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• We propose a novel martingale-difference-divergence-based test for specification.
• The test does not require any nonparametric estimation.
• The test is applicable even if we have many covariates in the regression model.
• The test has superb finite sample performance and dominates its competitors.
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a b s t r a c t

In this paper we propose a novel consistent model specification test based on the martingale difference
divergence (MDD) of the error term given the covariates. The MDD equals zero if and only if error term
is conditionally mean independent of the covariates. Our MDD test does not require any nonparametric
estimation under the alternative and it is applicable even if we have many covariates in the regression
model. We establish the asymptotic distributions of our test statistic under the null and a sequence of
Pitman local alternatives converging to the null at the usual parametric rate. Simulations suggest that
our MDD test has superb performance in terms of both size and power and it generally dominates several
competitors. In particular, it is the only test that haswell controlled size in the presence ofmany covariates
and reasonable power against high frequency alternatives as well.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we propose a new test for the correct specifica-
tion of a parametric conditional mean model based on a variant
of the martingale difference divergence (MDD hereafter) measure
of conditional mean dependence between two random variables.
In a sequence of papers, Székely et al. (2007), Székely and Rizzo
(2009) and Székely and Rizzo (2014) propose to use distance co-
variance and distance correlation to measure the dependence be-
tween two random vectors which exhibit various nice properties.
Such measures have been explored for feature screening in high
dimensional regressions; see, e.g., Li et al. (2012). When one of the

✩ Su gratefully acknowledges the Lee Kong Chian Fund for Excellence.
∗ Correspondence to: School of Economics, Singapore Management University,

90 Stamford Road, Singapore 178903, Singapore.
E-mail address: ljsu@smu.edu.sg (L. Su).

two random variables is a scalar, Shao and Zhang (2014, SZ here-
after) propose to use MDD to measure the conditional mean de-
pendence of the scalar random variable given a random vector (see
the definition of MDD in (2.4) in the next section). Like the rela-
tionship between covariance and correlation, the MDD can also be
rescaled to ensure that it lies between 0 and 1, yielding themartin-
gale difference correlation (MDC) measure of a scalar variable given
a random vector. MDD measures the departure of the conditional
mean independence between a scalar response variable and a vec-
tor of covariates, which is a natural extension of the distance cor-
relation measure proposed by Székely et al. (2007). MDD andMDC
havemany nice properties. First, both of them are nonnegative and
equal zero if and only if the scalar response variable is condition-
ally mean independent of the covariates. This suggests that we can
propose a test for the conditional mean independence hypothe-
sis which is widely used in econometrics and statistics. Second,
both measures have a closed-form formula that is only involved
with certain expectation and norm calculations so that they can be

http://dx.doi.org/10.1016/j.econlet.2017.05.002
0165-1765/© 2017 Elsevier B.V. All rights reserved.
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easily estimated from the data based on the sample analogue prin-
ciple. Third, the measures are dimension-free in the sense that the
dimension of the conditioning variable is allowed to be large but fi-
nite. Indeed, SZ useMDC as amethod to conduct high-dimensional
variable selection to screen out variables that do not contribute to
the conditional mean of the response variable given the covariates.

