define and constrain the number of
unserved passengers with destinations at each LM stop
waiting at the metro station at the end of each time ¢

r?:”?_zklz?k'%kr Vi @

A et S g Vil @)
k

t ,

120, Vijt )

(b) Vehicle flow constraints: Since all vehicles have
one shared origin (the metro station), expressions
(5)—(7) define and constrain the number of available
vehicles waiting at the metro station at the end of each
time ¢

O =m- > wy, 5)
k
vtzz;"1+2w,t;tk—2w,’(, Vt>1, (6)
k k
v' >0, Vt. @)

(c) Service capacity constraints: Expression (8) guar-
antees the vehicle service capacity restriction

DT scwy, Ykt ®8)
]

(d) Domains of decision variables
w, €Z", z]t.k eR" Vjk,t. )

The model described above deviates from a class of
traditional vehicle routing and scheduling problems
by combining the following features in a single formu-
lation: (1) the routing and scheduling of a multivehi-
cle fleet with general capacity; (2) sequences of batch
demands over a period of time; (3) the same service
release time (arrival time at the metro station) and the
same service time window for all passengers in a single
batch; (4) one shared origin (which is also the vehicle
depot) for all service requests; and (5) a performance
metric that measures the waiting time and riding time
of passengers, instead of the travel distance/time of
vehicles. The problem that these features represent can
be denoted as the (P, capclS, r;|Graph| Z; C;) problem
of de Paepe et al. (2004), which has been proved in
that paper to be NP-hard. Therefore, it is not surpris-
ing that it is difficult to obtain optimal, or even near-
optimal, solutions for large-scale instances of our MIP
model. We can explore the features of this problem to
develop computationally feasible heuristic approaches
for application in different contexts, as described in
Sections 4-6.

4. Myopic Operation

In this section, we describe a myopic approach to solv-
ing the LMTS operations problem using only demand
information from trains that have already arrived at the
station. When a train (batch of passengers) arrives at
the station, we consider (1) the new passengers arriv-
ing on that train, and (2) any previously arrived pas-
sengers who are already waiting for last-mile service.
On arrival of each train, the LMTS operator specifies
assignments and delivery routes for passengers in both
classes. The myopic approach is easy to implement
in practice and can provide quick solutions. It is also
important to note that the myopic approach may offer
a default solution to the LMTS operations problem,
especially when no advance demand information is
available to the operator—i.e., a passenger’s last-mile
service request becomes known only when she actu-
ally arrives at the station. This is currently the case in
most urban transportation systems, and thus myopic
models can be of practical interest.



Figure 2. Procedure for a Myopic Approach
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4.1. Procedure for Myopic Operation

Under the myopic approach, when a train arrives at
the station, we solve the LMTS operations problem
for the current state of the system without any look-
ahead. Let u; be the number of passengers waiting at
the station destined for LM stop j after a train arrives.
Note that u; includes both any newly arrived passen-
gers with destination j and any previously unserved
passengers destined for j. Based on demand U =
{ug,Uy,...,u ]} following a train’s arrival, we can deter-
mine a set of passenger assignments to vehicles and
the set of routes S = {k;, k,, ...} that these vehicles will
travel. It is important to note that (1) S is based on ser-
vice requests that have already arrived at the station;
(2) S is updated (emptied and redetermined) after the
arrival of each train; and (3) we could have multiple
identical routes in S—i.e., there exists i # j, such that
k; = k]-, k; €S, k]- € S. For example, if a large number of
passengers from one train request last-mile service to
LM stop j, several identical routes could serve that sin-
gle stop within a short period of time. The procedure
used to perform the myopic operations is illustrated in
Figure 2 and described in Table 2.

The process is repeated every time a train (demand
batch) arrives until the end of the service horizon for
the LMTS. The arrival of a train is a natural trigger for
the LMTS operator to redetermine a new set of routes
given the new batch of passengers.

4.2. Myopic Formulation

In step 3 of the myopic approach, the set of routes S is
updated (emptied and redetermined) after the arrival
of each train. Updated solutions are based on the ser-
vice requests of the passengers from the train that has
just arrived at the station and the previously unserved
passengers waiting at the station. An MIP model,

Idle vehicles

(6.1)

—»|  Service trip

Selected route

A

e — o

myopic formulation, is proposed to make route sug-
gestions after the arrival of each train. Let MF; denote
the myopic formulation for the decision epoch after the
arrival of train i. Additional notation for MF; is intro-
duced in Table 3.

The Myopic Formulation MF; is defined as follows:

minimize ﬁ1g+ﬁ22tkwk+ﬁ3zzt]kz]k
k j k

(10)
Zklzjk'gbjk:n;'u"'n;/ Vj, (11)
Dzpdp<cow, Yk, (12)
j
Dlwp=g, 13)
k
g, weZ, zjkeR*, Vi k. (14)

The first part of objective function (10) aims to reduce
passenger waiting time before boarding (a smaller g
means more ride sharing and earlier boarding); the sec-
ond part of the objective function also aims to reduce

Table 2. Procedure for a Myopic Approach

(0) Whenever a new train arrives at the station:
(1) Update demand U using information about the newly arrived
passengers.
(2) Empty the set of suggested routes S.
(8) Determine a new set of routes S (use an MIP model, Myopic
Formulation, Section 4.2).
(4) Determine the priority of the routes in S (use ranking criteria,
Section 4.3).
(5) Whenever there are idle vehicles:
(5.1) Dispatch an idle vehicle to serve the route with the
highest priority in S.
(5.2) Update the status of passengers.
(5.3) Update the status of vehicles.
(5.4) Delete the selected route from S.
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Table 3. (Additional) Notation for Myopic Formulation MF;

Parameters:

n;’u: number of unserved passengers with destination at LM
stop j before the arrival of train i

nj.: number of passengers with destination at LM stop j
arriving on train i

B,2,3: coefficients in the objective function

Decision variables:

Zj: number of passengers with destination at LM stop j
assigned to a route k in the decision epoch

wy: number of trips on route k suggested in the decision epoch

g: total number of trips needed in the decision epoch

passenger waiting time (from a queueing perspective,
less total service time in a service system means a lower
“utilization ratio,” and therefore less waiting time for
customers); the third part of the objective function aims
to reduce passenger in-vehicle riding time. In practice,
the values for §,, f,, and 55 can be adjusted to incor-
porate different preferences. In the numerical experi-
ments presented in Section 7, we test different combi-
nations of f;, §,, and 5, and find that a general relation
of B, > B, > B will provide high-quality solutions (mea-
sured by the sum of passenger waiting time and riding
time). Constraint (11) ensures that every passenger is
assigned to a route; (12) guarantees that the vehicle
capacity is not exceeded; (13) captures the total num-
ber of trips needed; and (14) defines decision-variable
domains, in which the integrality of z;; can be relaxed.

