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Fixed Effects: Theory and Practice
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§University of North Texas, †University of Technology Sydney, ?Singapore Management

University and ∗Australian National University

Abstract

In this paper, we propose a single-index panel data model with unobserved mul-

tiple interactive fixed effects. This model has the advantages of being flexible and

of being able to allow for common shocks and their heterogeneous impacts on cross

sections, thus making it suitable for the investigation of many economic issues. We

derive asymptotic theories for both the case where the link function is integrable and

the case where the link function is non-integrable. Our Monte Carlo simulations show

that our methodology works well for large N and T cases. In our empirical applica-

tion, we illustrate our model by analyzing the returns to scale of large commercial

banks in the U.S. Our empirical results suggest that the vast majority of U.S. large

banks exhibit increasing returns to scale.
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1 Introduction

Models with interactive fixed effects have drawn considerable attention in the last decade

or so. Two well-known models are studied respectively by Pesaran (2006) and Bai (2009),

where the interactive fixed effects (also widely known as factor structure) are used to model

unobserved common shocks or time-varying heterogeneity existing in micro- and macro-

economic data. Building on these two excellent works, different types of generalization have

been proposed. For example, Bai et al. (2009) and Kapetanios et al. (2011) respectively

allow time-varying factors to be non-stationary and establish the corresponding asymptotic

results; Su and Jin (2012) extend Pesaran (2006) to a non-parametric setting and provide

non-parametric versions of common correlated effects mean group (CCEMG) and common

correlated effects pooled (CCEP) estimators by a sieve estimation technique; Li et al.

(2016), by using a least absolute shrinkage and selection operator, extend Bai (2009) to

allow for structural breaks.

The purpose of this study is to contribute to this literature by extending Bai (2009) to

a semi-parametric single-index setting. Precisely, our model is specified as follows:

yit = go(x
′
itθo) + γ′o,ifo,t + εit with i = 1, . . . , N, t = 1, . . . , T, (1.1)

where the regressor xit is a d×1 vector, both the factors fo,t and the factor loadings γo,i are

m× 1 unknown vectors, and go is the so-called link function and is unknown. In addition,

we assume both d and m are known and finite. The subscript “o” indicates true values or

true functions throughout the paper. For notational simplicity, let Fo = (fo,1, . . . , fo,T )′,

Yi = (yi1, . . . , yiT )′, Xi = (xi1, . . . , xiT )′ and εi = (εi1, . . . , εiT )′, where i = 1, . . . , N . Then

(1.1) can be expressed in matrix notation as

Yi = φi[θo, go] + Foγo,i + εi with i = 1, . . . , N, (1.2)

where φi[θ, g] = (g(x′i1θ), . . . , g(x′iT θ))
′ for any given θ (belonging to Rd) and g (defined on

R).

The single-index model with interactive fixed effects can be widely used in many sub-

fields of economics such as production economics, economic growth, international trade,

etc. Consider the issue to be examined in the application of this study – the issue of

economies of scale of commercial banks in the U.S. This issue has received a considerable

amount of attention in the past three decades, because during this period the U.S. banking

industry has undergone an unprecedented transformation – one marked by a substantial

decline in the number of commercial banks and savings institutions and a growing concen-

tration of industry assets among large financial institutions (Jones and Critchfield (2005)).
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Most studies investigating this issue use a fully-parametric translog cost (distance or profit)

function without interactive fixed effects to represent the production technology of banks.

Compared with this commonly-used fully-parametric translog functional form, the single-

index panel data model has two advantages. First, the link function (i.e., go(·)) is more

flexible than the commonly-used translog functional form. Specifically, the translog func-

tion is merely a quadratic specification in log-space, and thus limits the variety of shapes

the cost function is permitted to take. In contrast, the single-index model does not assume

that go(·) is known and hence it is more flexible and less restrictive. Second, the single-

index panel data model allows for common shocks, which have increased in the past three

decades due to the following reasons: (1) the industry has become increasingly dominated

by large banks that share similar business models and offer similar ranges of products,

which has in turn increased the exposure of those banks to common shocks; and (2) as the

process of banking and financial integration has progressed, bank linkages have also risen,

which has also increased the exposure of large banks to common shocks (see Houston and

Stiroh (2006); Brasili and Vulpes (2008)). To give another of example, the single-index

model can also be used for investigating determinants of economic growth. Compared with

the commonly-used fully-parametric growth regression models, the single-index model has

two advantages: (1) the link function is more flexible; and (2) it allows common shocks to

affect all countries, such as the recent global financial crisis. In sum, these examples show

that the flexibility of the link function and the presence of the interactive fixed effects make

the single-index panel data model very useful for investigating many important economic

issues.

There are two dominant approaches to studying single-index models. The first approach

involves using nonparametric kernels to implement estimation (e.g., Ichimura (1993), Hardle

et al. (1993), Carroll et al. (1997) and so on). An excellent review on this approach can be

found in Xia (2006). The second approach involves using the sieve method which provides

good and computable approximations to an unknown function (see Chen (2007) for an

excellent review). For example, Yu and Ruppert (2002) employ penalized spline estimation

to investigate partially linear single-index models. Dong et al. (2015) and Dong et al. (2016)

use Hermite polynomials and Hermite functions to investigate single-index models in panel

data and non-stationary time series data frameworks respectively. In this paper, we adopt

the latter approach.

In order to derive asymptotic properties for single-index models: (1) one can restrict

both the space of parameter θo and the space of regressor xit to compact sets (cf., Assump-

tions 5.2 and 5.3 of Ichimura (1993)); or (2) one can bound the link function on the whole

real axis (cf., condition C2 of Xia (2006)). However, these settings instantly rule out the
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linear model considered in Bai (2009), i.e.,

yit = go(x
′
itθo) + γ′o,ifo,t + εit with g(w) = αow and w being defined on R. (1.3)

Similar concerns have also been raised by Hansen (2015) recently, where he points out that

in nonparametric sieve regression a very limited number of works have been done to cover

the cases with unbounded regressors.

Thus, an intriguing question is how to ensure our proposed model (i.e., (1.1)) nests such

parametric models as those studied by Bai (2009). To tackle this problem, one method

is to introduce a weighted sup norm (e.g., Chen (2007), Su and Jin (2012) and Lee and

Robinson (2016)) without specifying too many details of the basis functions. One can also

follow Chen and Christensen (2015) to truncate the unbounded support by a compact set

depending on the sample size. Alternatively, Dong et al. (2015) and Dong et al. (2016)

use Hermite functions and Hermite polynomials as basis functions respectively. In what

follows, we adopt the latter approach. It is easy to see that with this approach, (1.3) is

nested as a special case of (1.1), due to the nature of function space L2(R, exp(−w2)).

The structure of this paper is as follows: Section 2 presents the basic settings for model

(1.1). Section 3 discusses a simple case with an integrable link function. Section 4 further

discusses a more involved case with a non-integrable link function. Section 5 provides some

guidance on choosing the truncation parameter and the number of factors. A Monte Carlo

study and an empirical application are provided in Sections 6 and 7 respectively; Section

8 concludes. All the proofs are provided in the Appendix A and the supplementary file of

this paper.

Throughout this paper, we will use the following notations: λmin(W ) and λmax(W )

denote the minimum and maximum eigenvalues of a square matrix W , respectively; Iq

denotes the identity matrix with dimension q; MW = IT − PW denotes the projection

matrix generated by matrix W , where PW = W (W ′W )−1W ′, and W is a T × q matrix

with rank q; for matrices W1 and W2, W1 ⊗W2 defines the Kronecker product; →P and

→D stand for convergence in probability and convergence in distribution, respectively;

‖ · ‖ denotes the Euclidean norm; ‖ · ‖sp denotes the spectral norm; bac means the largest

integer not exceeding a; ρ1, O(1) and A always denote constants and may be different at

each appearance.

2 Basic Settings

As is well-known, single-index models and factor models usually require some restrictions

for the purpose of identification (cf., Ichimura (1993) and Bai (2009)). Following this
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tradition, we begin by introducing identification restrictions needed for (1.1).

For the parameter vector θo = (θo,1, . . . , θo,d)
′, we follow Xia (2006) and Dong et al.

(2016) and define it as follows:

θo ∈ Θ with Θ being a compact subset of Rd, ‖θo‖ = 1 and θo,1 > 0. (2.1)

Throughout this paper, let F̂ = (f̂1, . . . , f̂T )′ and Γ̂ = (γ̂1, . . . , γ̂N)′ denote the estimates

of the factors and factor loadings respectively. For the purpose of identification, we impose

the following restrictions:

F̂ ∈ DF , where DF =

{
F

T×m
= (f1, . . . , fT )′ : F ′F/T = Im

}
;

Γ̂ ∈ DΓ, where DΓ =

{
Γ

N×m
= (γ1, . . . , γN)′ : Γ′Γ being diagonal

}
. (2.2)

Note (2.2) has nothing to do with the data generating process of model (1.1), and is only

used for identification purpose. For the true factors Fo = (fo,1, . . . , fo,T )′ and factor loadings

Γo = (γo,1, . . . , γo,N)′, we require them to satisfy:

fo,t is identically distributed across t,
F ′oFo
T
→P ΣF > 0, and E‖fo,1‖4 <∞;

γo,i is identically distributed across i,
Γ′oΓo
N
→P ΣΓ > 0, and E‖γo,1‖4 <∞. (2.3)

The requirement of identical distributions in (2.3) is only for notational simplicity.

For the link function go, we will consider two cases in Sections 3 and 4 respectively. In

the first case in Section 3, we assume that the link function is integrable, that is

go ∈ =1 with =1 being a compact subset of L2 (R). (2.4)

However, this would rule out the linear model (i.e., (1.3)) studied in Bai (2009). To deal

with this issue, we will consider another case in Section 4, where the link function is not

integrable, that is

go ∈ =2 with =2 being a compact subset of L2
(
R, exp(−w2)

)
. (2.5)

It is easy to see (2.5) nests model (1.3) due to the nature of function space L2 (R, exp(−w2)).

3 The Case with Integrable Link Function

In this section, we investigate the first case of the single-index panel data model in (1.1),

where the link function go(w) is integrable (i.e., (2.4) holds).
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3.1 Estimation

In order to recover the link function, we use the physicists’ Hermite polynomial system in

this study. Specifically, let {Hn(w), n = 0, 1, 2, . . .} be the physicists’ Hermite polynomial

system orthogonal with respect to exp(−w2). The orthogonality of the system reads∫
Hn(w)Hm(w) exp(−w2)dw =

√
π2nn!δnm, (3.1)

where δnm is the Kronecker delta.

By (3.1), ∀g ∈ L2(R) can be expanded into an infinite series as follows:

g(w) =
∞∑
n=0

cnHn(w) = gk(w) + δk(w), (3.2)

where

Hn(w) =
1

4
√
π
√

2nn!
Hn(w) exp(−w2/2) with n = 0, 1, 2, . . . ,

gk(w) =
k−1∑
n=0

cnHn(w) = C ′H(w), cn =

∫
g(w)Hn(w)dw, δk(w) =

∞∑
n=k

cnHn(w),

H(w) = (H0(w), . . . ,Hk−1(w))′, C = (c0, . . . , ck−1)′.

Throughout this paper, k denotes the truncation parameter, so that gk(w) is the partial

sum of the infinite series, which converges to g(w) under certain conditions (mathemati-

cal derivations are omitted at this stage for conciseness). Correspondingly, the true link

function in this case can be written as

go(w) =
∞∑
n=0

co,nHn(w) = go,k(w) + δo,k(w), (3.3)

where go,k(w) = C ′oH(w), δo,k(w) =
∑∞

n=k co,nHn(w) and Co = (co,0, . . . , co,k−1)′.

Given that our interest lies in both θo and go, we define a norm ‖ · ‖w for the 2-fold

Cartesian product space formed by Rd and L2 (R):

‖(θ, g)‖w =
{
‖θ‖2 + ‖g‖2

L2

}1/2
, (3.4)

where θ ∈ Rd, g ∈ L2(R), and ‖g‖L2 =
{∫

g2(w)dw
}1/2

= {
∑∞

n=0 c
2
n}

1/2
.

Remark 3.1. ‖ · ‖w satisfies the definition of a norm and is consistent with the notations

used in Newey and Powell (2003, p. 1569). In this section, when we discuss the set Θ×=1

that (θo, go) belongs to, compactness is always imposed with respect to ‖ · ‖w.
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Multiplying (1.2) by MFo = IT − Fo(F ′oFo)−1F ′o and then using (3.3), we obtain

MFoYi = MFoφi[θo, go,k] +MFoφi[θo, δo,k] +MFoεi with i = 1, . . . , N, (3.5)

where φi[θ, g] with i = 1, . . . , N are defined in (1.2).

According to (3.5), the objective function is intuitively defined as

SNT (θ, C, F ) =
1

NT

N∑
i=1

(Yi − φi[θ, gk])′MF (Yi − φi[θ, gk]) , (3.6)

where (θ, C, F ) ∈ Λ, and Λ is defined as

Λ = {(θ, C, F ) : θ ∈ Θ, gk(w) = C ′H(w) ∈ =1k, (2.2) being satisfied} (3.7)

with =1k = =1 ∩ span{H0(w),H1(w), . . . ,Hk−1(w)} and =1 being defined in (2.4). Then

the estimator is obtained as follows:

(θ̂, Ĉ, F̂ ) = argmin
(θ,C,F )∈Λ

SNT (θ, C, F ). (3.8)

Note that simple algebra shows that ∂SNT (θ̂,Ĉ,F̂ )
∂θ

= 0 and ∂SNT (θ̂,Ĉ,F̂ )
∂C

= 0 are respectively

equivalent to
∂S∗NT (θ̂,Ĉ)

∂θ
= 0 and

∂S∗NT (θ̂,Ĉ)

∂C
= 0, where

S∗NT (θ, C) =
1

NT

N∑
i=1

(Yi − φi[θ, gk])′MF̂ (Yi − φi[θ, gk]) .

Further note that the objective function given in (3.6) can be written as

(NT ) · SNT (θ, C, F ) = tr(W ′MFW ) = tr(W ′W )− tr(F ′WW ′F )/T, (3.9)

where W = (W1, . . . ,WN) is a T × N matrix and Wi = Yi − φi[θ, gk] for i = 1, . . . , N .

(3.9) implies that minimizing tr(W ′MFW ) with respect to F is equivalent to maximizing

tr(F ′WW ′F ). Therefore, the estimate of F is equal to the first m eigenvectors (multiplied

by
√
T due to the restriction F ′F/T = IT ) associated with the first m largest eigenvalues

of the matrix WW ′ =
∑N

i=1 WiW
′
i .

Therefore, (3.8) can be decomposed into the following two expressions:

(θ̂, Ĉ) = argmin
θ,C

1

NT

N∑
i=1

(Yi − φi[θ, gk])′MF̂ (Yi − φi[θ, gk]) ,[
1

NT

N∑
i=1

(
Yi − φi[θ̂, ĝk]

)(
Yi − φi[θ̂, ĝk]

)′]
F̂ = F̂ VNT , (3.10)
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where ĝk(w) = Ĉ ′H(w), and VNT is a diagonal matrix with the diagonal being the m largest

eigenvalues of the following matrix

1

NT

N∑
i=1

(
Yi − φi[θ̂, ĝk]

)(
Yi − φi[θ̂, ĝk]

)′
arranged in descending order. Finally, Γ̂ is expressed as a function of (θ̂, Ĉ, F̂ ) such that

Γ̂′ = (γ̂1, . . . , γ̂N) =
1

T

[
F̂ ′
(
Y1 − φ1[θ̂, ĝk]

)
, . . . , F̂ ′

(
YN − φN [θ̂, ĝk]

)]
.

3.2 Consistency

To show the consistency of the estimator in (3.8), we make the following assumptions.

Assumption 1:

1. {(yit, xit), 1 ≤ i ≤ N, 1 ≤ t ≤ T} are observable. Both m and d are known and

finite.

2. The distribution of {xi1, . . . , xiT ; εi1, . . . , εiT} is identical across i. Denote xt =

(x1t, . . . , xNt)
′ and ξt = (ε1t, . . . , εNt)

′. Let {(xt, ξt), t ≥ 1} be strictly stationary

and α-mixing. Let αij(|t − s|) denote the α-mixing coefficient between (x′it, εit) and

(x′js, εjs), such that for a ν1 > 0,
∑N

i=1

∑N
j=1

∑T
t=1

∑T
s=1(αij(|t − s|))

ν1
4+ν1 = O(NT ).

For the same ν1, E[‖x11‖+ ‖ε11‖]4+ν1 ≤ A <∞.

3. For the error terms, assume further E[ε11] = 0, E[ε2
11] = σ2

ε and {εit, 1 ≤ i ≤ N, 1 ≤
t ≤ T} is independent of {xit, 1 ≤ i ≤ N, 1 ≤ t ≤ T}, Γo and Fo. Moreover, assume

(a) ‖ε‖sp = OP (max{
√
N,
√
T}), where ε = (ε1, . . . , εN)′ and εi is defined in (1.2);

(b)
∑

t6=s
∑

i 6=j |E[εitεisεjtεjs]| = O(NT );

(c)
∑T

s=1

∑N
i=1

∑N
j=1 |E[εisεjs]| = O (NT ).

4. Let (2.1)-(2.3) hold, i.e.,

(a) θo ∈ Θ with Θ being a compact subset of Rd, ‖θo‖ = 1 and θo,1 > 0;

(b) Assume F̂ ∈ DF = {F : F ′F/T = Im} and Γ̂ ∈ DΓ = {Γ : Γ′Γ being diagonal};

(c) fo,t is identically distributed across t, F ′oFo
T
→P ΣF > 0, and E ‖fo,1‖4 ≤ A <∞;

γo,i is identically distributed across i, Γ′oΓo
N
→P ΣΓ > 0, and E ‖γo,1‖4 ≤ A <∞.
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Assumption 1.1 is standard in the literature. For notational simplicity, we assume that

the distribution of {xi1, . . . , xiT ; εi1, . . . , εiT} is identical across i in Assumption 1.2. One

can remove this condition to allow for non-identical distributions; however, this would

result in notational clutter when deriving asymptotic results. Imposing strict stationarity

on (xt, ξt) is the same as Assumption A4 of Chen et al. (2012a) and Assumption A.2 of

Chen et al. (2012b). Relevant discussions about various mixing conditions can be found

in Bradley (2005), Fan and Yao (2003) and Gao (2007). Assumption 1.3 and the mixing

conditions of Assumption 1.2 together are equivalent to Assumptions B and C of Bai (2009),

Assumption iii of Li et al. (2016) and Assumption A.1.v of Lu and Su (2016). Assumption

1.4 serves the purpose of identification, and is discussed above in Section 2.

Assumption 2:

1. (i) There exists a positive integer r > 2 such that wr−sg
(s)
o (w) ∈ L2(R) for s =

0, 1, . . . , r, where g
(s)
o defines the sth derivative of go. (ii) Assume sup(θ,w)∈Θ×R fθ(w) ≤

A <∞, where fθ(w) defines the density function of w = x′11θ.

2. Assume that (2.4) holds, i.e., go ∈ =1 with =1 being a compact subset of L2 (R).

Further assume L(θ, g) has a unique minimum on Θ×=1 at (θo, go), where

L(θ, g) = E[∆g(x′11θ)]
2 − E[∆g(x′11θ)f

′
o,1]Σ−1

F E[fo,1∆g(x′11θ)]

and ∆g(x′11θ) = g(x′11θ)− go(x′11θo).

Assumption 2.1 is fairly standard in the literature and ensures that the approximation

of the unknown function go(w) by an orthogonal expansion has a fast rate of convergence

(cf., Condition C2 of Xia (2006) and Assumption B of Dong et al. (2016)). Assumption

2.1 can be further simplified, if one adopts the norm provided in Assumption 3 of Newey

(1997) for the function space. Assumption 2.2 is for the purpose of identification, and is in

the same spirit as Assumption 1 of Newey and Powell (2003).

Consider the least squares projection of ∆g(x′itθ) = g (x′itθ)− go (x′itθo) on fo,t :

∆g(x′itθ) = f ′o,tβ
∗ + uit,

where β∗ = Σ−1
F E [fo,1∆g(x′11θ)] and uit := uit (θ, g) = ∆g(x′itθ) − f ′o,tΣ−1

F E [fo,1∆g(x′11θ)].

If the link function is linear, then we have g (w) = go (w) = w, which immediately gives

∆g(x′itθ) = x′it (θ − θo) and uit =
{
xit − E

[
x11f

′
o,1

]
Σ−1
F fo,t

}′
(θ − θo) .

8



For this special case, L (θ, g) can be written as

L (θ) = (θ − θo)′E
{[
x11 − E

[
x11f

′
o,1

]
Σ−1
F fo,1

] [
x11 − E

[
x11f

′
o,1

]
Σ−1
F fo,1

]′}
(θ − θo) ,

which is uniquely minimized at θo provided that

E
{[
x11 − E

[
x11f

′
o,1

]
Σ−1
F fo,1

] [
x11 − E

[
x11f

′
o,1

]
Σ−1
F fo,1

]′}
is full rank, a typical condition for the consistency of regression coefficients in linear panel

data models with interactive fixed effects.

With the above assumptions, the consistency of the estimator (3.8) can be established

as follows.

Theorem 3.1. Under Assumptions 1 and 2, as (N, T )→ (∞,∞),

1. ‖PF̂ − PFo‖ →P 0, where PF̂ and PFo are the idempotent matrices generated by F̂ and

Fo respectively;

2. ‖(θ̂, ĝk)− (θo, go)‖w →P 0, where ĝk(w) = Ĉ ′H(w) and H(w) is defined in (3.2).

It is well understood that Fo is identifiable up to a non-singular matrix in the literature,

so we establish the consistency for the idempotent matrix PF̂ rather than F̂ itself. Note

that in the second result of Theorem 3.1 the consistency is established with respect to the

norm defined in (3.4).

Using Theorem 3.1, we obtain the following rates of convergence.

Lemma 3.1. Let ηNT = 1
min{

√
N,
√
T} and Q−1 = VNT (F ′oF̂ /T )−1(Γ′oΓo/N)−1. Under As-

sumptions 1-2, as (N, T )→ (∞,∞),

1. VNT →P V , where VNT is defined in (3.10), and V is an m × m diagonal matrix

consisting of the eigenvalues of ΣFΣΓ, and ΣF and ΣΓ are defined in (2.3);

2.
∥∥∥ 1√

T
(F̂Q−1 − Fo)

∥∥∥ = OP (‖(θ̂, ĝk)− (θo, go)‖w) +OP (ηNT );

3.
∥∥∥ 1
T
F ′o(F̂ − FoQ)

∥∥∥ = OP (‖(θ̂, ĝk)− (θo, go)‖w) +OP (η2
NT );

4. ‖PF̂ − PFo‖2 = OP (‖(θ̂, ĝk)− (θo, go)‖w) +OP (η2
NT ).