One drawback of SZ’s original MDD and MDC measure is that
when they are used for variable screening, both the response
variable and covariates need to be observed. Therefore, we propose
a variant of MDD that is used to measure the conditional mean
independence of a scalar random error term given the covariates.
With this variant, we propose a new consistent test for the null
hypothesis that a parametric conditional mean model is correctly
specified. Under the null hypothesis, the error term from the
correctly specifiedmodel is conditionallymean independent of the
regressors in the model and has mean zero. Since the error term
is not observed, we propose to estimate it from the null model
and construct a test statistic based on the sample analogue of this
new MDD measure. We study the asymptotic distributions of the
test statistic under the null and under a sequence of Pitman local
alternatives. Our test shares many nice properties that a typical
nonsmoothing testmight have. First, its limiting distribution under
the null is a mixture of central chi-square distributions that is not
asymptotically pivotal. So we propose a wild bootstrap method to
obtain the bootstrap p-value or critical value. Second, our test has
nontrivial asymptotic power against local alternatives converging
to the null at the usual parametric rate. More importantly,
our test is free of the choice of any smoothing parameter
(e.g., the bandwidth in kernel-based tests or the number of sieve
approximating terms in sieve-based tests) and it does not suffer
from the curse of dimensionality associated with kernel- or sieve-
based tests. In principle, our test works for any finite dimensional
regressionproblemwhere the number of covariates, q, can be large.
But for the derivation of our asymptotic distribution theory, we
still need restrict q to be fixed. We conduct some Monte Carlo
simulations and compare our test with some popular tests in the
literature. Our simulation results indicate that ourMDD-based test
generally outperforms its competitors, especially for the case of
high frequency alternatives and for the case of many covariates
(e.g., q = 10, 20). To the best of our knowledge, this paper is the
first to consider consistentmodel specification test in the presence
of many covariates where existing tests tend to fail due to the
notorious curse of dimensionality.

The rest of the paper is organized as follows. We introduce
the hypotheses and the test statistic in Section 2. We study
the asymptotic distributions of the test statistic under the null
hypothesis and under a sequence of Pitman local alternatives in
Section 3. We compare the MDD test with several popular tests
throughMonte Carlo simulations in Section 4. Section 5 concludes.
The proofs of all results are relegated to the online supplementary
Appendix.

Notation. For any matrix or vector A, ∥A∥ denotes its Euclidean
norm. The operators

p
→ and

d
→ denote convergence in probability

and distribution, respectively.

2. The hypotheses and statistic

In this section we state the hypotheses and introduce the test
statistic.

2.1. The hypotheses

We consider the following parametric regression model

Yi = g(Xi; β) + εi, i = 1, . . . , n, (2.1)

where Yi is a scalar dependent variable, Xi is a q × 1 vector of
covariates, β is a d × 1 vector of unknown parameters, and εi is
the unobserved error term. We assume that the functional form of
g(·; ·) is known up to the finite dimensional parameter β . We are
interested in testing the correct specification of g(·; ·). That is, we
test the null hypothesis

H0 : P {E(Yi|Xi) = g(Xi; β0)} = 1 for some β0 ∈ B (2.2)

versus the alternative hypothesis

H1 : P {E(Yi|Xi) = g(Xi; β)} < 1 for all β ∈ B, (2.3)

where B is the parameter space.

2.2. Test statistic

To motivate our test statistic, we follow SZ and consider the
MDD of ε given X whose square is defined by

MDD (ε|X)2 =


Rq

E 
ε exp(is′X)


− E (ε) E


exp(is′X)

2
×W (s)ds, (2.4)

where i =
√

−1, W (s) =
1

cq∥s∥(1+q) , cq =
π (1+q)/2

Γ ((1+q)/2) , and Γ (·) is

the complete gamma function: Γ (z) =


∞

0 tz−1 exp (−t) dt . Let
εĎ, XĎ


be an independent copy of (ε, X). By Theorem 1 in SZ, we

have

MDD (ε|X)2 = −E

[ε − E (ε)]


εĎ − E


εĎ

 X − XĎ


, (2.5)

and MDD (ε|X)2 = 0 if and only if E (ε|X) = E (ε).
In our setup, ε denotes the error term in a regression such that

E (ε) = 0 is always maintained. This motivates us to consider the
following variant of MDD (ε|X)2

MDD∗ (ε|X)2 = −E

εεĎ

X − XĎ


+ 2E

ε
X − XĎ


E


εĎ


. (2.6)

The followingproposition establishes theproperties ofMDD∗ (ε|X)2

that serve as the basis of our test statistic.

Proposition 2.1. Let

εĎ, XĎ


be an independent copy of (ε, X),

where ε is a scalar random variable and X is a q × 1 random vector.
Suppose that 0 < E


ε2


< ∞ and 0 < E[∥X∥

2
] < ∞. Then

(i) MDD∗ (ε|X)2 ≥ 0;
(ii) MDD∗ (ε|X)2 = 0 if and only if E(ε|X) = 0 almost surely (a.s.).