Note that, in the myopic approach, we do not plug
the limited information about arrived demand directly
into the MIP model in Section 3 for route selection.
When there is no future demand, the MIP model in
Section 3 favors dispatching direct service to an LM
stop (i.e., a route with a single LM stop) for the last
trip of each vehicle. This, in turn, generates vehicle
schedules with late completion times and makes it dif-
ficult for vehicles to return to the station early, even
when the next train will arrive soon. Essentially, the
advantage of the MIP model in Section 3 is its ability to
consider interactions between demands from different
batches. This advantage is diminished if information
about future demand is not available. To some extent,
the myopic formulation proposed in this section views
the LMTS as a queue. The larger weights of ;¢ and
B, 2k tiwy in its objective function will generate a rel-
atively lower long-term utilization ratio for the LMTS
from a queueing perspective, and provide a good LOS.
In computational experiments, we test and find that
the myopic formulation (with certain combinations of
B1, B2, and B3) performs well.

When g is set to a fixed value, the formulation MF;
is exactly the same as the traditional capacitated facil-
ity location problem (CFLP) if ¢ is not taken into con-
sideration. The decision variable w, is analogous to the
choice of location for the facility, and zj; is analogous to

the assignment of demand to the chosen facility. CFLP
isa well-studied problem: Sridharan (1995) reviews var-
ious heuristic and exact methods for CFLP. When solv-
ing MF,, we begin by setting the decision variable g =
(6> ]-(n;’u +n ;)) /c]. Because of the topological relations
between preselected routes and LM stops, MF; may be
infeasible with this initial value of g. We increase g by
one whenever MF; is infeasible. When the number of
LM stops is not large (e.g., | does not exceed 20), the
corresponding MF; can be solved directly and quickly
with common commercial optimization software, such
as CPLEX.

4.3. Ranking Criterion

The myopic formulation MF; suggests a set of routes,
S, that can be traveled before the next train arrives.
Because the number of idle vehicles right after the
arrival of train i might be less than the number of
routes in S, we may not, in some cases, be able to offer
all of the routes in S immediately. Therefore, we need
a ranking criterion to determine the order in which
the suggested routes in S will be traveled. The routes
will then be traveled sequentially, according to the pri-
ority specified by the ranking criterion. With the sug-
gested routes prioritized, the only remaining task is to
assign passengers to the routes. Generally, a trip with
shorter travel time that serves more passengers should
be given a higher priority than a trip with longer travel
time that serves fewer passengers. Therefore, as a sim-
ple criterion, for a route with w; =1, we use the value
2 ZjPjk/ty to set the priority, where X,z ¢ is the
total number of passengers the trip on route k will
serve, and f, is the total service time on route k. The
suggested routes in S are then ranked and selected in a
descending order of ; z ;¢ /t,. When w; > 1, we can
apply a similar criterion.

This approach is indeed myopic. In the formulation
MF;, any passengers (last-mile service requests) that
appear after the arrival of train i have no influence
on MF,; decisions. The myopic formulation MF; essen-
tially suggests a set of routes S based only on demand
information from trains that have already arrived,
without considering passengers who will arrive in the
future. Assuming a situation in which train i brings
only one passenger destined for a particular LM stop
j and train 7 + 1 brings a large number of passengers
destined for the same LM stop j, the myopic approach
could dispatch a route that serves LM stop j before the
arrival of train i + 1, while more advanced approaches
could hold the vehicle until the arrival of train i + 1.
With the holding strategy, passengers destined for LM
stop j from both train 7 and train 7 + 1 could share the
ride, which might reduce the waiting time of passen-
gers from train i + 1 due to the immediate availability of
the vehicle being held for them. Because of the heuristic
ranking criterion, the myopic approach is not myopic



optimal. It is, however, easy to implement in practice
and can provide quick solutions.

5. Tabu Search

In this section—and by contrast to the absence of
information about future demand under the myopic
approach—we describe a method based on a tabu
search, in which we assume that all demand infor-
mation over the entire service horizon, which spans a
sequence of several metro arrivals, is known and used.
In this environment, the LMTS operator aims to opti-
mize service to the entire (known) set of passengers
over the entire period of interest.

The tabu search, which was proposed and developed
by Glover (1986, 1989, 1990a, b), is a local search meta-
heuristic that explores the solution space by moving,
at each iteration, from the current solution to the
best solution in its neighborhood. The main concepts
include attributes, neighborhood, moves, a tabu list,
aspiration criteria, and termination conditions. The
tabu search has been applied, with good results, to
various types of routing and scheduling problems.
Examples include vehicle routing (Gendreau, Hertz,
and Laporte 1994, Cordeau and Maischberger 2012),
job-shop scheduling (Hurink, Jurisch, and Thole 1994),
nurse scheduling (Dowsland 1998), real-time vehicle
routing and dispatching (Gendreau et al. 1999), vehi-
cle routing with time windows (Cordeau, Laporte, and
Mercier 2001), split-delivery vehicle routing (Archetti,
Speranza, and Hertz 2006), vehicle routing with simul-
taneous pick-up and delivery service (Montané and
Galvao 2006), and dynamic dial-a-ride (Berbeglia, Cor-
deau, and Laporte 2012).

In what follows, we first introduce the notation
and attributes used in the method. We then provide
detailed descriptions of tabu search concepts for the
LMTS operations problem, assuming that all demand
information is known and used.

5.1. Notation and Attributes

Because of the batch demand with the same service
release time in the LMTS, it is intuitive and reasonable
to view route trips between successive demand batches
as a “decision group.” Specifically, in this tabu search
metaheuristic, we can define solution attributes as the
routes of trips initiated during each interarrival time
period of trains (batches of passengers). Let T; denote
the arrival time of train i, and let h; = [T,, T;,;) denote
the time period between the arrival of train 7 and the
arrival of train i + 1. We denote the operation solution s
as (R4, R,,...,R;), where R, is the set of routes initiated
during time period k; (R; is the set of routes initiated
after the arrival of the last train; i.e., train I). Note that,
in this approach, we make decisions at the beginning of
the period of interest by considering all of the requests
over the entire service horizon. The set of routes R; is

therefore not the decision we make at time point T},
as in the myopic approach, but the decision we make
for operations during the time period h; = [T;, T;,,),
assuming that demand information over the entire ser-
vice horizon is known and used. For example, in an
LMTS operations problem with three trains, a solu-
tion s denoted by (R, = {ky, k3}, R, ={k,}, Ry = {ky, k,})
represents the operation plan in which the vehicle fleet
initiates two service trips during the time period h;,
one on route k; and the other on route k;; one service
trip on route k, during h,; and two service trips dur-
ing hj, one on route k; and the other on route k,.

Note that the solution s = (R,R,,...,R;) repre-
sents only the routes of trips initiated during each
time period h;, while the sequence/ priorities of routes
within each time period should be determined by some
ranking criteria. We can use the same ranking criterion
used in the myopic approach described in Section 4.3.

