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Abstract 

In the U.S. motion picture industry, DVDs are increasingly a major source of revenue for movie 
studios.  Two important strategic decisions for DVDs are the release date and price. Industry evidence 
suggests studios consider various release options as evidenced by their pre-release announcements.  When 
deciding DVD release dates and prices, studios must consider the following. First, weeks of high demand 
potential, increase sales. Second, intense competition in weeks of peak demand might reduce market 
share, lower margins and lead to higher costs of release. Third, deferring a DVD release (e.g. to a non-
peak demand week) after the movie’s theatrical run reduces the potential sales of the title. So how does 
the competitive equilibrium of release dates and prices evolve? 

Such competitive dynamics are typically studied using Markov Perfect Nash Equilibrium 
methods. Our industry has features that make these methods unsuitable. First, studios make interim 
release announcements (both action and state vectors in our model), which are not observed by the 
researcher, and cannot be imputed from the data. Second, the seasonality of demand and competition and 
other time trends in the data lead to time-varying payoffs and hence time-varying strategy selection rules 
for firms.  That is, states of the world follow a non-stationary (non-homogenous) Markov process. Third, 
given the variety of possible competitive dynamics at play (strategies might be strategic substitutes or 
complements, depending on the set of players being analyzed), multiple equilibria might result.  There are 
no existing methods available to analyze dynamic competitive games with multiple equilibriums.  

To overcome these modeling challenges, we build a model where agent (studio) beliefs reflect 
Perfect Bayesian distributions over unobserved state variables. This is analogous to methods in the 
oblivious equilibrium literature. Due to missing information (interim studio announcements), we cannot 
identify DVD profits from current period action choices of agent. Instead we compare agent choices over 
multiple periods using the competitive industry evolution predicted by the iterated Markov kernel. We 
estimate a model of DVD sales of a title in a period. To calculate future profits, we derive and forecast a 
sufficient statistic that captures industry competitive structure. Comparing timing and pricing decisions 
with computed best responses, we identify title and week specific release costs in our model. We show 
that estimates from our partial information model converge to those from a complete information MPNE 
model, and find reasonable predictive validity of agent behavior in our dataset.  

While the application of our model is to the U.S. DVD market from 2000 to 2005, the model is 
applicable to competitive industries where researchers are unable to obtain data on intermediate states and 
decisions of firms and/or where industry and firm profits vary over time. 

 
Key words: dynamic competitive models, censored data, non-stationarity, motion picture industry. 
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1. Introduction 

In the U.S. motion picture industry, DVDs have increasingly become a major source of revenue 

for movie studios with total DVD sales growing from $1.9 billion in 2000 to $16.3 billion in 2005. The 

release date and price of a DVD (or title, as it is called in the industry) affect profits because weekly DVD 

sales vary dramatically with peak weekly sales being seven-fold non-peak sales, and release prices for 

DVDs varying between $5 and $35 across titles, in the time period of our study, 2000-2005. Therefore, 

release timing and prices of DVD are important strategic variables. The focus of this study is the 

competitive dynamics of the setting of these two variables in the U.S. DVD industry in this period. 

Substantively our objective is to study the optimality of observed decisions. We investigate changes in 

DVD revenue and release costs due to time varying title and industry forces, and build managerial 

decision tools to predict future demand and competition levels. 

When deciding DVD release strategies, studios must consider the following. First, there is 

substantial difference in industry demand between peak demand (weeks with highest aggregate industry 

sales) and non-peak demand weeks. Cēterīs pāribus, any DVD will obtain higher revenues in a peak-

demand week than in a non-peak week. Second, despite peak periods having the potential for higher 

revenues, any one DVD might not realize higher revenue.  This is because the higher revenue potential in 

a peak week is likely to attract more titles that also anticipate higher revenues. Higher competition in peak 

weeks is likely to reduce sales of the title, and might result in lower prices, resulting in lower profits. As 

more titles enter peak demand weeks, release costs in these weeks might be higher. For example, 

promotional allocations and slotting fees to retailers and the costs of advertising media might rise in 

weeks of peak demand. In addition, titles have their “shelf-life” clocks running from the time that they 

exit the theatrical channel. The third factor to consider is that deferring a DVD release (e.g. to a non-peak 

demand week) long after the movie’s theatrical run reduces the potential sales of the title in the channel. 

Studios must therefore make appropriate strategic choices of DVD release timing and pricing. Given 

these forces affecting release date and price decisions of any one title, how does the competitive 

equilibrium of release dates and prices evolve? There are three factors that complicate our modeling the 

equilibrium. 

First, key information describing the evolution of the industry is missing in our data. We know 

that studios consider various release date options as evidenced by their intermediate release 

announcements.1 That is, studios can and do announce they will release on a certain date and price but the 

                                                      
 

1 Cached web-pages accessed using the internet archive confirm the existence of a steadily changing set of 
announcements. However, we have been unable to find a data source for past DVD announcements of studios.  



 

2 

 

final date and price often turns out to be different. Various competitive dynamics are possible in these 

release date announcements.  For example, a title that was successful in the box-office might announce to 

pre-empt another successful movie of the same genre from releasing the same weekend. At the same time, 

seeing the release announcement by a high-revenue potential title might persuade a smaller title of the 

same genre to release in the same week, in the hope of free-riding off promotional monies spent by the 

larger title, especially if the peak demand favors the particular genre of movies. This might in turn deter 

another smaller movie of the same genre from announcing the same release date.  Therefore, these 

announcements can serve to preempt, or coordinate release dates with rivals.  

We do not observe the interim release announcements in our dataset, and only observe the final 

release date and time. We build a model that allows for the effect of the missing data on agent actions 

when finding the profit function, and show estimates from the model converge to the traditional full 

information MPNE estimator. An alternative choice is to build a model of the release timing and pricing 

decision taken at the last period prior to release, ignoring interim announcements. Such a dynamic game 

is fully observed and can be estimated using a Markov Perfect Nash Equilibrium (MPNE) frame work. 

However, in general, a model ignoring the strategic variables of the game (release timing and pricing 

announcements) may be misspecified, and lead to biased profit function estimates.  

Hence, our paper contributes methodologically by describing an estimator for agent payoffs in a 

dynamic model with censored (or missing) information. Marketing researchers are often faced with 

datasets on forward looking firms in which a key strategic variable is unobserved or censored for a part or 

the entirety of the dataset. For example, firms might scout several locations before choosing a final 

location, or make a capacity decision and then alter it before reaching the final choice. A typical MPNE 

estimation needs complete data on current and future state vectors and actions taken by agents to identify 

the transition matrix and enable use of nested fixed point algorithms.  Our model is general enough to be 

applied to other industries with censored data. 

Second, the seasonality of demand and competition leads to time-varying strategy selection rules 

for firms. Each title is likely to have a release timing and pricing strategy that varies by week. For 

instance, a title may be more likely to release a DVD title if future periods have decreased demand, than if 

future periods have increased demand; the seasonality of demand leads to seasonality in the set of 

entrants. Also, in this market, there was an eight-fold increase in demand between 2000 and 2005.  The 

seasonality of demand itself changed over time (DVDs were gifted not just for Christmas but also 

increasingly for Mother’s Day, or graduation, or children’s birthdays). Hence, studio profits varied over 

weeks and over years. In our model, this implies that the states of the world do not follow a first-order 

stationary (homogenous) Markov process, as is typically assumed in MPNE models. 
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Third, it is plausible that our setting has multiple equilibria.  Release timing (and pricing) 

strategies in our model may be both the traditional strategic substitutes but also strategic complements. 

For example, a movie with small theatrical revenues might view a larger movie as a strategic complement 

if the larger movie can drive traffic to DVD stores. Two larger movies may see their timing strategies as 

strategic substitutes if the market stealing effect dominates. Allowing for strategic complementarity and 

substitutability brings about the possibility of multiple equilibria, a situation not tractable in extant 

dynamic model estimation methodologies.  

We describe a novel estimator for dynamic games based on a partial information model (i.e. 

where the announcement vector is unobservable).  Our model is analogous to the Oblivious Equilibrium 

(OE) model (Weintraub, Benkard and Roy, 2007). OE assumes that an “agent” (studio in our model) in a 

period is “oblivious” to the current states of others, and instead holds beliefs (distribution) over candidate 

states possible in the period. Similar to OE, in our partial information model, studios are oblivious to 

release announcements of other titles in past periods, and instead have beliefs that reflect the Perfect 

Bayesian distribution over possible release announcements. In appendix 1.2 we show that payoffs 

estimated in the partial information approach converge to those in a full information model. While our 

partial information model is unable to identify the drivers of an interim release announcement in the 

game, the model is able to identify the relevant components of studio profit functions and hence the trade-

offs made by the studios between forces. 

The estimation methodology proposed in OE is not appropriate for our setting. Extant MPNE 

models, including OE, identify model primitives by using the revealed preferences of a firm in a period. 

The methods identify drivers of profit functions by comparing observed choices with computed best 

responses. The missing announcements prevent us from using extant methods. We show that we can 

recast the equilibrium condition, as being a fixed point in best responses of agents across multiple 

periods; theorem (T1) shows that the optimal release announcement strategy of a firm leads to maximum 

future profits from release, and hence an optimal final release timing and pricing schedule. 

We show that a unique industry evolution pathway is consistent with our partial information 

model. We estimate a market outcome function that describes sales in a period, as a function of the time 

since theatrical and DVD release, seasonal demand and competition. Employing a logit formulation of 

market shares, we generate a sufficient statistic to approximate the evolution of the industry equilibrium 

which accounts for differences amongst titles and studios. We forecast industry evolution using the 

statistic, and compute payoffs to studios from different release timing and pricing choices. Last we 

maximize the quasi-likelihood of observed strategy choices, consistent with the other steps of the 

estimation, to measure the seasonal differences in release costs which rationalize observed actions.  

https://www.researchgate.net/publication/23525671_Markov_Perfect_Industry_Dynamics_With_Many_Firms?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
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Our estimates of DVD market share are similar to prior findings.2 We find that net release costs 

are smaller for movies that were more successful in the box office, indicating that blockbusters both make 

more money on DVD, and face lower release costs than other titles. Increasing the inter-release time (time 

between theatrical and DVD release) both reduces the sales potential of the title, and increases release 

costs. The model predicts competition levels in the industry with reasonable accuracy up to 30 weeks into 

the future, providing a decision support tool for marketing managers in studios. Within sample, our model 

shows a good fit with higher prediction accuracy for future release dates and prices of DVDs than 

alternative model specifications. Finally, our policy simulations investigate how optimal Theater-to-DVD 

windows depend on seasonal demand, competition and release cost variation. The simulations provide a 

decision support tool for marketing managers in the entertainment industry, predicting changes in DVD 

release strategies should there be changes in the industry landscape (market expansion, change in 

seasonality, change in release costs, etc.). 

Our model generalizes the MPNE frame work used to study strategic decisions by multiple 

forward looking firms, and is applicable to competitive industries with time-varying payoffs or with 

frequent entry of new products.  Examples include technology products, other entertainment products like 

music, and fashion products.  And as described earlier, the framework can be used in industries where 

researchers are unable to obtain data on firm actions/state space, and need to model using a censored 

dataset. 

 

2. Conceptual Overview of Equilibrium Forces 

As mentioned in the introduction, three forces affect the equilibrium. First, weeks of peak 

demand increase sales.   Second, intense competition in weeks of peak demand reduces market share and 

lowers margins. Relatedly, peak weeks might have higher costs of release. Third, deferring a DVD release 

(e.g. to a non-peak demand week in order to avoid competition) to a week long past the movie’s theatrical 

run reduces the potential sales of the title in the channel. In this section we present a conceptual overview 

of our model, reviewing relevant literature and discussing each of the forces.  

 

2.1: Temporal Variation in Demand 

                                                      
 

2 Due to the high computational load of the estimation algorithm, results discussed are preliminary and have been 
estimated on data from 2000 to 2002.  We will shortly estimate the model on the entire 2000-2005 data. 
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As mentioned in the introduction, demand for DVDs is time varying, affecting the optimal release 

timing and pricing of titles.  We first discuss how existing literature has approached seasonality, and then 

its impact on our model. 

In the economics literature, Einav (2007) and Chiou (2007) study the impact of seasonality on the 

demand for movies in primary and sequential channels respectively. Einav (2007) presents an empirical 

analysis of theatrical revenue in the U.S. movie industry, studying both seasonality and competition. 

Because his model is for theatrical releases, his research question does not include declining potential 

sales with deferral of entry dates. Chiou (2007) includes the effect of deferral of release dates, controlling 

for the endogeneity of release date selection, but does not model the process for the evolution of dates and 

prices. Both papers find strong evidence of seasonal changes in demand, and that firms’ account for 

seasonality in their strategic choices. 

The marketing literature has found that revenue in the movie theater, over the same weeks in 

different years, can be predicted. Krider and Weinberg (1998) discuss competition when faced with 

seasonal demand variations. Radas and Shugan (1998) outline an approach for including seasonal trends 

in estimating demand curves by taking a transformation of time. Luan and Sudhir (2007) model the effect 

on box office revenues of the theater-to-DVD window.  