The results of Lemma 3.1 are analogous to Proposition A.1 and Lemma A.7 of Bai

(2009). However, due to the semiparametric setting, estimates of both the parameter of

interest and link function have impacts on the rate of convergence for the estimates of

unknown factors.
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3.3 Asymptotic Normality of θ̂

In this subsection, we establish asymptotic normality of θ̂.

Assumption 3:

Let ε be a sufficiently small positive number, Ω(ε) = {(θ, g) : ‖(θ, g)− (θo, go)‖L2 ≤ ε}.

1. Assume that

(a) sup
(θ1,g1),(θ2,g2)∈Ω(ε)

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

Git(θ1, g1, θ2, g2)− E[G11(θ1, g1, θ2, g2)]

∥∥∥∥∥ = oP (1),

where Git(θ1, g1, θ2, g2) = g1(x′itθ1)g
(2)
2 (x′itθ2)xitx

′
it;

(b) max
1≤i≤N

sup
(θ,g)∈Ω(ε)

∥∥∥∥∥ 1

T

T∑
t=1

xitg
(1)(x′itθ)f

′
o,t − E

[
x11g

(1)(x′11θ)f
′
o,1

]∥∥∥∥∥ = oP (1).

2. Assume that

(a) 0 < ρ1 ≤ inf
{θ: ‖θ−θo‖≤ε}

λmin (Σ0(θ)) ≤ sup
{θ: ‖θ−θo‖≤ε}

λmax (Σ0(θ)) ≤ A uniformly in

k, where Σ0(θ) = E[H(x′11θ)H(x′11θ)
′];

(b) sup
{θ: ‖θ−θo‖≤ε}

λmax (Σ1(θ)) ≤ A, where Σ1(θ) = E[Ḣ(x′11θ)Ḣ(x′11θ)
′] uniformly in

k, where Ḣ(w) = (H(1)
0 (w), . . . ,H(1)

k−1(w))′.

3. Let max
i,j,t1,t2,t3,t4

E
[
‖xit1‖2‖xjt2‖2‖fo,t1‖2‖fo,t2‖2‖fo,t3‖2‖fo,t4‖2

]
≤ A < ∞, where 1 ≤

i, j ≤ N and 1 ≤ t1, t2, t3, t4 ≤ T .

4. Assume that 1√
NT

∑N
i=1 ψ1i[θo, g

(1)
o ]′MFoεi →D N(0, Σ̃), where, for i = 1, . . . , N ,

ψ1i[θo, go] = (go(x
′
i1θo)xi1, . . . , go(x

′
iT θo)xiT )′.

5. For the same r defined in Assumption 2.1, let NT
kr
→ 0, as (N, T, k)→ (∞,∞,∞).

Assumption 3.1 is the same as Assumption 2 of Yu and Ruppert (2002) and Assumptions

iii-iv of Li et al. (2016), and requires uniform convergence in a small neighbourhood of

(θo, go). We can further decompose Assumption 3.1 by using Lemma A2 of Newey and

Powell (2003) and prove the uniform convergence by following a procedure similar to those

given for (1) of Lemma A2. However, this would entail a lengthy derivation. Assumption

3.2 is not needed, if the norm of Assumption 3 of Newey (1997) is adopted. Assumption

3.3 can be removed, if one is willing to bound higher moments of xit and fo,t. Assumption

3.4 is in the same spirit as Assumption E of Bai (2009). Assumption 3.5 ensures the
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truncation residual goes to 0 sufficiently fast, so it can be smoothed out when establishing

the asymptotic normality.

Using the above assumptions, the asymptotic normality can be obtained as follows.

Theorem 3.2. Under Assumptions 1-3, as (N, T )→ (∞,∞),

√
NT

(
θ̂ − θo + V∗

−1ΠNT1 + V∗
−1ΠNT2

)
→D N(0,Σ∗),

where Σ∗ = V −1
∗ Σ̃V −1

∗ , Σ̃ and ψ1i[θo, go] with i = 1, . . . , N are defined in Assumption 3.4,

and

V∗ = V1 − V2Σ−1
F V ′2 , V1 = E

[(
g(1)
o (x′11θo)

)2
x11x

′
11

]
, V2 = E

[
g(1)
o (x′11θo)x11f

′
o,1

]
,

ΠNT1 =
1

NT

N∑
i=1

ψ1i[θo, ĝ
(1)
k ]′MF̂ (φi[θo, go]− φi[θo, ĝk]), ĝk(w) = Ĉ ′H(w),

ΠNT2 =
1

NT

N∑
i=1

ψ1i[θo, ĝ
(1)
k ]′MF̂Foγo,i.

Remark 3.2.

1. ΠNT1 is similar to condition (2.6) of Theorem 2 in Chen et al. (2003), where they

point out that the verification of this type of condition is in some cases difficult,

and is itself the subject of a long paper Newey (1994). Although ΠNT1 is exactly 0

uniformly in N and T when ĝk = go, we cannot further decompose ΠNT1 without

imposing further restrictions (e.g., “Linearization” condition of Assumption 5.1 of

Newey (1994)).

2. ΠNT2 is equivalent to the biased terms in Bai (2009). Due to the semi-parametric

nature of the single-index model, it is not helpful to further decompose ΠNT2 as

ΠNT2 = 1
NT

∑N
i=1 ψ1i[θo, ĝ

(1)
k ]′MF̂ (Fo−F̂Q−1)γi, where Q is given in Lemma 3.1. This

is because further decomposing Fo − F̂Q−1 will introduce the residual OP (‖(θ̂, ĝk) −
(θo, go)‖w) into the system. For parametric models, decomposing Fo− F̂Q−1 will only

introduce θ̂− θo to the system. After further rearranging and imposing conditions like

N/T → A, asymptotic normality can be established as in Bai (2009). However, for

our semi-parametric model, it is not the case any more.

3. If go(w) = αw with α being a constant is known, we can obtain g
(1)
o = α. Then ΠNT1

will disappear from the system, and we will be able to further decompose ΠNT2 as Bai

(2009). In this case, we will get exactly the same components (i.e., B, C and D0 on

page 1247 of Bai (2009)) for our asymptotic distribution.
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4. While theoretically it remains unknown if the biases (i.e., ΠNT1 and ΠNT2) can be

removed, in practice one can always follow the discussion in Li et al. (2013, p. 558)

and use bootstrapping techniques to make statistical inferences on θo.

3.4 Rate of Convergence of ĝk

In this section we derive the rate of convergence of ‖ĝk − go‖L2 . For this purpose, we make

the following assumptions.

Assumption 4:

1. Let Υ(θ) = E[H(x′11θ)H(x′11θ)
′] − E[H(x′11θ)f

′
o,1]Σ−1

F E[fo,1H(x′11θ)
′]. Assume that

the minimum eigenvalue of Υ is bounded away from 0 uniformly in k and a small

neighborhood of θo (i.e., inf{θ: ‖θ−θo‖≤ε} λmin(Υ(θ)) ≥ ρ1 > 0 uniformly in k.)

2. Assume that k2 ln(NT )
NT

→ 0 and k ln(T )
T
→ 0 as (N, T, k)→ (∞,∞,∞).

Assumption 4.2 is standard in the literature (e.g., Assumption A5 of Chen et al.

(2012b)). We now show that Assumption 4.1 is reasonable. Suppose that the elements

of x11 follow a normal distribution with variance 1
2
, and are independent of each other.

Then it is easy to show that x′11θ follows a normal distribution with variance 1
2
‖θ‖2. With

the identification restriction ‖θ‖2 = 1, we obtain fθ(w) = 1√
π

exp(−w2), where fθ(w) de-

notes the pdf of x′11θ. Then it is easy to see that E[H(x′11θ)H(x′11θ)
′] reduces to Ik. In the

special case where fo,1 is independent of x11 and has mean 0, we immediately obtain that

Υ(θ) = Ik. In this case, it is straightforward to show that Assumption 4 holds.

Theorem 3.3. Under Assumptions 1-4, as (N, T )→ (∞,∞),

‖ĝk − go‖L2 = OP

(√
kηNT

)
+OP (k−r/2), (3.11)

where ηNT is denoted in Lemma 3.1.

Due to the presence of the factor structure, the leading term
√
kηNT is much slower

than
√
k(NT )−1, which is a result commonly found in traditional nonparametric panel

data models without interactive fixed effects (e.g., Chen et al. (2012b) and Dong et al.

(2015)). The term OP (k−r/2) represents the rate of convergence of truncation residual and

is quite standard in the literature (e.g., Newey (1997)). Since we consider go on the Hilbert

space L2(R) in this section, x′11θo can be defined on the whole real axis. Thus, we will not

establish uniform convergence for ĝk. Moreover, one can follow Su et al. (2015) to develop
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a hypothesis testing procedure for the function form of go. Considering the development of

such a procedure can form a different paper (cf., Bai (2009) and Su et al. (2015)), we leave

it for future research.

4 Beyond Integrability

Following the spirit of Dong and Gao (2014), in this section we consider the second case of

the single-index panel data model in (1.1), where the link function is not integrable (i.e.,

(2.5)). As discussed above, this case nests the model (i.e., (1.3)) studied by Bai (2009) as

a special case.

Accordingly, a new norm for the 2-fold Cartesian product space formed by Rd and

L2 (R, exp(−w2)) is defined as follows:

‖(θ, g)‖w̃ =
{
‖θ‖2 + ‖g‖2

L̃2

}1/2
, (4.1)

where θ ∈ Rd, g ∈ L2(R, exp(−w2)), and ‖g‖L̃2 =
{∫

g2(w) exp(−w2)dw
}1/2

. Remark 3.1

applies to the new norm ‖ · ‖w̃.

By (3.1), ∀g ∈ L2(R, exp(−w2)) can be expanded into an infinite series as follows:

g(w) =
∞∑
n=0

cnhn(w) = gk(w) + δk(w), (4.2)

where

hn(w) =
1

4
√
π
√

2nn!
Hn(w) with n = 0, 1, 2, . . . ,

gk(w) =
k−1∑
n=0

cnhn(w) = C ′H(w), cn =

∫
g(w)hn(w)dw, δk(w) =

∞∑
n=k

cnhn(w),

H(w) = (h0(w), . . . , hk−1(w))′, C = (c0, . . . , ck−1)′.

Correspondingly, the true link function in this case can be written as

go(w) =
∞∑
n=0

co,nhn(w) = go,k(w) + δo,k(w), (4.3)

where go,k(w) = C ′oH(w), δo,k(w) =
∑∞

n=k co,nhn(w) and Co = (co,0, . . . , co,k−1)′.

The objective function is then rewritten as follows:

S̃NT (θ, C, F ) =
1

NT

N∑
i=1

(Yi − φi[θ, gk])′MF (Yi − φi[θ, gk]) , (4.4)
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where (θ, C, F ) ∈ Λ̃, and Λ̃ is defined as

Λ̃ = {(θ, C, F ) : θ ∈ Θ, gk(w) = C ′H(w) ∈ =2k, (2.2) being satisfied}

with =2k = =2 ∩ span{h0(w), h1(w), . . . , hk−1(w)} and =2 being defined in (2.5). For (4.4),

the estimate (θ̂, Ĉ, F̂ ) is obtained in exactly the same way as in (3.8) and (3.10).

Remark 4.1. The only difference between the two objective functions (3.6) and (4.4) lies

in the basis functions used to recover the link function. In practice, choosing the correct

basis functions requires prior knowledge of the economic model under study. A detailed

discussion and explanation can be found in Chen (2007).

To derive consistency with respect to the norm ‖·‖w̃, we make the following assumptions.

Assumption 2*:

1. (a) sup{(θ,w): Θ×R} exp (w2) fθ(w) ≤ A, where fθ(w) defines the probability density

function (pdf) of w = x′11θ for ∀θ ∈ Θ.

(b) sup{(θ,g): Θ×=2}E
[
‖x11‖2

{
g(1)(x′11θ)

}2
]
≤ A <∞.

(c) For the decomposition (4.3), assume that
∑∞

n=k c
2
o,n = O(k−r) with r ≥ 2 being

a positive constant.

2. Assume (2.5) holds, i.e., go ∈ =2 with =2 being a compact subset of L2 (R, exp(−w2)).

Assume that L(θ, g) has a unique minimum on Θ×=2 at (θo, go), where

L(θ, g) = E[∆g(x′11θ)]
2 − E[∆g(x′11θ)f

′
o,1]Σ−1

F E[fo,1∆g(x′11θ)]

and ∆g(x′11θ) = g(x′11θ) − go(x
′
11θo). For ∀(θ, g) ∈ Θ × =2, assume further that

LNT (θ, g)→P L(θ, g), where

LNT (θ, g) =
1

NT

N∑
i=1

(φi[θ, g]− φi[θo, go])′MFo (φi[θ, g]− φi[θo, go]) .

In Assumption 2*.1.a, due to the fact that the link function is not integrable and

unbounded, we need to impose a stronger assumption on the density of x′11θ. However, it

rules out some heavy-tailed distributions for x′11θ.

For Assumption 2*.1.b, if we adopt Assumption 5.3.1 of Ichimura (1993) (i.e., x11 be-

longs to a compact set), it can be further simplified as follows:

14



• If x11 belongs to a compact set, we can write

E
[
‖x11‖2{g(1)(x′11θ)}2

]
≤ O(1)E

∣∣g(1)(x′11θ)
∣∣2 = O(1)

∫ ∣∣g(1)(w)
∣∣2 fθ(w)dw

≤ O(1)

∫ ∣∣g(1)(w)
∣∣2 exp(−w2) · exp(w2)fθ(w)dw ≤ O(1)

∫ ∣∣g(1)(w)
∣∣2 exp(−w2)dw,

where fθ(w) is the same as that defined in Assumption 2*.1.a. In this case, Assump-

tion 2*.1.b reduces to g(1)(w) ∈ L2(R, exp(−w2)) for ∀g ∈ =2.

Assumption 2*.1.c is in the same spirit as Assumption 2.1, and is used to ensure the

truncation residual δo,k (x′11θo) converges to zero at a rate of k−
r
2 in probability one. A

detailed explanation is given as follows.

• By (4.3), write

E
[
δ2
o,k (x′11θo)

]
=

∫ { ∞∑
n=k

co,nhn(w)
}2

exp(−w2) · exp(w2)fθo(w)dw

≤ O(1)

∫ { ∞∑
n=k

co,nhn(w)
}2

exp(−w2)dw = O(1)
∞∑
n=k

c2
o,n = O(k−r), (4.5)

where the first inequality and the third equality follow from Assumptions 2*.1.a and

2*.1.c respectively.

We now show Assumption 2*.2 is reasonable.

• If sup
(θ,g)∈Θ×=2

E|g(x′11θ)|4+ν1 <∞ for the same ν1 defined in Assumption 1, we can show,

by applying the same procedure as for (9) of Lemma A2, that for ∀(θ, g) ∈ Θ × =2,

LNT (θ, g) = L(θ, g)+OP

(
1√
NT

)
. Thus, sup(θ,g)∈Θ×=2

E|g(x′11θ)|4+ν1 <∞ is sufficient

for Assumption 2*.2.

Based on the above setting, the consistency can be stated as follows.

Theorem 4.1. Under Assumptions 1 and 2*, as (N, T )→ (∞,∞),

1. ‖PF̂ − PFo‖ →P 0, where PF̂ and PFo are the idempotent matrices generated by F̂ and

Fo respectively;

2. ‖(θ̂, ĝk)− (θo, go)‖w̃ →P 0, where ĝk(w) = Ĉ ′H(w) and H(w) is defined in (4.2).
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All the discussions following Theorem 3.1 also apply to Theorem 4.1, and thus are

omitted here. Using Theorem 4.1, it is straightforward to establish the rates of convergence

as follows.

Lemma 4.1. Let ηNT and Q−1 be those defined in Lemma 3.1. Under Assumptions 1 and

2*, as (N, T )→ (∞,∞),

1. VNT →P V , and V is an m × m diagonal matrix consisting of the eigenvalues of

ΣFΣΓ;

2.
∥∥∥ 1√

T
(F̂Q−1 − Fo)

∥∥∥ = OP (‖(θ̂, ĝk)− (θo, go)‖w̃) +OP (ηNT );

3.
∥∥∥ 1
T
F ′o(F̂ − FoQ)

∥∥∥ = OP (‖(θ̂, ĝk)− (θo, go)‖w̃) +OP (η2
NT );

4. ‖PF̂ − PFo‖2 = OP (‖(θ̂, ĝk)− (θo, go)‖w̃) +OP (η2
NT ).

Note that more restrictions are needed in order to prove asymptotic normality for θ̂ and

establish the rate of convergence for ĝk. However, these additional restrictions will rule out

more potential functions for go(·). These proofs are very similar to those for Theorems 3.2

and 3.3, and thus are omitted.

5 Determination of k and m

In this section, we discuss how to choose the truncation parameter k and the number of

factors m in this section. Assuming the link function is smooth enough, k = b(NT )1/5c
always satisfies the assumptions in Sections 3 and 4. Although b(NT )1/5c may not be

the optimal k, all the asymptotic results derived above remain valid. Therefore, in the

numerical studies in Section 6 and the empirical application in Section 7, we always use

k = b(NT )1/5c (see Su and Jin (2012) and Dong et al. (2016) for similar arguments and

settings).

With the choice of the truncation parameter, we choose the number of factors by min-

imizing the following criterion function:

CI(m) = ln

(
1

NT

N∑
i=1

(
Yi − φi[θ̂, ĝk]− F̂ γ̂i

)′ (
Yi − φi[θ̂, ĝk]− F̂ γ̂i

))

+m · N + T

NT
· ln
(

NT

N + T

)
. (5.1)
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The basic idea behind (5.1) is exactly the same as that in Bai (2003) and thus is not

discussed further here. We investigate the performance of the criterion function in (5.1)

via the Monte Carlo simulations in the following section. Our simulation results suggest

that overall the criterion function works well for choosing the number of factors.

In general, how to simultaneously choose the optimal truncation parameter and the

number of factors remains an open issue. For the case of cross-sectional or time series data,

previous studies have examined the choices of optimal bandwidth and truncation parameter

(e.g., Gao et al. (2002), Li and Racine (2010) and Li et al. (2013)) for nonparametric and

varying-coefficient models. For the case of panel data, even the choice of optimal bandwidth

(or truncation parameter) alone remains unresolved (see, for example, Sun et al. (2009), Su

and Jin (2012) and Chen et al. (2012b)); let alone simultaneous choice of optimal truncation

parameter and the number of factors. For single-index panel data models with interactive

fixed effects, simultaneous choice of k and m is even more daunting, and thus we will leave

it for future work.

6 Monte Carlo Study

In this section, we perform Monte Carlo simulations to investigate the finite sample prop-

erties of our models and estimators. The data generating process (DGP) is as follows:

yit = go(x
′
itθo) + γ′o,ifo,t + εit.

Let d = 2 and m = 3. The factor loadings γo,i’s are generated as γo,i ∼ i.i.d. N(im, Im)

for i = 1, . . . , N , where im denotes an m× 1 one factor and Im denotes an m×m identity

matrix. The factors fo,t’s are generated as fo,t ∼ i.i.d. N(0m, Im) for t = 1, . . . , T , where

0m denotes an m × 1 zero factor. The error terms (denoted by ξt = (ε1t, . . . , εNt)
′) are

generated using

ξt = 0.5ξt−1 + vt,

where vt ∼ i.i.d. N(0N ,Σv) for t = 1, . . . , T and the (i, j)th element of Σv is 0.5|i−j| for

1 ≤ i, j ≤ N . For regressors, let

xit = 1 +
m∑
j=1

|γo,i,j · fo,t,j|+ δit,

where δit ∼ i.i.d. N(0d, Id) for i = 1, . . . , N and t = 1, . . . , T , and γo,i,j and fo,t,j denote the

jth elements of γo,i and fo,t respectively.
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For the link function, we consider two cases, where the first case is integrable, while the

second case is not integrable. Specifically, these two cases are given as follows:

1. Case 1: go(w) = (1 + w2) exp(−w2) such that go ∈ L2(R);

2. Case 2: go(w) = exp((0.6 + w)2/8) such that go ∈ L2(R, exp(−w2)).

Case 1 is estimated using the method outlined in Section 3, while Case 2 is estimated using

the method described in Section 4.

For simplicity, we refer to the single-index panel data model with interactive fixed

effects as the “SI Factor model”. When estimating the “SI Factor model”, the truncation

parameter k and the number of factors m are always chosen as described in Section 5. For

comparison purposes, we also use two other models to estimate θo. The first model is the

linear panel data model with interactive fixed effect proposed Bai (2009). For simplicity,

we refer to this model as the “L Factor model”. The second model is the traditional panel

data models with fixed effects. We refer to this latter model as the “F Panel model” below.

For each generated data set and each of the three models mentioned above, we calculate

the following bias and squared error (“se” for short): bias = θ̂j−θo,j and se = (θ̂j−θo,j)2 for

j = 1, . . . , d, where θ̂j and θo,j denote the jth elements of θ̂ and θo respectively. We repeat

the above procedure 1000 times and calculate the mean of these biases (Bias) and the root

of the mean of these squared errors (RMSE). Results for Cases 1 and 2 are summarized in

Tables 1 and 2 respectively.

Two findings emerge from Tables 1 and 2. First, the biases and RMSEs associated with

the SI Factor model are much smaller than those associated with the other two models. For

example, when N = T = 80, the biases for θ̂1 and θ̂2 associated with the SI Factor model

are 0.001 and 0.004 respectively, whereas those associated with the L Factor model are

-0.8839 and 0.8404; and those associated with the F Panel model are -0.9001 and 0.8266.

This suggests that compared with those obtained from the other two models, parameter

estimates obtained from the SI Factor are more accurate. Second, the biases associated

with the SI Factor model become virtually zero when both N and T are greater than or

equal to 160. In contrast, those associated with the other two models are well above zero

even when N = T = 200.

It is of interest to examine how the accuracy of the estimated link function changes as

N and T increase. For this purpose, we plot in Figure 1 (Figure 2) the 95% upper and

lower bounds of ĝk(w) for Case 1 (Case 2) on a selected interval based on 1,000 replications.