5.2. Neighborhood and Moves

It is important to consider the space (neighborhood) in
which the search will be conducted. In this paper, we
define two natural neighborhoods. The first involves
changing the routes of trips within a single time
period h;: (1) swap LM stops between two trips, (2) shift
an LM stop from one trip to another, (3) split a trip into
two trips so that one serves a single LM stop and the
other the remaining LM stop(s), (4) add an LM stop
to a trip, (5) add a trip serving a single LM stop, and
(6) eliminate an LM stop from a trip. The second neigh-
borhood involves changing the routes of trips during
two consecutive time periods, k; and h;, (' =i+ 1 or
i —1): (1) swap LM stops between a trip in h; and a
trip in h;, (2) shift an LM stop from a trip in k; to an
existing trip in h;, and (3) shift an LM stop from a trip
in h; to a new single LM stop trip in h;,. The moves are
valid if and only if the new routes generated are feasi-
ble according to route preselection requirements. It is
obvious that any solution, including the optimal solu-
tion, can be obtained by imposing a limited number of
moves, as described above, on any other solution.

5.3. Tabu List

Each solution in the neighborhoods described in Sec-
tion 5.2 contains one or several route changes. In this
paper, amove is tabu if any move that reverses a change
of route in recent iterations (as recorded in the tabu
list) is forbidden. The best size of the tabu list for each
kind of problem must be determined empirically, and
computational tests must be implemented for different
problems. Previous work on similar problems provides
observations regarding good tabu list sizes. For exam-
ple, Cordeau, Gendreau, and Laporte (1997) find that
the best tabu list size for solving the periodic vehi-
cle routing problem (PVRP) and multi-depot vehicle
routing problem (MDVRP) is 7.51log,, 1, where 7 is the



number of customers. Other work has shown experi-
mentally that, for certain problems, a tabu list of vari-
able size tends to give better results than a fixed one.
For example, Taillard (1991) sets the size of the tabu
list to a random number in a specified interval. In our
problem, we have tested and compared several sim-
ple and common tabu list sizes in a number of com-
putational experiments, in which a fixed size 1+ J/2
works well—and better than other simple sizes—in
most cases (J is the number of prespecified LM stops).
Other simple tabu list sizes, either fixed or variable, can
easily be tested and implemented.

5.4. Aspiration Criteria and Termination Conditions
With a similar criterion as in the myopic approach
to prioritize the routes in each R; of a solution
s=(Ry,R,,...,R;), the only remaining task is passen-
ger assignment. The objective value (sum of the pas-
senger waiting time and riding time) can then be eval-
uated easily. We can use a solution obtained from other
approaches, such as the myopic approach described in
Section 4 or the two-stage method described in Sec-
tion 6, as the initial solution to the tabu search meta-
heuristic. Aspiration criteria, if satisfied, allow moves
that override tabus. In our problem, we allow a move
that overrides a tabu, if that move results in an objec-
tive value that is better than the best known objective
value identified so far.

Our termination rule is that the search terminates if
a maximum number of total iterations (N;) is reached
or if the best solution so far has not been improved on
for a certain number of iterations (N,). In a number
of computational experiments, we find that, with the
initial solution from the myopic approach or the two-
stage method, the tabu search improves the solutions
quickly in the beginning (usually within 200 iterations)
and, in most cases, converges rapidly afterward. We set
N; =500 and N, =50 in the computational experiments,
while other N; and N, can be easily implemented.

5.5. Tabu Search Algorithm

Based on the concepts discussed in Sections 5.1-5.4,
the tabu search metaheuristic algorithm is described in
Table 4.

6. Two-Stage Method for Solving MIP

In this section, we describe a two-stage heuristic for
solving approximately the MIP model presented in
Section 3. The LMTS operator uses all demand infor-
mation and aims to optimize service to the entire
(known) set of passengers over the entire service hori-
zon. In this method, we decompose the decisions into
two stages. In the first stage, we modify the origi-
nal exact MIP model proposed in Section 3 to make
more aggregate decisions for every time period h;.
Batch demands provide us with intuitive groupings of

Table 4. A Tabu Search Algorithm

(0) Obtain an initial solution s, from another approach.
Set best solution s* = s; current solution s¢ = s,; tabu list TL = @.
(1) REPEAT:
IF termination condition is satisfied,
STOP.
ELSE
(1.1) For each neighbor in the neighborhood of s¢, calculate
the objective value.
(1.2) Move to the best neighbor that is not tabu or satisfies the
aspiration criteria.
(1.3) Update s*, s, and TL.

the decisions. In the second stage, we implement the
original exact MIP model with the decision variables
(columns) generated using the information revealed
from the aggregate decisions in the first-stage solution.
Sections 6.1 and 6.2 describe the first and second stages,
respectively, in detail.

6.1. First Stage: Solve the MIP to the
Level of Time Period /;

In the first stage, we modify the original exact MIP
model by replacing the time dimension ¢ in the deci-
sion variables zj, and w; with the dimension of each
train’s ID i. In other words, instead of making detailed
decisions for every discretized time instant ¢, we shift
our focus to making more aggregate decisions for every
time period h; in the first stage, assuming that all
demand information over the entire service horizon is
known and used. This modified model can reduce the
problem’s scale and the computational time required.
The (additional) notation is modified as in Table 5.

The objective function (15) captures part of the pas-
senger waiting time before boarding a vehicle and all
of the passenger in-vehicle riding time

minimize ﬁwhi227;+ﬁ,222tjk2;k- (15)
I "

The modified formulation has the following con-
straints:

(a) Passenger flow constraints: Expressions (16)—-(18)
are directly modified from expressions (2)—(4), respec-

Table 5. (Additional) Notation for the First-Stage Model

Parameters:

n;.: number of passengers with destination at LM stop j arriving
on train i

Decision variables:

z;.k: number of passengers with destination at LM stop j assigned
to route k during the time period F,

wi: number of trips on route k initiated during the time period

Intermediate variables:

r;: number of unserved passengers with destination at LM stop j

waiting at the station at the end of time period /;
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tively. The dimension of time ¢t is replaced with the
train’s ID i

==z b Vi (16)
r;=r;-1+n;—;z;ik-¢jk, Viiz2,  (17)
ri20, Vji. (18)

(b) Vehicle flow constraints: Note that the deci-
sion variables w; describe vehicle operations dur-
ing the time period h;. We cannot capture detailed
vehicle schedules by replacing w! with w! in con-
straints (5)-(7), and we cannot guarantee the feasibil-
ity of vehicle schedules, as in the original MIP. There-
fore, we use heuristic constraints (19)-(22) to replace
(5)—(7). Constraints (19) and (20) limit the total number
of trips that can be initiated within one and two con-
secutive intervals between trains, respectively, while
constraints (21) and (22) limit the total service time of
trips initiated within one and two consecutive inter-
vals between trains, respectively. The values of the
upper limits 1,1, M0 tmaxi, and ., can be set to
roughly the values these quantities realize in solutions
that use alternative approaches, such as the myopic
approach

DIwh Mg, Yi=1,2,..1, (19)
k
Sl +wi) <, ¥i=1,2,...,1-1, (20)
k

Z tk ’ wli < tmaxll
k

Z tk : (w;c + w]i+l) < tmax2l
k

Vi=1,2,...,1, 1)
Vi=1,2,...,I-1. (22)

(c) Service capacity constraints: Expression (23) is
modified from expression (8)

Db <cwl, Vi (23)
i

(d) Domains of decision variables
w,€Z', z, €R" Vjk,i. (24)

Essentially, the modified formulation in the first
stage uses the time period h; as the smallest time
unit to make decisions. However, unlike the myopic
approach, the formulation does consider all of the ser-
vice demands over the entire service horizon and the
mutual interactions that occur among demands from
all of the trains.