Seasonal demand (and seasonal costs, as we will discuss below) cause seasonal variation in 

payoffs. Modeling these seasonal payoffs in the framework of dynamic games poses a problem.  While 

dynamic games have been studied for a few years now (e.g. see Rust 1987, Ericson and Pakes 1995), 

most researchers have typically focused on mature and stable industries. Firms in these industry use time 

invariant strategy selection criteria, allowing the researcher to assume that the states of the world follow a 

stationary, first order Markov process. The stationary Markov process leads to the solution concept of a 

stationary MPNE, using the implicit assumption that profits are only a function of strategic decisions of 

firms, with no exogenous change in industry profits due to macroeconomic forces or technological 

change. 

The DVD industry in our period of interest showed a rapid increase in sales from $2 billion to 

$16 billion in 6 years. The growth in sales did not occur symmetrically over various weeks in a calendar 

year, nor across various calendar years. For instance, the largest growth in DVD sales occurred in the 

Christmas holidays. Thus, neither over weeks of the same year nor in the same season across multiple 

years, were revenues and costs, hence profits and firm strategy selection criteria, constant as assumed in 

the stationary MPNE model. 

We utilize the Ericson and Pakes (1995) framework, and add to the MPNE literature by 

describing a non-stationary (time varying) MPNE model. Our model relaxes the assumption of time 

https://www.researchgate.net/publication/271809254_Competitive_Dynamics_and_the_Introduction_of_New_Products_The_Motion_Picture_Timing_Game?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
https://www.researchgate.net/publication/223284121_The_Timing_of_Movie_Releases_Evidence_from_the_Home_Video_Industry?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
https://www.researchgate.net/publication/223284121_The_Timing_of_Movie_Releases_Evidence_from_the_Home_Video_Industry?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
https://www.researchgate.net/publication/4995473_Markov-Perfect_Industry_Dynamics_A_Framework_for_Empirical_Work?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
https://www.researchgate.net/publication/4995473_Markov-Perfect_Industry_Dynamics_A_Framework_for_Empirical_Work?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
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homogeneity for MPNE. In appendix 1.2, we discuss the relationship between the non-stationary and 

stationary MPNE in greater detail. In general, the theory does not guide us on how non-linearities of 

response functions may translate to decision making rules. We show that the non-stationary MPNE 

requires a “sufficient statistic” vector describing changes over time, which is essential for identification 

(see assumption A7 in appendix 1.2 for further details).  

Assuming the sufficient statistic for change over time, a non-stationary MPNE can be estimated 

using extant methods for stationary MPNE. However, the non-homogeneity of model primitives 

substantially increases the data requirements for estimation and decreases the rate of asymptotic 

convergence in extant models. In particular, the effect of seasonal change enters non-linearly in the 

continuation values of the MPNE (see Pakes and McGuire, 2001 for a discussion on calculating 

continuation values). In our partial (limited) information model, we impute changes in payoffs, through a 

demand function. The non-linear effects of seasonality are partially accounted for in the demand function. 

Hence the effect of seasonality enters linearly when calculating continuation values, decreasing 

computational and data requirements for estimation. We discuss the estimation algorithm used in greater 

detail in section 4.4.  

 

2.2: Temporal Variation in Competition 

Seasonal variations in demand are likely to result in seasonally varying levels of competition 

(figure 1). Both revenues and costs seasonally due to changes in competition, leading to seasonally 

varying profitability. We now turn to more detailed discussion of this phenomenon. 

 

Figure 1 – Total DVD Sales and New Releases 

 

Consider first papers on the impact of competition in movies. Swami, Eliashberg, and Weinberg 

(1999) study multiplex screen allocation decisions and formulate a model to optimize exhibitor 

scheduling. Ainslie, Dreze and Zufryden (2007) build on the BOXMOD model and study the lifecycle of 

a movie at the box office, measuring competition within a channel. Einav (2003) models the release 

timing game in theatrical channels as a sequential game of imperfect information. Foutz-Zhang and 

Kadiyali (2007) model the release timing game in the theatrical channel and find that pre-announcements 

of release dates for movies serve a strategic function to deter entry into holiday weeks. 

https://www.researchgate.net/publication/46538596_Not_All_Rivals_Look_Alike_Estimating_an_Equilibrium_Model_of_the_Release_Date_Timing_Game?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
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Studios can mitigate competition by making (interim and final) release announcements3, which 

allow the studios to compete and cooperate on release schedules. There may be early/late mover 

advantages to announcing. For instance, as mentioned in the introduction, a title with large theatrical 

revenue might announce that it is releasing in a high-demand week. This might deter a title of the same 

genre (and that had a worse theatrical performance) from announcing a release in the same week.  Or the 

similar title might announce the same release date, but set a lower price to undercut the first title. Smaller 

theatrical-revenue titles might prefer to announce a non-peak demand week where competition is less 

intense.  

Allowing for strategic complementarity and substitutability brings about the possibility of 

multiple equilibriums Announcements in our model carry the ability to both coordinate and/or pre-empt 

release timings and pricing. Depending on which pair of competitive interactions are being studied and 

depending on the revenue potential of the week, strategies in our model may be both strategic substitutes 

and/or strategic complements. For instance, implicit price collusion due to grim Nash reversion, can be 

sustained in the model through the presence of a punishment state (low release price), with the Markov 

kernel capturing the probability of agents entering and exiting the punishment regime. Strategies in this 

model are strategic complements in the collusive regime, and strategic substitutes in the punishment 

regime. 

While recent advances in game theoretical modeling have lead to estimation techniques for static 

models with multiple equilibriums, to our knowledge this is the first paper to allow multiple equilibriums 

to be played in the data. The non-stationary MPNE model allows “equilibrium switches” in a single path 

of play, as the Markov kernel is not restricted across multiple periods. That is, in each period, agents can 

choose to play strategies leading to a different equilibrium. Optimal strategies played in the data, are not 

restricted to being the same across different seasons and different years. For instance, equilibriums played 

over the summer may be different from equilibriums resulting in the holiday season. Our method 

describes a consistent estimator for payoffs in a dynamic multi-agent game, accounting for randomization 

between equilibriums. A caveat is that we do not distinguish between potential equilibriums and cannot 

identify the probability of choosing a given equilibrium in a period. The Perfect Bayesian evolution of the 

                                                      
 

3The release announcements are not made in consumer outlets and hence do not serve to inform or influence 
potential consumers. They are reported in industry websites like videoeta.com. Although complete cached data on 
the history of these announcements is not available, there is strong evidence of titles changing announced release 
dates and prices. 
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industry is the result of the equilibrium conditional on equilibrium choice, and the equilibrium choice 

probabilities.  

An important point to consider is whether these announcements reflect actual intentions of titles’ 

release timing and prices, or whether they are strategic lies or simply cheap talk.  In formulating a 

competitive dynamics model for release timing and price, we do not require firms to take decisions 

influenced by competitor announcements. For instance, if announcements are cheap talk, then in our 

model the Markov density will reflect the lack of information in the announcements. On the other hand, it 

is possible that announcements are not cheap talk, and are instead costly commitments to particular 

strategies.  In this case, our model provides consistent estimates of parameters of DVD profits, while 

allowing for the competitive and cooperative incentives of the release timing game. Thus, the model nests 

cases where announcements do not shape release and pricing schedules observed, while allowing for the 

strategic importance of these decisions. 

In the literature, entry and post-entry competition have mostly been modeled separately with  

extant papers on entry and entry timing, typically using two period static entry models (Mazzeo, 2002) in 

industries where the researcher observes the release of new products (Einav, 2003), or the entry of a firm 

in multiple locations (Seim, 2006), but not sales post release. A notable exception is Ellickson and Mishra 

(2007), who use market outcome models to enrich the description of payoffs in a static game.   

Our model draws on both product choice and dynamic entry models to recover studio- and 

season-specific release costs, providing a richer description of the industry. Prior models of release timing 

in movies have focused exclusively on the seasonality of consumer demand and competition in the week 

as a source for time-varying profits, and the explanation for observed seasonality in studio actions (Einav, 

2003).  There are several reasons for expecting unobserved releases costs to vary over the course of the 

year. 75% of studios’ marketing budgets on average are dedicated to broadcast media (Galloway, 2004), 

where the cost of advertising varies over the course of the year. DVD release costs may vary as a function 

of the total sales in the week of release, as channel partners may be able to demand a better share of 

profits in weeks of high demand. The increased competition between DVDs may spill over into within-

store promotions (e.g. end cap displays) and other retailer promotional resources. Lastly, the growth in 

total DVD sales may lead to a change in release costs and retailer margins. We measure how release costs 

vary over studios, and over time, and incorporate the effect of changing release costs when conducting 

counterfactuals and simulations, and compare model fits with and without release costs.  

 

2.3: Perishability 

https://www.researchgate.net/publication/276963368_An_Empirical_Model_of_Firm_Entry_with_Endogenous_Product-Type_Choices?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
https://www.researchgate.net/publication/46538596_Not_All_Rivals_Look_Alike_Estimating_an_Equilibrium_Model_of_the_Release_Date_Timing_Game?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
https://www.researchgate.net/publication/46538596_Not_All_Rivals_Look_Alike_Estimating_an_Equilibrium_Model_of_the_Release_Date_Timing_Game?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
https://www.researchgate.net/publication/46538596_Not_All_Rivals_Look_Alike_Estimating_an_Equilibrium_Model_of_the_Release_Date_Timing_Game?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
https://www.researchgate.net/publication/24049184_Product_Choice_and_Oligopoly_Market_Structure?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
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We mentioned in the introduction that the lag between a title’s theatrical run and its DVD release 

(which we term inter-release timing) is likely to have implications for the title’s profitability. Movies lose 

appeal as they spend longer times between sequential distribution channels, a demand feature we call 

inter-release perishability. Additionally, movies lose appeal after release in a channel, a feature we call 

within-channel perishability. Below, we discuss how researchers have modeled perishability and explain 

our conceptualization in our competitive equilibrium framework. 

Luan and Sudhir (2007) model the impact of cannibalization of box office revenues by sales and 

rentals of DVDs, accounting for forward looking behavior of the consumer at the theatre. While 

cannibalization of theatrical sales provides an incentive for a studio to increase inter-release times, the 

need to release a movie fresh in the minds of a consumer provides an incentive to decrease inter-release 

times. Thus they study the underlying tradeoffs between earlier and delayed releases in secondary 

channels on theatrical revenues.  

Three papers study optimal firm actions to maximize revenue in the sequential channel, when 

considering the perishability of a title. These papers suggest that word of mouth, advertising wear-out 

effects, and network effects can explain perishability. Hennig-Thurau et al. (2007) use conjoint data to 

study the effect of different configurations of sequential distributional channels on studio profitability, 

optimizing release timings across channels. Lehmann and Weinberg (2000) develop a model of the 

optimal time to enter video rentals for a movie, accounting for the cannibalization of sales from theatrical 

release. Prasad, Bronnenberg, and Mahajan (2004) use an analytical model to study the effect of 

consumer expectations on the optimality of the timing decision. In their model, the duration between 

theatrical and DVD releases of earlier movies, shapes the beliefs of a forward looking-customer for a new 

movie. The studio’s decision depends on current beliefs, making it profitable to deviate from the industry 

standard, and release early. In each model, firm actions in a title are studied in isolation of the presence of 

other titles, and of seasonality.  

Movies in theaters only exhibit within-channel perishability, Ainslie et al (2007) separate revenue 

patterns in movie theaters into blockbuster patterns and sleeper patterns. Blockbusters peak early in the 

first weeks post release, and then decline in revenue. Sleepers peak later than blockbusters, and 

subsequently decline in revenue. Revenue patterns in DVDs are more complex as DVDs exhibit both 

forms of perishability. A consumer’s dynamic decision making process and the network effects in 

evaluating entertainment products lead to non-linearaties in the relationship between inter-release 

perishability and within channel perishability. For instance, longer inter-release times may lead to a 

saturation of the word of mouth, attracting more consumers in earlier weeks, and then showing faster 

decay post release. Alternatively shorter inter-release times may attract more customers in earlier weeks  

https://www.researchgate.net/publication/254441223_The_Last_Picture_Show_Timing_and_Order_of_Movie_Distribution_Channels?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
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due to advertising in the box office channel, and then show faster decay post release. In our paper, we do 

not separate effects leading to wear-out and instead adopt a flexible 3-parameter gamma specification in 

the demand formulation. 

Managerially, our model can be used to understand the effect of shorter/longer average theater to 

DVD windows on DVD profits, by simulating the competitive equilibrium in the industry for different 

DVD release strategies. Extant research on the window between channels has focused on the change in 

revenue in a particular title, without accounting for seasonality and competition (Luan and Sudhir, 2007). 

Our paper focuses on the competitive and seasonal aspects of release timing, and their effect on DVD 

profits. The results from simulations in our model may differ from the inference in models that ignore 

seasonality and competition. For instance, Indiana Jones 4 was released in theaters on May 22, 2008. A 

model that ignores seasonality may find that shorter theater to DVD windows are optimal and hence 

suggest a date in August or September 2008 for Indiana Jones 4.  However, seasonality in different 

channels suggests that optimal decisions differ based on time of theatrical release. Indiana Jones 4 may be 

better served by waiting for the Christmas Holidays, postponing the DVD release by a period longer than 

the industry average theater to DVD window. 