As can be seen, the bounds become tighter and tighter as N and T increase, implying the

estimates of the link function become more and more accurate as N and T increase.
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It is also of interest to examine how the accuracy of the estimates of the number of

factors, chosen using (5.1), changes as sample size increases. To this end, we calculate the

percentage of replications where the number of factors is underestimated (i.e., m̂ < 3),

overestimated (i.e., m̂ > 3), or accurately estimated (i.e., m̂ = 3). The results are reported

in Table 3. This table shows that as N and T increase, the percentage of replications, where

the number of factors are accurately estimated, quickly approaches one. This suggests that

the procedure for selecting the number of factors given in (5.1) work very well when sample

size is large.
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Figure 1: Estimated Link Function for Case 1 Where go(w) = (1 + w2) exp(−w2)

7 An Application to U.S. Banking Data

In this section, we provide an application of the single-index panel data with interactive

fixed effects to the analysis of returns to scale of large commercial banks in the U.S. Over the

past three decades, the increasing dominance of large banks in the U.S. banking industry,

caused by fundamental regulatory changes and technological and financial innovations, has

stimulated considerable research into returns to scale at large banks in the U.S. Major

regulatory changes include the removal of restrictions on interstate banking and branching

and the elimination of restrictions against combinations of banks, securities firms, and
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Figure 2: Estimated Link Function for Case 2 Where go(w) = exp((0.6 + w)2/8)

insurance companies, while technological and financial innovations include, but are not

limited to, information processing and telecommunication technologies, the securitization

and sale of bank loans, and the development of derivatives markets. One of the most

important consequences of these changes is the increasing concentration of industry assets

among large banks. According to Jones and Critchfield (2005), the asset share of large

banks (those with assets in excess of $1 billion) increased from 76 percent in 1984 to 86

percent in 2003. In the meantime, the average size of those banks increased from $4.97

billion to $15.50 billion (in 2002 dollars). This has raised concern that some banks might

be too large to operate efficiently, stimulating a substantial body of research into returns

to scale at large banks in the U.S. For excellent reviews, see Berger et al. (1999).

Compared with the conventional fully-parametric translog cost function, the model

(1.1) is more suitable for modeling the production technology of U.S. large banks for the

following two reasons. First, the single-index setting (i.e., go(x
′
itθo)) is more flexible than

the commonly-used translog linear form, which limits the variety of shapes the cost function

is permitted to take. Therefore, use of a semiparametric single-index model reduces the risk

of obtaining misleading results. Second, our model (1.1) allows for common shocks, which

have increased in the U.S. banking industry in the past few decades. As discussed above,

the U.S. banking industry experienced massive deregulation in the 1980s and 1990s. As a
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result, banks in the U.S. have become increasingly exposed to common shocks. There are

two reasons for this. (i) The industry has become increasingly dominated by large banks

that share similar business models and offer similar ranges of products. The similarity in

business model and product portfolio has in turn increased the exposure of those banks to

common shocks. (ii) As the process of banking and financial integration has progressed,

bank linkages have also risen, which has also increased the exposure of large banks to

common shocks (cf., Houston and Stiroh (2006) and Brasili and Vulpes (2008)). As is

well-known in the panel data literature, failure to account for common shocks that affect

all cross-sectional units results in correlated residuals. Furthermore, if these unobserved

common shocks are correlated with other regressors, the resulting parameter estimates will

be biased and inconsistent.

The data used in this application are obtained from the Reports of Income and Condition

(Call Reports) published by the Federal Reserve Bank of Chicago. The sample covers the

period 1986-2005. We examine only continuously operating large banks with assets of at

least $1 billion (in 1986 dollars) to avoid the impact of entry and exit and to focus on the

performance of a core of healthy, surviving institutions. This gives a total of 466 banks

over 20 years (i.e., 80 quarters, so N = 466 and T = 80). To select the relevant variables,

we follow the commonly-accepted intermediation approach (Sealey and Lindley (1977)). In

this paper, three output quantities and three input prices are identified. The three outputs

are consumer loans, y1; non-consumer loans, y2, is composed of industrial and commercial

loans and real estate loans; and securities, y3, includes all non-loan financial assets, i.e.,

all financial and physical assets minus the sum of consumer loans, non-consumer loans,

securities, and equity. All outputs are deflated by the GDP deflator to the base year 1986.

The three input prices include: the wage rate for labor, w1; the interest rate for borrowed

funds, w2; and the price of physical capital, w3. The wage rate equals total salaries and

benefits divided by the number of full-time employees. The price of capital equals expenses

on premises and equipment divided by premises and fixed assets. The price of deposits

and purchased funds equals total interest expense divided by total deposits and purchased

funds. Total cost is thus the sum of these three input costs. This specification of outputs

and input prices is the same as or similar to most of the previous studies in this literature

(e.g., Stiroh (2000) and Berger and Mester (2003)).

7.1 The Single-Index Cost Function with Interactive Fixed Ef-

fects

The variables defined above suggest the following mapping:
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(
w1

w3

,
w2

w3

, y1, y2, y3

)
→ CT

w3

,

where CT represents total costs, and all the other variables have been defined as above.

Note that we divide CT , w1, and w2 by w3 to maintain linear homogeneity with respect

to input prices. Then our single-index cost function with interactive fixed effects can be

written as:

ln
CTit
w3,it

= C

(
w1,it

w3,it

,
w2,it

w3,it

, y1,it, y2,it, y3,it

)
+ γ′o,ifo,t + εit

= go(x
′
itθo) + γ′o,ifo,t + εit, (7.1)

where xit =
(

ln
w1,it

w3,it
, ln

w2,it

w3,it
, ln y1,it, ln y2,it, ln y3,it, 1

)′
; (2.5) is imposed on go to facilitate

comparison of empirical results between this model and the two linear models given in

(7.3) and (7.4) below; C(·) represents the normalized cost function; fo,t represents a vector

of unobserved common shocks that simultaneously affect all banks in the sample; γo,i

represents the responses of large banks to the common shocks albeit with different degrees;

and εit is a random error. Given the estimation of (7.1), it is possible to compute returns

to scale as follows:

RTS =

[
3∑
j=1

∂

∂ ln yj
C

(
w1

w3

,
w2

w3

, y1, y2, y3

)]−1

, (7.2)

where ∂
∂ ln yj

C
(
w1

w3
, w2

w3
, y1, y2, y3

)
is the cost elasticity of output j with j = 1, 2, 3.

For comparison purposes, we also consider two other parametric models: (1) a fully-

parametric translog cost function with fixed effects (referred to as “F Panel”), which is

commonly used in studies investigating returns to scale at U.S. banks; and (2) a fully

parametric translog cost function with interactive fixed effects (referred to “L Factor”)2.

Specifically, these two models are written as

CTit
w3,it

= x′itβo + αi + εit, (7.3)

CTit
w3,it

= x′itβo + γ′o,ifo,t + εit, (7.4)

where, in order to implement within transformation for (7.3), we exclude constant 1 from

xit when estimating (7.3).

2In the literature, one usually adds quadratic terms and interaction terms to form a translog function.
However, it is easy to see that the translog function is just a special case of (7.1). To place the three models
in (7.1), (7.3) and (7.4) on equal footing, we use the same set of regressors for all these models.
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7.2 Empirical Results

We estimate the single-index cost function with interactive fixed effects in (7.1), the fully

parametric translog cost function with fixed effects in (7.3), and the fully parametric

translog cost function with interactive fixed effects in (7.4) for the U.S. large banks.3 With

regard to the number of factors for the first model (i.e., (7.1)), we choose it by using (5.1).

Specifically, with N = 466, T = 80, and k = b(NT )1/5c = 8, the number of factors is chosen

as m̂1 = 4. Similarly, the number of factors is chosen as m̂2 = 4 for the model in (7.4).

Parameter estimates and the associated standard errors for the three models are reported

in Table 4.

Moreover, to test the linearity of go, we implement the hypothesis test outlined in Su

et al. (2015). A detailed description of the procedure can be found therein. For our case,

we reject the null hypothesis that go is linear (i.e., Pr(go(x
′
itθo) = x′itθo) = 1) at the 1%

significant level. This suggests that the single-index model outperforms the other two

models. The nonlinearity of go can also be clearly seen from Figure 3, which plots the

estimated cost function (the solid line) together its 95% confidence intervals (the dashed

lines) on [1.6, 2.3].
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Figure 3: Estimated Cost Function

To further compare the performance of these three models, we follow Dong et al. (2015)

and Dong et al. (2016) to compute mean squared error (MSE) for each of the three models

using MSE = 1
NT

∑N
i=1

∑T
t=1(ŷit − yit)2, where ŷit is the estimated normalized total costs

3Following the literature of production econometrics, standard deviations and confidence intervals in
this subsection are constructed using the wild bootstrap method with 300 replications. Here we use (7.1) as
an example to illustrate how this bootstrap method works. We first implement (3.10) with k = b(NT )1/5c
and select m̂. Given m̂, we then calculate ŷit = ĝk(x′itθ̂) + γ̂′if̂t and ε̂it = ŷit − yit based on the estimates.
For each replication we generate new dependent variables using y∗it = ŷit + ε̂iteit, where eit is generated
from a standard normal distribution and is independent over i and t. After that, we implement (3.10)
based on {y∗it, xit, 1 ≤ i ≤ N, 1 ≤ t ≤ T} using the same m̂1 for each replication.
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for bank i in period t and yit is the corresponding actual normalized total costs. The MSE

values for the three models are reported in Table 4. As can be seen, the single-index model

has the lowest MSE, confirming that the single-index cost function with interactive fixed

effects outperforms the other two models. This is not surprising given the fact that the

single-index cost function with interactive fixed effects nests the other two models as special

cases.

Table 4: MSEs and Estimates of Coefficients

SI Factor L Factor F Panel

MSE 0.0024 0.0047 0.0105

Variables Est std Est std Est std

ln w1

w3
0.0636 0.0503 0.4216 0.0154 0.3728 0.0044

ln w2

w3
0.0042 0.0039 0.0190 0.0007 0.0177 0.0017

ln y1 0.0636 0.0534 0.3883 0.0024 0.3560 0.0045

ln y2 0.0156 0.0133 0.0938 0.0015 0.0997 0.0027

ln y3 0.0897 0.0721 0.4786 0.0033 0.4213 0.0049

constant 0.9805 0.0157 0.5120 0.0344

In what follows, we focus on empirical results from the single-index cost function with

interactive fixed effects. Table 5 presents the annual average returns to scale (RTS) es-

timates for each year, obtained by averaging over all sampled banks in that year. Two

findings emerge from this table. First, the annual average RTS is greater than unity for

all sample years, ranging from 1.1229 to 1.1607, indicating that on average the large banks

show increasing returns to scale during the sample period. This finding is consistent with

Wheelock and Wilson (2012), who, using a non-parametric local-linear estimator to esti-

mate the cost relationship for commercial banks in the U.S. over the period 1984-2006, find

that U.S. banks operated under increasing returns to scale. This finding partially explains

why bank mergers and acquisitions in 1990’s and early 2000’s occurred at an unprecedented

rate4, because mergers and acquisitions allow banks to exploit economies of scale.

Second, the annual average RTS shows a general downward trend, falling gradually from

1.1607 in 1986 to 1.1238 in 2005. A possible reason for the decline in RTS is that U.S.

large banks grew rapidly during the sample period, which allowed those banks to exploit

economies of scale and at the same time lowered their returns to scale. For instance, the

4For example, from 1990 through 1998, the number of banks dropped from 12,347 to 8,774 resulting
in a 28.9% decline. During this same period, there were 4,625 unassisted mergers with only 569 failures.
Thus the major contributor to the 28.9% decline in the number of banks was attributable to the merger
activity within the industry.
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average size of the large banks in our sample increased from $1.22 billion in 1986 to $7.63

billion in 2005 (in 1986 dollars), which, for a given production technology, would certainly

lead to lower returns to scale. However, it should be noted here that there is another factor

that might have increased RTS as the banks grew bigger – new technologies. Specifically,

as banks grow bigger, they are more likely to afford new technologies. The adoption of

new technologies increases the banks’ optimal scales over time, which results in higher RTS

for given bundles of inputs. This explains why the annual average RTS does not decline

rapidly during the sample period, despite the rapid growth of the large banks.

Table 5: Annual Average Returns To Scale

Year RTS 95 % Confidence Intervals

1986 1.1607 (1.1415, 1.1781)

1987 1.1579 (1.1406, 1.1731)

1988 1.1598 (1.1423, 1.1748)

1989 1.1596 (1.1422, 1.1747)

1990 1.1589 (1.1421, 1.1735)

1991 1.1581 (1.1420, 1.1719)

1992 1.1531 (1.1385, 1.1669)

1993 1.1492 (1.1345, 1.1644)

1994 1.1466 (1.1320, 1.1628)

1995 1.1469 (1.1326, 1.1624)

1996 1.1458 (1.1315, 1.1614)

1997 1.1435 (1.1294, 1.1593)

1998 1.1406 (1.1267, 1.1567)

1999 1.1381 (1.1244, 1.1544)

2000 1.1366 (1.1231, 1.1525)

2001 1.1354 (1.1221, 1.1510)

2002 1.1296 (1.1152, 1.1455)

2003 1.1253 (1.1105, 1.1411)

2004 1.1229 (1.1085, 1.1384)

2005 1.1238 (1.1093, 1.1390)

Average 1.1446 (1.1295, 1.1601)

Having examined annual average RTS estimates, we now turn to RTS estimates at

individual bank level. We calculate the percentage of banks facing increasing, constant, or

decreasing returns to scale for each year. Specifically, we count the number of cases where

the 95% confidence intervals are strictly greater than 1.0 (indicating increasing returns

to scale or IRS for short), strictly less than 1.0 (indicating decreasing returns to scale or

DRS for short), or contain 1.0 (indicating constant returns to scale or CRS for short).
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The results are reported in Table 6. Two findings in this table are noteworthy. First, on

average the vast majority (97.85%) of the banks face increasing returns to scale, a tiny

percentage (1.33%) face decreasing returns to scale, and an even tinier percentage (0.82%)

face constant returns to scale. Second, the percentage of banks facing increasing returns

to scale shows a general downward trend, while the percentage of banks facing constant

(decreasing) returns to scale shows a general upward trend. Specifically, the percentage of

banks facing increasing returns to scale decreases markedly from 99.35% in 1986 to 95.49%

in 2005; the percentage of banks facing constant returns to scale increases noticeably from

0.43% in 1986 to 2.15% in 2005; and the percentage of banks facing decreasing returns

to scale steadily from 0.22% in 1986 to 2.36% in 2005. The results presented here are

consistent with our previous discussion, that is, due to their rapid growth, more and more

banks have reached or passed their optimal scales, leaving more and more banks operating

under constant or decreasing returns to scale.

Table 6: Returns To Scale at Individual Bank Level

Year IRS CRS DRS

1986 99.35% 0.43% 0.22%

1987 99.14% 0.43% 0.43%

1988 99.14% 0.43% 0.43%

1989 99.14% 0.64% 0.22%

1990 98.93% 0.86% 0.21%

1991 99.36% 0.42% 0.22%

1992 99.14% 0.43% 0.43%

1993 98.71% 0.64% 0.65%

1994 98.71% 0.64% 0.65%

1995 98.93% 0.43% 0.64%

1996 98.50% 0.64% 0.86%

1997 98.07% 1.29% 0.64%

1998 97.64% 1.29% 1.07%

1999 97.42% 1.72% 0.86%

2000 96.78% 2.58% 0.64%

2001 96.57% 2.58% 0.85%

2002 96.35% 2.58% 1.07%

2003 95.06% 3.22% 1.72%

2004 94.64% 3.22% 2.14%

2005 95.49% 2.15% 2.36%

Average 97.85% 1.33% 0.82%
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8 Conclusion

This paper proposes a new model that extends Bai (2009) to a semi-parametric single-index

setting. The new model is flexible due to the use of a link function; at the same time, it

allows for common shocks or time-varying heterogeneity because of the presence of the

interactive fixed effects. We derive asymptotic theories for both the case where the link

function is integrable and the case where the link function is not. We also investigate the

finite sample properties of our single-index model via Monte Carlo experiments in large N

and T cases.

Finally, we show how our model and methodology can be used by analyzing the returns

to scale of large commercial banks in the U.S. over the period 1986-2005. Specifically, we

estimate a single-index cost function with interactive fixed effects. We then compare this

cost function with two other parametric cost functions: (1) a fully-parametric translog cost

function with fixed effects, and (2) a fully-parametric translog cost function with interactive

fixed effects. Our results show that the former cost function outperforms the latter two.

Our empirical results from the single-index cost function with interactive fixed effects show

that the vast majority of U.S. large banks face increasing returns to scale, and that the

percentage of U.S. large banks that face increasing returns to scale has declined over time.

Appendix A: Proofs of the Main Results

Note that proofs of Lemma 3.1 and Theorems 3.1, 3.2 and 3.3 are provided in the main text of

the paper, while those of Lemma 4.1 and Theorem 4.1 are provided in the supplementary file

of the paper. The proofs of all preliminary results (e.g., Lemmas A1-A3) are also provided in

the supplementary file of this paper. In what follows, when no misunderstanding arises, we may

suppress indexes i and t for notational simplicity. In addition, ρ1, O(1) and A always denote

constants and may be different at each appearance in the following development.

Lemma A1. Assume that g(w) is differentiable on R and wr−jg(j)(w) ∈ L2(R) for j = 0, 1, . . . , r

and r ≥ 1. For the expansion

g(w) =

∞∑
n=0

cnHn(w) = gk(w) + δk(w),

where

Hn(w) =
1

4
√
π
√

2nn!
Hn(w) exp(−w2/2) with n = 0, 1, 2, . . . ,
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gk(w) =
k−1∑
n=0

cnHn(w) = C ′H(w), cn =

∫
g(w)Hn(w)dw, δk(w) =

∞∑
n=k

cnHn(w),

H(w) = (H0(w), . . . ,Hk−1(w))′, C = (c0, . . . , ck−1)′,

the following results hold:

(1)
∫
w2H2

n(w)dw = n+ 1/2; (2) maxw |δk(w)| = O(1)k−
r
2

+ 5
12 ; (3)

∫
δ2
k(w)dw = O(1)k−r;

(4)
∫
‖H(w)‖dw = O(1)k11/12; (5)

∫
‖H(w)‖2dw = k; (6) ‖H(w)‖2 = O(1)k uniformly on R;

(7)
∫
|δk(w)|dw = O(1)k−

r
2

+ 11
12 ; (8)

∫
|Hn(w)|dw = O(1)n5/12; (9)

∫
w2‖H(w)‖2dx = O(1)k2;

(10) maxw |δ(1)
k (w)| = O(1)k−

r
2

+ 11
12 .

Lemma A1 is a part of Lemma C.1 of the supplementary file of Dong et al. (2016), wherein a

detailed proof can be found. �

Lemma A2. Let φi[θ, g] = (g(x′i1θ), . . . , g(x′iT θ))
′ with i = 1, . . . , N . We consider the following

limits on 3-fold Cartesian product space formed by Θ × =1 ×DF . Under Assumptions 1 and 2,

as (N,T )→ (∞,∞),

1. sup(θ,g) |LNT (θ, g)− L(θ, g)| = oP (1), where L(θ, g) is defined in Assumption 2 and

LNT (θ, g) =
1

NT

N∑
i=1

(φi [θ, g]− φi[θo, go])′MFo (φi [θ, g]− φi[θo, go]) ;

2. supF

∥∥∥ 1
NT

∑N
i=1 ε

′
iPF εi

∥∥∥ = oP (1);

3. supF

∥∥∥ 1
NT

∑N
i=1 γ

′
o,iF

′
oMF εi

∥∥∥ = oP (1);

4. sup(θ,g,F )

∥∥∥ 1
NT

∑N
i=1 φi[θ, g]′MF εi

∥∥∥ = oP (1);

5. sup(θ,F )

∥∥∥ 1
NT

∑N
i=1 φi[θ, δo,k]

′MF εi

∥∥∥ = oP (1);

6. sup(θ,F )

∥∥∥ 1
NT

∑N
i=1 φi[θ, δo,k]

′MFφi[θ, δo,k]
∥∥∥ = oP (1);

7. sup(θ,F )

∥∥∥ 1
NT

∑N
i=1 φi[θ, δo,k]

′MFFoγo,i

∥∥∥ = oP (1);

8. sup(θ1,θ2,g,F )

∥∥∥ 1
NT

∑N
i=1 φi[θ1, δo,k]

′MFφi[θ2, g]
∥∥∥ = oP (1);

9. 1
NT

∑N
i=1

∑T
t=1 ε

2
it = σ2

ε +OP

(
1√
NT

)
;

10. sup(θ,g)

∥∥∥ 1
NT

∑N
i=1

∑T
t=1

(
g(1)(x′itθ)

)2
xitx

′
it − E

[(
g(1)(x′11θ)

)2
x11x

′
11

]∥∥∥ = oP (1);
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11. sup(θ,g)

∥∥∥ 1
NT

∑N
i=1

∑T
t=1 εitg

(2)(x′itθ)xitx
′
it

∥∥∥ = oP (1);

12. supF

∣∣∣ 1
NT

∑N
i=1(φi[θo, go]− φi[θ, g])′MFFoγo,i

∣∣∣ = OP (‖(θo, go) − (θ, g)‖w) for ∀(θ, g) in a

sufficient small neighbourhood of (θo, go).

In addition, assume that Assumption 4 holds for the following results. Then

13. sup(θ,F )

∥∥∥ 1
NT

∑N
i=1Hi(θ)′MF εi

∥∥∥ = OP (
√
kηNT ), where Hi(θ) = (H(x′i1θ), . . . ,H(x′iT θ))

′ for

i = 1, . . . , N ;

14. supθ

∥∥∥ 1
NT

∑N
i=1Hi(θ)′MFoHi(θ)−Υ(θ)

∥∥∥ = oP (1), where Hi(θ) = (H(x′i1θ), . . . ,H(x′iT θ))
′

for i = 1, . . . , N .

The proof of Lemma A2 is provided in the supplementary file of this paper.