An important implication of Proposition 2.1 is that we can test
(2.2) by testing whether MDD∗ (εi|Xi)

2
= 0, where εi = Yi −

g(Xi; β0). In practice, εi is not observed. We propose to estimate
the model (2.1) by the nonlinear least squares (NLS) to obtain the
NLS estimator β̂ ofβ . Let ε̂i = Yi−g(Xi; β̂).We propose to estimate
nMDD∗ (ε|X)2 by the following object

Tn = −
1
n

 
1≤i≠j≤n

ε̂iε̂jκi,j +
2
n

 
1≤i≠j≤n

ε̂iκi,j
1
n

n
k=1

ε̂k, (2.7)

where κi,j ≡ ∥Xi − Xj∥. In the special case where g(Xi; β) is linear
in Xi and β , i.e., g(Xi; β) =


1, X ′

i


β , we have

n
i=1 ε̂i = 0 and

Tn = −
1
n

 
1≤i≠j≤n

ε̂iε̂jκi,j ≡ T ℓ
n . (2.8)

Other than this case,
n

i=1 ε̂i is generally nonzero and second term
in (2.7) is necessary.
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Remark 1. Interestingly, MDD (ε|X)2 in (2.4) is closely related
to Bierens’ (1982) and Bierens and Ploberger’s (1997) integrated
conditional moment (ICM) test that takes the form

B =


Rq

E 
ε exp(is′Φ(X))

2 WB(s)ds, (2.9)

whereWB(·) is a nonnegative weight function andΦ(·) : Rq
→ Rq

is a smooth function. But this test requires the delicate choices of
both WB and Φ and may not be tractable in practice; see Bierens
(1990) and Bierens and Ploberger (1997). When E (ε) = 0, we can
also write B as

B∗
=


Rq

E 
ε exp(is′Φ(X))


− E (ε) E


exp(is′Φ(X))

2 WB(s)ds. (2.10)

Apparently, B∗
= MDD (ε|X)2 by choosingΦ(X) = X andWB(s) =

W (s). In this case, we can regard MDD (ε|X)2 as a special example
of B. As a result, our test is tied closely to Bierens’ ICM test as a
nonsmoothing test.

Interestingly, as a referee kindly points out, our test can be
regarded as a nonsmoothing version of Zheng’s (1996) and Li and
Wang’s (1998) kernel-based smoothing test. There are two major
differences between our test and theirs. First, we use the weigh
function κi,j in (2.7) whereas Zheng’s and Li and Wang’s tests use
the kernel weight functions. Second, we have the second term in
(2.7) which enforces E (ε) = 0 while the latter tests do not require
this term. This is simply because our test is based on the fact that
E (ε|X) = E (ε) and that E (ε) = 0 under the null while existing
tests are based on E (ε|X) = 0 directly. In fact, Fan and Li (2000)
conclude that the smoothing tests in Härdle and Mammen (1993),
Zheng (1996), and Li andWang (1998) are also closely related to the
ICM test, although they are developed from completely different
ideas. For more details, see Fan and Li (2000).

3. Asymptotic properties

In this section we study the asymptotic properties of Tn
under the null hypothesis and under a sequence of Pitman local
alternatives.

3.1. Basic assumptions

To facilitate the study of the local power property of our
test, we consider the triangular array {(Yin, Xin, εin) , i =

1, . . . , n}. Let Qn (β) =
1
n

n
i=1 [Yin − g(Xin; β)]2 and Q (β) =

limn→∞ E[Yin − g(Xin; β)]2. Let giβ(β) ≡ ∂g(Xin; β)/∂β , and
S (β) ≡ limn→∞ E


giβ(β)giβ(β)′


. Frequently we suppress the

dependence of (Yin, Xin, εin) on n.
We make the following assumptions.

Assumption A.1. (Yin, Xin) , i = 1, 2, . . . , n, are independently
and identically distributed (IID).