 

3. Data and Model 

3.1: Descriptive Statistics 

Our data comprises release dates, quantities and prices of titles per week after release, as well as 

title-specific descriptors (e.g. box office revenue, etc.) for all DVDs released in the United States between 

2000 and 2005. We describe below the sources of these data and issues with them.  We also describe data 

we are unable to obtain, and the restriction this places on our model formulation and estimation. 

Nielsen Videoscan collects DVD sales data from retailers at the point of sale.  We use the weekly 

sales and price of all DVDs sold in the United States, aggregated nationally. Other researchers have used 

this dataset to study DVD sales (Elberse and Oberholzer-Gee, 2007).  The dataset does not include Wal-

Mart. In our period of interest, Wal-Mart was a major retailer of DVDs that carried a smaller inventory of 

possible titles than comparable national retailers. Hence, our sample may understate the importance of 

larger titles and overstate the importance of smaller titles. We supplement this dataset with estimates of 

print and advertising expenditure on movies at theatrical release from SNL Kagan. We lack data on print 

and advertising expenditure (P&A) by studios on DVD. Therefore, we use production cost, P&A in the 

theatrical channel and box office revenue that are likely to be closely correlated with DVD P&A. 

We do not observe release costs in our dataset. Costs in the motion picture industry are comprised 

predominantly of the production costs of a movie and P&A. Production costs are borne upfront prior to 

https://www.researchgate.net/publication/228762499_Superstars_and_Underdogs_An_Examination_of_the_Long_Tail_Phenomenon_in_Video_Sales?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
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release of a movie in the theatrical channel, and do not affect the release  timing of the movie. P&A costs 

vary seasonally, over time and by firm, and thus affect the release timing of the movie. In our model, we 

assume that release costs may be incurred by a studio both as a fixed fee for in-store promotions, and 

through retailer margins. For instance, the fixed release costs of releasing titles on DVD include the cost 

of in-store promotions in the post-release weeks. In-store P&A might cost more in weeks of peak demand, 

when retailers face maximum demand for in store advertising and shelf space. We assume titles do not 

face distribution constraints; this assumption is clearly more appropriate for this market than for the 

theatrical release market. More importantly, for reasons of tractability, we assume that the retailer plays 

no strategic role.  Another piece of missing data is that we do not observe the weekly release 

announcements of studios in our dataset. Our model approximates an MPNE with announcements, 

without data on the announcements of studios. 

Similar to Luan and Sudhir (2007), we restrict our study to titles released in theatrical channels 

prior to release on DVD to reduce computational load. We drop older titles released prior on VHS and re-

released on DVD, from our sample. Some titles with smaller revenues, either low production cost sequels 

or children’s titles, may be released direct-to-DVD and are dropped from our sample as we expect the 

dropped titles have a limited competitive effect on the release timing and pricing game.4 From 2000 to 

2002, the subset of data used currently for estimation, we observe the release of 512 titles with 5339 

observations of price and quantity post release. 

In our model, prices (and release dates) are chosen by firms, given seasonal demand and release 

costs, and their rivals’ announced and actual release dates and prices. There is considerable price variation 

in DVDs that cannot be predicted from title characteristics; a regression of price against title 

characteristics has an adjusted r-squared of 0.2237 (Table 1).  

 

Table 1 – Price Regression 

 

The strategic role of price is an important distinction between DVD releases and theatrical 

releases. In movie theaters, the price of a ticket is fixed regardless of the popularity of the title (Einav and 

Orbach, 2007). Hence, the two opposing forces when setting theatrical release dates are the lure of a peak 

demand week and the competition expected in that week. In our paper we study the joint evolution of two 

strategic variables (controls), release dates and prices, set simultaneously. The trade-offs between two 

                                                      
 

4 We can incorporate the effect of dropped titles in the model. However, the computational cost of additional data is 
overwhelming and the lack of observables on smaller titles makes demand estimates noisy. 

https://www.researchgate.net/publication/30504523_Uniform_Prices_for_Differentiated_Goods_The_Case_of_the_Movie-Theater_Industry?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
https://www.researchgate.net/publication/30504523_Uniform_Prices_for_Differentiated_Goods_The_Case_of_the_Movie-Theater_Industry?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
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strategic choices leads to outcomes that may appear to be anomalies when considering either variable 

independently. For instance, consider two movies: a blockbuster and a small independent movie (indie). 

The blockbuster is released in a week of peak demand, and the indie on a week of lower demand. 

Intuitively, we might expect the blockbuster to be priced higher than the indie. However, we find a 

negative correlation (-0.15) between total DVD sales in a week and the average release price of a new 

movie in the week. Thus the indie may be released at a higher price than the blockbuster. The joint 

modeling of strategic decisions allows for an explanation. In weeks of lower demand, there is lower short 

run competition. Hence, titles released in these weeks have higher release prices while those released in 

higher demand weeks, have lower equilibrium release prices. 

Two empirical facts simplify our analysis and estimation. First, the (retail) price of a DVD at 

release is maintained over the first few months after release, with no significant decrease after release. 

This is significantly different than previous findings for prices of video games and other entertainment 

media, where the prices of titles after release decrease over time (Nair, 2007)5. For instance, regressing 

log price against time after release and other explanatory covariates, finds that the price of a title 

decreases by 6% on average over the course of the first 12 weeks (Table 1).  

The second industry feature is that prices for DVDs are well approximated by discrete levels, 

allowing us to treat price as a discrete variable rather than a continuous variable. In appendix 2, we 

discuss relaxing this assumption and treating price as a continuous variable.  Before we begin a formal 

discussion of the model, we discuss the timeline of firm actions. 

 

3.2: Timeline of firm actions 

In our model, each title released in the theater is a potential entrant in the DVD channel. In each 

week, a potential entrant may choose to either announce a price and week of release of a title, defer the 

announcement or change its previous announcement, including withdrawing the announcement 

altogether. Titles update their decisions simultaneously every week. The state of the industry is described 

by announced release dates and prices and actual release dates and prices. Pre-order forms from the Video 

Software Dealers Association indicate that final release dates and prices for DVDs are circulated to video 

stores, 4 weeks prior to the release of the DVD. Hence, we assume that the final release date and price 

                                                      
 

5 There are two explanations for the uniform price of a DVD for the first months, post release. Decreasing prices 
may lead to forward looking behavior from customers, who may wait for a price decrease and not purchase the DVD 
at the time of release. Store price guarantees, typical of retailers of home entertainment media, might make it 
unprofitable for a retailer to decrease prices after release. 
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decision is taken 4 weeks prior to the observed final releases in our implementation but suppress the 

period in our notation.  

A limitation of our study is that we specify a model at the level of a title, and ignore portfolio 

optimization concerns of a studio: cannibalization, the effect on release costs from multiple releases and 

the effect of strategic decisions on other formats and channels (such as the theatrical channel and rentals). 

Studios managing multiple titles may choose to spread DVD release dates to mitigate the effect of 

cannibalization and substitution, and/or choose to cluster DVD release dates to lower release costs. We 

measure payoff changes with earlier/later release, independent of revenue on DVD, to capture the net 

effect of the release decision over all channels. However, we cannot disentangle between the sources of 

the payoff variation: substitutability with the theatrical channel, changes in future revenue streams, etc. 

While our framework and estimation methodology allows for these issues, the additional computational 

burden is overwhelming in our application. Last, we ignore the role of the retailer, and model the studio 

as the profit-maximizing agent responsible for release strategy choices. 

In the model, the value of a choice of an announcement implicitly includes the strategic value 

(either cheap talk or serious signaling) of making announcements, and accounts for both cooperative and 

competitive incentives. Titles maximize profits by choosing optimal announcements of release date and 

prices, in the presence of seasonally varying payoffs, leading to time-varying best responses for any title 

(as described in the previous section). For instance, a title may be more likely to release a movie if future 

periods have decreased demand, than if future periods have increased demand; the seasonality of demand 

leads to seasonality in the set of potential entrants (see Figure 1). In our model, incumbents face no 

strategic decisions. That is, once a title enters the DVD channel, it becomes part of the absorbing state of 

the Markov process in the release timing game. In our dataset, a DVD on average collects 75% of revenue 

in the first 20 weeks post release with post-DVD release. In this period, the price remains remarkably 

steady, decreasing by less than 10% of the release price (see Table 1). Hence, it is sensible to model only 

release price setting.  

Inter-release perishability implies that a studio only considers a finite number of periods after 

theatrical release for the DVD release of the movie.6 Our model does not assume that all titles must be 

released on DVD and is general enough to identify titles released in theaters which cannot be profitably 

                                                      
 

6 Inter-release perishability implies that despite seasonal demand variations for any cost vector it is never profitable 
to release an unreleased movie after a finite number of periods. See assumption (A7) and lemma (L2) for a more 
complete treatment. 
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released on DVD. Thus, while we assume that all titles play the release timing and pricing game, we 

allow titles to choose to not release on DVD.  

There is an important different between timing models and geographic competition models (see 

Seim (2007) and Vitorino (2007)). Both “classes” of models are interested in separately identifying the 

effect of (inter temporal and/or geographic) differences in profitability, and the role of competitors. 

However in a geographic competition game, two agents in a time period, either do or do not have a 

competitive effect on each other. This effect does not depend on when they entered, and is solely a 

function of the identity of each agent. In a timing game, competition is asymmetric inter-temporally. 

Movies released early do not face competition for the first weeks post release, from movies to be released 

later. Movies released later, face competition from movies released early in the first weeks post release. 

The level of the competition faced diminishes with the gap between the release dates: older movies have a 

limited effect on newer movies. 

To summarize: in our model, studios evaluate the value of release announcements in terms of 

resulting release schedules. The model nests a degenerate case of cheap talk where announcements 

communicate no information between studios. The costs and benefits of announcing are the changes in 

the industry landscape due to coordinating and competitive responses of other studios. We identify trade-

offs between higher demand, competition, release costs and perishability by the choice of a studio to 

release the title on DVD, concluding the release timing and pricing game.  

Our model specification is applicable when agents (firms) adjust dynamic decisions to changing 

industry landscapes. While unforeseen shocks, are accounted for in dynamic models that consider forward 

looking behavior (including our model), systematic industry changes of the nature described lead to a 

non-stationary MPNE. Other examples of such predictable shocks include market expansion, new product 

diffusion, changes in public policy, and release of complementor products. In the next section we describe 

the model specification. 

 

3.3: Studio payoffs 

We estimate the profit function per title per week. Profit is estimated in the expected two parts- 

revenue and cost.  To identify the costs of releasing a DVD, we need to separate between the positive 

effect of pricing on profits from the negative effect of price on quantity sold. Reduced form profit 

functions based solely on the release timing schedule do not allow us to separate the profit into these 

components. We use a market outcome model to separate the effect of underlying seasonal shocks and 

competition on demand, from the seasonality of release costs. 
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In developing the sales (market outcome) model, we have two choices. We can model consumer 

demand from first principles of utility, accounting for dynamics in consumer demand (as did Luan and 

Sudhir, 2007).  Alternatively, we can use a reduced-form capture of demand.  We choose the latter for the 

following reasons. First, the focus of this paper is dynamics on the supply side. Researchers in this area 

typically use reduced-form models of revenue to simplify estimation (Bajari, Benkard and Levin, 2007). 

A model of firm market share in a period, allows for a parsimonious mechanism to account for the effect 

of competitors on per period profits.  Second, our specification captures the relevant dynamics of inter-

release and within-channel perishability, which are the two key dynamic elements that studios consider 

when setting release timing and pricing.7 Finally, our data are aggregate, not individual-level (unlike Luan 

and Sudhir, 2007), making it less suited for structural demand estimation. 

In appendix 1, we specify our non-stationary MPNE framework, and describe assumptions on 

model primitives and the resulting equilibrium. Our operationalization of the general frame work is 

presented below. Let ,dwt dwtp x be the price and characteristics vector of DVD d, released in week w in 

time t.8 To allow for competitive effects while ensuring computationally tractability,9 we model the 

market share of DVD d in week w and year y,dwtms  as: 
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 (6) 

                                where  log( ) log( )dwt dwt dwt dwtp xδ α β ξ= + +  (7) 

The market share model allows us to present a richer description of the industry. In estimating 

dynamic models, the effect of other agents is approximated by a linear function. In practice, the 

assumption either leads to an exponential increase (due to an increased number of agents) in the number 

of estimated parameters. Or symmetry restrictions on the profit function: competition being determined 

by state and not by identity. The use of a market share (market outcome) model alleviates data and 

computational requirements. In our application, we use descriptors of titles (box office revenue, genre, 

rating, and studio/distributor identity) when calculating the asymmetric competitive effects of titles.  