Lemma A3. Let φi[θ, g] = (g(x′i1θ), . . . , g(x′iT θ))
′ and ψ1i[θ, g] = (g(x′i1θ)xi1, . . . , g(x′iT θ)xiT )′

with i = 1, . . . , N . We consider the following limits on 3-fold Cartesian product space formed by

Θ×=1 ×DF . Under Assumptions 1-3,

1.
∥∥∥ 1
NT

∑N
i=1

∑T
t=1

(
g(1)(x′itθo)− g

(1)
o (x′itθo)

)
xitεit

∥∥∥ = oP

(
1√
NT

)
, as ‖g(1) − g(1)

o ‖L2 = o(1);

2. 1
NT

∑N
i=1

(
ψ1i[θo, g

(1)]− ψ1i[θo, g
(1)
o ]
)′
PFoεi = oP

(
1√
NT

)
, as ‖g(1) − g(1)

o ‖L2 = o(1);

3.
∥∥∥ 1
NT

∑N
i=1 ψ1i[θo, g

(1)
o ]′PT εi

∥∥∥ = oP

(
1√
NT

)
, as ‖PT ‖ = o(1).

The proof of Lemma A3 is provided in the supplementary file of this paper.

Proof of Theorem 3.1:

(1). Expanding SNT (θ, C, F )− SNT (θo, Co, Fo), we have

SNT (θ, C, F )− SNT (θo, Co, Fo)

=
1

NT

N∑
i=1

{
(Yi − φi[θ, gk])′MF (Yi − φi[θ, gk])− (Yi − φi[θo, go,k])′MFo (Yi − φi[θo, go,k])

}
=

1

NT

N∑
i=1

{
(Yi − φi[θ, gk])′MF (Yi − φi[θ, gk])− (φi[θo, δo,k] + εi)

′MFo (φi[θo, δo,k] + εi)
}

= SNT (θ, C, F )

+
1

NT

N∑
i=1

T∑
s=1

ε′i (MF −MFo) εi +
2

NT

N∑
i=1

γ′o,iF
′
oMF εi +

2

NT

N∑
i=1

(φi[θo, go,k]− φi[θ, gk])′MF εi
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+
2

NT

N∑
i=1

φi[θo, δo,k]
′ (MF −MFo) εi +

1

NT

N∑
i=1

T∑
s=1

φi[θo, δo,k]
′ (MF −MFo)φi[θo, δo,k]

+
2

NT

N∑
i=1

(φi[θo, go,k]− φi[θ, gk])′MFφi[θo, δo,k] +
2

NT

N∑
i=1

γ′o,iF
′
oMFφi[θo, δo,k],

where gk is defined in (3.2), go,k and δo,k are defined in (3.3), and

SNT (θ, C, F ) =
1

NT

N∑
i=1

(φi[θo, go,k]− φi[θ, gk] + Foγi)
′MF (φi[θo, go,k]− φi[θ, gk] + Foγi) .

By (2)-(9) of Lemma A2, we immediately obtain

SNT (θ, C, F )− SNT (θo, Co, Fo) = SNT (θ, C, F ) + oP (1). (9.1)

Let bi = φi[θ, gk] − φi[θo, go,k] and b = (b′1, . . . , b
′
N )′ . As in the proof of Lemma A2, we can

readily argue that (NT )−1b′b = O (1) uniformly in (θ, C) . Let η = vec (MFFo) , A1 = IN ⊗MF ,

A2 = (Γ′oΓo)⊗ IT , and A3 = (γo,1 ⊗ IT , . . . , γo,N ⊗ IT ). Then

SNT (θ, C, F ) =
1

NT

N∑
i=1

b′iMF bi +
1

NT

N∑
i=1

γ′o,iF
′
oMFFoγo,i −

2

NT

N∑
i=1

b′iMFFoγo,i

=
1

NT

N∑
i=1

b′iMF bi +
1

NT
tr
(
MFFoΓ

′
oΓoF

′
oMF

)
− 2

NT

N∑
i=1

tr
(
MFFoγo,ib

′
i

)
=

1

NT
b′A1b+

1

NT
η′A2η −

2

NT
η′

N∑
i=1

(γo,i ⊗ IT ) bi

=
1

NT
b′A1b+

1

NT
η′A2η −

2

NT
b′A′3η

=
1

NT
b′A1b+

1

NT
ϑ′A2ϑ−

1

NT
b′A′3A

−1
2 A3b, (9.2)

where ϑ = η −A−1
2 A3b, and the third equality follows from the fact that

tr (B1B2B3) = vec (B1)′ (B2 ⊗ I) vec
(
B′3
)

and tr (B1B2B3B4) = vec (B1)′
(
B2 ⊗B′4

)
vec
(
B′3
)

for any conformable matrices B1, B2, B3, B4 and an identity matrix I (see, e.g., Bernstein

(2009, p. 253)). We now show that the last term in (9.2) is oP (1) uniformly in b. Note that

(NT )−1b′A′3A
−1
2 A3b ≤ λmax

(
A′3A

−1
2 A3

)
(NT )−1b′b = oP (1) for any (NT )−1b′b = O (1) provided

λmax

(
A′3A

−1
2 A3

)
= oP (1) .Also, note that λmax

(
A′3A

−1
2 A3

)
≤ [λmin (A2/N)]−1 λmax

(
N−1A′3A3

)
=

c−1
Γ λmax

(
N−1A′3A3

)
where c−1

Γ ≡ [λmin (Γ′oΓo/N)]−1 = OP (1) . Define the following upper block-

triangular matrix
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C1 =


γ′o,1γo,1IT γ′o,1γo,2IT · · · γ′o,1γo,NIT

0 γ′o,2γo,2IT · · · γ′o,2γo,NIT
...

...
. . .

...

0 0 · · · γ′o,Nγo,NIT

 .

Noting that the NT × NT matrix A′3A3 has a typical T × T block submatrix T−1γ′o,iγo,jIT , we

have A′3A3 = C1 + C ′1 − Cd where Cd =diag(γ′o,1γo,1IT , . . . , γ
′
o,Nγo,NIT ). By the fact that the

eigenvalues of a block upper/lower triangular matrix are the combined eigenvalues of its diagonal

block matrices, Weyl’s inequality, and Assumption 1.4, we have

λmax

(
N−1A′3A3

)
≤ N−1 {2λmax (C1)− λmin(Cd)} ≤ 2N−1 max

1≤i≤N
‖γo,i‖2

= N−1oP (N1/2) = oP (1), (9.3)

where the first equality follows from the fact that max1≤i≤N ‖γo,i‖2 = oP (N1/2) under Assumption

1.4 by the Markov inequality. It follows that λmax

(
A′3A

−1
2 A3

)
= oP (1) and 1

NT b
′A′3A

−1
2 A3b =

oP (1) uniformly in b. This, in conjunction with (9.1)-(9.2) and the fact that SNT (θ̂, Ĉ, F̂ ) −
SNT (θo, Co, Fo) ≤ 0, implies that

(NT )−1 b̂′Â1b̂ = (NT )−1
N∑
i=1

b̂′iMF̂ b̂i = oP (1) , (9.4)

where Â1 = IN ⊗MF̂ , b̂ = (b̂′1, . . . , b̂
′
N )′, and b̂i = φi[θ̂, ĝk]− φi[θo, go,k].

By (9.1), (9.2), (9.4), and the Cauchy-Schwarz inequality, we have

0 ≥ SNT (θ̂, Ĉ, F̂ )− SNT (θo, Co, Fo)

=
1

NT
b̂′Â1b̂+

1

NT
tr
[(
F ′oMF̂Fo

) (
Γ′oΓo

)]
− 2

NT

N∑
i=1

b̂′iMF̂Foγo,i + oP (1)

≥ 1

N
b̂′Â1b̂+

1

NT
tr
[(
F ′oMF̂Fo

) (
Γ′oΓo

)]
−2

{
1

N
b̂′Â1b̂

}1/2{ 1

NT
tr
[(
F ′oMF̂Fo

) (
Γ′oΓo

)]}1/2

+ oP (1)

= oP (1) +
1

NT
tr
[(
F ′oMF̂Fo

) (
Γ′oΓo

)]
− 2oP (1)

{
1

NT
tr
[(
F ′oMF̂Fo

) (
Γ′oΓo

)]}1/2

.

It follows that 1
NT tr

[(
F ′oMF̂Fo

)
(Γ′oΓo)

]
= oP (1) . As in Bai (2009, p.1265), this further implies

that 1
T tr
(
F ′oMF̂Fo

)
= oP (1), 1

T F̂
′Fo is invertible, and

∥∥PF̂ − PFo∥∥ = oP (1) .
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(2). By (9.4) and noting that∣∣∣∣∣(NT )−1
N∑
i=1

b̂′i
(
MFo −MF̂

)
b̂i

∣∣∣∣∣ ≤ ∥∥PF̂ − PFo∥∥ (NT )−1
N∑
i=1

b̂′ib̂i = oP (1) ,

we have

oP (1) = (NT )−1
N∑
i=1

b̂′iMF̂ b̂i = (NT )−1
N∑
i=1

b̂′iMFo b̂i − oP (1) .

Then (NT )−1∑N
i=1 b̂

′
iMFo b̂i = oP (1) . Noting b̂i = φi[θ̂, ĝk]−φi[θo, go,k] =

(
φi[θ̂, ĝk]− φi[θo, go]

)
+

φi[θo, δo,k], we have

oP (1) = (NT )−1
N∑
i=1

b̂′iMFo b̂i

= (NT )−1
N∑
i=1

(
φi[θ̂, ĝk]− φi[θo, go]

)′
MFo

(
φi[θ̂, ĝk]− φi[θo, go]

)
+ (NT )−1

N∑
i=1

(
φi[θ̂, ĝk]− φi[θo, go]

)′
MFoφi[θo, δo,k]

+ (NT )−1
N∑
i=1

(φi[θo, δo,k])
′MFo (φi[θo, δo,k])

= (NT )−1
N∑
i=1

(
φi[θ̂, ĝk]− φi[θo, go]

)′
MFo

(
φi[θ̂, ĝk]− φi[θo, go]

)
+ oP (1)

= L(θ̂, ĝk) + oP (1)

where the third equality follows from (6) and (8) of Lemma A2; and the fourth equality follows

from (1) of Lemma A2. Consequently, L(θ̂, ĝk) = oP (1) .

Note that we have shown L(θ, g) is continuous with respect to ‖ · ‖w on Θ × =1 in the proof

of (1) of Lemma A2. This implies that, for ∀(θ, C) satisfying ‖(θ, C)− (θo, Co)‖ ≥ ε > 0, we have

L (θ, gk) does not converge to zero for gk (·) = C ′H (·). In other words, if ‖(θ̂, ĝk)−(θo, go)‖w 6→P 0,

we have L(θ̂, ĝk) 6= oP (1). See Bai (2009, p. 1265) and Newey and Powell (2003, p. 1576) for a

similar argument. Therefore, we have proved ‖(θ̂, ĝk)− (θo, go)‖w →P 0.

The proof is now complete. �

Proof of Lemma 3.1:

(1). We now consider VNT and write

F̂ VNT =

[
1

NT

N∑
i=1

(
Yi − φi[θ̂, ĝk]

)(
Yi − φi[θ̂, ĝk]

)′]
F̂
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=

[
1

NT

N∑
i=1

(
φi[θo, go] + Foγo,i + εi − φi[θ̂, ĝk]

)(
φi[θo, go] + Foγo,i + εi − φi[θ̂, ĝk]

)′]
F̂

=

[
1

NT

N∑
i=1

(
φi[θo, go]− φi[θ̂, ĝk]

)(
φi[θo, go]− φi[θ̂, ĝk]

)′]
F̂

+

[
1

NT

N∑
i=1

(
φi[θo, go]− φi[θ̂, ĝk]

)
(Foγo,i)

′

]
F̂ +

[
1

NT

N∑
i=1

(Foγi)
(
φi[θo, go]− φi[θ̂, ĝk]

)′]
F̂

+

[
1

NT

N∑
i=1

(
φi[θo, go]− φi[θ̂, ĝk]

)
ε′i

]
F̂ +

[
1

NT

N∑
i=1

εi

(
φi[θo, go]− φi[θ̂, ĝk]

)′]
F̂

+

[
1

NT

N∑
i=1

εiε
′
i

]
F̂ +

[
1

NT

N∑
i=1

Foγo,iε
′
i

]
F̂ +

[
1

NT

N∑
i=1

εiγ
′
o,iF

′
o

]
F̂

+

[
1

NT

N∑
i=1

Foγo,iγ
′
o,iF

′
o

]
F̂

:= I1NT (θ̂, ĝk, F̂ ) + · · ·+ I5NT (θ̂, ĝk, F̂ ) + I6NT (F̂ ) + · · ·+ I9NT (F̂ ),

where the definitions of I1NT (θ, g, F ) to I5NT (θ, g, F ) and I6NT (F ) to I9NT (F ) are obvious.

Note that I9NT (F̂ ) = Fo(Γ
′
oΓo/N)(F ′oF̂ /T ). Thus, we can write

F̂ VNT − Fo(Γ′oΓo/N)(F ′oF̂ /T )

= I1NT (θ̂, ĝk, F̂ ) + · · ·+ I5NT (θ̂, ĝk, F̂ ) + I6NT (F̂ ) + · · ·+ I8NT (F̂ ). (9.5)

Right multiplying each side of (9.5) by (F ′oF̂ /T )−1(Γ′oΓo/N)−1, we obtain

F̂ VNT (F ′oF̂ /T )−1(Γ′oΓo/N)−1 − Fo

=
[
I1NT (θ̂, ĝk, F̂ ) + · · ·+ I8NT (F̂ )

]
(F ′oF̂ /T )−1(Γ′oΓo/N)−1. (9.6)

If VNT is non-singular, then VNT (F ′oF̂ /T )−1(Γ′oΓo/N)−1 is equal to Q−1. We now examine each

term on the right hand side of (9.6) and show that VNT is non-singular. Write

1√
T

∥∥∥F̂ VNT (F ′oF̂ /T )−1(Γ′oΓo/N)−1 − Fo
∥∥∥

≤ 1√
T

[
‖I1NT (θ̂, ĝk, F̂ )‖+ · · ·+ ‖I8NT (F̂ )‖

]
·
∥∥∥(F ′oF̂ /T )−1(Γ′oΓo/N)−1

∥∥∥ .
It is easy to show that (F ′oF̂ /T )−1 = OP (1) and (Γ′oΓo/N)−1 = OP (1). Then we just need to

focus on 1√
T
‖IjNT (θ̂, ĝk, F̂ )‖ with j = 1, 2, . . . , 5 and 1√

T
‖IjNT (F̂ )‖ with j = 1, 2, . . . , 8.

For I1NT (θ̂, ĝk, F̂ ), we have

1√
T

∥∥∥I1NT (θ̂, ĝk, F̂ )
∥∥∥ ≤ √m

NT

N∑
i=1

‖φi[θo, go]− φi[θ, g]‖2
∣∣∣
(θ,g)=(θ̂,ĝk)
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=
√
mE|go(x′θo)− g(x′θ)|2|(θ,g)=(θ̂,ĝk) · (1 + oP (1))

= OP (‖(θ̂, ĝk)− (θo, go)‖2w),

where the first equality follows from Lemma A2 of Newey and Powell (2003) by applying the same

procedure as used for (1) of Lemma A2; and the second equality follows from Step 3 of (1) of

Lemma A2.

For I2NT (θ̂, ĝk, F̂ ), write

1√
T

∥∥∥I2NT (θ̂, ĝk, F̂ )
∥∥∥ ≤ √m

NT

N∑
i=1

∥∥(φi[θo, go]− φi[θ, g]) (Foγo,i)
′∥∥ ∣∣∣

(θ,g)=(θ̂,ĝk)

≤
√
m
{ 1

NT

N∑
i=1

‖φi[θo, go]− φi[θ, g]‖2
}1/2∣∣∣

(θ,g)=(θ̂,ĝk)

{ 1

NT

N∑
i=1

‖Foγo,i‖2
}1/2

= O(1)
{
E|go(x′θo)− g(x′θ)|2

}1/2 ∣∣
(θ,g)=(θ̂,ĝk)

· (1 + oP (1))

= OP (‖(θ̂, ĝk)− (θo, go)‖w),

where the second inequality follows from Cauchy-Schwarz inequality; the first equality follows

from Lemma A2 of Newey and Powell (2003) by applying the same procedure as used for (1) of

Lemma A2 and the fact that 1
NT

∑N
i=1 ‖Foγo,i‖2 = OP (1); and the second equality follows from

Step 3 of (1) of Lemma A2. Similarly, we have 1√
T

∥∥∥I3NT (θ̂, ĝk, F̂ )
∥∥∥ = OP (‖(θ̂, ĝk)− (θo, go)‖w).

For I4NT (θ̂, ĝk, F̂ ), write

1√
T

∥∥∥I4NT (θ̂, ĝk, F̂ )
∥∥∥ ≤ √m

NT

N∑
i=1

∥∥(φi[θo, go]− φi[θ, g]) ε′i
∥∥ ∣∣∣

(θ,g)=(θ̂,ĝk)

≤
√
m

{
1

NT

N∑
i=1

‖φi[θo, go]− φi[θ, g]‖2
}1/2 ∣∣∣

(θ,g)=(θ̂,ĝk)

{
1

NT

N∑
i=1

‖εi‖2
}1/2

= O(1)
{
E|go(x′θo)− g(x′θ)|2

}1/2 ∣∣
(θ,g)=(θ̂,ĝk)

· (1 + oP (1))

= OP (‖(θ̂, ĝk)− (θo, go)‖w),

where the second inequality follows from Cauchy-Schwarz inequality; the first equality follows

from Lemma A2 of Newey and Powell (2003) by applying the same procedure as used for (1) of

Lemma A2 and the fact that 1
NT

∑N
i=1 ‖εi‖2 = OP (1); and the second equality follows from Step

3 of (1) of Lemma A2. Similarly, we have 1√
T

∥∥∥I5NT (θ̂, ĝk, F̂ )
∥∥∥ = OP (‖(θ̂, ĝk)− (θo, go)‖w).

For I6NT (F̂ ), write

E

∥∥∥∥∥ 1

NT

N∑
i=1

εiε
′
i

∥∥∥∥∥
2

=
T∑
t=1

T∑
s=1

1

N2T 2

N∑
i=1

N∑
j=1

E[εitεisεjtεjs]
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=

T∑
t=1

T∑
s=1

1

N2T 2

 N∑
i=1

E[ε2
itε

2
is] +

∑
i 6=j

E[εitεisεjtεjs]


=

1

N2T 2

 T∑
t=1

T∑
s=1

N∑
i=1

E[ε2
itε

2
is] +

T∑
t=1

∑
i 6=j

E[ε2
itε

2
jt] +

∑
t6=s

∑
i 6=j

E[εitεisεjtεjs]


= O

(
1

N

)
+O

(
1

T

)
+O

(
1

NT

)
= O

(
η2
NT

)
,

where the fourth equality follows from Assumption 1.3. We immediately obtain 1√
T
‖I6NT (F̂ )‖ =

OP (ηNT ).

For I7NT (F̂ ) and I8NT (F̂ ), write

E

∥∥∥∥∥ 1

NT

N∑
i=1

Foγo,iε
′
i

∥∥∥∥∥
2

=
T∑
t=1

T∑
s=1

1

N2T 2

N∑
i=1

N∑
j=1

E[f ′o,tγo,iεisf
′
o,tγo,jεjs]

=

T∑
t=1

T∑
s=1

1

N2T 2

N∑
i=1

N∑
j=1

E[f ′o,tγo,if
′
o,tγo,j ]E[εisεjs]

≤
T∑
t=1

T∑
s=1

1

N2T 2

N∑
i=1

N∑
j=1

{
E‖fo,t‖4E‖γo,i‖4E‖fo,t‖4E‖γo,j‖4

}1/4 |E[εisεjs]|

≤ O(1)
1

N2T

T∑
s=1

N∑
i=1

N∑
j=1

|E[εisεjs]| = O

(
1

N

)
,

where the last equality follows from Assumption 1.3. We then immediately obtain 1√
T
‖I7NT (F̂ )‖ =

1√
T
‖I8NT (F̂ )‖ = OP

(
1√
N

)
.

Based on the above analysis and by left multiplying (9.5) by F̂ ′/T , we obtain

VNT − (F̂ ′Fo/T )(Γ′oΓo/N)(F ′oF̂ /T ) = T−1F̂ ′
[
I1NT (θ̂, ĝk, F̂ ) + · · ·+ I8NT (F̂ )

]
= o(1).

Thus,

VNT = (F̂ ′Fo/T )(Γ′oΓo/N)(F ′oF̂ /T ) + oP (1).

When proving Theorem 3.1, we have shown that F ′oF̂ /T is non-singular in probability one. This

implies that VNT is invertible in probability one. We now left multiply (9.5) by F ′o/T to obtain

(F ′oF̂ /T )VNT = (F ′oFo/T )(Γ′oΓo/N)(F ′oF̂ /T ) + oP (1)

based on the above analysis. The above equality shows that the columns of F ′oF̂ /T are the (non-

normalized) eigenvectors of the matrix (F ′oFo/T )(Γ′oΓo/N), and VNT consists of the eigenvalues

of the same matrix (in the limit). Thus, VNT →P V , where V is m ×m and consists of the m

eigenvalues of the matrix ΣFΣΓ.
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(2). Based on the above analysis, (9.6) can be rewritten as

1√
T
‖F̂Q−1 − Fo‖ = OP (‖(θ̂, ĝk)− (θo, go)‖w) +OP (ηNT ) ,

where Q−1 = VNT (F ′oF̂ /T )−1(Γ′oΓo/N)−1.

(3). According to (9.6),

1

T
F ′o(F̂ − FoQ) =

1

T
F ′o

[
I1NT (θ̂, ĝk, F̂ ) + · · ·+ I8NT (F̂ )

]
V −1
NT .

By (1) of this lemma, we know V −1
NT = OP (1). Therefore, in the following analysis we just need

to focus on 1
T F
′
o

[
I1NT (θ̂, ĝk, F̂ ) + · · ·+ I8NT (F̂ )

]
. Furthermore, by (1) of this lemma, it is easy

to show that∥∥∥∥ 1

T
F ′o

[
I1NT (θ̂, ĝk, F̂ ) + · · ·+ I5NT (θ̂, ĝk, F̂ )

]∥∥∥∥ = OP (‖(θ̂, ĝk)− (θo, go)‖w).