6.2. Second Stage: Column Generation in the
Original Formulation

The solution of the modified formulation in the first

stage highlights the routes that could be provided dur-

ing each time period h;. In the second stage, we imple-

ment the original exact MIP model proposed in Sec-

tion 3 with the decision variables (columns) generated

Figure 3. (Color online) Route Selected in the First Stage

using the information revealed in the first-stage solu-
tion. Specifically, if w] > 0 in the optimal solution of
the first-stage problem, we generate vehicle decision
variables w,, for (1) every time t € h; and (2) every
route k’ that is a subtour of route k, including route k
itself. For example, if route k, which serves three LM
stops, is selected for the time period £; in the first-stage
solution, as shown in Figure 3, we generate decision
variables w,, for (1) every time t in h; = [T}, T;,;) and
(2) the 23 —1 =7 specific routes, where each route serves
a subset of the three LM stops, as shown in Figure 4.
With the decision variables (columns) generated as
described above, the exact MIP model in Section 3 can
be solved in stage 2 in much less computational time.

7. Computational Study

We now present a computational study based on the
approaches described in Sections 4—-6. We compare the
results of the myopic operating strategy using demand
information only from trains that have already arrived
at the station, the tabu search metaheuristic over the
entire service horizon, and the MIP model over the
entire service horizon, which is solved approximately
in two stages. A conventional service with fixed routes
and schedule is taken as a benchmark to evaluate the
performance of LMTS using three operating strategies.
Computational experiments were coded in Java and
run on 64-bit computers with 3.6 GHz processors and
32 GB RAM. All of the corresponding MIP problems
were solved using CPLEX 12, with a time limit of five
minutes for each instance.

We first discuss the settings of test instances for
the computational experiments in Section 7.1. We then
describe, in Section 7.2, a common multivehicle con-
ventional service with fixed routes and schedule that
will serve as our benchmark for comparisons. Finally,
Section 7.3 presents our computational results, fol-
lowed by a brief discussion.
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Figure 4. (Color online) Routes of Decision Variables Generated in the Second Stage

O O

7.1. Settings of Test Instances

We consider an LMTS in a rectangular service region,
as shown in Figure 1. To traverse the region’s length
and width, LMTS vehicles require 10 minutes and six
minutes, respectively. The number of prespecified LM
stops (which are assumed to be randomly and uni-
formly distributed throughout the region), |, takes val-
ues ranging from six to 12 in the experiments. We
assume that vehicles travel according to the Euclidean
metric, and the service time at each LM stop (e.g., for
vehicle deceleration, loading /unloading of passengers,
and vehicle acceleration) is set to one minute. Feasi-
ble routes are selected to satisfy the requirements that
(1) the maximum number of LM stops on a route is
three and (2) the maximum total service time (travel
time + service time at stops) on a route is 14 minutes.
The number of feasible routes, K, under such condi-
tions will be in the region of 100-300.

Trains with passengers arrive at the metro station
every 10 minutes. The size of a passenger batch from
each train is assumed to be Poisson-distributed with
intensity N taking values ranging from 10 to 30. Pas-
senger destinations are assumed to be distributed
among the LM stops either (1) uniformly (UN),
(2) slightly heterogeneously (SH), or (3) extremely het-
erogeneously (EH). An example of demand intensity
at LM stops in a case with | =8 and N =16 is shown
in Table 6. Advance demand notices from 10 trains are
assumed to be known (and used in the tabu search
heuristic and two-stage method).

A fleet of vehicles with an identical capacity with val-
ues ranging from three to 12 serves the LMTS. Exper-
iments with different fleet sizes are used to evaluate
the performance of LMTS in situations of high and low

Table 6. Demand Intensity at LM Stops

Highest demand Demand intensity
J=8, N=16 overlowestdemand at LM stops
UN 2.0/2.0=1 2.0 for all
SH 3.0/0.5=6 0.5,1.5,1.5,2.0,2.0,25,3.0,3.0
EH 4.0/0.2=20 0.2,0.6,1.0,1.8,2.2,2.8,34,4.0

vehicle utilization. For each combination of parame-
ter settings (J, N, m, c) and passenger distribution type
(UN, SH, or EH), we carry out 10 test instances. In
each instance, we generate random locations for the
LM stops and random sizes of passenger batches from
each train based on Poisson-distributed demand.

7.2. Conventional Service with Fixed
Routes and Schedule

To study the potential advantages of on-demand ser-
vice in LMTS, we introduce a multivehicle conven-
tional transportation system with fixed routes and
schedule as a benchmark for comparison. Ceder and
Wilson (1986) have summarized various approaches to
the design of conventional bus networks. For different
settings and situations, the selection of bus routes and
schedule normally considers multiple criteria, such as
vehicle or bus route service time, passenger travel time,
and transfer time. Many heuristics have been devel-
oped for this purpose; these typically share some com-
mon considerations, such as (a) limit on the maximum
passenger detour time, (b) upper and lower bounds
on route length, (c) demand/supply balance across all
stops, and (d) a specified number of available routes.
We have applied a simple integer programming model
(25)-(30) that includes the considerations common to
typical approaches. Given a vehicle fleet with fleet
size m and vehicle capacity c, the model selects fixed
bus routes from a set of possible routes and deter-
mines the number of buses that will serve each selected
route. For possible bus routes, unlike the route pre-
selection requirements in the LMTS, the limit on the
maximum number of stops in a route is removed for
the conventional service. The bound on the maximum
route length is increased for the conventional service.
The model with equal input values of m and c as
in the LMTS represents a conventional bus system
using the same vehicle fleet. However, in practice, the
conventional bus system typically uses a vehicle fleet
that has fewer and larger vehicles—i.e., smaller m and
larger c—compared to on-demand systems. Table 7
introduces the relevant notation.
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Table 7. (Additional) Notation for a Bus Route Design for
Conventional Service