                                                      
 

7 We are unable to account for cross-channel substitutability; that is outside the scope of this paper. 
8 For convenience we index time as number of weeks since the first week of January 2000. 
9 Market expansion (e.g Einav (2007)) and/or a random coefficients version of the market share model improve 
predictive capabilities but increase computational burden. In general, a model that fits the light tail conditions 
described in the paper can be used instead, without affecting the proof of convergence. 

https://www.researchgate.net/publication/4899635_Estimating_Dynamic_Models_of_Imperfect_Competition?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
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Profits from releasing a DVD accrue post release. We write profits to a studio in period t from 

releasing a dvd d in week w as 

 ( ) ( )( ), ,dwt dwt dwt dwt dwt dwt dwtp q x p f q x pπ = −  (8) 

where ( )( ),dwt dwt dwtf q x p is the marginal cost for dvd d, released in week w in time t. In our empirical 

application, we interact the movie and studio characteristics in a linearly additive specification: 

 ( ) ( ) ( ),dwt d V dwt dwt dwt t wp x ms x p f Qπ λ γ= −  (9) 

where ( )d V dwtp xλ γ−  is the net average studio margin for dvd d, and with quantity calculated using the 

market share model and total weekly sales, ( )t wf Q . 

Perishability of the movie impacts both title payoffs and the competitive impact of the title. We 

account for diminishing appeal when calculating both the payoffs for the studio and the competitive 

impact of the movie on other titles. Further, as our titles differ across periods, the model adjusts to the 

changing sets of titles released. 

The majority of a DVD’s revenue is garnered in the first months after release. In this period, 

competition and seasonality are major determinants of sales. Sales into the future are affected by 

competition from other movies released in the same week, but not from newer releases coming into the 

market in later periods. Hence, we model residual sales in remaining periods post the first 12 weeks, as a 

function of the seasonality of the week of release, the competitive set of the week of release and the 

observables of the movie. Thus, total payoffs to a studio from a title come from the first 12 weeks of 

profitability and a residual value of the movie: 

 ( ) ( )
w M

j w M
dw dwj d F dw w w dw
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w x f Qπ β π β κ γ υ
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−

=
= + − +∑  (10) 

where ( )d wκ is the residual sales and ( )F dw w wx f Qγ  the release costs for dvd d, in week w. The 

general model allows dwυ to be correlated across movies and weeksdwυ .10 

Our model payoffs are firm-specific. Ericson and Pakes (1995) specify a payoff function that 

depends solely on the number of studios in a particular state, and not the identity of the studios in that 

                                                      
 

10 The general forms of most extant dynamic models do not admit contemporaneous correlation as contemporaneous 
correlation biases estimates of the transition function. 
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state. They model the state space using a set of counting measures to index the number of studios in a 

particular state. However, titles differ vastly in appeal. In our model the state representation is much 

richer and allows for observable differences between titles. The identity of a title impacts not only the 

payoffs of the DVDs but also addresses the impact of the title on other DVDs available concurrently. The 

affect of the title on the profitability of other titles depends on the composition of the choice set in that 

week. 

   

4. Model Estimation 

4.1: Challenges in solving for the MPNE 

As mentioned in the introduction, we face three challenges in solving for the MPNE in our model. 

First, we lack intermediate release announcements of studios, and only observe the equilibrium final 

release schedule, leading to an under-identified transition matrix. Identification of the transition matrix 

and the use of Nested Fixed Point approaches require knowledge of the current and future state vectors, 

and the actions taken by agents. To ensure identification of the transition matrix, extant dynamic models 

have considered research questions where the state and action vectors can either be observed or imputed. 

While in our model we cannot observe all states and actions due to data constraints, in many applications 

such data remains unobserved due to other institutional details. For instance, privacy laws may prevent a 

store from identifying prior behavior of customers, censoring information on past decisions and their 

current state. Thus, we generalize dynamic models to settings where the researcher is faced with the 

burden of estimating on a censored dataset. 

Second, while we prove the existence of a non-stationary MPNE in our model, we cannot solve 

for the general form of the MPNE as the state transition matrix is under-identified in a non-stationary 

MPNE. In the Ericson-Pakes (1995) frame work, identification depends on inter-temporal decisions of 

studios following a stationary Markov process (for a discussion on identification, see Berry and Tamer, 

2006). In this frame work, the best response of a studio depends only on the industry state, and the state 

transition matrix is identified by the responses of studios to different industry states. In appendix 1.2, we 

describe the assumptions required to identify the model when best responses of firms change over time, 

and the related change in convergence properties. 

Third, multiple equilibriums in a dynamic model require the specification of an equilibrium 

arbitration process over future equilibriums. The transition kernel and value function is unique to a 

particular equilibrium. Hence in a dynamic model with multiple equilibriums, agents in a period hold 

beliefs over which equilibriums will be played in future periods, to form expectations of future payoffs 

from a strategy. Without a methodology to arbitrate between equilibriums, the expectation over value 
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functions is poorly defined. In general, randomizing between candidate equilibriums is in advisable as it 

rules out all signaling mechanisms between firms, including those based on observed variables. For 

instance, firms may know to play a particular equilibrium in periods of peak demand, and a different 

equilibrium in periods of low demand. It is also computationally intractable to enumerate possible 

equilibriums in the model and hence solve for the expected value of an action to an agent. 

The presence of multiple equilibriums played in the data leads to inconsistent two step estimation 

(Aguirregabiria and Mira, 2007; Bajari, Benkard and Levin, 2007) due to the lack of a unique reduced 

form. A prior approach is to assume that while the researcher is unaware of the equilibrium selection 

process, and despite knowledge of the potential presence of multiple mixed and pure MPNE in the model, 

a unique equilibrium is played out in the data. This assumption is strong enough to both rule out 

equilibrium selection and inconsistent estimates of transition kernels (for instance, see assumption (5A) 

and (5B) in Aguirregabiria and Mira, 2007). In our data such an assumption is overly restrictive as it 

implies that all potential entrants in the six years of the dataset play the same equilibrium, across different 

holiday seasons, and in fast growing markets. The non-homogenous Markov kernel and choice function 

described and estimated in this paper are flexible enough to allow for the presence of multiple MPNEs in 

the data.  

In the next section, we discuss a partial information estimation approach robust to all three issues 

described. 

 

4.2: Solution Concepts 

We draw from the solution concept of Oblivious Equilibrium (OE). In OE, agents are “oblivious” 

to the state distribution in a period, and optimize using Perfect Bayesian beliefs over candidate states. In 

the literature OE has been proposed in three separate contexts. First, in a model with a continuum of 

agents, MPNE and OE have been shown to be equivalent (Chakrabarty, 2003). Second, Krusell and Smith 

(1998) described a related model where agent behavior is derived from a response to the distribution of 

aggregate wealth rather than the precise allocation of wealth across agents, defending the solution concept 

as a behavioral model of agents in large markets. Third, Weintraub, Benkard, and Van Roy (2007) show 

that OE approximate MPNE models. They present error bounds for a model with a homogenous transition 

matrix and show that estimates of an OE converge to estimates from a MPNE in the context of large 

competitive industries where market shares decrease with the number of firms, particularly in a model 

using a logit market share function. In appendix 1.2 we show that given our choice of a logit market share 

function, estimates in our model converge to MPNE estimates despite the non-stationarity of the Markov 

https://www.researchgate.net/publication/4899635_Estimating_Dynamic_Models_of_Imperfect_Competition?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
https://www.researchgate.net/publication/4899579_Sequential_Estimation_of_Dynamic_Discrete_Games?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
https://www.researchgate.net/publication/4899579_Sequential_Estimation_of_Dynamic_Discrete_Games?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
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kernel. We validate the model estimation by comparing agent actions forecasted with observed behavior, 

and compute an upper bound on the difference between OE and MPNE predictions. 

Specifically, we replace the current state of the industry with a distribution over candidate state 

vectors that reflect the probability of observing the candidate vector in the time period. Rewrite the state 

vector as  

 { },t t t
R URδ δ δ=  (11) 

where t
Rδ is the state vector for all movies released by time t, and t

URδ is the state vector for all titles 

unreleased at time t. Thus, we replacet
URδ , the unobserved state variables, with the distribution over 

candidate states consistent with Perfect Bayesian equilibriums. Equilibrium beliefs are neither imposed 

nor recovered from the data due to the under identified transition matrix. 

The non-homogenous first order transition matrix requires us to write a period-specific choice 

function. We integrate over next period choice functions using the current periods’ transition matrix 

� ( )|tψ δ δ′ for each candidate vector and over all possible candidate vectors for the current period. 

 
1| 1 ( 1)( , , , ; ) ( , , , ; ) ( , , ; )

t t t

M M
t it t t t it it t t t t i t tV x s a x a E E E V x aδ δ δ υυ θ π δ υ θ β θ

+ + += + i  (12) 

(12) specifies a time-varying choice function in the model, due to  the time-varying transition 

matrix. A non-stationary Markov strategy in the model for the studio is a function :M
it Aσ ν∆ × → . A 

non-stationary Markov strategy profile in model,Mtσ is a set of non-stationary Markov strategies in the 

model, for each studio, period t. In the model, the necessary and sufficient equilibrium conditions are 

 ( ) ( ); ; , , , , , , , ,M M M M M M
t t t it it itV V i t I Tδ σ δ σ σ δ σ−′ ′≥ ∀ ∈ ∆ Σ  (13) 

We draw on a strategy similar to extant static models of entry (eg. Bresnahan and Reiss, 1990) 

that use necessary conditions common to all equilibriums. The precise difference in strategic behavior of 

agents in our model and in a specific MPNE cannot be found without solving for the MPNE. Our model 

uses week-specific distributions over candidate state vectors without separating between MPNE 

equilibriums being played in the date or specifying the probability of playing a given equilibrium. 

In appendix 1.2, we discuss the difference between our model and a stationary Oblivious 

Equilibrium (OE). Weintraub et al (2007) derive a theorem that shows that payoffs estimated using OE 

converge to payoffs estimated in a stationary MPNE. We discuss how to extend their results to our setting 

https://www.researchgate.net/publication/23525671_Markov_Perfect_Industry_Dynamics_With_Many_Firms?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
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and show that payoffs found in the partial information estimator, converge to payoffs found in a full 

information non-stationary MPNE. 

 

4.3: Model Estimation 

As stated before, the OE estimation methodology proposed by Weintraub, Benkard and Roy 

(2007) is not appropriate for our setting due to the censored state space, non-homogenous Markov 

transition matrix and agent asymmetries in profit function. We first discuss an alternative characterization 

of the best response function and the resulting equilibrium, and then the use of these conditions in our 

estimation procedure.  

In appendix 1.3, theorem (T1) implies agent playing the best response (making the optimal 

release announcement) in a period equivalently ensures the choice of an optimal absorbing state (final 

release date and price), accounting for the competitor’s responses over the course of play. Hence (T1) 

shows that per period best responses can be translated into across period conditions on the choice of 

absorbing states. Note that the equilibrium description does not assume that other agents do not respond 

to the out-of-equilibrium actions of an agent. The assumption that actions, conditional on the path of play, 

are optimal across periods is a result of per period best response strategies of agents. 

The re-characterization is intuitive: the underlying purpose of release announcements in the 

timing game is to ensure a path to the optimal period and price of release. Formally, in maximizing 

payoffs in a period, an agent engages in play to ensure that the course of play leads to the maximum 

payoffs for the agent, across multiple periods. The variation in profits from different release dates and 

prices stems from the seasonality of underlying demand and release costs, the endogenous evolution of 

competition as a response to the seasonal demand, and the effect of perishability on title profits.  

Identification in the model is driven by comparing payoffs from releasing the movie, an 

absorbing state in the Markov process, with continuing in the game. This identification strategy has 

parallels to the literature in single agent dynamic programming problems where the agent has to decide 

the optimal stopping time (Rust, 1987), in an environment where payoffs from stopping vary over time. 

The optimal strategy in our model either prescribes releasing or deferring the release of the movie in a 

week, by maintaining a future release date, or choosing to postpone the release. An observed release 

indicates the studio found it optimal to maintain or choose the week and price as its announced release 

date and price respectively. Backtracking from the end of the finite planning horizon and recursively 

defining the value function, we implicitly construct the continuation value of deferring release. Hence, 

our estimator compares computed best response stopping points in the model and the decisions of studios 

to estimate trade-offs between equilibrium forces. 

https://www.researchgate.net/publication/4815002_Optimal_Replacement_of_GMC_Bus_Engines_An_Empirical_Model_of_Harold_Zurcher?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
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Our estimation and identification strategy is different from extant methods. In extant models, 

agent actions in a period, conditional on the Markov density, are best responses at equilibrium. In our 

model, the under-identified Markov density cannot identify the precise best response of the agent in the 

period.  Instead, similar to prior Dynamic Stochastic Discrete Choice models (for a summary, see 

Ackerberg, Benkard, Berry, Pakes, 2007) we use a “two-step” method to calculate profits from 

conjectured releases. We forecast the industry evolution of the market, by modeling the evolution of the 

sufficient statistic. Titles that have been released have no further strategic decisions associated to them 

and are absorbing states in the Markov chain. The presence of an absorbing state and the forecasts of 

future industry environments, allow us calculate optimal release dates and prices. Next, we use estimates 

from the first period to find optimal release dates and prices of studios and maximize the quasi-likelihood.  