We now consider
∥∥∥ 1
T
F ′oI6NT (F̂ )

∥∥∥ below. For the term 1
NT

∑N
i=1

∥∥∥ε′iF̂∥∥∥2

, we have

1

NT

N∑
i=1

∥∥∥ε′iF̂∥∥∥2

≤ 2

NT

N∑
i=1

‖ε′iFoQ‖
2

+
2

NT

N∑
i=1

∥∥∥ε′i (F̂ − FoQ)∥∥∥2

≤ 2

NT

N∑
i=1

‖ε′iFo‖
2 ‖Q‖2 +

2

NT
tr

[(
F̂ − FoQ

)′
ε′ε
(
F̂ − FoQ

)]
≤ OP (1) +

1

N
‖ε‖2

sp

1

T

∥∥∥F̂ − FoQ∥∥∥2

= OP (1) +OP (1 + T/N)OP

(
‖(θ̂, ĝk)− (θo, go)‖2

w + η2
NT

)
by the result (2) of this lemma. It then gives that

∥∥∥∥ 1

T
F ′oI6NT (F̂ )

∥∥∥∥ =
1

NT 2

N∑
i=1

‖F ′oεi‖ ·
∥∥∥ε′iF̂∥∥∥

≤ 1

T

(
1

NT

N∑
i=1

‖F ′oεi‖2

)1/2(
1

NT

N∑
i=1

∥∥∥ε′iF̂∥∥∥2
)1/2

=
1

T
+

1

T
OP

(
1 +

√
T/N

)
OP

(
‖(θ̂, ĝk)− (θo, go)‖w + ηNT

)
= OP

(
‖(θ̂, ĝk)− (θo, go)‖w + η2

NT

)
as long as

√
T/NηNT = O (1) , which is sufficient here.
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For
∥∥∥ 1
T F
′
oI7NT (F̂ )

∥∥∥, we have

∥∥∥∥ 1

T
F ′oI7NT (F̂ )

∥∥∥∥ ≤ ∥∥∥∥ 1

T
F ′oFo

∥∥∥∥ ·
∥∥∥∥∥ 1

NT

N∑
i=1

γo,iε
′
i(F̂ − FoQ)

∥∥∥∥∥+

∥∥∥∥ 1

T
F ′oFo

∥∥∥∥ ·
∥∥∥∥∥ 1

NT

N∑
i=1

γo,iε
′
iFoQ

∥∥∥∥∥
≤
∥∥∥∥ 1

T
F ′oFo

∥∥∥∥ ·
∥∥∥∥∥ 1

N
√
T

N∑
i=1

γo,iε
′
i

∥∥∥∥∥ · 1√
T
‖F̂ − FoQ‖+

∥∥∥∥ 1

T
F ′oFo

∥∥∥∥ ·
∥∥∥∥∥ 1

NT

N∑
i=1

γo,iε
′
iFo

∥∥∥∥∥ · ‖Q‖.
By Assumption 1.4, we know

∥∥ 1
T F
′
oFo
∥∥ = OP (1). By results (1) and (2) of this lemma, we have

‖Q‖ = OP (1) and 1√
T
‖F̂ −FoQ‖ = OP (‖(θ̂, ĝk)− (θo, go)‖w) +OP (ηNT ). Therefore, we will focus

on
∥∥∥ 1
N
√
T

∑N
i=1 γo,iε

′
i

∥∥∥ and
∥∥∥ 1
NT

∑N
i=1 γo,iε

′
iFo

∥∥∥ below. For notational simplicity, we temporarily

assume that both γo,i and fo,t are scalars. Write

E

∥∥∥∥∥ 1

N
√
T

N∑
i=1

γo,iεi

∥∥∥∥∥
2

=
1

N2T

N∑
i=1

N∑
j=1

T∑
t=1

E[γo,iγo,j ]E[εitεjt]

≤ O(1)
1

N2T

N∑
i=1

N∑
j=1

T∑
t=1

|E[εitεjt]| = O

(
1

N

)

and

E

∥∥∥∥∥ 1

NT

N∑
i=1

γo,iε
′
iFo

∥∥∥∥∥
2

=
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E[γo,ifo,tγo,jfo,s]E[εitεjs]

≤ O(1)
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

|E[εitεjs]| = O

(
1

NT

)
,

which immediately yields∥∥∥∥ 1

T
F ′oI7NT (F̂ )

∥∥∥∥ = OP (‖(θ̂, ĝk)− (θo, go)‖w · ηNT ) +OP
(
η2
NT

)
Similarly, we can show

∥∥∥ 1
T F
′
oI8NT (F̂ )

∥∥∥ = OP (‖(θ̂, ĝk)− (θo, go)‖w · ηNT ) +OP
(
η2
NT

)
.

Based on the above analysis,∥∥∥∥ 1

T
F ′o(F̂ − FoQ)

∥∥∥∥ = OP (‖(θ̂, ĝk)− (θo, go)‖w) +OP
(
η2
NT

)
(9.7)

and ∥∥∥∥ 1

T
F̂ ′(F̂ − FoQ)

∥∥∥∥ =

∥∥∥∥ 1

T
(F̂ − FoQ+ FoQ)′(F̂ − FoQ)

∥∥∥∥
≤
∥∥∥∥ 1

T
(F̂ − FoQ)′(F̂ − FoQ)

∥∥∥∥+ ‖Q‖ ·
∥∥∥∥ 1

T
F ′o(F̂ − FoQ)

∥∥∥∥
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= OP (‖(θ̂, ĝk)− (θo, go)‖w) +OP

(
η2
NT

)
. (9.8)

(4). Note (9.7) and (9.8) can be respectively expressed as

1

T
F ′oF̂ −

1

T
F ′oFoQ = OP (‖(θ̂, ĝk)− (θo, go)‖w) +OP

(
η2
NT

)
and

Im −
1

T
F̂ ′FoQ = OP (‖(θ̂, ĝk)− (θo, go)‖w) +OP

(
η2
NT

)
.

Simple algebra further gives

1

T
Q′F ′oF̂ −

1

T
Q′F ′oFoQ = OP (‖(θ̂, ĝk)− (θo, go)‖w) +OP

(
η2
NT

)
and

Im −
1

T
H ′F ′oF̂ = OP (‖(θ̂, ĝk)− (θo, go)‖w) +OP

(
η2
NT

)
.

Summing up both equations above, we obtain

Im −
1

T
Q′F ′oFoQ = OP (‖(θ̂, ĝk)− (θo, go)‖w) +OP

(
η2
NT

)
. (9.9)

Note when proving Theorem 3.1, we have showed that∥∥PF̂ − PFo∥∥2
= tr

[
(PF̂ − PFo)

2
]

= 2tr
[
Im − F̂ ′PFoF̂ /T

]
(9.10)

and, when proving this lemma, we have shown that

F ′oF̂

T
=
F ′oFo
T

Q+OP (‖(θ̂, ĝk)− (θo, go)‖w) +OP
(
η2
NT

)
.

Therefore, we can write

F̂ ′PFoF̂ /T = Q′
(
F ′oFo
T

)
Q+OP (‖(θ̂, ĝk)− (θo, go)‖w) +OP

(
η2
NT

)
.

In connection with (9.9), we then obtain that

F̂ ′PFoF̂ /T = Im +OP (‖(θ̂, ĝk)− (θo, go)‖w) +OP
(
η2
NT

)
.

Then the proof of the second result of this lemma is complete. �

Proof of Theorem 3.2:
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Having proved Lemma 3.1, we now turn to investigating
√
NT (θ̂− θo). By (3.8), we can show

that ∂SNT (θ̂,Ĉ,F̂ )
∂θ = 0. Following Yu and Ruppert (2002), we just need to focus on the following

equation

0 =
∂SNT
∂θ

∣∣∣
(θ,C,F )=(θ̂,Ĉ,F̂ )

=
∂SNT
∂θ

∣∣∣
(θ,C,F )=(θo,Ĉ,F̂ )

+
∂SNT
∂θ∂θ′

∣∣∣
(θ,C,F )=(θ̃,Ĉ,F̂ )

(θ̂ − θo),

where θ̃ lies between θo and θ̂, and

∂SNT (θ, C, F )

∂θ
= − 2

NT

N∑
i=1

ψ1i[θo, g
(1)
k ]′MF (Yi − φi[θ, gk]),

∂SNT (θ, C, F )

∂θ∂θ′
=

2

NT

N∑
i=1

ψ1i[θ, g
(1)
k ]′MFψ1i[θ, g

(1)
k ]

− 2

NT

N∑
i=1

ψ2i[θ, g
(2)
k ]′ {MF ⊗ Id} {(Yi − φi[θ, gk])⊗ Id},

ψ1i[θ, g]
T×d

= (g(x′i1θ)xi1, . . . , g(x′iT θ)xiT )′,

ψ2i[θ, g]
Td×d

= (g(x′i1θ)xi1x
′
i1, . . . , g(x′iT θ)xiTx

′
iT )′. (9.11)

Since θ̃ lies between θo and θ̂, it is easy to show ‖(θ̃, ĝk) − (θo, go)‖w →P 0 by Theorem 3.1.

Thus, it is reasonable to focus on a sufficiently small neighborhood of (θo, go) in the following

proof. Then the rest of the analysis is similar to the arguments of (2.19)-(2.21) of Amemiya

(1993), and part (b) of Lemma B.1 of Yu and Ruppert (2002). Note that one can easily extend

the arguments (2.19)-(2.21) of Amemiya (1993) to the current setting by treating β and ‖ · ‖ of

Amemiya (1993) as (θ, g) and ‖ · ‖w of this paper respectively, which becomes exactly the same

as Lemma A.2 of Newey and Powell (2003). Following the same spirit, Assumption 3 then allows

us to simplify the analysis by focusing on the expectation. Also, in the following analysis, we will

repeatedly use gk(w) = C ′H(w) defined in (3.2).

We consider ∂SNT
∂θ∂θ′

∣∣∣
(θ,C,F )=(θ̃,Ĉ,F̂ )

first. Write

∂SNT
∂θ∂θ′

∣∣∣
(θ,C,F )=(θ̃,Ĉ,F̂ )

=

{
2

NT

N∑
i=1

ψ1i[θ, g
(1)
k ]′MFψ1i[θ, g

(1)
k ]

}∣∣∣
(θ,C,F )=(θ̃,Ĉ,F̂ )

−

{
2

NT

N∑
i=1

ψ2i[θ, g
(2)
k ]′ {MF ⊗ Id} {(Yi − φi[θ, gk])⊗ Id}

}∣∣∣
(θ,C,F )=(θ̃,Ĉ,F̂ )

:= 2A1NT

∣∣
(θ,C,F )=(θ̃,Ĉ,F̂ )

− 2A2NT

∣∣
(θ,C,F )=(θ̃,Ĉ,F̂ )

,
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where the definitions of A1NT and A2NT are obvious. We then examine A1NT and A2NT respec-

tively.

Step 1: For A1NT , write

A1NT =
1

NT

N∑
i=1

T∑
t=1

(
g

(1)
k (x′itθ)

)2

xitx
′
it −

1

NT

N∑
i=1

ψ1i[θ, g
(1)
k ]′PFψ1i[θ, g

(1)
k ]

:= A1NT,1 − A1NT,2.

For the first term on the right hand side above, write

A1NT,1 =
1

NT

N∑
i=1

T∑
t=1

(
g(1)
o (x′itθo)

)2
xitx

′
it

+
1

NT

N∑
i=1

T∑
t=1

(
g

(1)
k (x′itθ)

)2
xitx

′
it −

1

NT

N∑
i=1

T∑
t=1

(
g

(1)
o,k(x′itθ)

)2
xitx

′
it

+
1

NT

N∑
i=1

T∑
t=1

(
g

(1)
o,k(x′itθ)

)2
xitx

′
it −

1

N

N∑
i=1

T∑
t=1

(
g(1)
o (x′itθ)

)2
xitx

′
it

+
1

NT

N∑
i=1

T∑
t=1

(
g(1)
o (x′itθ)

)2
xitx

′
it −

1

NT

N∑
i=1

T∑
t=1

(
g(1)
o (x′itθo)

)2
xitx

′
it

:=
1

NT

N∑
i=1

T∑
t=1

(
g(1)
o (x′itθo)

)2
xitx

′
it +A1NT,11 +A1NT,12 +A1NT,13, (9.12)

where go,k is defined in (3.3); and the definitions of A1NT,11, A1NT,12 and A1NT,13 are obvious.

By (10) of Lemma A2, we have

1

NT

N∑
i=1

T∑
t=1

(
g(1)
o (x′itθo)

)2
xitx

′
it = V1 + oP (1) .

We then focus on A1NT,11 to A1NT,13 respectively. For A1NT,11, write

‖A1NT,11‖ |(θ,C)=(θ̃,Ĉ)

=

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

(
g

(1)
k (x′itθ)

)2
xitx

′
it −

1

NT

N∑
i=1

T∑
t=1

(
g

(1)
o,k(x′itθ)

)2
xitx

′
it

∥∥∥∥∥ ∣∣∣(θ,C)=(θ̃,Ĉ)

=

∥∥∥∥E [(g(1)
k (x′θ)

)2
xx′
]
− E

[(
g

(1)
o,k(x′θ)

)2
xx′
]∥∥∥∥ ∣∣∣(θ,C)=(θ̃,Ĉ)

+ oP (1)

=
∥∥∥E [(C − Co)′Ḣ(x′θ)Ḣ(x′θ)′(C + Co)xx

′
]∥∥∥ ∣∣∣

(θ,C)=(θ̃,Ĉ)
+ oP (1)

≤
{
E
∣∣∣(C − Co)′Ḣ(x′θ)

∣∣∣2E ∥∥∥Ḣ(x′θ)′(C + Co)xx
′
∥∥∥2
}1/2 ∣∣∣

(θ,C)=(θ̃,Ĉ)
+ oP (1)

≤
{

(C − Co)′E
[
Ḣ(x′θ)Ḣ(x′θ)′

]
(C − Co)

}1/2
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·
{

2E
∥∥∥C ′Ḣ(x′θ)xx′

∥∥∥2
+ 2E

∥∥∥C ′oḢ(x′θ)xx′
∥∥∥2
}1/2 ∣∣∣

(θ,C)=(θ̃,Ĉ)
+ oP (1)

≤ O(1)
{

(C − Co)′E
[
Ḣ(x′θ)Ḣ(x′θ)′

]
(C − Co)

}1/2 ∣∣∣
(θ,C)=(θ̃,Ĉ)

+ oP (1)

≤ O(1)‖Ĉ − Co‖+ oP (1) ≤ O(1)‖ĝk − go‖L2 + oP (1) = oP (1),

where the second equality follows from (10) of Lemma A2; the first inequality follows from Cauchy-

Schwarz inequality; the third inequality follows from Assumption 2.1; the fourth inequality follows

from Assumption 3.2; and the fifth inequality follows from the definition of ‖ · ‖L2 .

For A1NT,12, write

‖A1NT,12‖ |θ=θ̃ =

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

(
g

(1)
o,k(x′itθ)

)2
xitx

′
it −

1

NT

N∑
i=1

T∑
t=1

(
g(1)
o (x′itθ)

)2
xitx

′
it

∥∥∥∥∥ ∣∣∣θ=θ̃
=

∥∥∥∥E [{(g(1)
o,k(x′θ)

)2
−
(
g(1)
o (x′θ)

)2
}
xx′
]∥∥∥∥ ∣∣∣θ=θ̃ + oP (1)

=
∥∥∥E [(g(1)

o,k(x′θ)− g(1)
o (x′θ)

)(
g

(1)
o,k(x′θ) + g(1)

o (x′θ)
)
xx′
]∥∥∥ ∣∣∣

θ=θ̃
+ oP (1)

=
∥∥∥E [δ(1)

o,k(x′θ)
(
g

(1)
o,k(x′θ) + g(1)

o (x′θ)
)
xx′
]∥∥∥ ∣∣∣

θ=θ̃
+ oP (1)

≤ O(1)E
∥∥∥δ(1)
o,k(x′θ)xx′

∥∥∥ ∣∣∣
θ=θ̃

+ oP (1) ≤ O
(
k−

r
2

+ 11
12

)
E‖x‖2 + oP (1)

≤ O
(
k−

r
2

+ 11
12

)
+ oP (1) = oP (1),

where the second equality follows from (10) of Lemma A2; the first inequality follows from As-

sumption 2.1; the second inequality follows from (10) of Lemma A1; and the third inequality

follows from Assumption 1.2.

For A1NT,13, write

‖A1NT,13‖ |θ=θ̃ =

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

(
g(1)
o (x′itθ̃)

)2
xitx

′
it −

1

NT

N∑
i=1

T∑
t=1

(
g(1)
o (x′itθo)

)2
xitx

′
it

∥∥∥∥∥ ∣∣∣θ=θ̃
=

∥∥∥∥E [(g(1)
o (x′θ)

)2
xx′
]
− E

[(
g(1)
o (x′θo)

)2
xx′
]∥∥∥∥ ∣∣∣θ=θ̃ + oP (1)

=
∥∥∥E [(g(1)

o (x′θ)− g(1)
o (x′θo)

)(
g(1)
o (x′θ) + g(1)

o (x′θo)
)
xx′
]∥∥∥ ∣∣∣

θ=θ̃
+ oP (1)

=
∥∥∥E [g(2)

o (x′θ∗)
(
x′θ − x′θo

) (
g(1)
o (x′θ1) + g(1)

o (x′θo)
)
xx′
]∥∥∥ ∣∣∣

θ=θ̃
+ oP (1)

≤ O(1)‖θ̃ − θo‖E‖x‖3 + oP (1) = oP (1),

where θ∗ lies between θ and θo; the second equality follows from (10) of Lemma A2; the fourth

equality follows from Mean Value Theorem; the inequality follows from Assumption 2.1; and the

last equality follows from Theorem 3.1.

Based on the above analysis, it is easy to show A1NT,1|(θ,C)=(θ̃,Ĉ) →P V1.
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We now focus on A1NT,2.

A1NT,2 =
1

NT

N∑
i=1

ψ1i[θ, g
(1)
k ]′PFψ1i[θ, g

(1)
k ]

=
1

NT

N∑
i=1

ψ1i[θ, g
(1)
k ]′PFoψ1i[θ, g

(1)
k ] +

1

NT

N∑
i=1

ψ1i[θ, g
(1)
k ]′ (PF − PFo)ψ1i[θ, g

(1)
k ]

:= A1NT,21 + A1NT,22.

For A1NT,21, write

A1NT,21 =
1

N

N∑
i=1

(
ψ1i[θ, g

(1)
k ]′Fo/T

)
Σ−1
F (1 + oP (1))

(
F ′oψ1i[θ, g

(1)
k ])/T

)
=

1

N

N∑
i=1

(
1

T

T∑
t=1

xitg
(1)
k (x′itθ)f

′
o,t

)
Σ−1
F (1 + oP (1))

(
1

T

T∑
t=1

fo,tg
(1)
k (x′itθ)x

′
it

)
,

where the first equality follows from (2.3). Further note that

1

T

T∑
t=1

xitg
(1)
k (x′itθ)f

′
o,t =

1

T

T∑
t=1

xitg
(1)
k (x′itθ)f

′
o,t − E

[
xg

(1)
k (x′θ)f ′o

]
+E

[
xg

(1)
k (x′θ)f ′o

]
− E

[
xg

(1)
o,k(x′θ)f ′o

]
+E

[
xg

(1)
o,k(x′θ)f ′o

]
− E

[
xg(1)

o (x′θ)f ′o

]
+E

[
xg(1)

o (x′θ)f ′o

]
− E

[
xg(1)

o (x′θo)f
′
o

]
+E

[
xg(1)

o (x′θo)f
′
o

]
:= B1iT +B2 +B3 +B4 + E

[
xg(1)

o (x′θo)f
′
o

]
,

where the definitions of B1iT , B2, B3 and B4 are obvious. By Assumption 3.1, we know that

max1≤i≤N ‖B1iT ‖|(θ,C)=(θ̃,Ĉ) = oP (1) . As with A1NT,11 to A1NT,13, it is easy to show that

‖B2‖|θ=θ̃ = oP (1), ‖B3‖|θ=θ̃ = oP (1) and ‖B4‖ = oP (1). Then, we immediately obtain that

A1NT,21|(θ,C)=(θ̃,Ĉ) = V2Σ−1
F V ′2 + oP (1). (9.13)

For A1NT,22, we have ‖A1NT,22‖ ≤ ‖PF − PFo‖ 1
NT

∑N
i=1

∥∥∥ψ1i[θ, g
(1)
k ]
∥∥∥2

. Note that it is easy

to show that 1
NT

∑N
i=1

∥∥∥ψ1i[θ, g
(1)
k ]
∥∥∥2

= OP (1) uniformly. In connection with Theorem 3.1, we

immediately obtain ‖A1NT,22‖ |(θ,C,F )=(θ̃,Ĉ,F̂ ) = oP (1).

Therefore, we have shown that A1NT,2|(θ,C,F )=(θ̃,Ĉ,F̂ ) = V2Σ−1
F V ′2 + oP (1). In connection with

the result A1NT,1|(θ,C)=(θ̃,Ĉ) →P V1, we obtain A1NT |(θ,C,F )=(θ̃,Ĉ,F̂ ) = V1 − V2Σ−1
F V ′2 + oP (1).
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Step 2: Turing to A2NT , write

A2NT =
1

NT

N∑
i=1

ψ2i[θ, g
(2)
k ]′ {MF ⊗ Id} {(Yi − φi[θ, gk])⊗ Id}

=
1

NT

N∑
i=1

ψ2i[θ, g
(2)
k ]′ {MF ⊗ Id} {(εi + φi[θo, go]− φi[θ, gk])⊗ Id}

+
1

NT

N∑
i=1

ψ2i[θ, g
(2)
k ]′ {MF ⊗ Id} {(Foγi − FQ−1γi)⊗ Id}

=
1

NT

N∑
i=1

T∑
t=1

xitx
′
itg

(2)
k (x′itθ) (εit + go(x

′
itθo)− gk(x′itθ))

− 1

NT

N∑
i=1

ψ2i[θ, g
(2)
k ]′ {PF ⊗ Id} {(εi + φi[θo, go]− φi[θ, gk])⊗ Id}

+
1

NT

N∑
i=1

ψ2i[θ, g
(2)
k ]′ {MF ⊗ Id} {(Foγi − FQ−1γi)⊗ Id}

:= A2NT,1 − A2NT,2 + A2NT,3,

where the definitions of A2NT,1 to A2NT,3 are obvious.

By Lemma 3.1, it is easy to show that A2NT,3|(θ,C,F )=(θ̃,Ĉ,F̂ ) = oP (1).

For A2NT,1, write

A2NT,1 =
1

NT

N∑
i=1

T∑
t=1

εitg
(2)
k (x′itθ)xitx

′
it +

1

NT

N∑
i=1

T∑
t=1

(
go(x

′
itθo)− gk(x′itθ)

)
g

(2)
k (x′itθ)xitx

′
it

:= A2NT,11 +A2NT,12.

By (11) of Lemma A2, it is straightforward to obtain A2NT,11 = oP (1) uniformly.