Parameters:
t,:  upper limit on the service time difference between any pair of
bus routes

c;:  upper limit on the demand/supply imbalance across all stops

dy:  number of stops served on route k

A;: passenger demand rate to LM stop j

M: alarge positive number

Decision variables:

x;:  integer variable to indicate the number of buses serving route
k in the conventional service

The integer programming model is defined as
follows:

minimize Z b Xy (25)
3
Dopxez1, Y, (26)
k
2 € (xie/(di-t)) B 2 C Py (xi/(d-ty)) <
A A =Car
Vi, je{l,....]}, (27)
Dixe=m, (28)
K

b=t <MQ2-x,—xp)+t,, Vkke{l,..., K}, (29)
x €L, Vk. (30)

Objective function (25) minimizes the total service
time of the selected bus routes, which is a common
option in the bus design problem, and constraint (26)
ensures that every LM stop is served by at least one
bus route. The limit on the maximum route length par-
tially takes care of points (a) and (b) mentioned above
in connection with the bus design problem; constraint
(27) ensures that demand /supply is balanced across all
stops (point (c) above); constraint (28) sets the number
of buses equal to the number of available vehicles in the
fleet, which is a common option concerning point (d) in
the bus design problem; constraint (29) ensures that the
service time difference between any pair of selected bus
routes does not exceed an upper limit, which also par-
tially addresses points (a) and (b); and constraint (30)
defines the domains of the integer decision variables.

Table 8. Results for ] =8, N =16,c=6,and m =3

As for the input values of the integer programming
model, the passenger demand rate A, is obtained by cal-
culating the average number of passengers per unit time
requesting last-mile service to LM stop j using demand
information over the entire service horizon. Different
combinations of threshold parameters ¢; and c,; are
tested and compared. For any x; > 0 in the optimal solu-
tion, we assume that x; buses will serve route k evenly
with a uniform service headway (=t /x;); therefore, the
frequency of buses serving route k is equal to x}/t;.
We simulate the conventional bus system serving the
selected routes with fixed routes and schedule and eval-
uate the system’s LOS (in terms of passenger waiting
time and riding time). We can then choose the values of
t; and ¢, that maximize the LOS.

7.3. Results and Discussion

Tables 8-13 display the objective values (passenger
waiting time + riding time) and the computational
time associated with different operating strategies with
diverse parameter settings. The myopic approach uses
demand information for passengers that have already
arrived at the station. The MIP two-stage method uses
demand information over the entire service horizon.
The tabu search method uses initial solutions obtained
from the myopic approach and the MIP two-stage
method, respectively. UN denotes uniform demand
among LM stops; SH denotes slightly heterogeneous
demand (the ratio of the highest demand over the low-
est demand is six); and EH denotes extremely hetero-
geneous demand (the ratio is 20). The objective value
is in minutes, and the running time (per instance) is in
seconds.

Taking the conventional service with fixed routes
and schedule as our benchmark, it is obvious that all
of the nonnaive methods for operating LMTS provide
better service—i.e., with reduced passenger waiting
time and riding time. The myopic operating strategy
uses demand information from trains that have already
arrived at the station, which can be easily implemented
in LMTS; this method could reduce passenger wait-
ing time and riding time significantly, compared to
the conventional service. For example, in the UN case
in Table 8 and Figure 5, total passenger waiting time
and riding time in the LMTS myopic strategy is only

UN SH EH
J=8 N=16 Waiting time + Running Waiting time + Running Waiting time + Running
c=6,m=3 Riding time (min) time (sec) Riding time (min) time (sec) Riding time (min) time (sec)
Conventional 9.55 +4.37 12.49 +4.10 14.85 +4.51
Myopic 4.12+3.60 0.6 4.22+3.30 0.5 3.42+2.29 0.6
Myopic + tabu 2.11+3.37 0.6+5 2.39+3.07 05+4 1.97+3.08 0.6+4
Two-stage 2.13 +3.06 121 2.05+2.88 81 1.88 +2.90 107
Two-stage + tabu 2.00+3.20 121+5 2.10+2.99 81+4 1.87+2.95 107 +4
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Table 9. Results for =8, N=16,c=6,and m =7

UN SH EH
J=8,N=16 Waiting time + Running Waiting time + Running Waiting time + Running
c=6m=7 Riding time (min) time (sec) Riding time (min) time (sec) Riding time (min) time (sec)
Conventional 1.61+4.83 1.24+3.17 1.40+3.90
Myopic 0.06 +4.00 0.5 0.01+3.60 0.5 0.01+3.81 0.5
Myopic + tabu 0.07+3.35 05+4 0.01+2.93 05+5 0.02+3.32 05+4
Two-stage 0.07 +3.24 73 0.02+2.84 130 0.06 +3.23 55
Two-stage + tabu 0.06 + 3.24 73+4 0.01 +2.84 130+ 6 0.03 +3.23 55+5
Table 10. Results for [ =12, N=30,c=6,and m =5

UN SH EH
J=12,N =30 Waiting time + Running Waiting time + Running Waiting time + Running
c=6,m=5 Riding time (min) time (sec) Riding time (min) time (sec) Riding time (min) time (sec)
Conventional 15.81 +4.10 19.16 +4.22 2598 +4.53
Myopic 4.72+3.50 0.4 4.68+3.63 1.6 5.06+3.51 14
Myopic + tabu 2.97 +3.30 0.4+36 2.99 +3.45 1.6+24 3.30+3.45 14+25
Two-stage 2.52+3.17 512 2.35+3.35 452 2.69 +3.35 435
Two-stage + tabu 2.72+3.21 512 +28 2.52+3.41 452 +19 2.86+3.42 435+20
Table 11. Results for =12, N=30,c=6,and m =7

UN SH EH
J=12,N=30 Waiting time + Running Waiting time + Running Waiting time + Running
c=6m=7 Riding time (min) time (sec) Riding time (min) time (sec) Riding time (min) time (sec)
Conventional 5.55+4.12 11.68 + 3.66 13.88 +3.88
Myopic 1.05+3.80 1.8 1.24+3.55 15 1.02+3.89 1.3
Myopic + tabu 0.60 +3.40 1.8+44 0.75+3.26 1.5+31 0.52+3.64 1.3+24
Two-stage 0.60 + 3.29 342 0.71+3.13 310 0.51 +3.56 277
Two-stage + tabu 0.58 +3.32 342 +43 0.74+3.20 310+27 0.56 +3.58 277 +22
Table 12. Results for | =6, N =24, ¢ x m =24 for UN

c=12,m=2 c=8m=3 c=4,m=6
J=6,N=24 Waiting time + Running Waiting time + Running Waiting time + Running
cxm =24, UN Riding time (min) time (sec) Riding time (min) time (sec) Riding time (min) time (sec)
Conventional 19.78+5.74 11.90+5.00 7.64+3.11
Myopic 9.43 +3.52 04 5.81+3.53 0.3 2.26+3.29 0.3
Myopic + tabu 6.71+3.50 04+1 3.60+3.40 03+2 1.53+3.21 03+3
Two-stage 5.73 +3.38 44 3.07 +3.27 49 1.33 +3.15 121
Two-stage + tabu 471 +4.54 44+1 3.25+3.32 49+1 0.50+3.15 121+2
Table 13. Results for ] =12, N =18, ¢ x m =24 for UN
c=12,m=2 c=8m=3 c=4,m=6