However, in our model, unlike extant optimal stopping time models, the stopping decision of a 

firm depends on actions of other agents. In our approach, an agent makes an optimal decision while 

accounting for the behavior of other agents under the oblivious assumption. Thus, agent behavior in our 

model may differ from agent behavior in a MPNE. The use of a distribution instead of the information of 

actual agent state and hence future behavior implies an increased uncertainty which is manifest in the 

model as the difference in equilibrium outcomes in the MPNE and our model. The long term variance of 

the forecast is the sum of the long term or average variance of the true forecast generated in the MPNE, 

the residual variance of the forecasting equation and the average variance of the difference between the 

partial information approach and a complete information MPNE specification. Thus, the average 

difference between our model and the MPNE is bound by the mean sample variance of forecast errors. 

While we can bound the degree of imprecision introduced by censored information (when 

compared to full information predictions), we cannot characterize the loss of efficiency in our model over 

a full information model. Our first stage estimates may be inefficient as they do not use the structural 

elements of the model. And we estimate the model without conditions on equilibrium actions, specifying 

the appropriate release announcement strategy, in each period. (T1) does not imply that our approach is 

econometrically efficient. 

As the best response in our model is a unique strictly dominant strategy, the found equilibrium is 

a pure strategy Nash equilibrium in dominant strategies. Hence, econometrically an important difference 

between extant solutions of the MPNE model and our approach is that our estimators are econometrically 

complete in the presence of multiple equilibriums (Tamer, 2003). In extant dynamic MPNE models, 

multiple equilibriums make the MPNE model, even when the complete state and action space is observed, 

incomplete econometrically. In contrast, our estimators are consistent for all equilibriums and can be used 

without identifying equilibriums. 

https://www.researchgate.net/publication/4783475_Incomplete_Simultaneous_Discrete_Response_Model_with_Multiple_Equilibria?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
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The estimation method described in the next section, uses (T1) and is general enough for any 

game with accrual of payoffs in periods after the choice of the absorbing state. This is a natural 

assumption in a game of release timing, where payoffs accrue post entry, but may not be a valid 

assumption in other games. 

 

4.4: Estimation Algorithm 

Our estimation algorithm has 4 steps: 

Step 1: Market share Estimation 

Estimate the market share model to scale. Let dwtsɶ be the market share of dvd d in time t, in 

quantities. Define the geometric mean of in group market shares as
1

ln( ) ln( )
t

g
t iwt

t i C

s s
N ∈

= ∑ ɶ . Then from 

(7):  

 
1 1

ln( ) ln( ) ln( ) ln( )
t t

g
dwt t dwt iwt dwy iwt

t ti C i C

s s
N N

δ δ ξ ξ
∈ ∈

− = − + −∑ ∑ɶ  (14) 

Coefficients of the market share and residual sales models in our application are estimated using 

Ordinary Least Squares11. Identification and regularity conditions of the market outcome function have 

been well established in the literature. Parameter estimates from the first step are consistent in release 

timing games, but may not be consistent in entry/exit games. For instance, Pakes, Ostrovsky and Berry 

(2004), first estimate outcome values from exit decisions and then impute them in the second step of the 

estimation routine. The selective exit of firms in an entry/exit model may lead to a selection bias in the 

market outcome equation (first step), if estimated separately.12 In our release timing game, almost all titles 

released in theaters are released on DVD and hence are present in the first stage of estimation, ensuring 

consistency. 

Step 2: Forecast the sufficient statistic 

We forecast a sufficient statistic to describe the effect of other agents on an agent’s profits from 

release. An infeasible estimator can use the iterated Markov kernel to compute the described profit values 
                                                      
 

11 Clustering errors by week and using White’s correction for heteroskedasticity does not improve fits and/or 
predictions. 
12 Entry selection bias can be corrected by using a control function of consistent estimates of the timing decisions of 
firms. 
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of an agent across periods, under the assumption of optimal play. The kernel is under-identified in our 

application. Hence, instead we form a reduced form forecast of the evolution of the industry and assess 

the optimality of actions of studios when faced with the evolution of the industry.  

A consistent forecast of a sufficient statistic can be formed in our research problem by looking at 

the seasonality of demand in a finite set of future periods. Inter-release perishability allows us to assume 

the existence of a finite end of the game, beyond which release is no longer profitable (see Lemma 2 in 

appendix 1.1). In our empirical application, we set nine months as the end of the release game and assume 

that titles which were not released nine months after theatrical release, exit the release game. By 

implication, agent decisions involve seasonality over the planning horizon, and the current level of the 

sufficient statistic. 

In our application, we use ( )exp
t

fs t it
i

s s δ
∈

= ∑
ℂ

≜  and forecast ( ) | t
t t URE Es δ 

 
ℂ . The 

summary statistic is a measure of the number and strength of competitors, but is independent of the 

identity of competitors. Figure 2 shows empirical validation of the chosen summary statistic. In periods of 

peak DVD sales, the summary statistic is higher for released movies, indicating that the best movies were 

released. In contrast in periods of non peak sales, the summary statistic is higher for non released movies, 

indicating that the best movies were retained by studios for later release, in coming weeks of higher 

demand. The evolution of the industry is regressed on the current industry state, seasonality and future 

entrant vector: 

 ( )( 1)log( ) logdt fs d t t zs s zθ θ τ−= + +  (15) 

 

Figure 2: Total DVD Sales and Industry Evolution 

 

Market share parameter (step 1) estimates are root-n consistent. Hence, forecasts of the sufficient 

statistic in our model are root-n consistent, and converge in probability to the true sufficient statistic. 

Step 3: Compute sales from release dates and prices 

We construct the empirical analog of the conjectured profits when releasing in a period. Forecasts 

from step 2, allow us to define expected payoffs from future actions. Using the market share model and a 

forecast of sales, we can compute expected total quantities of products sold for every given choice of 

release date and price. Hence for each agent, in every time period that the agent was in the timing game, 

we compute sales for feasible release date, price combination for the agent within the planning horizon. 

Step 4: Maximize the Quasi-Likelihood 
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Our first stage estimates of the summary statistic are consistent, but in a finite sample are (with 

probability 1) not true parameter values. Using the sales estimated from step 3, we specify a quasi-

likelihood estimation approach using a parametric specification of the payoff shock. Regularity conditions 

and other assumptions for the estimation are discussed in appendix 1.4. We use Richardson simplification 

to find ( )ssA θ and the Eicker-Huber-White estimator for( )ssB θ . If imputations of the summary 

statistic fss  are heteroskedastic or autocorrelated, then standard errors of the sandwich estimator can be 

corrected by appropriately weighting the estimation function (Zeilies, 2006).We choose to use a quasi-

likelihood-based method to maximize efficiency and ensure consistency of the standard error estimates. In 

an under identified model, similar to Bajari, Benkard and Levin (2007) one can instead follow 

Chernuzhov, Hong and Tamer (2007). Their estimator uses set identification to find parameters that 

describe difference equilibriums supported by the data minimizing a criterion function that penalizes 

violations of the best response function. The likelihood based approach is more efficient in the point-

identified model, and produces precise standard errors of estimated parameters. In general, finding 

equilibriums in dynamic game models is computationally demanding. Most MPNE solutions increase 

exponentially in computational complexity and cost, with the number of agents in the model. In contrast, 

we are able to estimate on sets of potential entrants (on the order of 40 potential entrants in a period) 

larger than prior work on release timings as our model increases linearly in computational load, with the 

number of agents. The derived quasi-likelihood in our application is globally concave with closed form 

derivatives, further reducing computational load. 

 

4.5: Identification 

While the general framework of the model admits under-identified models, our model 

specification is point-identified. The identification of release costs comes from the effect on release 

decisions, of inter-release time, seasonal industry demand, and revenue from the title post release. 

Comparing across titles that could achieve the same revenue, we can identify differences specific to the 

attributes of the title. Specifically, studio margins are a function of the movie’s characteristics (including 

inter-release time and time since release). The quantity sold in our model from a release date and price 

combination, is the product of the market share and the seasonal size of the 

market ( ) ( ),smwt smwt t wms x p f Q . A change in margins, affects profits depending on the revenue from 

the title. Hence the coefficients of studio margin are identified through the change in revenue with 

different choices of release strategies. Fγ is the vector of coefficients of the release cost function, 

identified through the change in industry sales of DVDs in the weeks post release. Studio differences in 
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margins and release costs are identified in the model through differences in release behavior for similar 

titles in similar weeks, across studios.   

The underlying variation identifying release costs are the different market shares and seasonal 

market sizes across different weeks, for different release dates and prices. The variation is induced by the 

underlying seasonality of demand, endogenous evolution of competition (choices of other studios) and 

perishability. There are two limitations to this approach: we cannot identify any release costs that are 

constant across the different weeks as they do not figure into the release timing optimization, and we are 

only identified to scale.13 

( ) 0it itE xν ν = Our specification is similar to specifications used in complete information models. 

The described model frame work is general enough to allow variables unobserved by the econometrician 

but observed by agents (common un-observables). Common unobservables lead to decisions of agents 

being contemporaneous correlated. Similar to complete information models (Gallant, Hong and Khwaja, 

2008), our estimators remain consistent under the assumption that common unobservables are orthogonal 

to observables but potentially correlated with private information shocks. However unlike extant 

complete information models we maintain restrictions on unobservables and shocks being independent 

over time. A complete information model assumes away elements of pre-emption and learning. The 

presence of private information potentially correlated with the common un-observables, implies that 

allowing serial correlation may lead to “learning” in the game described. The resulting model is beyond 

the scope of our research. Further, we restrict out attention to identification and estimation of our model 

in this paper for the parametric form. In future research, we plan to show that our model is semi-

parametrically identified, and can be estimated using an extension of the approach of Hong and Shum 

(2007).  

 

4.6: Results  

We find that market share is well predicted by the print and ad spending of a movie, the user 

ratings and critics’ ratings of a movie, all of which are positively correlated with larger box office 

revenues.  Larger number of weeks since theatrical release significantly decreases the attractiveness of the 

                                                      
 

13 One can identify scale through the assumption on a discount factor that is less than 1. Identification to scale is 
adequate to build the counterfactuals and simulations that form the major substantive contribution of the paper. 

https://www.researchgate.net/publication/251718093_Estimating_Dynamic_Games_of_Complete_Information_with_an_Application_to_the_Generic_Pharmaceutical_Industry?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
https://www.researchgate.net/publication/251718093_Estimating_Dynamic_Games_of_Complete_Information_with_an_Application_to_the_Generic_Pharmaceutical_Industry?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
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movie.14 As in Lehmann and Weinberg (2000), we find that larger box office revenue and greater screen-

weeks exposure predicts higher consumer utility. Similar to Luan and Sudhir (2007), we find that longer 

inter-release times between channels decreases consumer utility. (See Table 2) 

 

Table 2: Coefficients of DVD Market Share Model 

 

 We regress the residual sales (sum of revenue in week 13 to week 24 after DVD release) on 

industry and movie characteristics (see Table 3). While the DVD market share in the first weeks after 

release is negatively affected by better movies, residual DVD market share is positively affected by the 

release of better movies at the same time as the DVD. The measured complementarity of titles may arise 

due to better releases increasings store visits to DVD retailers, and hence the number of older titles sold.  

 

Table 3: Coefficients of Residual Sales  
 

Estimates of DVD release costs (structural supply parameters estimated in the second stage) are 

in Table 4.15  Our results indicate that release costs are seasonal, and are higher in weeks of peak demand. 

We find that movies that performed better at the box office, controlling for the increased sales on DVD, 

face lower net DVD release costs. We also find that movies that spend a longer time between the 

channels, have a longer inter release period, sell fewer copies due to the decreased market potential and 

incur higher release costs. Hence, a model ignoring release costs would overcluster optimal release 

predictions in weeks of peak demand, as it would ignore changes in release costs. Finally, both marginal 

release costs and fixed release costs differ across studios, genres and ratings.  Our simulation results 

corroborate our prior explanation of the pricing anomaly. Regressing optimal release prices suggested by 

the model on seasonal demand variation shows that the model predicts lower prices for movies in weeks 

of peak demand. For every standard deviation increase in industry demand for the week of release, the 

simulation suggests a decrease of 16 cents in DVD release price. 

 

Table 4: Coefficients of Release Costs 

                                                      
 

14 We try different time specifications and do not see a difference in fit across different specifications, including 
higher order polynomials of time spent in channel.   
15 Due to the computational burden results have been estimated on data for 200-2002 for now. We will shortly 
estimate the model on the entire 2000-2005 data.  

https://www.researchgate.net/publication/247837060_Sales_Through_Sequential_Distribution_Channels_An_Application_to_Movies_and_Videos?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
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4.7: Model Fit and Validation 

The estimators of industry evolution are fairly accurate, indicating a reasonable model fit. In both 

Figure 3 and Figure 4, residual variance and forecast error is limited. The R squared of the 10 week future 

forecast equation is 0.9267 and R squared of the 30 week future forecast equation is 0.9114.  

 

Figure 3: Forecasting 10 Weeks Into the Future 

 

Figure 4: Forecasting 30 Weeks Into the Future 

 

 We compare our in-sample model fits, with two alternative specifications: 

i. M0: Reduced form model of prices and Theater-to-DVD window as a function of title 

characteristics 

ii. M1: Dynamic model with release costs set to zero. 