For A2NT,12, write

A2NT,12 =
1

NT

N∑
i=1

T∑
t=1

go(x
′
itθo)g

(2)
k (x′itθ)xitx

′
it −

1

NT

N∑
i=1

T∑
t=1

go(x
′
iθ)g

(2)
k (x′itθ)xitx

′
it

+
1

NT

N∑
i=1

T∑
t=1

go(x
′
itθ)g

(2)
k (x′itθ)xitx

′
it −

1

NT

N∑
i=1

T∑
t=1

go,k(x
′
itθ)g

(2)
k (x′itθ)xitx

′
it

+
1

NT

N∑
i=1

T∑
t=1

go,k(x
′
itθ)g

(2)
k (x′itθ)xitx

′
it −

1

NT

N∑
i=1

T∑
t=1

gk(x
′
itθ)g

(2)
k (x′itθ)xitx

′
it

:= D1NT +D2NT +D3NT ,

where the definitions of D1NT to D3NT are obvious.
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For D1NT , write

‖D1NT ‖|(θ,C)=(θ̃,Ĉ)

=

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

go(x
′
itθo)g

(2)
k (x′itθ)xitx

′
it −

1

NT

N∑
i=1

T∑
t=1

go(x
′
itθ)g

(2)
k (x′itθ)xitx

′
it

∥∥∥∥∥ ∣∣∣(θ,C)=(θ̃,Ĉ)

=
∥∥∥E [(go(x′θo)− go(x′θ)) g(2)

k (x′θ)xx′
]∥∥∥ ∣∣∣

(θ,C)=(θ̃,Ĉ)
+ oP (1)

=
∥∥∥E [g(1)

o (x′θ∗)(x′θo − x′θ)g(2)
k (x′θ)xx′

]∥∥∥ ∣∣∣
(θ,C)=(θ̃,Ĉ)

+ oP (1)

≤ O(1)‖θo − θ̃‖E‖x‖3 + oP (1) = oP (1),

where θ∗ lies between θ and θo; the second equality follows from Assumption 3.1; the third equality

follows from Mean Value Theorem; the first inequality follows from Assumption 2.1; and the last

equality follows from Theorem 3.1 by noting that θ̃ lies between θ̂ and θo.

For D2NT , write

‖D2NT ‖ |(θ,C)=(θ̃,Ĉ)

=

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

go(x
′
itθ)g

(2)
k (x′itθ)xitx

′
it −

1

NT

N∑
i=1

T∑
t=1

go,k(x
′
itθ)g

(2)
k (x′itθ)xitx

′
it

∥∥∥∥∥ ∣∣∣(θ,C)=(θ̃,Ĉ)

=
∥∥∥E [δo,k(x′θ)g(2)

k (x′θ)xx′
]∥∥∥ ∣∣∣

(θ,C)=(θ̃,Ĉ)
+ oP (1) ≤ O(1)k−

r
2

+ 5
12E‖x‖2 = oP (1),

where the second equality follows from Assumption 3.1; and the inequality follows from (2) of

Lemma A1 and Assumption 2.1.

For D3NT , write

‖D3NT ‖|(θ,C)=(θ̃,Ĉ)

=

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

go,k(x
′
itθ)g

(2)
k (x′itθ)xitx

′
it −

1

NT

N∑
i=1

T∑
t=1

gk(x
′
itθ)g

(2)
k (x′itθ)xitx

′
it

∥∥∥∥∥ ∣∣∣(θ,C)=(θ̃,Ĉ)

=
∥∥∥E [H(x′θ)′CoḦ(x′θ)′Cxx′

]
− E

[
H(x′θ)′CḦ(x′θ)′Cxx′

]∥∥∥ ∣∣∣
(θ,C)=(θ̃,Ĉ)

+ oP (1)

=
∥∥∥E [(H(x′θ)′Co −H(x′θ)′C

)
Ḧ(x′θ)′Cxx′

]∥∥∥ ∣∣∣
(θ,C)=(θ̃,Ĉ)

+ oP (1)

≤
{

(Co − C)′E
[
H(x′θ)H(x′θ)′

]
(Co − C) · E

∥∥∥g(2)
k (x′θ)xx′

∥∥∥2
}1/2 ∣∣∣

(θ,C)=(θ̃,Ĉ)
+ oP (1)

≤ O(1)
{
E‖x‖4

}1/2 ‖Co − Ĉ‖+ oP (1) ≤ O(1)‖ĝk − go‖L2 + oP (1) = oP (1),

where the second equality follows from Assumption 3.1; the first inequality follows from Cauchy-

Schwarz inequality; the second inequality follows from Assumptions 2.1 and 3.2; the third inequal-

ity follows from the fact that ‖ĝk − go‖2L2 = ‖Ĉ − Co‖2 + ‖δo,k‖2L2 ; and the last equality follows

from Theorem 3.1.
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When analyzing D1NT to D3NT , we have shown that A2NT,12|(θ,C)=(θ̃,Ĉ) = oP (1). In connec-

tion with A2NT,11 = oP (1) uniformly, we obtain that A2NT,1|(θ,C)=(θ̃,Ĉ) = oP (1).

For A2NT,2,

A2NT,2 =
1

NT

N∑
i=1

ψ2i[θ, g
(2)
k ]′ {PF (εi + φi[θo, go]− φi[θ, gk])⊗ Id}

=
1

NT

N∑
i=1

ψ2i[θ, g
(2)
k ]′ {PF εi ⊗ Id}+

1

NT

N∑
i=1

ψ2i[θ, g
(2)
k ]′ {PF (φi[θo, go]− φi[θ, gk])⊗ Id}.

By a procedure similar to that used for (4) and (12) of Lemma A2, it is easy to show that

A2NT,2|(θ,C,F )=(θ̃,Ĉ,F̂ ).

Based on the analysis of Steps 1-2, we have shown that ∂SNT
∂θ∂θ′

∣∣∣
(θ,C,F )=(θ̃,Ĉ,F̂ )

→P 2V∗, where

V∗ = V1 − V2Σ−1
F V ′2 .

We now focus on ∂SNT
∂θ

∣∣∣
(θ,C,F )=(θo,Ĉ,F̂ )

.

∂SNT
∂θ

∣∣∣
(θ,C,F )=(θo,Ĉ,F̂ )

= − 2

NT

N∑
i=1

ψ1i[θo, g
(1)
k ]′MF (Yi − φi[θo, gk])

∣∣∣
(C,F )=(Ĉ,F̂ )

=
{
− 2

NT

N∑
i=1

ψ1i[θo, g
(1)
o ]′MFoεi

− 2

NT

N∑
i=1

(
ψ1i[θo, g

(1)
k ]− ψ1i[θo, g

(1)
o ]
)′
MFoεi

+
2

NT

N∑
i=1

ψ1i[θo, g
(1)
k ]′(PF − PFo)εi

− 2

NT

N∑
i=1

ψ1i[θo, g
(1)
k ]′MF (φi[θo, go]− φi[θo, gk])

− 2

NT

N∑
i=1

ψ1i[θo, g
(1)
k ]′MFFoγi

}∣∣∣
(C,F )=(Ĉ,F̂ )

= 2 (−A1NT −A2NT +A3NT −A4NT −A5NT )
∣∣
(C,F )=(Ĉ,F̂ )

,

where the definitions of A1NT to A5NT are obvious.

For A1NT , it is easy to show that
√
NTA1NT = N(0, Σ̃) by Assumption 3.4.

For A2NT , write

A2NT =
1

NT

N∑
i=1

(
ψ1i[θo, g

(1)
k ]− ψ1i[θo, g

(1)
o ]
)′
MFoεi
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=
1

NT

N∑
i=1

T∑
t=1

(
g

(1)
k (x′itθo)− g(1)

o (x′itθo)
)
xitεit

− 1

N

N∑
i=1

1

T

T∑
t=1

(
g

(1)
k (x′itθo)− g(1)

o (x′itθo)
)
xitf

′
o,t

(
1

T

T∑
t=1

fo,tf
′
o,t

)−1
1

T

T∑
t=1

fo,tεit

= A2NT,1 −A2NT,2,

where the definitions of A2NT,1 and A2NT,2 are obvious.

By (10) of Lemma A1 and (1) of Theorem 3.1, we obtain ‖ĝ(1)
k − g

(1)
o ‖L2 = oP (1). In connec-

tion with (1) and (2) of Lemma A3, we immediately obtain that A2NT,1|C=Ĉ = oP

(
1√
NT

)
and

A2NT,2|C=Ĉ = oP

(
1√
NT

)
respectively, which in turn yields A2NT |C=Ĉ = oP

(
1√
NT

)
. By (3) of

Lemma A3, it is straightforward to show that A3NT |(C,F )=(Ĉ,F̂ ) = oP

(
1√
NT

)
.

Based on the above analysis, the result follows. �

Proof of Theorem 3.3:

For notational simplicity, denote

HNT (θ)
NT×k

= (H1(θ)′, . . . ,HN (θ)′)′, Hi(θ) =
(
H(x′i1θ), . . . ,H(x′iT θ)

)′
,

δ̃NT
NT×1

= (δo,k,1(θo)
′, . . . , δo,k,N (θo)

′)′, δo,k,i(θo) =
(
δo,k(x

′
i1θo), . . . , δo,k(x

′
iT θo)

)′
,

W (θ) = (IN ⊗MFo)HNT (θ)
[
HNT (θ)′ (IN ⊗MFo)HNT (θ)

]−1HNT (θ)′ (IN ⊗MFo) ,

where for i = 1, . . . , N .

Noting thatW (θ) is symmetric and idempotent uniformly in θ, we can show that λmax(W (θ)) =

1 uniformly. Also, by (14) of Lemma A2 and Assumption 4.1, we have

λmin

(
1

NT

N∑
i=1

Hi(θ̂)′MFoHi(θ̂)

)
≥ 1

2
ρ1 > 0 (9.14)

w.p.a. 1.

Simple algebra shows that

‖ĝk − go‖2L2 = ‖Ĉ − Co‖2 + ‖δo,k‖2L2 , (9.15)

where Co and δo,k are defined in (3.3). It is easy to show that ‖δo,k‖2L2 = OP (k−r) by Assumption

2.1 and (3) of Lemma A1. Thus, we will focus on ‖Ĉ − Co‖ in what follows.

By (3.8), we know

0 =
∂SNT
∂C

∣∣∣
(θ,C,F )=(θ̂,Ĉ,F̂ )

= − 2

NT

N∑
i=1

Hi(θ̂)′MF̂ (Yi − φi[θ̂, ĝk]),
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Further write

0 =
2

NT

N∑
i=1

Hi(θ̂)′MFo(Yi − φi[θ̂, ĝk]) +
2

NT

N∑
i=1

Hi(θ̂)′(MF̂ −MFo)(Yi − φi[θ̂, ĝk]),

which gives

Ĉ =

(
N∑
i=1

Hi(θ̂)′MFoHi(θ̂)

)−1( N∑
i=1

Hi(θ̂)′MFoYi

)

+

(
N∑
i=1

Hi(θ̂)′MFoHi(θ̂)

)−1( N∑
i=1

Hi(θ̂)′(MF̂ −MFo)(Yi − φi[θ̂, ĝk])

)
. (9.16)

We then obtain

Ĉ − Co =

(
N∑
i=1

Hi(θ̂)′MFoHi(θ̂)

)−1 N∑
i=1

Hi(θ̂)′(MFo +MF̂ −MFo)εi

+

(
N∑
i=1

Hi(θ̂)′MFoHi(θ̂)

)−1 N∑
i=1

Hi(θ̂)′MFoδo,k,i(θo)

+

(
N∑
i=1

Hi(θ̂)′MFoHi(θ̂)

)−1 N∑
i=1

Hi(θ̂)′MFo

(
φi[θo, go,k]− φi[θ̂, go,k]

)

+

(
N∑
i=1

Hi(θ̂)′MFoHi(θ̂)

)−1 N∑
i=1

Hi(θ̂)′(MF̂ −MFo)Foγo,i

+

(
N∑
i=1

Hi(θ̂)′MFoHi(θ̂)

)−1 N∑
i=1

Hi(θ̂)′(MF̂ −MFo)
(
φi[θo, go]− φi[θ̂, ĝk]

)

=

(
N∑
i=1

Hi(θ̂)′MFoHi(θ̂)

)−1 N∑
i=1

Hi(θ̂)′MFoεi(1 + oP (1))

+

(
N∑
i=1

Hi(θ̂)′MFoHi(θ̂)

)−1 N∑
i=1

Hi(θ̂)′MFoδo,k,i(θo)

+

(
N∑
i=1

Hi(θ̂)′MFoHi(θ̂)

)−1 N∑
i=1

Hi(θ̂)′MFo

(
φi[θo, go,k]− φi[θ̂, go,k]

)

+

(
N∑
i=1

Hi(θ̂)′MFoHi(θ̂)

)−1 N∑
i=1

Hi(θ̂)′MF̂ (Fo − F̂Q−1)γo,i

+

(
N∑
i=1

Hi(θ̂)′MFoHi(θ̂)

)−1 N∑
i=1

Hi(θ̂)′(MF̂ −MFo)
(
φi[θo, go]− φi[θ̂, ĝk]

)
:= A1NT +A2NT +A3NT +A4NT +A5NT .
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where the definitions of A1NT to A5NT are obvious.

By (9.14) and (13) of Lemma A2, we immediately obtain that ‖A1NT ‖ = OP

(√
kηNT

)
.

For A2NT , write

‖A2NT ‖2 =

∥∥∥∥[HNT (θ̂)′(IN ⊗MFo)HNT (θ̂)
]−1
HNT (θ̂)′(IN ⊗MFo)δ̃NT

∥∥∥∥2

= δ̃′NT (IN ⊗MFo)HNT (θ̂)
[
HNT (θ̂)′(IN ⊗MFo)HNT (θ̂)/(NT )

]−1

·
[
HNT (θ̂)′ (IN ⊗MFo)HNT (θ̂)

]−1
HNT (θ̂)′ (IN ⊗MFo) δ̃NT /(NT )

≤
(
λmin

{
HNT (θ̂)′ (IN ⊗MFo)HNT (θ̂)/(NT )

})−1

·δ̃′NT (IN ⊗MFo)HNT (θ̂)
[
HNT (θ̂)′ (IN ⊗MFo)HNT (θ̂)

]−1
HNT (θ̂)′ (IN ⊗MFo) δ̃NT /(NT )

≤
(
λmin

{
HNT (θ̂)′ (IN ⊗MFo)HNT (θ̂)/(NT )

})−1
· λmax(W (θ̂)) ·

∥∥∥δ̃NT∥∥∥2
/(NT )

≤ OP (1) · λmax(W (θ̂)) ·
∥∥∥δ̃NT∥∥∥2

/(NT ) ≤ OP (1) ·
∥∥∥δ̃NT∥∥∥2

/(NT ),

where the first inequality follows from exercise 5 on page 267 of Magnus and Neudecker (2007)

(or (A.6) in Su and Jin (2012)); and the third inequality follows (9.14). Moreover, it is easy to

show that
∥∥∥δ̃NT∥∥∥2

/(NT ) = OP (k−r). Then we obtain that ‖A2NT ‖ = OP (k−r/2).

We now focus on A4NT below and write

A4NT =

(
N∑
i=1

Hi(θ̂)′MFoHi(θ̂)

)−1 N∑
i=1

Hi(θ̂)′(MFo +MF̂ −MFo)(Fo − F̂Q−1)γo,i

=

(
N∑
i=1

Hi(θ̂)′MFoHi(θ̂)

)−1 N∑
i=1

Hi(θ̂)′MFo(Fo − F̂Q−1)γo,i(1 + o(1))

= −

(
N∑
i=1

Hi(θ̂)′MFoHi(θ̂)

)−1

×
N∑
i=1

Hi(θ̂)′MFo(I1NT (θ̂, ĝk, F̂ ) + · · ·+ I8NT (F̂ ))(F ′oF̂ /T )−1(Γ′oΓo/N)−1γo,i(1 + o(1)),

where IjNT (·) for j = 1, . . . , 8 are defined in the proof of Lemma 3.1. By following the same

procedure as used in the proof of Lemma 3.1, it is easy to show that for j = 6, 7, 8∥∥∥∥∥∥
(

N∑
i=1

Hi(θ̂)′MFoHi(θ̂)

)−1 N∑
i=1

Hi(θ̂)′MFoIjNT (F̂ ) · (F ′oF̂ /T )−1(Γ′oΓo/N)−1γo,i

∥∥∥∥∥∥ = OP (k1/2η2
NT ).

We then focus on I1NT (θ̂, ĝk, F̂ ) to I5NT (θ̂, ĝk, F̂ ) and use I2NT (θ̂, ĝk, F̂ ) as an example below.

I2NT (θ̂, ĝk, F̂ ) =

[
1

NT

N∑
i=1

(
φi[θo, go]− φi[θ̂, ĝk]

)
(Foγo,i)

′

]
F̂
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=

[
1

NT

N∑
i=1

(φi[θo, go,k]− φi[θo, ĝk]) (Foγo,i)
′

]
F̂ +

[
1

NT

N∑
i=1

φi[θo, δo,k] (Foγo,i)
′

]
F̂

+

[
1

NT

N∑
i=1

(
φi[θo, ĝk]− φi[θ̂, ĝk]

)
(Foγo,i)

′

]
F̂

= I2NT,1(ĝk, F̂ ) + I2NT,2(F̂ ) + I2NT,3(θ̂, ĝk, F̂ ),

where the definitions of I2NT,1(·)-I2NT,3(·) are obvious. Similar to the analysis for A2NT , it is easy

to show that∥∥∥∥∥∥
(

N∑
i=1

Hi(θ̂)
′MFoHi(θ̂)

)−1 N∑
i=1

Hi(θ̂)
′MFoI2NT,2(F̂ ) · (F ′oF̂ /T )−1(Γ′oΓo/N)−1γo,i

∥∥∥∥∥∥
= OP (k−r/2),∥∥∥∥∥∥

(
N∑
i=1

Hi(θ̂)
′MFoHi(θ̂)

)−1 N∑
i=1

Hi(θ̂)
′MFoI2NT,3(θ̂, ĝk, F̂ ) · (F ′oF̂ /T )−1(Γ′oΓo/N)−1γo,i

∥∥∥∥∥∥
= OP (‖θ̂ − θo‖).

Then we just need to focus on I2NT,1(ĝk, F̂ ). Write

1

NT

N∑
i=1

Hi(θ̂)′MFoI2NT,1(ĝk, F̂ ) · (F ′oF̂ /T )−1(Γ′oΓo/N)−1γo,i

=
1

NT

N∑
i=1

Hi(θ̂)′MFo

[
1

NT

N∑
i=1

(φi[θo, go,k]− φi[θo, ĝk]) (Foγo,i)
′

]
F̂ (F ′oF̂ /T )−1(Γ′oΓo/N)−1γo,i

=
1

NT

N∑
i=1

Hi(θ̂)′MFo

[
1

NT

N∑
i=1

Hi(θ̂)γ′o,i(Γ′oΓo/N)−1γo,i

]
(Co − Ĉ),

Note that we can show that
∣∣∣[ 1
NT

∑N
i=1Hi(θ)γ′o,i(Γ′oΓo/N)−1γo,i

]
(Co − Ĉ)

∣∣∣ = OP (Ĉ − Co) uni-

formly. Therefore, we have∥∥∥∥∥∥
(

N∑
i=1

Hi(θ̂)′MFoHi(θ̂)

)−1 N∑
i=1

Hi(θ̂)′MFoI2NT,1(ĝk, F̂ ) · (F ′oF̂ /T )−1(Γ′oΓo/N)−1γo,i

∥∥∥∥∥∥
= OP (‖Ĉ − Co‖),

which implies(
N∑
i=1

Hi(θ̂)′MFoHi(θ̂)

)−1 N∑
i=1

Hi(θ̂)′MFoI2NT,1(ĝk, F̂ ) · (F ′oF̂ /T )−1(Γ′oΓo/N)−1γo,i
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= OP (1)(Ĉ − Co).

Then we can go through the same procedure for I1NT (θ̂, ĝk, F̂ ) to I5NT (θ̂, ĝk, F̂ ). Similar to the

analysis for A2NT , we can obtain ‖A3NT ‖ = OP (‖θ̂−θo‖) = OP

(
1√
NT

)
+OP (ΠNT1)+OP (ΠNT2).

It is easy to show that ΠNT1 = OP (1)(Ĉ − Co). The derivation of ΠNT2 is the same as that for

A4NT . For A5NT , we have∥∥∥∥∥ 1

NT

N∑
i=1

Hi(θ̂)
′ (MF̂ −MFo) (φi[θo, go]− φi[θ̂, ĝk])

∥∥∥∥∥
≤ ‖PF̂ − PFo‖

NT

N∑
i=1

∥∥∥Hi(θ̂)
∥∥∥ · ∥∥∥φi[θo, go]− φi[θ̂, ĝk]∥∥∥

≤ ‖PF̂ − PFo‖

(
1

NT

N∑
i=1

∥∥∥Hi(θ̂)
∥∥∥2
)1/2(

1

NT

N∑
i=1

∥∥∥φi[θo, go]− φi[θ̂, ĝk]∥∥∥2
)1/2

= OP

(√
k‖PF̂ − PFo‖ · ‖(θo, go)− (θ̂, ĝk)‖w

)
.

Based on the above analysis and after some rearrangement, we then obtain

‖Ĉ − Co‖ = OP

(√
kηNT

)
+OP (k−r/2),

which further implies

‖ĝ − go‖L2 = OP

(√
kηNT

)
+OP (k−r/2).

Then the proof is complete. �

Proofs of the results in Section 4 are similar to those given above, and thus provided in the

supplementary file of this paper.
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In this supplementary document, we provide the proofs of Lemmas A2-A4 and 4.1, and

Theorem 4.1.

Appendix B

Note that when no misunderstanding arises, we may suppress the subscript indexes i and t to

simplify notations. In this supplementary document, ρ1, O(1) and A always denote constants and

may be different at each appearance. Due to the identification restrictions given in Assumption

1.4, we have 1
T ‖F‖

2 = m, which will be repeatedly used in the following analysis. Throughout

this supplementary document, ηNT = 1
min{

√
N,
√
T} as defined in Lemma 3.1 of the main text.