J=12,N=18 Waiting time + Running Waiting time + Running Waiting time + Running
cxm=24,UN Riding time (min) time (sec) Riding time (min) time (sec) Riding time (min) time (sec)
Conventional 22.55+6.99 12.05+5.18 4.97 +4.09
Myopic 6.75+4.88 1.9 2.75+4.55 1.3 1.46 +3.76 1.1
Myopic + tabu 4.06 +4.27 1.9+96 1.58 +3.95 1.3+93 0.96 +3.45 1.1+27
Two-stage 3.95+3.89 612 1.73 +3.54 605 0.86 +3.32 271
Two-stage + tabu 3.66 +4.14 612+79 1.63 +3.66 605 + 89 0.89 +3.37 271+22
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Figure 5. Passenger Waiting Time and Riding Time for | =8,
N=16,c=6,and m=3
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55.5% of that in the conventional service. In addition,
it can be seen that the advanced operating strategies
that use demand information over the entire service
horizon—i.e., the tabu search metaheuristic and the
MIP two-stage method—provide even better routing
and scheduling solutions. In the same instances, the
tabu search, using the myopic solution as its initial
solution, provides an objective value that is only 39.4%
of that for the conventional service, and the MIP two-
stage method provides an objective value that is only
37.3% of the conventional service. The tabu search
that uses the MIP solution as its initial solution does
not yield much further improvement. Since heuristics
based on a tabu search have generated high-quality
solutions in various similar problems (e.g., Cordeau,
Laporte, and Mercier 2001, Archetti, Speranza, and
Hertz 2006, Cordeau and Maischberger 2012), we can
view this limited improvement as an encouraging indi-
cation of the MIP two-stage method’s superior qual-
ity of solutions in general. Note that compared with
the conventional service, LMTS waiting time is notice-
ably reduced, while riding time is reduced to a lesser
degree.

In terms of computational time, the myopic operat-
ing strategy can provide solutions in seconds, while
the computational time of the tabu search metaheuris-
tic depends on the parameters in the search termi-
nation conditions: if the maximum total number of
iterations (N;) is 500 and the maximum number of
iterations without improvement (N,) is 50, the tabu
search improves the solutions quickly in the beginning
and converges rapidly afterward. It usually terminates
within 200 iterations with the parameters described
above, and requires computational times that range
from several seconds in small cases (small | and K) to
one to two minutes in large cases (large | and K). The
MIP two-stage method requires the longest computa-
tion time.

The advantage of a flexible LMTS is greater when
vehicle capacity is small than when it is large. Tables 12

and 13 display results for systems with the same geo-
metric configuration, same passenger demand, and an
equal total vehicle capacity (c X m = 24) in the fleet.
We evaluate three cases: (1) ¢ = 12, m = 2, minibuses;
(2) c =8, m =3, minivans; and (3) ¢ =4, m = 6, normal
taxis. We observe the following. First, if the two sys-
tems have exactly the same number m of vehicles and
the same capacity ¢ per vehicle, LMTS performs bet-
ter than the conventional system in each of the three
cases. Second, as vehicle capacity ¢ gets smaller, both
the LMTS and the conventional system will perform
better (with shorter waiting time and riding time), due
to the increased flexibility and more customized ser-
vice. Third, if we only require that the total capacity
(c x m) of the two systems stays the same (but do not
necessarily have the same ¢ and m for the two sys-
tems), we would expect that, in practice, the advantage
of LMTS over the conventional system will increase,
as the conventional system is more likely to use larger
vehicles and fewer vehicles than LMTS. Stated differ-
ently, if we compare an LMTS that uses small vehi-
cles to a conventional service with large vehicles (with
an equal ¢ X m), the advantages of the flexible LMTS
become even greater.

In some cases with more heterogeneous demand
distribution, such as EH in Tables 8 and 11, average
passenger waiting time in the conventional service is
greater than 10 minutes (the train headway), which
means that passengers from one train will join the
same queue with those from previous trains; after a
couple of minutes, passengers who arrived at the sta-
tion earlier can board a bus, while passengers who
arrived later must wait for the next bus. When passen-
ger destinations become more heterogeneous, passen-
gers are more likely to suffer long waiting times (e.g.,
greater than 10 minutes). This is because conventional
buses must visit every stop (even ones with zero
passenger demand on a trip) on their predesigned
routes. Therefore, with heterogeneous demand distri-
bution, it is more likely that buses in a conventional
system will visit a number of unnecessary stops.

In the case of low demand and low vehicle uti-
lization, it is highly probable that a batch of passen-
gers from any particular train will be served before
the next train arrives. In these conditions, the per-
formance of the myopic operating strategy (without
using advance demand notice) is quite close to that
of the tabu search or the MIP method (both of which
use demand information over the entire service hori-
zon). Stated differently, information about passengers
on the next train does not help much to improve the
system’s performance, if most passengers on the cur-
rent train can be served before the next train arrives.
By contrast, when demand and vehicle utilization are
high, it is better to employ advance demand informa-
tion and consider demands from all trains. For exam-
ple, Tables 8 and 9 have the same system parameters,
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Figure 6. Vehicle Service Time and Number of Trips for
J=8, N=16,c=6,and m =3
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with the exception of the number of vehicles. Table 8
shows a high-utilization situation with three vehicles,
while Table 9 presents a low-utilization case with seven
vehicles. In the UN case, the tabu search metaheuris-
tic (or the MIP two-stage method) uses demand infor-
mation over the entire service horizon to reduce pas-
senger waiting time and riding time, compared to the
myopic operating strategy, by 15.8% (or 18.5%) in the
low-utilization case, while the improvement is 29.0%
(or 32.8%) in the high-utilization case. The same trend
can be found in Tables 10 and 11: the improvement
is 17.5% (or 19.8%) for low utilization and 23.7% (or
30.8%) for high utilization.

An LMTS can also have positive effects on vehi-
cle utilization by reducing total vehicle service time
(Figure 6) compared to a conventional system. Specif-
ically, the LMTS that employs the tabu search meta-
heuristic, starting from myopic solutions, obtains oper-
ating plans with good service quality and the shortest
vehicle service time. The LMTS that uses the MIP two-
stage method obtains operating plans with the best
service quality; this results from designing more cus-
tomized routes, which typically make a larger number
of trips. The MIP two-stage method can also reduce
total vehicle service time, compared to the conven-
tional service.