The mean absolute error in predicting release dates for M0 is 4.73 weeks. Our model has a MAE 

of 4.05 weeks while M1 has a MAE of 4.27 weeks over the entire sample. Figure 5 is a histogram of 

absolute errors in release date prediction for our model, across the entire sample. For short term 

predictions (observed release in the coming 10 weeks), the model has a MAE of 2.86 weeks, while M1 

has a MAE of 2.91 weeks. As expected the model performs better on nearer term than longer term 

predictions. We predict the release price with an accuracy of 52%16. 

 

Figure 5: Histogram of Release Date Forecast Errors 

 

5. Conclusion 

DVD sales are a major source of studio profitability. As weekly sales vary dramatically over the 

year and the majority of sales for a title are made in the first weeks post release, the timing and pricing of 

a DVD release is a major strategic decision for studios. In this paper, we model the dynamic game of pre-

emption and coordination played by studios when deciding the joint decisions of release date and price on 

DVD. In particular, we study the impact of seasonally varying demand, competition and release costs on 

the evolution of competition and release timing and pricing decisions, in the industry. An issue in 

                                                      
 

16 We use 7 levels of price: $0-$5, $5-$10, …$30 and above.  
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estimation is that when setting release dates, studios use weekly announcements to mitigate competition 

in setting release and pricing schedules. Not accounting for these announcements might lead to biased 

estimates of the release timing and pricing game.  We show how to account for these unobserved 

announcements to obtain robust estimates of this competitive timing and pricing games among DVD 

titles. 

Substantively, we are able to measure unobserved release costs, allowing for both firm and title 

heterogeneity in the release cost function. We contribute to the literature methodologically by developing 

estimation routines for models in which extant estimation methodology cannot solve for MPNE. We do 

not observe release announcements, and hence estimate the model on a censored state space. The policy 

functions of studios for determining release strategies change due to the variation in payoffs and the 

growth of the industry, leading to a non-stationary Markov process. Agent asymmetries prevent the use of 

counting measures for states to account for the impact of competition on studio profitability. Our 

estimators are econometrically complete, computationally tractable, and show reasonable predictive 

accuracy despite these constraints. 

A limitation of our paper is that we assume that firms seek to maximize profits on DVD, ignoring 

positive network externalities on future channels and optimization over multiple titles. While theoretically 

the model scales to both multiple channels and portfolio optimization, a lack of data on other channels 

and the accompanying dramatic increase in computational cost, limit the empirical application.  

A technical limitation of the model is that in using a simultaneous game of incomplete 

information, we are subject to the regret critique. Studios in our model make decisions on the basis of 

their own private information and beliefs on the actions of other agents, and cannot revisit their decisions. 

In contrast, in a sequential game, actions of rivals reveal private information, and hence may potentially 

lead to different best responses.  These questions deserve further exploration in future research. 
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Appendix 1: Non-Stationary MPNE Framework 

In this section, we begin by describing the model primitives and the resulting equilibrium.We 

show the conditions for identifying the 

( )f i ( ){ } 1

n
i i

f
=

i

non-stationary MPNE and discuss the flexibility 

of the model when describing multiples equilibriums being played in the data.  

 

1.1: Model Description 

Following prior empirical work (Doraszelski and Pakes, 2006), we restrict our attention to 

symmetric and anonymous equilibriums. A set of functions, is symmetric if  

( ) ( ), , , , , , ,i i i i i j i i i if x x f x x i jδ δ δ δ− − − −= ∀
. 

Hence we abstract from the identity of the agent in the 

payoff function, and write.

The function, 

( )f i

is anonymous 

if

( ) ( )( ) ( ), , , , , ,i i i i i perm i i perm if x x f x xδ δ δ δ− − − −= , where ( )perm i− is any permutation of the indices 

of other studios. 

Note that symmetry and anonymity restrictions do not assume that studios are identical, 

but instead that studio and product differences are observed. Reduced-form game payoffs for all agents at 

equilibrium are a function of its characteristics, state vector and competitive set.

 

We assume model primitives are common knowledge to potential entrants and incumbents: 

 { }( , , , , , )
( , , , ,:), , ( | , ,:), ,

i i
it it it t t t t t it i x p t a I T A

x p a E a δπ δ δ δ ν β ∈ ×ℵ×Ρ× ×∆×
′Ψ  (1) 

We describe these objects and then present the assumptions required for the model.  

The state space isI T×ℵ× Ρ× × ∆ , where I +∈ℤ is the set of all titles ever released in movie 

theaters, ℵ is the Cartesian product of observed movie characteristics, ∞
+Ρ ⊂ ℤ  is the set of prices, 

T ∈ℤ is the set of time periods over which the game is played, T ∞∆ ⊂ ×Ρ  is the state vector describing 

https://www.researchgate.net/publication/222684151_A_Framework_for_Applied_Dynamic_Analysis_in_IO?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
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announced release dates and prices and A T ∞⊂ ×Ρ is the announcement vector17. { },C A∆ ∆ is a 

partition of ∆ such that C∆ is the set of continuation states and C∆  is the set of absorbing states. 

( , , , ,:)it it it t tx p aπ δ is the profitability of title i, in time period t, when it has characteristics itx ∈ℵ ,  

price itp ∈Ρ , tδ  is the state vector at time t and ta is chosen by agents. tE is set of all potential entrants, 

and ( | , ,:)t aδ δ′Ψ is the transition function that determines state transitions. As mentioned previously, 

we assume this function is time-varying. We adopt the convention of using primes to denote subsequent 

period variables, e.g. δ ′  to denote 1tδ + , δ ′′ to denote 2tδ + . In an abuse of notation, we also use agent 

subscripts to denote the partition of the state and action vector describing an agent, e.g. iδ to denote the 

state of agent i. 

Incomplete information models simplify the analysis of the equilibrium (Seim, 2007), and are 

more likely to accurately represent the industry (e.g. given the non-standard contracts for sharing revenue 

and for deciding the promotional expenditure). Hence, similar to entry models, we assume that prior to 

making a release decision studios receive a private payoff shock itν , drawn independently over time, from 

a distribution ( | , )t itG xν δi  with support on tE
ℝ , and tν  the vector of private shocks for all titles in 

period t. Private information shocks (in a timing game) describe payoffs variations from different 

announcements and capture seasonal and studio specific differences in release costs across periods, 

including changes in the costs of advertising, promotional expenditure and the manufacturing cost for the 

DVD. We formalize this intuition in (T1) in section 4.3. Our formulation of private information allows 

shocks to be correlated across the industry, and heteroskedastic over time. Finally we specify a discount 

factorβ . 

We impose further restrictions on the model primitives. 

(A1) The state space is finite ( ; , ; , ; ; ,I x x p P p T δ δ< ∞ < ∞ ∀ ∈ℵ < < ∞ ∀ ∈Ρ < ∞ < ∞ ∀ ∈ ∆ ).  

(A2) Profits are bounded ( ( )itπ π π< <∑ i ). Profits accrue post release (entry) of the title. 

(A3) Studios discount future payoffs ( )0,1β ∈ . 

                                                      
 

17 The lack of an announcement, or its withdrawal, is encoded as the origin. 
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(A4) Private information appears additively in profit 

function ( , , , , ,:) ( , , , ,:)it it it t t t it it it t t itx p a x p aπ δ ν π δ ν= + . Fν is distributed absolutely continuous to the 

Lebesgue measure. 

(A5) State transition, follows a non-stationary first order Markov process with non-homogenous 

transition function ( | , ,:)t aδ δ′Ψ . In general, future states are a time varying stochastic function of past 

states and actions ( ) ( ) { }1 , , . . , C
st t t t tf a s t aµ δ δ δ δ+ ′= ∀ ∈ ∆ ∈ ∆ ∃ with ( ) ( ), 0st f aµ δ δ′ = > . 

Assumption (A1) stipulates the finiteness of the state space. First, as we restrict our attention to 

titles released in movie theaters and ignore direct-to-DVD sales, our set of agents is always finite. Second, 

in practice, characteristics of a movie have finite range. Third, perishability implies that in any time 

period, a firm only considers a finite number of future periods for release. Correspondingly, we restrict 

the decision vector and action vector of potential entrants to be finite. Assumptions (A2), (A3) and (A4) 

are features of commonly-used profit functions in empirical studies. The second part of (A2) is 

appropriate in a game of release timing where the agent can only make profits post release of the title.  

Assumption (A4) describes the stochastic monotonicity and continuity requirements on payoffs, 

fundamental to the existence of MPNE. Relaxing distributional assumptions on private information 

increases the number of mixed MPNE supported in the model.  Assumption (A5) requires the state of the 

world, dates and prices chosen by studios in every week, to evolve in a first order Markov process. The 

evolution of the next period’s states, conditional on the actions and states of agents in the current period, 

is stochastic. In keeping with extant papers, we require states in future periods to be accessible from 

continuation states. In our application, the state space is a history of past actions, and evolves 

deterministically conditional on past states and actions. (A4) and (A5) are implicitly equivalent to 

requiring additive separability of controls and errors, and conditional independence. Finally our state 

space is finite (unlike Ericsson and Pakes (1995), who study a problem with an infinite state space), and 

hence, we do not require agent payoffs to be bounded at the extremums of the state space.  

In appendix 2, we describe an extension to the model that allows us to model price as a 

continuous variable. Thus, we extend the model to both continuous and discrete controls, from discrete 

controls. As the extension is computationally more expensive and requires additional assumptions (A11) 

and (A12), we maintain the assumption of discrete controls for the remainder of this paper. Assumptions 

(A1 – A5) lead to the following lemma: 

 

Lemma (L1): Generically, the best response function is a unique mapping fromI T A× ∆× → . 
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Proof: (L1) follows naturally under assumptions (A1), (A2), (A3), (A4), (A5) and the solution concept 

of a Perfect Bayesian Equilibrium (PBE). In a PBE, a studio considers expected profits from each 

strategic choice. The expectation on the profit function includes probabilities on the decisions of 

incumbents and potential entrants in future periods, described by the transition kernel specified in (A5). 

When taking expectations, indifference between two actions, making the best response function a 

correspondence occurs on a set of measure zero due to the continuity restrictions imposed in (A4). 

 

Corollary (CL1): 

If a firm is in a continuation state, C
i iδ ∈ ∆ , then all future states of the firm have positive probability. 

( ) ( )1 | , 0

t

s t t t a t
a

a aµ δ δ µ+ >∫  

Proof: (A4) implies that from each state, all actions are played with positive probability. (A5) implies 

that generically, all future states are achievable from continuation states. 

 

For a particular equilibrium, (L1) implies a unique mapping from a combination of the state 

vector and observables to a future state.  In our model, the state vector is the history of past agent actions, 

making the evolution of the state space conditional on agent actions, purely deterministic. In general, if 

agent actions lead to stochastic state changes, then agent beliefs in the PBE are rational, as (L1) implies 

(A5). 

Our non-stationary formulation extends extant frameworks of dynamic games, to allow for 

multiplicity of equilibriums played in the data. If a particular equilibrium is played in the data, then the 

specification of the stationary MPNE (with a time homogenous transition kernel) is complete without 

specifying additional beliefs on equilibrium arbitration. If multiple MPNEs are possible in a model, then 

different equilibriums may lead to different transition kernels. The presence of multiple equilibriums in a 

dataset means that the transition kernel is time-varying: equilibrium choice in a particular period 

determines state transitions in the period. The non-homogenous transition kernel defined in (A5) is 

agnostic on the source of the non-stationarity and hence is broad enough to allow for the effect of multiple 

equilibriums on state transitions. A stationary Markov model assumes that best responses depend only on 

the current state of the agents. Doraszelski and Satterthwaite (2007), prove the existence of a MPNE, and 

under certain conditions, the existence of a Pure Strategies MPNE. Assuming a stationary MPNE, they 

write the choice value function as 

 { }1| ,( , , , ; ) ( , , ; ) ( , ; )
t t tit t it t it t t taV x a x a E E V aυδ δδ υ θ π υ θ β θ
+

= + i  (2) 
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where expectations on future value functions are taken over possible next period states, using the 

transition matrix.  

A stationary Markov strategy for a studio is a function :i Aσ ν∆× → . A stationary Markov 

strategy profile σ  is a set of stationary Markov strategies for each studio in a period. The necessary and 

sufficient equilibrium conditions in a stationary MPNE are 

 

 ( ) ( )ˆ ˆ; ; , , , , , ,i i iV V i Iδ σ δ σ σ δ σ−≥ ∀ ∈ ∆ Σ  (3) 

A non-homogenous first order transition matrix requires us to rewrite the choice value function. 

We write (3) as a period-specific choice value function, taking expectations over the next period choice 

value functions using the current periods’ transition matrix 

 

 { }1 1| ,( , , , ; ) ( , , , ; ) ( , ; )
t t tt it t it t t it t t t taV x a x a t E E V aυδ δδ υ θ π υ θ β θ
+ += + i  (4) 

 

(3) specifies a time invariant choice value function, while (4) specifies a time-varying choice 

value function18. Time-varying choice value functions, particularly when lacking estimates of the 

transition matrix, cannot be analyzed using extant methods without arbitrary restrictions ontV . As current 

decisions are affected by future seasonality, for instance to control for the effect of seasonality one would 

need to make tV a function of future periods.  