Proofs of Section 3

Lemma A2. Let φi[θ, g] = (g(x′i1θ), . . . , g(x′iT θ))
′ with i = 1, . . . , N . We consider the following

limits on 3-fold Cartesian product space formed by Θ × =1 ×DF . Under Assumptions 1 and 2,

as (N,T )→ (∞,∞),

1. sup(θ,g) |LNT (θ, g)− L(θ, g)| = oP (1), where L(θ, g) is defined in Assumption 2 and

LNT (θ, g) =
1

NT

N∑
i=1

(φi [θ, g]− φi[θo, go])′MFo (φi [θ, g]− φi[θo, go]) ;

2. supF

∥∥∥ 1
NT

∑N
i=1 ε

′
iPF εi

∥∥∥ = oP (1);
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3. supF

∥∥∥ 1
NT

∑N
i=1 γ

′
o,iF

′
oMF εi

∥∥∥ = oP (1);

4. sup(θ,g,F )

∥∥∥ 1
NT

∑N
i=1 φi[θ, g]′MF εi

∥∥∥ = oP (1);

5. sup(θ,F )

∥∥∥ 1
NT

∑N
i=1 φi[θ, δo,k]

′MF εi

∥∥∥ = oP (1);

6. sup(θ,F )

∥∥∥ 1
NT

∑N
i=1 φi[θ, δo,k]

′MFφi[θ, δo,k]
∥∥∥ = oP (1);

7. sup(θ,F )

∥∥∥ 1
NT

∑N
i=1 φi[θ, δo,k]

′MFFoγo,i

∥∥∥ = oP (1);

8. sup(θ1,θ2,g,F )

∥∥∥ 1
NT

∑N
i=1 φi[θ1, δo,k]

′MFφi[θ2, g]
∥∥∥ = oP (1);

9. 1
NT

∑N
i=1

∑T
t=1 ε

2
it = σ2

ε +OP

(
1√
NT

)
;

10. sup(θ,g)

∥∥∥ 1
NT

∑N
i=1

∑T
t=1

(
g(1)(x′itθ)

)2
xitx

′
it − E

[(
g(1)(x′11θ)

)2
x11x

′
11

]∥∥∥ = oP (1);

11. sup(θ,g)

∥∥∥ 1
NT

∑N
i=1

∑T
t=1 εitg

(2)(x′itθ)xitx
′
it

∥∥∥ = oP (1);

12. supF

∣∣∣ 1
NT

∑N
i=1(φi[θo, go]− φi[θ, g])′MFFoγo,i

∣∣∣ = OP (‖(θo, go)− (θ, g)‖w) for ∀(θ, g) in a suf-

ficient small neighborhood of (θo, go).

In addition, assume that Assumption 4 holds for the following results. Then

13. sup(θ,F )

∥∥∥ 1
NT

∑N
i=1Hi(θ)′MF εi

∥∥∥ = OP (
√
kηNT ), where Hi(θ) = (H(x′i1θ), . . . ,H(x′iT θ))

′ for

i = 1, . . . , N ;

14. supθ

∥∥∥ 1
NT

∑N
i=1Hi(θ)′MFoHi(θ)−Υ(θ)

∥∥∥ = oP (1), where Hi(θ) = (H(x′i1θ), . . . ,H(x′iT θ))
′

for i = 1, . . . , N .

Proof of Lemma A2:

(1). In what follows, we use Lemma A2 of Newey and Powell (2003) to prove this lemma.

Write

LNT (θ, g) =
1

NT

N∑
i=1

T∑
t=1

[∆g(x′itθ)]
2 − 1

N

N∑
i=1

A′iT

(
1

T
F ′oFo

)−1

AiT

:= L1NT − L2NT ,

where AiT = 1
T

∑T
t=1 ∆g(x′itθ)fo,t with ∆g(x′itθ) = g(x′itθ)−go(x′itθo), and the definitions of L1NT

and L2NT are obvious.

We start with L1NT .

Step 1: By Assumptions 1.4 and 2.2, we know that Θ × =1 is a compact set with respect to

norm ‖ · ‖w.
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Step 2: We now prove that for ∀(θ, g) ∈ Θ × =1, L1NT (θ, g) →P L1(θ, g), where L1(θ, g) =

E[∆g(x′11θ)]
2. Write

E |L1NT (θ, g)− L1(θ, g)|2

=
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E
{[

∆g(x′itθ)
2 − L1(θ, g)

] [
∆g(x′jsθ)

2 − L1(θ, g)
]}

≤ O(1)
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

cν1 (αij(|t− s|))ν1/(4+ν1)

(
E
[(
go(x

′
itθo)− g(x′itθ)

)4+ν1
]
· E
[(
go(x

′
jsθo)− g(x′itθ)

)4+ν1
])2/(4+ν1)

≤ O(1)
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

(αij(|t− s|))ν1/(4+ν1) = O

(
1

NT

)
, (1)

where cν1 = 2(4+2ν1)/(4+ν1) · (4 + ν1)/ν1; the first inequality is due to the Davydov inequality;

and the second inequality follows from the fact that g is uniformly bounded. Therefore, we have

proved that, for ∀(θ, g) ∈ Θ×=1, L1NT (θ, g) = L1(θ, g) +OP

(
1√
NT

)
.

Step 3: By Step 2, for ∀(θ1, g1), (θ2, g2) ∈ Θ×=1, we can write

|L1NT (θ1, g1)− L1NT (θ2, g2)| = (1 + oP (1)) · |L1(θ1, g1)− L1(θ2, g2)| . (2)

To verify the third condition of Lemma A2 of Newey and Powell (2003), we just need to prove

|L1(θ1, g1)− L1(θ2, g2)| ≤ O(1) · ‖(θ1, g1)− (θ2, g2)‖w.

Thus, write

|L1(θ1, g1)− L1(θ2, g2)| ≤ |L1(θ1, g1)− L1(θ1, g2)|+ |L1(θ1, g2)− L1(θ2, g2)| . (3)

For the first term on right hand side (RHS) of (3), write

|L1(θ1, g1)− L1(θ1, g2)|

=
∣∣∣E [(go(x′θo)− g1(x′θ1)

)2 − (go(x′θo)− g2(x′θ1)
)2]∣∣∣

=
∣∣E [(g2(x′θ1)− g1(x′θ1)

)
·
(
2go(x

′θo)− g1(x′θ1)− g2(x′θ1)
)]∣∣

≤
{
E
[
g2(x′θ1)− g1(x′θ1)

]2 · E [2go(x′θo)− g1(x′θ1)− g2(x′θ1)
]2}1/2

,

where the inequality follows from Cauchy-Schwarz inequality. We then focus on

E
[
g2(x′θ1)− g1(x′θ1)

]2
and E

[
2go(x

′θo)− g1(x′θ1)− g2(x′θ1)
]2

respectively. For E [g2(x′θ1)− g1(x′θ1)]2, write

3



E
[
g2(x′θ1)− g1(x′θ1)

]2
=

∫
(g1(w)− g2(w))2fθ1(w)dw

≤ O(1)

∫
(g1(w)− g2(w))2dw = O(1)‖g1 − g2‖2L2 ,

where fθ1 defines the density function of z = x′θ1; and the inequality follows from Assumption

2.1. Also, note that

E[g(x′θ)]2 =

∫
(g(w))2fθ(w)dw ≤ O(1)

∫
(g(w))2dw = O(1)‖g‖2L2 ≤ O(1)

uniformly, where fθ(w) defines the density function of z = x′θ; the first inequality follows from

Assumption 2.1; and the last inequality follows from the fact that =1 is a compact set. Thus, we

have

E
[
2go(x

′θo)− g2(x′θ1)− g1(x′θ1)
]2 ≤ 8E

[
go(x

′θo)
]2

+ 4E
[
g2(x′θ1)

]2
+ 4E

[
g1(x′θ1)

]2 ≤ O(1)

uniformly. Hence, we have shown

|L1(θ1, g1)− L1(θ1, g2)| ≤ O(1)‖g1 − g2‖L2 . (4)

We now consider the second term on RHS of (3).

|L1(θ1, g2)− L1(θ2, g2)|

=
∣∣∣E [(go(x′θo)− g2(x′θ1)

)2 − (go(x′θo)− g2(x′θ2)
)2]∣∣∣

=
∣∣E [(g2(x′θ2)− g2(x′θ1)

)
·
(
2go(x

′θo)− g2(x′θ1)− g2(x′θ2)
)]∣∣

≤
{
E
[
g2(x′θ2)− g2(x′θ1)

]2 · E [2go(x′θo)− g2(x′θ1)− g2(x′θ2)
]2}1/2

.

Applying the same procedure as above, it is easy to show E [2go(x
′θo)− g2(x′θ1)− g2(x′θ2)]2 is

bounded uniformly on Θ×=1, so we just need to focus on E [g2(x′θ2)− g2(x′θ1)]2. Write

E
[
g2(x′θ2)− g2(x′θ1)

]2
= E

[
(θ2 − θ1)′xx′(θ2 − θ1)

{
g

(1)
2 (x′θ∗)

}2
]

≤ ‖θ2 − θ1‖2E
[
‖x‖g(1)

2 (x′θ∗)
]2
≤ O(1)‖θ2 − θ1‖2E‖x‖2 ≤ O(1)‖θ2 − θ1‖2,

where θ∗ lies between θ1 and θ2; and the second inequality follows from Assumption 2.1. Then

we know

|L1(θ1, g2)− L1(θ2, g2)| ≤ O(1)‖θ2 − θ1‖. (5)

By (2)-(5), we immediately obtain

|L1NT (θ1, g1)− L1NT (θ2, g2)| ≤ OP (1) ‖(θ1, g1)− (θ2, g2)‖w ,

4



which verifies the third condition of Lemma A2 of Newey and Powell (2003).

Based on Steps 1-3, we have shown that L1NT (θ, g)→P L1(θ, g) uniformly in (θ, g).

Similarly, we can show that L2NT →P E[∆g(x′11θ)f
′
o,1]Σ−1

F E[∆g(x′11θ)fo,1] uniformly in (θ, g).

Then the proof is complete.

(2). Write

1

NT

N∑
i=1

ε′iPF εi =
1

NT
tr
(
PF ε

′ε
)
≤ 1

NT
‖ε‖2sp tr (PF )

=
m

NT
OP (max{N,T}) = OP (max{N−1, T−1}) uniformly in F.

The proof is then complete.

(3). Write∣∣∣∣∣ 1

NT

N∑
i=1

γ′o,iF
′
oMF εi

∣∣∣∣∣ =

∣∣∣∣ 1

NT
tr
(
F ′oMF ε

′Γo
)∣∣∣∣ ≤ m

NT

∥∥F ′oMF ε
′Γo
∥∥

sp

≤ m

NT
‖Fo‖sp ‖MF ‖sp ‖ε‖sp ‖Γo‖sp

=
m

NT
OP (
√
T ) · 1 ·OP (max{

√
N,
√
T})OP (

√
N)

= OP (ηNT ),

uniformly in F , where the first inequality follows from the fact that |tr (A)| ≤rank(A) ‖A‖sp.

(4). Let Φ ≡ Φ (θ, g) ≡ (φ1 [θ, g] , . . . , φN [θ, g])′. Write∣∣∣∣∣ 1

NT

N∑
i=1

φi [θ, g]′MF εi

∣∣∣∣∣ =
1

NT

∣∣tr (ε′Φ)− tr
(
PF ε

′Φ
)∣∣

≤ 1

NT

{
‖ε‖sp ‖Φ‖+m ‖PF ‖sp ‖ε‖sp ‖Φ‖

}
≤ 1

NT
OP (max{

√
N,
√
T})OP (

√
NT )

= OP (ηNT )

uniformly, provided that ‖Φ (θ, g)‖ = OP (
√
NT ) uniformly in (θ, g), which can be easily verified

by following similar arguments as used in the proof of (1) of this lemma.

(5). Let ∆ (θ) = (δ1 (θ) , . . . , δN (θ))′, where δi (θ) = (δo,k (x′i1θ) , . . . , δo,k (x′iT θ))
′. The proof is

similar to that of (4) except that we need to use the fact that

1

NT
‖∆ (θ)‖2 =

1

NT

N∑
i=1

T∑
t=1

δ2
o,k

(
x′itθ

)
= oP (1) ,

uniformly in θ, where the uniform result follows from Assumption 2.1, (3) of Lemma A1 and

Lemma A2 of Newey and Powell (2003).
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(6). Applying a procedure similar to that used for (5), we have∣∣∣∣∣ 1

NT

N∑
i=1

φi [θ, δo,k]
′MFφi [θ, δo,k]

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

NT

N∑
i=1

φi [θ, δo,k]
′ φi [θ, δo,k]

∣∣∣∣∣
=

1

NT
‖∆ (θ)‖2 = oP (1) ,

uniformly, where ∆(θ) is defined in (5) of this lemma.

(7). Let Φk (θ) = (φ1 [θ, δo,k] , . . . , φN [θ, δo,k])
′.∣∣∣∣∣ 1

NT

N∑
i=1

φi [θ, δo,k]
′MFFoγo,i

∣∣∣∣∣ =

∣∣∣∣ 1

NT
tr
(
MFFoΓ

′
oΦk (θ)′

)∣∣∣∣
≤ m

NT
‖MF ‖sp ‖Fo‖sp ‖Γo‖sp ‖Φk (θ)‖sp

=
m

NT
·OP (

√
T )OP (

√
N)oP (

√
NT )

= oP (1) ,

uniformly, where the second equality follows from that 1
NT ‖Φk (θ)‖2sp = oP (1) uniformly in θ as

(5) of this lemma.

(8). By Cauchy-Schwarz inequality, we have

∣∣∣∣∣ 1

NT

N∑
i=1

φi [θ1, δo,k]
′MFφi [θ2, g]

∣∣∣∣∣ ≤
{

1

NT

N∑
i=1

φi [θ1, δo,k]
′MFφi [θ1, δo,k]

}1/2

×

{
1

NT

N∑
i=1

φi [θ2, g]′ φi [θ2, g]

}1/2

= oP (1)OP (1) = oP (1) ,

uniformly, where the first equality follows from the arguments in (4) and (5) of this lemma.

(9). Write

E

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

ε2
it − σ2

ε

∣∣∣∣∣
2

=
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E
{[
ε2
it − σ2

ε

] [
ε2
js − σ2

ε

]}
≤ 1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

cν1 (αij(|t− s|))
ν1

4+ν1 (E|εit|4+ν1)
2

4+ν1 (E|εjs|4+ν1)
2

4+ν1

≤ O(1)
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

(αij(|t− s|))ν1/(4+ν1) = O

(
1

NT

)
,

where cν1 = 2(4+2ν1)/(4+ν1) · (4 + ν1)/ν1; the first inequality is due to the Davydov inequality; and

the second inequality follows from Assumption 1.2. Thus, the result follows.
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(10)-(11). The proofs of these two results are similar to that given for result (1) of this lemma.

(12). By the Cauchy-Schwarz inequality,∣∣∣∣∣ 1

NT

N∑
i=1

(φi[θo, go]− φi[θ, g])′MFFoγo,i

∣∣∣∣∣
≤

{
1

NT

N∑
i=1

(φi[θo, go]− φi[θ, g])′(φi[θo, go]− φi[θ, g])

}1/2{
1

NT

N∑
i=1

γ′o,iF
′
oMFFoγo,i

}1/2

= OP (‖(θo, go)− (θ, g)‖w)OP (1) = OP (‖(θo, go)− (θ, g)‖w),

as 1
NT

∑N
i=1 γ

′
o,iF

′
oMFFoγo,i ≤ 1

NT

∑N
i=1 γ

′
o,iF

′
oFoγo,i = OP (1) by Markov inequality and

E

∣∣∣∣∣ 1

NT

N∑
i=1

(φi[θo, go]− φi[θ, g])′(φi[θo, go]− φi[θ, g])

∣∣∣∣∣
=

1

NT

N∑
i=1

T∑
t=1

E
[
go(x

′
itθo)− g(x′itθ)

]2
= O(‖(θo, go)− (θ, g)‖2w).

(13). Let H[j] ≡ (H1,j(θ), . . . ,HN,j(θ))′, where Hi,j(θ) presents the jth column of Hi(θ) for

j = 1, . . . , k. Write

sup
(θ,F )

∥∥∥∥∥ 1

NT

N∑
i=1

Hi(θ)′MF εi

∥∥∥∥∥ = sup
(θ,F )


k∑
j=1

∣∣∣∣∣ 1

NT

N∑
i=1

H[j]′MF εi

∣∣∣∣∣
2


1/2

= sup
(θ,F )


k∑
j=1

1

N2T 2

∣∣tr (ε′H[j]
)
− tr

(
PF ε

′H[j]
)∣∣2

1/2

≤ sup
(θ,F )


k∑
j=1

2

N2T 2

{
‖ε‖2sp ‖H[j]‖2 +m2 ‖PF ‖2sp ‖ε‖

2
sp ‖H[j]‖2

}
1/2

≤
√
k

NT
OP (max{

√
N,
√
T})OP (

√
NT ) = OP (

√
kηNT ) (6)

uniformly, provided that ‖H[j]‖ = OP (
√
NT ) uniformly by Lemma A1.

Therefore, the result follows.

(14). Write

1

NT

N∑
i=1

Hi(θ)′MFoHi(θ)−Υ(θ)

=
1

NT

N∑
i=1

Hi(θ)′Hi(θ)−Υ1(θ) +
1

NT

N∑
i=1

Hi(θ)′PFoHi(θ)−Υ2(θ).

7



where Υ(θ) = Υ1(θ) + Υ2(θ) is defined in Assumption 4 with Υ1(θ) = E[H(x′11θ)H(x′11θ)
′] and

Υ2(θ) = E[H(x′11θ)f
′
o,1]Σ−1

F E[fo,1H(x′11θ)
′].

Consider 1
NT

∑N
i=1Hi(θ)′Hi(θ)−Υ1(θ) first. Let Υ1,uv(θ) denote the (u, v)th element of Υ1(θ)

and Υ1NT,uv(θ) = 1
NT

∑N
i=1

∑T
t=1 Hu(x′itθ)Hv(x

′
itθ) with 1 ≤ u, v ≤ k, where Hv(w) is denoted in

(3.2) of the main file.

Note that {Hv, v = 0, 1, 2, . . .} is a sequence of known, uniformly bounded and integrable

functions. Thus, following the same procedure as used for proving Theorem 2 of Jennrich (1969)

or (B.10)-(B.18) of Chen et al. (2012), we can show that

sup
θ

∥∥∥∥∥ 1

NT

N∑
i=1

Hu(x′itθ)Hv(x
′
itθ)−Υ1,uv(θ)

∥∥∥∥∥ = OP

(√
ln(NT )

NT

)
= oP (1).

Applying the same procedure as used for (6), we have

sup
θ

∥∥∥∥∥ 1

NT

N∑
i=1

Hi(θ)′Hi(θ)−Υ1(θ)

∥∥∥∥∥ = OP

(√
k2 ln(NT )

NT

)
= oP (1),

where the last equality follows from Assumption 4.2.

Similarly, it is easy to know

sup
θ

∥∥∥∥ 1

T
Hi(θ)′Fo − E[H(x′11θ)f

′
o,1]

∥∥∥∥ = OP

(√
k ln(T )

T

)
= o(1).

Based on the above analysis and Assumption 4.2, the result then follows immediately. �

Lemma A3. Let φi[θ, g] = (g(x′i1θ), . . . , g(x′iT θ))
′ and ψ1i[θ, g] = (g(x′i1θ)xi1, . . . , g(x′iT θ)xiT )′

with i = 1, . . . , N . We consider the following limits on 3-fold Cartesian product space formed by

Θ×=1 ×DF . Under Assumptions 1-3,

1.
∥∥∥ 1
NT

∑N
i=1

∑T
t=1

(
g(1)(x′itθo)− g

(1)
o (x′itθo)

)
xitεit

∥∥∥ = oP

(
1√
NT

)
, as ‖g(1) − g(1)

o ‖L2 = o(1);

2. 1
NT

∑N
i=1

(
ψ1i[θo, g

(1)]− ψ1i[θo, g
(1)
o ]
)′
PFoεi = oP

(
1√
NT

)
, as ‖g(1) − g(1)

o ‖L2 = o(1);

3.
∥∥∥ 1
NT

∑N
i=1 ψ1i[θo, g

(1)
o ]′PT εi

∥∥∥ = oP

(
1√
NT

)
, as ‖PT ‖ = o(1).

Proof of Lemma A3:

(1). Write

E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

(
g(1)(x′itθo)− g(1)

o (x′itθo)
)
xitεit

∥∥∥∥∥
2

=
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E
[(
g(1)(x′itθo)− g(1)

o (x′itθo)
)
xitεit

(
g(1)(x′jsθo)− g(1)

o (x′jsθo)
)
x′jsεjs

]
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≤ 1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

|E[εitεjs]|

{
E
∥∥∥g(1)(x′itθo)− g(1)

o (x′itθo)
∥∥∥4
E‖xit‖4E

∥∥∥g(1)(x′jsθo)− g(1)
o (x′jsθo)

∥∥∥4
E‖xjs‖4

}1/4

≤ O(1)
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

|E[εitεjs]|

{
E
∥∥∥g(1)(x′itθo)− g(1)

o (x′itθo)
∥∥∥2
E
∥∥∥g(1)(x′jsθo)− g(1)

o (x′jsθo)
∥∥∥2
}1/4

≤ O(‖g(1) − g(1)
o ‖L2)

1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

|E[εitεjs]| = O

(
‖g(1) − g(1)

o ‖L2

NT

)
,

where the first inequality is obtained using Cauchy-Schwarz inequality twice; the second inequality

follows from Assumptions 1.2 and 2.1; and the third inequality is obtained by applying a procedure

similar o that used for (1) of Lemma A2.

(2). Write

1

N

N∑
i=1

[
1

T

T∑
t=1

(
g(1)(x′itθo)− g(1)

o (x′itθo)
)
xitf

′
o,t

][
1

T

T∑
t=1

fo,tf
′
o,t

]−1 [
1

T

T∑
t=1

fo,tεit

]

=
1

N

N∑
i=1

[
1

T

T∑
t=1

(
g(1)(x′itθo)− g(1)

o (x′itθo)
)
xitf

′
o,t

] [
Σ−1
F (1 + oP (1))

] [ 1

T

T∑
t=1

fo,tεit

]
.

Then consider the leading term below.