The results shown in Tables 8-13 also suggest that
an LMTS may deliver significant cost savings for both
service users (passengers) and service providers (e.g.,
municipalities, private companies). First, shorter wait-
ing time and riding time translate into monetary sav-
ings for users. According to Gémez-Ibafiez, Tye, and
Winston (1999), for work trips in San Francisco, the
monetary value of a unit of transfer waiting time is
195% of the user’s after-tax wages, and the monetary
value of a unit of in-vehicle riding time is 76% of the
user’s after-tax wages. The equivalent economic sav-
ings are large when we consider these monetary val-
ues of time. Second, the reduced vehicle service time

achieved by LMTS also means monetary savings for
its operators. Given a fixed vehicle fleet size, the trans-
portation system’s operating costs are proportional to
the vehicle service time—e.g., the fuel cost for vehicles
directly depends on vehicle travel time/distance, and
the labor cost for drivers is positively correlated with
vehicle service time. Third, the shorter vehicle service
time also means less traffic congestion and reduced car-
bon emissions.

8. Conclusion

This paper develops routing and scheduling approa-
ches for an innovative urban transportation system
concept—the last-mile transportation system (LMTS)—
and assesses the performance of these approaches and
of the LMTS concept, in general. Specifically, from an
operational and optimization perspective, the paper
formulates an exact MIP model and develops several
computationally feasible heuristics for optimizing rout-
ing and scheduling decisions for a generic LMTS. The
system’s performance is also evaluated in comparison
to a conventional service system.

The LMTS routing and scheduling studied here has
several features: (1) passengers requesting last-mile
service arrive in batches at the metro station, instead
of individually, and passengers in the same batch have
the same service time window; (2) passengers request-
ing last-mile service share a common last-mile origin
(which is also the vehicle depot); (3) the objective is to
improve LOS. These features provide intuitive group-
ings of operational decisions and provide incentives
for identifying heuristic approaches.

Given the service region’s geometry (prespecified
LM stops, feasible routes), the number and capacity
of vehicles in the service fleet, and a set of known
last-mile service requests (passenger arrival times and
destinations), the operational strategies we have devel-
oped provide detailed routing and scheduling plans
for the system’s vehicle fleet, with the objective of
minimizing the sum of passenger waiting time before
boarding a vehicle and riding time. Computational
experiments suggest that, compared to a conven-
tional service system with fixed routes and sched-
ule, an LMTS that operates in a variety of contexts—
including the myopic operating strategy, which uses
demand information from trains that have already
arrived, and the tabu search metaheuristic and MIP
two-stage method, which use demand information
over the entire service horizon—performs better under
a broad range of conditions. The myopic operating
strategy can be implemented easily and quickly, and
can provide a default solution, particularly when no
advance demand information is available; the tabu
search metaheuristic considers all demand information
and offers good-quality solutions in a short computa-
tional time; and the MIP two-stage method provides
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the best solution over the entire service horizon, but
with greater computational requirements. We believe
that the strategies we have proposed will benefit LMTS
operators by providing operating plans for these com-
plex systems that are both cost-effective and offer a
higher LOS for passengers.

A natural extension for future research would be
to consider stochastic versions of the LMTS opera-
tions problem; these would involve some combina-
tion of unreliable train schedules, probabilistic last-
mile service requests, and uncertainty about vehicle
service times due to traffic congestion. Another exten-
sion would be to consider combining the last-mile sys-
tem described here with a first-mile system, in which
vehicles would also pick up passengers at LM stops
in the service region and transport them to the metro
station; such an approach could potentially offer even
greater social benefits.

Acknowledgments

The author would like to thank Professor Amedeo Odoni
and Professor Cynthia Barnhart for valuable comments and
suggestions concerning the paper.

References

Anderson JE (1998) Control of personal rapid transit systems. J. Adv.
Transportation 32(1):57-74.

Archetti C, Speranza MG, Hertz A (2006) A tabu search algorithm
for the split delivery vehicle routing problem. Transportation Sci.
40(1):64-73.

Balcik B, Beamon BM, Smilowitz K (2008) Last mile distribution
in humanitarian relief. J. Intelligent Transportation Systems 12(2):
51-63.

Berbeglia G, Cordeau JF, Laporte G (2012) A hybrid tabu search and
constraint programming algorithm for the dynamic dial-a-ride
problem. INFORMS ]. Comput. 24(3):343-355.

Berger T, Sallez Y, Raileanu S, Tahon C, Trentesaux D, Borangiu
T (2011) Personal rapid transit in an open-control framework.
Comput. Indust. Engrg. 61(2):300-312.

Bly PH, Teychenne R (2005) Three financial and socio-economic
assessments of a personal rapid transit system. Proc. 10th Inter-
nat. Conf. Automated People Movers, 1-16.

Boyer KK, Prud’homme AM, Chung W (2009) The last mile chal-
lenge: Evaluating the effects of customer density and delivery
window patterns. |. Bus. Logist. 30(1):185-201.

Brake ], Nelson JD, Wright S (2004) Demand responsive transport:
Towards the emergence of a new market segment. J. Transport
Geography 12(4):323-337.

Brdysy O, Gendreau M (2005a) Vehicle routing problem with time
windows, Part I: Route construction and local search algorithms.
Transportation Sci. 39(1):104-118.

Braysy O, Gendreau M (2005b) Vehicle routing problem with
time windows, Part II: Metaheuristics. Transportation Sci. 39(1):
119-139.

Ceder A, Wilson NH (1986) Bus network design. Transportation Res.
Part B: Methodological 20(4):331-344.

Chevrier R, Liefooghe A, Jourdan L, Dhaenens C (2012) Solving a
dial-a-ride problem with a hybrid evolutionary multi-objective
approach: Application to demand responsive transport. Appl.
Soft Comput. 12(4):1247-1258.

Cordeau JF, Laporte G (2007) The dial-a-ride problem: Models and
algorithms. Ann. Oper. Res. 153(1):29-46.

Cordeau JF, Maischberger M (2012) A parallel iterated tabu search
heuristic for vehicle routing problems. Comput. Oper. Res.
39(9):2033-2050.

Cordeau JF, Gendreau M, Laporte G (1997) A tabu search heuristic
for periodic and multi-depot vehicle routing problems. Networks
30(2):105-119.

Cordeau JF, Laporte G, Mercier A (2001) A unified tabu search
heuristic for vehicle routing problems with time windows.
J. Oper. Res. Soc. 52(8):928-936.

Daganzo CF (1978) An approximate analytic model of many-to-many
demand responsive transportation systems. Transportation Res.
12(5):325-333.

de Paepe WE, Lenstra JK, Sgall J, Sitters RA, Stougie L (2004)
Computer-aided complexity classification of dial-a-ride prob-
lems. INFORMS ]. Comput. 16(2):120-132.

Diana M, Dessouky MM, Xia N (2006) A model for the fleet sizing of
demand responsive transportation services with time windows.
Transportation Res. Part B: Methodological 40(8):651-666.