A non-stationary Markov strategy for a studio is a function :it Aσ ν∆× → . A non-stationary 

Markov strategy profile tσ is a set of non-stationary Markov strategies for each studio in period t. In a 

non-stationary MPNE, the necessary and sufficient equilibrium conditions are 

 ( ) ( )ˆ ˆ; ; , , , , , , , ,t t t it it itV V i t I Tδ σ δ σ σ δ σ−≥ ∀ ∈ ∆ Σ  (5) 

 

1.2: Proof of Existence of a Non-Stationary MPNE 

                                                      
 

18 Blackwell’s theorem does not apply to the general class of non-stationary Markov Perfect Nash Equilibriums. For 
instance, consider an infinite period game in which the market grows faster than the discount rate. In our problem, 
we assume an upper bound on the profit function and requirement the existence of an absorbing state. These two 
conditions, used with backwards induction arguments, guarantee the existence of such a function.  
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 To prove the existence of a non-stationary MPNE, we assume: 

(A6) Let et be the time an agent enters the game. Agent payoffs( ), ,et tπ i  are a strictly decreasing 

function of t ( ), ,et tπ i with ( ), . . , , 0et t s t t t tπ∃∞ > > ∀ > <i . 

Assumption (A6) 19 is stronger than the standard waiting costs assumptions in extant frameworks 

due to underlying market growth; firms in markets growing fast enough may prefer to defer release 

indefinitely despite convex waiting costs. Estimates of inter release perishability from the market share 

model in our application, support (A6) with longer inter release periods leading to a sharp decline in 

movie appeal.  

 

Lemma (L2): Agents have a finite planning horizonMF < ∞ , where M is the number of periods in which 

profits accrue, post release. 

Proof: Define 
1

0

min, . .
M

M n
t t i

n i

f s t Mβ π π
−

+
=

= < ∑  where sup im
m t n

π π
> +

= . The left hand side of the 

inequality decreases geometrically indicatingMtf < ∞ . By 

construction, M
tt t f′ > + ,

1 1

0 0

M M
t t

t i t i
i i

Mβ π π π
− −

′−
′+ +

= =
< <∑ ∑  as (A6) implies a decreasing profit function. 

If firms never receive more profits in periods beyond M
tf than in the current period, then they have a 

finite planning horizon ( M
tf ) for the current period. min M

M t
t T

F f
∈

= < ∞ is the finite planning horizon 

for the agent across all periods. 

Following Dutta and Sundaram (1994), define an extended state space, { },tλ δ= and an extended 

transition matrix, ( )|ι λ λ′ . Firms within a period only consider a finite number of future periods for 

release. A game in each period can be replaced with an equivalent finite game if we drop unconsidered 

states (strictly dominated states) from the extended state space creating a finite extended state space. 

Assumptions A1 – A5, translate in the extended state space to a stationary Markov chain. The conditions 

in the extended model match those in Doraszelski and Satterthwaite (2007), proving the existence of a 

                                                      
 

19 Without (A6), the existence of the equilibrium can be proven by defining the extended model using countable 
states. Such a model with countable states is harder to identify than the extended model presented.  
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Pure Strategy Nash Equilibrium. As the extended model notation is a one to one re-parameterization of 

the original model with each week and state in the original model corresponding to a state in the extended 

model, an equivalent equilibrium exists in the original model. 

While the extended state-space notation is useful for proving the existence of non-stationary 

MPNE, it is not helpful to the econometrician because by construction, the cardinality of non-zero 

elements of the state transition matrix is always larger than the number of observations in the data. Thus, 

the transition matrix remains under-identified in the re-parameterization as in the original model. 

 We cannot compare the unidentified general non-stationary MPNE with our partial information 

model.  Hence we assume: 

(A7) The integrated value function ( )| |( , , ; ) ( , , , ; )t it t t t t t VE V x E V x tδ δ δ δδ υ θ δ υ θ′ ′ ′= ℘ , and the 

Markov kernel, ( )( )( | , ,:) | , , ,:t t ta t aψδ δ δ δ′ ′Ψ = Ψ ℘ , are both stochastic functions of a ( )tψ℘ and 

( )V t℘ , finite cardinality function vectors of the effect of time t. Define the augmented characteristics 

vector as ( ) ( ){ }, ,A
t t Vx x t tψ= ℘ ℘ . 

Assumption (A7) limits the effect of time varying payoffs to a sufficient statistic of any finite 

cardinality, and integrates these vectors into the vector of descriptive characteristics. While the MPNE 

specified in section 3 is not identified due to the non stationarity of the transition function, the augmented 

model (defined above) is identified. Identification requirements from the data scale with the length of the 

sufficient statistic used. A longer sufficient statistic remains identified in population, but increases the 

data requirements of the empirical implementation. 

 (A7) is reasonable in our model, where each agent has a finite planning horizon with a finite 

number of payoff periods post release. The integrated value function is well approximated in our model 

using the projected seasonal demand in the near future. The Markov kernel, using Perfect Bayesian 

restrictions, in turn is well approximated by exogenous shocks in a finite number of future periods, 

fulfilling the second half of the requirement. In general, non-stationary MPNE may not be well 

approximated by these assumptions.  

Additionally, we make assumptions presented in section 5.1 (assumptions on sequences of profit 

functions) in Weintraub et al (2007). The demand models discussed prior (logit share, nested logit share 

and random coefficient logit share) are consistent with these assumptions. We get 

 ( ) ( )( ) ( ) ( )lim ,: ,: 0n
A A A A
n t n t

n
E V x V xδ→∞

 − =
 

ɶ  (16) 
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where ( )( ) ,:A A
n tV xɶ is the model approximation to the identified augmented model using state distribution 

assumptions outlined earlier, for a market with size n. Assuming light tail conditions, as specified in 

section 5.4 of Weintraub et al (2007), leads to the main observation in their paper that the discounted sum 

of differences between actual and oblivious single period profits, converges to zero. 

 Non-stationary MPNE that follow (A10) may not possess a recurrent class of states, a property 

required for many well known (and popular) extant MPNE algorithms. For instance, approximating 

MPNE using the method of Pakes and McGuire (2001), requires the presence of a recurrence class for the 

adaptive updates to converge to true values. As the long term distribution of a non-homogenous Markov 

process is not well defined, adaptive learning processes may never converge to the true value, when 

modeling a non-stationary MPNE. However, capturing the effect of time in the finite vector may allow 

the use of popular two-step estimation processes, such as Bajari, Benkard and Levin (2007). 

Last, (A10) generalizes the convergence result for Oblivious Equilibriums to games with multiple 

equilibriums played in the data, and an equilibrium arbitration process on future play. A multiplicity of 

equilibriums played in the data can be described by a finite family of homogenous Markov kernels, 

driving a non-homogenous Markov process. Our non-stationary MPNE representation is a sufficient 

descriptor of such a game. The game admits (A10) as an appropriate assumption, if the equilibrium 

arbitration mechanism (refer to Aguirregabiria and Mira, 2007 for a discussion) is driven by observed 

strategic and descriptor variables. 

( )( ) ( )( ), , , ; | , , , , | ,it it it t t it it it it it t t it itx p a q x p x p a q x pπ δ θ δ θ= Ψ i ( )itΨ •  

 

1.3: Alternative Representation of Equilibrium 

For ease of exposition, we focus on the partial information model. Formally, first define the 

iterated (non-homogenous) unconditional Markov density as ( ) ( ) ( )1 | | ,t t a
a

a aψ δ δ ψ δ δ µ′ ′= ∫ and 

( ) ( ) ( )( ) ( )1
1| | | ,n n

t t t n a
a

a a
δ

ψ δ δ ψ δ δ ψ δ δ µ−
+ −

′∈∆
′′ ′′ ′ ′= ∑ ∫ for 2n ≥ . Within the equilibrium for a 

specific state vectorδ , the iterated kernel ( )|n
tψ δ δ′  reflects beliefs on the state distribution n periods 

into the future. The iterated Markov density in the partial information model� ( )|
n
tψ δ δ′  reflects agent 

beliefs of the evolution of the industry, n periods into the future. Within the partial information model, 

integrating the iterated kernel over the beliefs on the current period’s state distributionɶ ( )t
URς δ , gives us 

https://www.researchgate.net/publication/247649921_Stochastic_Algorithms_Symmetric_Markov_Perfect_Equilibrium_and_the?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
https://www.researchgate.net/publication/23525671_Markov_Perfect_Industry_Dynamics_With_Many_Firms?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
https://www.researchgate.net/publication/4899579_Sequential_Estimation_of_Dynamic_Discrete_Games?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
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future state distributions. This distribution ( ) ɶ ( )
{ }

| ,
t
UR

n t t t
t UR R UR

δ

ψ δ δ δ ς δ′∫ ɶ is a function of past states and 

past actions due to the Perfect Bayesian restrictions onɶ ( )t
URς δ . 

Lemma (L3): ( ){ }
( ){ } ( ){ }

( ){ }
( 1)

( )

1, , , ,

,
..., ,

a a
it i t

Mit i
Ma

i t FM

t t
a A a A

t it Fa A
t F

A

Max E a Max E a

Max EV a Max
Max E a

δ

π β π

β π

+

+

+
∈ ∈

∈
+

∈

 
  =  
 
  

i i

i
i

 

where a
itA are actions leading to absorbing states for agent i, and c a

it itA A A= − , and expectations are taken 

over the equilibrium state distribution in the period, ɶ ( )tς δ  and private information shock in each period. 

Proof: By definition the two partitions of the action space { },a c
t tA A are mutually exclusive and collectively 

exhaustive. Hence we get 

 ( ){ } ( ){ } ( ){ }, , , ,
a c

it i it t it t
t it t it t it

a A a A a A
Max EV a Max Max EV a Max EV a

∈ ∈ ∈

 
=  

 
i i i  (6) 

 By continuing in the game, a firm obtains no profits in the current period, but gains the ability to 

either release in the next period, or choose a different announcement strategy. In a current period, the 

expected choice value of releasing is the present value of profits in the next periods. Hence, we get 

 

( ){ } ( ){ }

( ){ } ( ){ }

( 1) ( 1)

( 1) ( 1) ( 1) ( 1)

1

1 1

, ,

, , ,

c
i t i tit it

a c
i t i t i t i t

t it t it
a Aa A

t it t it
a A a A

Max EV a Max EV a

Max Max EV a Max EV a

β

β β

+ +

+ + + +

+
∈∈

+ +
∈ ∈

= =

  
 
  

i i

i i

 (7) 

Implicitly the iterated Markov density allows us to take expectations over candidate states in a 

period. At the end of the planning horizon, a firm chooses between release in that period and continuing 

in that game. Substituting iteratively (7) into (6) recursively until the planning horizon we get the 

expression of the lemma with an additional term in the choice set of the continuation value past the 

horizon. For each absorbing state, the continuation value is the profits from releasing the movie. 

Substitute the profit function for the continuation value. From (L2) we know that profits past the horizon 

are lower than current period release profits, and hence can never be the argmax. Hence, (6) leads to (L3). 

(L3) formalizes the earlier discussion. In expectation, the search for the maximizing release 

announcement strategy in a period is equivalent to a search for optimal stopping points across periods. 
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Agents seeking to maximize expected revenues post release, maximize expected payoffs from strategic 

choices in a period.  

In our game, this equivalence as stated is not useful as a private information shock is defined for 

each potential action. The search for the maximizing strategy in a period is the search for the choice value 

of each action including the private information shock. 

 

Theorem (T1): 

Let υ⌢ be the vector of payoff shocks, of cardinality
1

0

MF
a
it

i

A
−

=
∑ , to the expected payoffs from choosing an 

absorbing state. These shocks are distributed with a density πµ , absolutely continuous with respect to the 

Lebesgue measure. Then: 

(i) Private information shocks υ can be considered to be a linear combination ofυ⌢ . 

(ii)  A search for the optimal absorbing state across periods is equivalent to a search for the optimal 

strategy in a period. 

 

Proof: 

The choice of an action influences the transition of states in the period. The state density n periods in the 

future conditional on the action vector isɶ ( ) ( ) ( ) ɶ ( )1
1| | | ,

t

n
t n t t t ta a

δ δ
ς δ ψ δ δ ψ δ δ ς δ−

+ +
′

′′ ′ ′=∑ ∫ɶ ɶ . Note that 

payoffs in the model accrue to the firm post release. Hence, the choice value of an 

action ( ) ɶ ( )
( )

1

0

( ) , |
M

abs
i t j

F

t t t j t j
j

V a a
δ

π δ ς δ
+

−

+ +
= ∈∆

 
 =
  
 

∑ ∫ i  is the expectation over resulting future absorbing 

states, distributedɶ ( )|t n aς δ + . The iterated Markov kernel has full rank and can be inverted. We can 

write ( ) ( )t t tV a EV a υϕ ν= + ⌢
, where the mean choice value of the absorbing state is perturbed by payoff 

shocksυ⌢ . tυϕ is the matrix defined through the inverse iterated Markov kernel integrated over the state 

density in future periods. The mapping is unique allowing us to compare with (A4) and gett tυν ϕ ν= ⌢
. 

In (L3), consider the case where υ⌢ is added to the expected choice value of each absorbing state. 