E

∥∥∥∥∥ 1

N

N∑
i=1

[
1

T

T∑
t=1

(
g(1)(x′itθo)− g(1)

o (x′itθo)
)
xitf

′
o,t

]
Σ−1
F

[
1

T

T∑
t=1

fo,tεit

]∥∥∥∥∥
2

=
1

N2

N∑
i=1

N∑
j=1

E

{[
1

T

T∑
t=1

f ′o,tεit

]
Σ−1
F

[
1

T

T∑
t=1

(
g(1)(x′itθo)− g(1)

o (x′itθo)
)
fo,tx

′
it

]
[

1

T

T∑
t=1

(
g(1)(x′jtθo)− g(1)

o (x′jtθo)
)
xjtf

′
o,t

]
Σ−1
F

[
1

T

T∑
t=1

fo,tεjt

]}

≤ 1

N2T 4

N∑
i=1

N∑
j=1

T∑
t1=1

T∑
t2=1

T∑
s1=1

T∑
s2=1

|E [εit1εjt2 ] |

·
∣∣∣E [(g(1)(x′is1θo)− g

(1)
o (x′is1θo)

)
x′is1f

′
o,s1Σ−1

F fo,t1

(
g(1)(x′js2θo)− g

(1)
o (x′js2θo)

)
xjs2f

′
o,s2Σ−1

F fo,t2

]∣∣∣
≤ 1

N2T 4

N∑
i=1

N∑
j=1

T∑
t1=1

T∑
t2=1

T∑
s1=1

T∑
s2=1

|E [εit1εjt2 ] |

·
{
E
[(
g(1)(x′is1θo)− g

(1)
o (x′is1θo)

)(
g(1)(x′js2θo)− g

(1)
o (x′js2θo)

)]2
}1/2
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·
{
E
[
x′is1f

′
o,s1Σ−1

F fo,t1xjs2f
′
o,s2Σ−1

F fo,t2
]2}1/2

≤ o(1)
1

N2T 4

N∑
i=1

N∑
j=1

T∑
t1=1

T∑
t2=1

T∑
s1=1

T∑
s2=1

|E [εit1εjt2 ] | = o

(
1

NT

)
,

where the third inequality follows from Assumptions 2.1 and 3.3; and the last equality is obtained

by applying the same procedure as used for (1) of this supplementary document.

Therefore, the result follows.

(3). Let pts denote the (t, s)th element of PT with 1 ≤ t, s ≤ T . Then write

E

∥∥∥∥∥ 1

NT

N∑
i=1

ψ1i[θo, g
(1)
o ]′PT εi

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

T∑
s=1

g(1)
o (x′itθo)xitptsεis

∥∥∥∥∥
2

=
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t1=1

T∑
s1=1

T∑
t2=1

T∑
s2=1

E
[
g(1)
o (x′it1θo)x

′
it1pt1s1εis1g

(1)
o (x′jt2θo)xjt2pt2s2εjs2

]

≤ O(1)
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t1=1

T∑
s1=1

T∑
t2=1

T∑
s2=1

|E[εis1εjs2 ]|E [‖xit1‖|pt1s1 |‖xjt2‖|pt2s2 |]

≤ O(1)
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t1=1

T∑
s1=1

T∑
t2=1

T∑
s2=1

|E[εis1εjs2 ]|
{
E‖xit1‖4E‖xjt2‖4

}1/4 {
E[|pt1s1 |2|pt2s2 |2]

}1/2

≤ o(1)
1

N2T 2

N∑
i=1

N∑
j=1

T∑
s1=1

T∑
s2=1

|E[εis1εjs2 ]| = o

(
1

NT

)
,

where the first inequality follows from Assumptions 1.3 and 2.1; the second inequality follows from

Cauchy-Schwarz inequality; and the last equality is obtained by applying a procedure similar to

that used for (1) of this file. �

Proofs of Section 4

Lemma A4. Let φi[θ, g] = (g(x′i1θ), . . . , g(x′iT θ))
′ with i = 1, . . . , N . We consider the following

limits on 3-fold Cartesian product space formed by Θ× =2 ×DF . Under Assumptions 1 and 2*,

as (N,T )→ (∞,∞),

1. sup(θ,g) |LNT (θ, g)− L(θ, g)| = oP (1), where L(θ, g) and LNT (θ, g) have the same form as

that defined Lemma A2;

2. supF

∥∥∥ 1
NT

∑N
i=1 ε

′
iPF εi

∥∥∥ = oP (1);

3. supF

∥∥∥ 1
NT

∑N
i=1 γ

′
o,iF

′
oMF εi

∥∥∥ = oP (1);
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4. sup(θ,g,F )

∥∥∥ 1
NT

∑N
i=1 φi[θ, g]′MF εi

∥∥∥ = oP (1);

5. sup(θ,F )

∥∥∥ 1
NT

∑N
i=1 φi[θ, δo,k]

′MF εi

∥∥∥ = oP (1);

6. sup(θ,F )

∥∥∥ 1
NT

∑N
i=1 φi[θ, δo,k]

′MFφi[θ, δo,k]
∥∥∥ = oP (1);

7. sup(θ,F )

∥∥∥ 1
NT

∑N
i=1 φi[θ, δo,k]

′MFFoγo,i

∥∥∥ = oP (1);

8. sup(θ1,θ2,g,F )

∥∥∥ 1
NT

∑N
i=1 φi[θ1, δo,k]

′MFφi[θ2, g]
∥∥∥ = oP (1);

9. 1
NT

∑N
i=1

∑T
t=1 ε

2
it = σ2

ε +OP

(
1√
NT

)
;

10. supF

∣∣∣ 1
NT

∑N
i=1(φi[θo, go]− φi[θ, g])′MFFoγo,i

∣∣∣ = OP (‖(θo, go)− (θ, g)‖w) for ∀(θ, g) in a suf-

ficient small neighbourhood of (θo, go).

Proof of Lemma A4:

(1). In what follows, we use Lemma A2 of Newey and Powell (2003) to prove this lemma.

LNT (θ, g) =
1

NT

N∑
i=1

T∑
t=1

[∆g(x′itθ)]
2 − 1

N

N∑
i=1

A′iT

(
1

T
F ′oFo

)−1

AiT

:= L1NT − L2NT ,

where AiT = 1
T

∑T
t=1 ∆g(x′itθ)fo,t with ∆g(x′itθ) = g(x′itθ)−go(x′itθo); and the definitions of L1NT

and L2NT should are obvious. Note that by Assumption 2*.2, we have, for ∀(θ, g) ∈ Θ × =2,

LNT (θ, g) = L(θ, g) + oP (1).

Step 1: By Assumptions 1.4 and 2*.2, we know that Θ×=2 is a compact set with respect to

norm ‖ · ‖w̃.

Step 2: This step is analogous to Step 2 in the proof of (1) of Lemma A2. In order to

verify the third condition of Lemma A2 of Newey and Powell (2003), we just need to show that

|L(θ1, g1)− L(θ2, g2)| ≤ O(1) · ‖(θ1, g1)− (θ2, g2)‖w̃. Start from L1(θ, g) = E[∆g(x′θ)]2. Write

|L1(θ1, g1)− L1(θ2, g2)| ≤ |L1(θ1, g1)− L1(θ1, g2)|+ |L1(θ1, g2)− L1(θ2, g2)| . (7)

For the first term on right hand side (RHS) of (7), write

|L1(θ1, g1)− L1(θ1, g2)|

=
∣∣∣E [(go(x′θo)− g1(x′θ1)

)2 − (go(x′θo)− g2(x′θ1)
)2]∣∣∣

=
∣∣E [(g2(x′θ1)− g1(x′θ1)

)
·
(
2go(x

′θo)− g1(x′θ1)− g2(x′θ1)
)]∣∣

≤
{
E
[
g2(x′θ1)− g1(x′θ1)

]2 · E [2go(x′θo)− g1(x′θ1)− g2(x′θ1)
]2}1/2

,

where the inequality follows from Cauchy-Schwarz inequality. We then focus on
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E
[
g2(x′θ1)− g1(x′θ1)

]2
and E

[
2go(x

′θo)− g1(x′θ1)− g2(x′θ1)
]2

respectively. For E [g2(x′θ1)− g1(x′θ1)]2, write

E
[
g2(x′θ1)− g1(x′θ1)

]2
=

∫
(g1(w)− g2(w))2fθ1(w)dw

=

∫
(g1(w)− g2(w))2 exp(−w2) · exp(w2)fθ1(w)dw

≤ O(1)

∫
(g1(w)− g2(w))2 exp(−w2)dw = O(1)‖g1 − g2‖2L̃2 ,

where the inequality follows from Assumption 2*.1. For ∀(θ, g) ∈ Θ×=2,

E[g(x′θ)]2 =

∫
(g(w))2fθ(w)dw ≤ O(1)

∫
(g(w))2 exp(−w2)dw = O(1)‖g‖2

L̃2 ≤ O(1),

where the first inequality follows from Assumption 2*.1, and the last inequality follows from =2

being a compact set. Thus, we have

E
[
2go(x

′θo)− g2(x′θ1)− g1(x′θ1)
]2 ≤ 8E

[
go(x

′θo)
]2

+ 4E
[
g2(x′θ1)

]2
+ 4E

[
g1(x′θ1)

]2 ≤ O(1).

Hence, we have shown

|L1(θ1, g1)− L1(θ1, g2)| ≤ O(1)‖g1 − g2‖L̃2 . (8)

We now consider the second term on RHS of (3).

|L1(θ1, g2)− L1(θ2, g2)|

=
∣∣∣E [(go(x′θo)− g2(x′θ1)

)2 − (go(x′θo)− g2(x′θ2)
)2]∣∣∣

=
∣∣E [(g2(x′θ2)− g2(x′θ1)

)
·
(
2go(x

′θo)− g2(x′θ1)− g2(x′θ2)
)]∣∣

≤
{
E
[
g2(x′θ2)− g2(x′θ1)

]2 · E [2go(x′θo)− g2(x′θ1)− g2(x′θ2)
]2}1/2

.

Applying a procedure as above, it is easy to show E [2go(x
′θo)− g2(x′θ1)− g2(x′θ2)]2 is bounded

uniformly on Θ×=2, so we just need to focus on E [g2(x′θ2)− g2(x′θ1)]2. Write

E
[
g2(x′θ2)− g2(x′θ1)

]2
= E

[
(θ2 − θ1)′xx′(θ2 − θ1)

(
g

(1)
2 (x′θ∗)

)2
]

≤ ‖θ2 − θ1‖2E
[
‖x‖g(1)

2 (x′θ∗)
]2
≤ O(1)‖θ2 − θ1‖2,

where θ∗ lies between θ1 and θ2; and the second inequality follows from Assumption 2*.1. Then

we have

|L1(θ1, g2)− L1(θ2, g2)| ≤ O(1)‖θ2 − θ1‖. (9)
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By (7)-(9), we immediately obtain

|L1(θ1, g1)− L1(θ2, g2)| ≤ O(1) ‖(θ1, g1)− (θ2, g2)‖w̃ ,

which verifies the third condition of Lemma A2 of Newey and Powell (2003).

Similarly, we can prove the continuity of L2(θ, g) = E[∆g(x′θ)f ′o]Σ
−1
F E[fo∆g(x′θ)].

With Steps 1 and 2, the proof is complete.

(2)-(9). Noting that 1
NT

∑N
i=1 ‖φi[θ, g]‖2 = O(1) uniformly in (θ, g), we can prove (2)-(9) by

using a procedure similar to that used for Lemma A2.

(10). Write

E

∣∣∣∣∣ 1

NT

N∑
i=1

(φi[θo, go]− φi[θ, g])′MFFoγo,i

∣∣∣∣∣
≤ 1

NT

N∑
i=1

E
[{

(φi[θo, go]− φi[θ, g])′MF (φi[θo, go]− φi[θ, g])
}1/2 {

γ′o,iF
′
oMFFoγo,i

}1/2
]

≤ 1

N

N∑
i=1

E

[{
1

T
(φi[θo, go]− φi[θ, g])′(φi[θo, go]− φi[θ, g])

}1/2{ 1

T
γ′o,iF

′
o Foγo,i

}1/2
]

≤ 1

N

N∑
i=1

{
E

[
1

T
(φi[θo, go]− φi[θ, g])′(φi[θo, go]− φi[θ, g])

]
E

[
1

T
γ′o,iF

′
o Foγo,i

]}1/2

≤

{
1

N

N∑
i=1

E

[
1

T
(φi[θo, go]− φi[θ, g])′(φi[θo, go]− φi[θ, g])

]}1/2{
1

N

N∑
i=1

E

[
1

T
γ′o,iF

′
o Foγo,i

]}1/2

≤ O(1)

{
1

N

N∑
i=1

E

[
1

T
(φi[θo, go]− φi[θ, g])′(φi[θo, go]− φi[θ, g])

]}1/2

≤ O(1)
{
E[go(x

′θo)− g(x′θ)]2
}1/2

= O(‖(θo, go)− (θ, g)‖w),

where the first inequality follows from Exercise 1 of Magnus and Neudecker (2007); the second

inequality follows from the fact λmax(MF ) = 1; the third and forth inequalities follow from

Cauchy-Schwarz inequality; and the last equality follows from the proof of result (1) of this

lemma.

Based on the above discussions, the result follows. �

Proof of Theorem 4.1:

(1). Expanding SNT (θ, C, F )− SNT (θo, Co, Fo), we have

S̃NT (θ, C, F )− S̃NT (θo, Co, Fo)

=
1

NT

N∑
i=1

{
(Yi − φi[θ, gk])′MF (Yi − φi[θ, gk])− (Yi − φi[θo, go,k])′MFo (Yi − φi[θo, go,k])

}
13



=
1

NT

N∑
i=1

{
(Yi − φi[θ, gk])′MF (Yi − φi[θ, gk])− (φi[θo, δo,k] + εi)

′MFo (φi[θo, δo,k] + εi)
}

= S̃NT (θ, C, F )

+
1

NT

N∑
i=1

T∑
s=1

ε′i (MF −MFo) εi +
2

NT

N∑
i=1

γ′o,iF
′
oMF εi +

2

NT

N∑
i=1

(φi[θo, go,k]− φi[θ, gk])′MF εi

+
2

NT

N∑
i=1

φi[θo, δo,k]
′ (MF −MFo) εi +

1

NT

N∑
i=1

T∑
s=1

φi[θo, δo,k]
′ (MF −MFo)φi[θo, δo,k]

+
2

NT

N∑
i=1

(φi[θo, go,k]− φi[θ, gk])′MFφi[θo, δo,k] +
2

NT

N∑
i=1

γ′o,iF
′
oMFφi[θo, δo,k],

where gk is defined in (4.2), go,k and δo,k are defined in (4.3), and

S̃NT (θ, C, F ) =
1

NT

N∑
i=1

(φi[θo, go,k]− φi[θ, gk] + Foγi)
′MF (φi[θo, go,k]− φi[θ, gk] + Foγi) .

By (2)-(9) of Lemma A4, we immediately obtain

S̃NT (θ, C, F )− S̃NT (θo, Co, Fo) = S̃NT (θ, C, F ) + oP (1). (10)

Let bi = φi[θ, gk] − φi[θo, go,k] and b = (b′1, . . . , b
′
N )′ . As in the proof of Lemma A4, we can

readily argue that (NT )−1b′b = O (1) uniformly in (θ, C) . Let η =vec(MFFo) , A1 = IN ⊗MF ,

A2 = (Γ′oΓo)⊗ IT , and A3 = (γo,1 ⊗ IT , . . . , γo,N ⊗ IT ). Then

S̃NT (θ, C, F ) =
1

NT

N∑
i=1

b′iMF bi +
1

NT

N∑
i=1

γ′o,iF
′
oMFFoγo,i −

2

NT

N∑
i=1

b′iMFFoγo,i

=
1

NT

N∑
i=1

b′iMF bi +
1

NT
tr
(
MFFoΓ

′
oΓoF

′
oMF

)
− 2

NT

N∑
i=1

tr
(
MFFoγo,ib

′
i

)
=

1

NT
b′A1b+

1

NT
η′A2η −

2

NT
η′

N∑
i=1

(γo,i ⊗ IT ) bi

=
1

NT
b′A1b+

1

NT
η′A2η −

2

NT
b′A′3η

=
1

NT
b′A1b+

1

NT
ϑ′A2ϑ−

1

NT
b′A′3A

−1
2 A3b, (11)

where ϑ = η −A−1
2 A3b, and the third equality follows from the fact that

tr (B1B2B3) = vec (B1)′ (B2 ⊗ I) vec
(
B′3
)

and tr (B1B2B3B4) = vec (B1)′
(
B2 ⊗B′4

)
vec
(
B′3
)

for any conformable matrices B1, B2, B3, B4 and an identity matrix I (see, e.g., Bernstein (2009,

p. 253)). We now argue that the last term in (11) is oP (1) uniformly in b. Observe that

14



(NT )−1b′A′3A
−1
2 A3b ≤ λmax

(
A′3A

−1
2 A3

)
(NT )−1b′b = oP (1) for any (NT )−1b′b = O (1) provided

λmax

(
A′3A

−1
2 A3

)
= oP (1) . Note that λmax

(
A′3A

−1
2 A3

)
≤ [λmin (A2/N)]−1 λmax

(
N−1A′3A3

)
=

c−1
Γ λmax

(
N−1A′3A3

)
where c−1

Γ ≡ [λmin (Γ′oΓo/N)]−1 = OP (1) . Define the upper block-triangular

matrix

C1 =


γ′o,1γo,1IT γ′o,1γo,2IT · · · γ′o,1γo,NIT

0 γ′o,2γo,2IT · · · γ′o,2γo,NIT
...

...
. . .

...

0 0 · · · γ′o,Nγo,NIT

 .

Noting that the NT × NT matrix A′3A3 has a typical T × T block submatrix T−1γ′o,iγo,jIT , we

have A′3A3 = C1 + C ′1 − Cd where Cd =diag(γ′o,1γo,1IT , . . . , γ
′
o,Nγo,NIT ). By the fact that the

eigenvalues of a block upper/lower triangular matrix are the combined eigenvalues of its diagonal

block matrices, Weyl’s inequality, and Assumption 1.4, we have

λmax

(
N−1A′3A3

)
≤ N−1 {2λmax (C1)− λmin(Cd)} ≤ 2N−1 max

1≤i≤N
‖γo,i‖2

= N−1oP (N1/2) = oP (1), (12)

where the first equality follows from the fact that max1≤i≤N ‖γo,i‖2 = oP (N1/2) under Assumption

1.4 by the Markov inequality. It follows that λmax

(
A′3A

−1
2 A3

)
= oP (1) and 1

NT b
′A′3A

−1
2 A3b =

oP (1) uniformly in b. This, in conjunction with (10)-(11) and the fact that SNT (θ̂, Ĉ, F̂ ) −
SNT (θo, Co, Fo) ≤ 0, implies that

(NT )−1 b̂′Â1b̂ = (NT )−1
N∑
i=1

b̂′iMF̂ b̂i = oP (1) , (13)

where Â1 = IN ⊗MF̂ , b̂ = (b̂′1, . . . , b̂
′
N )′, and b̂i = φi[θ̂, ĝk]− φi[θo, go,k].

By (10), (11), (13), and the Cauchy-Schwarz inequality, we have

0 ≥ S̃NT (θ̂, Ĉ, F̂ )− S̃NT (θo, Co, Fo)

=
1

NT
b̂′Â1b̂+

1

NT
tr
[(
F ′oMF̂Fo

) (
Γ′oΓo

)]
− 2

NT

N∑
i=1

b̂′iMF̂Foγo,i + oP (1)

≥ 1

N
b̂′Â1b̂+

1

NT
tr
[(
F ′oMF̂Fo

) (
Γ′oΓo

)]
−2

{
1

N
b̂′Â1b̂

}1/2{ 1

NT
tr
[(
F ′oMF̂Fo

) (
Γ′oΓo

)]}1/2

+ oP (1)

= oP (1) +
1

NT
tr
[(
F ′oMF̂Fo

) (
Γ′oΓo

)]
− 2oP (1)

{
1

NT
tr
[(
F ′oMF̂Fo

) (
Γ′oΓo

)]}1/2

.
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It follows that 1
NT tr

[(
F ′oMF̂Fo

)
(Γ′oΓo)

]
= oP (1) . As in Bai (2009, p.1265), this further implies

that 1
T tr
(
F ′oMF̂Fo

)
= oP (1), 1

T F̂
′Fo is invertible, and

∥∥PF̂ − PFo∥∥ = oP (1) .

(2). By (13) and noting that∣∣∣∣∣(NT )−1
N∑
i=1

b̂′i
(
MFo −MF̂

)
b̂i

∣∣∣∣∣ ≤ ∥∥PF̂ − PFo∥∥ (NT )−1
N∑
i=1

b̂′ib̂i = oP (1) ,

we have

oP (1) = (NT )−1
N∑
i=1

b̂′iMF̂ b̂i = (NT )−1
N∑
i=1

b̂′iMFo b̂i − oP (1) .

Then (NT )−1∑N
i=1 b̂

′
iMFo b̂i = oP (1) . Noting b̂i = φi[θ̂, ĝk]−φi[θo, go,k] =

(
φi[θ̂, ĝk]− φi[θo, go]

)
+

φi[θo, δo,k], we have

oP (1) = (NT )−1
N∑
i=1

b̂′iMFo b̂i

= (NT )−1
N∑
i=1

(
φi[θ̂, ĝk]− φi[θo, go]

)′
MFo

(
φi[θ̂, ĝk]− φi[θo, go]

)
+ (NT )−1

N∑
i=1

(
φi[θ̂, ĝk]− φi[θo, go]

)′
MFoφi[θo, δo,k]

+ (NT )−1
N∑
i=1

(φi[θo, δo,k])
′MFo (φi[θo, δo,k])

= (NT )−1
N∑
i=1

(
φi[θ̂, ĝk]− φi[θo, go]

)′
MFo

(
φi[θ̂, ĝk]− φi[θo, go]

)
+ oP (1)

= L(θ̂, ĝk) + oP (1)

where the third equality follows from (6) and (8) of Lemma A4; and the fourth equality follows

from (1) of Lemma A4. Consequently, L(θ̂, ĝk) = oP (1) .

Note that we have shown L(θ, g) is continuous with respect to ‖ · ‖w̃ on Θ×=2 in the proof of

(1) of Lemma A4, which indicates that, for ∀(θ, C) satisfying ‖(θ, C)− (θo, Co)‖ ≥ ε > 0, we have

L (θ, gk) does not converge to zero for gk (·) = C ′H (·). In other words, if ‖(θ̂, ĝk)−(θo, go)‖w̃ 6→P 0,

we have L(θ̂, ĝk) 6= oP (1). See Bai (2009, p. 1265) and Newey and Powell (2003, p. 1576) for a

similar argument. Therefore, we have proved ‖(θ̂, ĝk)− (θo, go)‖w̃ →P 0.

The proof is now complete. �

Proof of Lemma 4.1:

The proof is similar to that given for Lemma 3.1, thus is omitted. �
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