Dowsland KA (1998) Nurse scheduling with tabu search and strate-
gic oscillation. Eur. ]. Oper. Res. 106(2):393-407.

Engles D, Iacometti A (2004) System architecture. Ambrosino G, Nel-
son JD, Romanazzo M, eds. Demand Responsive Transport Services:
Towards the Flexible Mobility Agency (ENEA, Rome), 75-88.

Enoch M, Potter S, Parkhurst G, Smith M (2004) INTERMODE: Inno-
vations in demand responsive transport. Report, Department
for Transport and Greater Manchester Passenger Transport
Executive, Leicester, UK. https://dspace.lboro.ac.uk/dspace
-jspui/bitstream /2134 /3372 /1 /Intermode%?20final %20
June%?202004.pdf.

Esper TL, Jensen TD, Turnipseed FL, Burton S (2003) The last mile:
An examination of effects of online retail delivery strategies on
consumers. J. Bus. Logist. 24(2):177-203.

Gendreau M, Hertz A, Laporte G (1994) A tabu search heuristic for
the vehicle routing problem. Management Sci. 40(10):1276-1290.

Gendreau M, Guertin F, Potvin JY, Taillard E (1999) Parallel tabu
search for real-time vehicle routing and dispatching. Transporta-
tion Sci. 33(4):381-390.

Glover F (1986) Future paths for integer programming and links to
artificial intelligence. Comput. Oper. Res. 13(5):533-549.

Glover F (1989) Tabu search—Part I. ORSA J. Comput. 1(3):190-206.

Glover F (1990a) Tabu search: A tutorial. Interfaces 20(4):74-94.

Glover F (1990b) Tabu search—Part II. ORSA J. Comput. 2(1):4-32.

Goémez-Ibafiez J, Tye W, Winston C (1999) Essays in Transporta-
tion Economics and Policy, Vol. 42 (Brookings Institution Press,
Washington, DC).

Horn ME (2002a) Multi-modal and demand-responsive passenger
transport systems: A modelling framework with embedded con-
trol systems. Transportation Res. Part A: Policy Practice 36(2):
167-188.

Horn ME (2002b) Fleet scheduling and dispatching for demand-
responsive passenger services. Transportation Res. Part C: Emerg-
ing Tech. 10(1):35-63.

Hurink J, Jurisch B, Thole M (1994) Tabu search for the job-shop
scheduling problem with multi-purpose machines. OR Spektrum
15(4):205-215.

Jaw JJ, Odoni AR, Psaraftis HN, Wilson NH (1986) A heuristic algo-
rithm for the multi-vehicle advance request dial-a-ride problem
with time windows. Transportation Res. Part B: Methodological
20(3):243-257.

Lee HL, Whang S (2001) Winning the last mile of e-commerce. MIT
Sloan Management Rev. 42(4):54-62.

Lee JW, Mazumdar RR, Shroff NB (2006) Opportunistic power
scheduling for dynamic multi-server wireless systems. IEEE
Trans. Wireless Comm. 5(6):1506-1515.

Lees-Miller JD, Hammersley JC, Davenport N (2009) Ride sharing
in personal rapid transit capacity planning. 12th Internat. Conf.
Automated People Movers, 321-332.

Lees-Miller JD, Hammersley JC, Wilson RE (2010) Theoretical maxi-
mum capacity as benchmark for empty vehicle redistribution in
personal rapid transit. Transportation Res. Record: |. Transportation
Res. Board 2146(1):76-83.


https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/3372/1/Intermode%20final%20June%202004.pdf
https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/3372/1/Intermode%20final%20June%202004.pdf
https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/3372/1/Intermode%20final%20June%202004.pdf

17

Lei H, Laporte G, Guo B (2012) Districting for routing with stochastic
customers. Eur. |. Transportation Logist. 1(1-2):67-85.

Liu L, Liu X (1998) Dynamic and static job allocation for multi-server
systems. IIE Trans. 30(9):845-854.

Liu Z, Jia X, Cheng W (2012) Solving the last mile problem: Ensure
the success of public bicycle system in Beijing. Procedia Soc.
Behav. Sci. 43:73-78.

Mageean ], Nelson JD (2003) The evaluation of demand responsive
transportservices in Europe. J. Transport Geography 11(4):255-270.

Montané FAT, Galvao RD (2006) A tabu search algorithm for the
vehicle routing problem with simultaneous pick-up and deliv-
ery service. Comput. Oper. Res. 33(3):595-619.

Mueller K, Sgouridis SP (2011) Simulation-based analysis of per-
sonal rapid transit systems: Service and energy performance
assessment of the Masdar City PRT case. |. Adv. Transportation
45(4):252-270.

Palmer K, Dessouky M, Abdelmaguid T (2004) Impacts of manage-
ment practices and advanced technologies on demand respon-
sive transit systems. Transportation Res. Part A: Policy Practice
38(7):495-509.

Punakivi M, Yrj6la H, Holmstrém J (2001) Solving the last mile issue:
Reception box or delivery box? Internat. ]. Physical Distribution
Logist. Management 31(6):427-439.

Quadrifoglio L, Dessouky MM, Ordéiiez F (2008) A simulation study
of demand responsive transit system design. Transportation Res.
Part A: Policy Practice 42(4):718-737.

Song L, Cherrett T, McLeod F, Guan W (2009) Addressing the last
mile problem. Transportation Res. Record: ]. Transportation Res.
Board 2097(1):9-18.

Sridharan R (1995) The capacitated plant location problem. Eur. .
Oper. Res. 87(2):203-213.

Taillard E (1991) Robust taboo search for the quadratic assignment
problem. Parallel Comput. 17(4):443-455.

Wang H, Odoni A (2016) Approximating the performance of a “last
mile” transportation system. Transportation Sci. 50(2):659-675.

Wilson NH, Hendrickson C (1980) Performance models of flexibly
routed transportation services. Transportation Res. Part B: Method-
ological 14(1):67-78.

Zee DJVD, Harten AV, Schuur P (2001) On-line scheduling of multi-
server batch operations. IIE Trans. 33(7):569-586.



	Singapore Management University
	Institutional Knowledge at Singapore Management University
	1-2019

	Routing and scheduling for a last-mile transportation system
	Hai WANG
	Citation


	Background and Literature Survey
	Problem Description
	MIP Formulation
	Myopic Operation
	Procedure for Myopic Operation
	Myopic Formulation
	Ranking Criterion

	Tabu Search
	Notation and Attributes
	Neighborhood and Moves
	Tabu List
	Aspiration Criteria and Termination Conditions
	Tabu Search Algorithm

	Two-Stage Method for Solving MIP
	First Stage: Solve the MIP to the Level of Time Period hi
	Second Stage: Column Generation in the Original Formulation

	Computational Study
	Settings of Test Instances
	Conventional Service with Fixed Routes and Schedule
	Results and Discussion

	Conclusion