Using (T1i), the resulting change in expected choice value can be captured by the private shocks to the 

choice value of actions in the current period. Hence, we get 
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 (8) 

Define :n n n n
it Aσ ν∆ × → as the n-period non-stationary MPNE strategy of an agent, for any 

finite n. A n-period non-stationary Markov strategy profile n
tσ is a set of non-stationary n-period Markov 

strategies in period t. The non stationary MPNE equilibrium conditions (5) can be rewritten as 

 

 ( ) ( )ˆ ˆ; ; , , , , , , , ,n n n n n
t t t it it itV V i t I Tδ σ δ σ σ δ σ−≥ ∀ ∈ ∆ Σ  (9) 

 (9) states that the equilibrium condition of agents  choosing a maximizing strategy in each period 

subject to the strategies of others, is equivalent to agents seeking the maximizing n period strategy subject 

to equilibrium n-period strategies of others. From (L2), we know a finite planning horizon exists for the 

firm. Set MF  as n and substitute in(9). The equilibriumMF -period strategies can be considered 

equivalently to be those leading to the payoff maximizing absorbing state in the planning horizon. Hence, 

the per period equilibrium conditions of the MPNE are equivalent to agents choosing the MF period 

strategy which leads to the payoff maximizing absorbing state in the finite planning horizon. Intuitively, 

agents searching for a strategy to maximize the choice value are searching for theMF period strategy that 

leads to the maximizing absorbing state. 

 

1.4: Estimation 

Similar to Bajari, Benkard and Levin (2007), to reduce computational load we assume: 

(A8) The profit function, conditional on the demand function defined, is linear in unknown parameters. 

( )( ) ( )( ), , , ; | , , , , | ,it it it t t it it it it it t t it itx p a q x p x p a q x pπ δ θ δ θ= Ψ i , where ( )itΨ •  is a finite 

dimension vector of “basis functions” (including polynomial and interaction terms). 

(A8) allows us to approximate the payoff function locally. A violation of (A7) does not prevent 

estimation or affect identification of the model and the described estimation methodology is robust to the 

use of a non-linear specification. As observed in Bajari, Benkard and Levin (2007), having a payoff 

function that is linear in unknown parameters implies that the constructed value functions are also linear 

in unknown parameters, simplifying estimation.  
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To calculate the payoffs post release, we utilize a sufficient statistic for the impact of the 

evolution of the industry and require: 

(A9) Competition in the industry is described by an industry summary statistic set (fss ). There exists a 

consistent estimator( ) ( ) ( ): p
fs fs fss s sµ µ µ→⌢ ⌢

, where ( )fssµ is the true distribution of the 

summary statistic in a future period. 

Assumption (A9) is similar to assumptions made in Bajari, Benkard and Levin (2007).20 Instead 

of assuming a finite parameter vector in the first stage of estimation, we assume the forecasted variables 

resulting from the first-stage converge to the rational beliefs of agents.21 (A8) can be used in other two-

step dynamic models to allow the first stage regression to be non-parametric, as the summary statistic set 

is not limited in scope (and may be uncountable). For instance, the summary statistic vector may include 

the transition kernel and policy functions defined in Bajari, Benkard and Levin (2007). (A8) also naturally 

follows when a consistent parametric first stage estimator is used to estimate both, the transition kernel 

and the policy functions as in most dynamic game estimation methodologies. 

We assume the following regularity conditions: 

(R1) ss SSθ ∈Θ is a compact subset of ssθℜ  and true value0 intss SSθ ∈ Θ . 

(R2) The quasi-likelihood function ( )( )| fssµϒ • is uniquely maximized at0ssθ , and ( )( )| fssµϒ • is 

twice continuously differentiable in ss SSθ ∈Θ with probability 1.  

(R1) and (R2) are common regularity conditions for quasi-likelihood estimation, met by the iid 

Gumbel specification of absorbing state payoff shocks in our application. Under (A8), the argmax of the 

quasi-likelihood function is a consistent estimator of the second stage structural parameters. From (A4), 

the second stage quasi likelihood function ( )( )| fssµϒ • is continuous, leading 

to ( )( ) ( )( )| |p
fs fss sµ µϒ • → ϒ •⌢

. Maximizing the quasi-likelihood yields second stage structural 

                                                      
 

20 In non-stationary MPNE, (A8) implicitly requires (A7). The sufficient statistic in (A8) can only be predicted if the 
non-homogenous Markov process can be modeled as a homogenous Markov kernel and exogenous time varying 
variables. 

21 Additional rate of convergence and local smoothness assumptions are required if using a criterion function for 
estimation as in Bajari, Benkard and Levin (2007). 
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parameters (ssθ ) whose variance is the sandwich estimator( ) ( ) ( )1 1
ss ss ssA B Aθ θ θ− −

, where ( )ssA θ is 

the Hessian of the log quasi-likelihood and ( )ssB θ is the variance of the quasi-score. 

For completeness we discuss the endogeneity of observables and a method for correcting for the 

endogeneity bias. In our research question, endogeneity is not a concern as observables in our payoff 

function are lagged variables, not affected by current private information shocks. Formally, we assume: 

(A10) ( ) 0it itE xν ν =  

A violation of (A10) would bias the coefficients estimated due to endogeneity. We can correct for 

endogeneity bias in our model using two-step estimation. In the first stage, bias correction follows 

methods for instruments in discrete choice models. In the second stage, violation of (A9) implies that both 

individual agent errors and forecast errors are correlated with agent observables. Grouping the error terms 

leaves a single error term correlated with observables. To estimate the model, define a set of moment 

conditions by matching the best response with calculated best responses and interact the conditions with 

instrumental variables. While this method corrects for any potential endogeneity bias it is econometrically 

less efficient in the second stage than maximizing the best response quasi-likelihood. 
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Appendix 2: Modeling Title Price Choices as a Continuous Variable 
 
In our model we make the simplifying assumption that prices are discrete. In this section, we 

discuss how to model a continuous strategic variable in conjunction with release date timing. Profitability 

in a week is given by (10) and (11).  To model prices as being continuous we make two assumptions: 

(A11) ( ),smwt smwq x p and ( )( ),smwt smwt smwf q x p are continuous and differentiable function 

of smwp . 

(A12) ( ),smwt smwq x p and ( )( ),smwt smwt smwf q x p are quasi-concave in prices. 

(A11) and (A12) are common assumptions on the profit function of a firm, which allow the 

researcher to formulate first order optimality conditions, and guarantee the existence of a unique 

maximum. Hence, they are more restrictive than (A1-A5), which lead to (L1). The assumed parametric 

demand function in our model satisfies both (A11) and (A12).  

Under (A11) and (A12), the objective function of the firm is continuous in mixed strategies. As 

the strategy space is bounded, mixed strategies are a compact subset of a Euclidean space. Hence by 

Glicksberg’s Theorem (Glicksberg, 1952), a Nash Equilibrium exists in mixed strategies. 

Estimators for the model can be formulated by either maximizing the probability of joint 

decisions or by minimizing a criterion function. The probability of seeing a joint decision can be found by 

using a closed form analytical solution, or through numerical simulation. To specify the criterion 

function, first take derivatives of (9): 

 ( ) [ ] ( ),
, smwt smwsmwt

smwt smw smw smwt
smw smw

q x p
E q x p p x

p p

π λ λ γ
∂∂ = + −

∂ ∂
 (17) 

To obtain first order conditions, take derivatives of (10) and substitute results of (17): 

 ( )
w M

j w M
smw smwj sm

smw smw smwj w

E E E w
p p p

π β π β κ
+

−

=

∂ ∂ ∂= +
∂ ∂ ∂∑  (18) 

A studio maximizes profits by setting release timing dates and prices. If we assume the existence 

of an interior solution, conditional on a set of dates, the first order conditions allow us to specify a 

Lagrangian using (18) to find the maximizing price. The difference in criterion function estimators when 

using only discrete controls versus joint controls, is that while the best response function for the discrete 

levels problem requires the researcher to enumerate value functions of all strategies, for a continuous 

control, the researcher first enumerates possible choices of the timing variable, and then conditional on 

https://www.researchgate.net/publication/266226977_A_Further_Generalization_of_the_Kakutani_Fixed_Point_Theorem_with_Application_to_Nash_Equilibrium_Points?el=1_x_8&enrichId=rgreq-969860508c9d9d3db878aed19b2fe476-XXX&enrichSource=Y292ZXJQYWdlOzIyODc5MTExOTtBUzoyNjMyODMwMzA2MjIyMTdAMTQzOTc4Mjk3NDY2Mg==
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each choice of the timing variable, solve the first order conditions of the problem to find the maximizing 

price. Neither approach implies a decision hierarchy; the continuous controls algorithm is identically to 

jointly considering all joint strategic decisions. To allow for boundary solutions, one has to consider 

solving the relevant Kuhn-Tucker conditions instead of specifying a Lagrangian. 

Unfortunately, it is computationally expensive to simulate the probability of a release strategy and 

to solve using (18) in our model. The derivative of the demand function is non linear in prices and hence 

requires numerical minimization. As the maximizing price is found in the inner loop for every conjecture 

of parameters and for every choice of release dates, the computation costs outweigh benefits of 

implementation in our model. 
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Figure 1: Total sales and new releases 
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Figure 2: Summary statistic of competition 
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Figure 3: Competition forecast, 10 weeks into the future 
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Figure 4: Competition forecast, 30 weeks into the future 
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Figure 5: Histogram of Release Date Forecast Errors 
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Table 1: Price Regression 
 

 Estimate Std. Error 

Intercept 3.29E+01 *** 5.82E-01 

Weeks Since Release (WR) -3.29E-02 *** 9.09E-03 

WR^2 5.61E-03 *** 1.64E-03 

WR^3 -2.73E-04 ** 8.45E-05 

log(Box Office) 3.72E-01 *** 2.74E-02 

 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*'0.05 '.' 0.1 ' ' 1 
Multiple R-Squared: 0.2263,     Adjusted R-squared: 0.2237 
We suppress coefficients for movie characteristics, weekly fixed effects, distributor fixed effects 
 

 
Table 2: Coefficients of DVD Market Share 

 
 Estimate Std. Error 

(Intercept) -4.060 ** 1.347 

Price -0.199 *** 0.021 

log(Price) 1.674 *** 0.342 

Weeks Since Release (WR) -0.754 *** 0.026 

Inter-release (IR) -0.160 *** 0.019 

log(WR) 3.702 *** 0.077 

log(IR) 3.724 *** 0.496 

log(Box Office) 0.909 *** 0.018 

WR*IR -0.0008 0.0009 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*'0.05 '.' 0.1 ' ' 1 
Multiple R-Squared: 0.6019, Adjusted R-squared: 0.5871 
We suppress coefficients for movie characteristics, weekly fixed effects, distributor fixed effects. 
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Table 3: Coefficients of Residual DVD Sales 
 

 Estimate Std. Error 

(Intercept) 5.31E+00 ** 1.79E+00 

Industry Sales (week released) 9.39E-08 * 4.23E-08 

Industry Sales (11 weeks after release) -4.74E-08 4.79E-08 

Industry Sales (Average over weeks 13-23) 1.30E-07 ** 4.10E-08 

Industry Competition (week released) 1.63E-07 3.07E-07 

Industry Competition (11 weeks after release) 1.53E-06 ** 4.62E-07 

Unreleased Industry Competition (week 
released) 1.59E-05 ** 6.05E-06 

Unreleased Industry Competition (11 weeks 
after release) 1.57E-05 1.22E-05 

Price -5.78E-02 * 2.64E-02 

log(Price) 8.21E-01 * 3.66E-01 

Inter-release (IR) -1.64E-02 2.58E-02 

log(IR) -3.60E-01 7.07E-01 

log(Box Office) 9.63E-01 *** 3.07E-02 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*'0.05 '.' 0.1 ' ' 1 
Multiple R-Squared: 0.826, Adjusted R-squared: 0.809 
We suppress coefficients for movie characteristics, weekly fixed effects, distributor fixed effects. 
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Table 4: Coefficients of Release Costs 
  Estimate Std. Error 

Margins 

Seasonal variation 14.58 *** 9.02E-01 

lg(Box Office) -2.65 *** 9.15E-02 

Inter-Release (IR) 23.37 *** 5.13E+00 

IR^2 -6.69 *** 1.04E+00 

Residual Sums 

Seasonal variation 0.11 *** 2.81E-02 

lg(Box Office) -0.008 . 4.74E-03 

IR 1.90 *** 1.22E-01 

IR^2 0.09 *** 2.49E-02 

Fixed Release Costs 

Seasonal variation 66.71 ** 2.32E+01 

lg(Box Office) -14.93 *** 2.52E+00 

IR -222 . 1.32E+02 

IR^2 42.92 * 2.11E+01 

IR 
Seasonal variation 26.68 *** 3.16E+00 

lg(Box Office) -2.72 * 1.12E+00 

 

IR^2 

Seasonal variation -4.29 *** 4.94E-01 

lg(Box Office) 0.39 * 1.80E-01 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*'0.05 '.' 0.1 ' ' 1 

We suppress coefficients for movie characteristics, weekly fixed effects, distributor fixed effects. 
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