Assumption A.2. The NLS estimator β̂ has the following represen-
tation

β̂ − β0 = S−1 1
n

n
i=1

giβεi + oP

n−1/2 ,

where giβ = giβ(β0) and S = S (β0) is positive definite. There

exists a constant C ∈ (0, ∞) such that E
giβg ′

iβε2
i

 < C .

Assumption A.3. (i) There exists a constant C ∈ (0, ∞) such
that E


ε4
i


≤ C and E ∥Xi∥

4
≤ C .

(ii) There exists a positive definite matrix H such that

sup
β∈Nϵn (β0)

1
n

n
i=1

∂2g(Xin; β)

∂β∂β ′
− H

 = oP (1) ,

where Nϵ (β0) = {β ∈ B : ∥β − β0∥ ≤ ϵ} and ϵn = o (1).
(iii) 1

n

n
i=1 giβ

p
→ S0, 1

n2
n

i=1
n

j=1 E

giβκi,j

 p
→ S1, and

1
n2

n
i=1

n
j=1 giβg

′

jβκi,j
p

→ S2, where S0 = limn→∞
1
n

n
i=1

E

giβ


, S1 = limn→∞

1
n2

n
i=1

n
j=1 E


giβκi,j


, and S2 =

limn→∞
1
n2

n
i=1

n
j=1 E


giβg ′

jβκi,j


.

We assume that the observations are IID in Assumption A.1 to
facilitate the asymptotic analysis.We conjecture that our result be-
low can be extended to allow forweakly dependent time series ob-
servations but restrict ourselves to IID observations for simplicity.
Assumption A.2 requires β̂ follow a Bahadur representation with
certain well behaved influence function. One can verify A.2 under
some primitive conditions given in the literature; see, e.g., Jennrich
(1969), Wu (1981), and Amemiya (1985). Assumption A.3 imposes
some additional conditions to study the asymptotic distribution of
our test statistics. Assumption A.3(i) imposes some moment con-
ditions for Xin and εin; Assumption A.3(ii) imposes uniform conver-
gence of the Hessian function in the neighborhood of β0; Assump-
tion A.3(iii) imposes some convergence conditions associated with
giβ .

3.1.1. Asymptotic distribution under the null
The following theorem reports the asymptotic distribution of

Tn.

Theorem 3.1. Suppose that Assumptions A.1–A.3 hold. Then under
H0 we have as n → ∞,

Tn
d

→

∞
ν=1

λνz2ν ,

where zν ’s are IID N (0, 1) , λν ’s are the eigenvalues of the integral
equation

∞

−∞

ε2
2h(X1, X2)fν(X2)dF(ξ2) = λν fν(X1),

{εinfν(Xin)}
∞

ν=1 is an orthonormal sequence of eigenfunctions, h(X1, X2)
is defined in EquationA.2 in theOnline Appendix, and F (·) denotes the
limiting cumulative distribution function of ξi ≡ ξin ≡


εin, X ′

in

′.

The proof of Theorem 3.1 is tedious and the expression for
h(X1, X2) appears complicated. Since h depends on the underlying
data generating process (DGP), Tn is not asymptotically pivotal
under the null and thus we cannot tabulate its critical values. In
the following we will propose a bootstrap method to obtain the
bootstrap p-value to make statistical inference.

Apparently, Tn shares the same type of asymptotic null
distribution as the ICM test. This is not surprising given Remark 1.
As mentioned, our test does not need to specify a transformation
function or weight function that an ICM test needs.

3.1.2. Local power analysis
To study the asymptotic local power of Tn, we consider the

following sequence of Pitman local alternatives:

H1(n−1/2) : E(εin|Xin) = n−1/2δ(Xin) for all i. (3.1)

The next theorem describes the asymptotic distribution of MDD
test under the above sequence of local alternatives.
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Theorem 3.2. Suppose Assumptions A.1–A.3 hold. Then under
H1(n−1/2), we have as n → ∞,

Tn
d

→

∞
ν=1

λν(zν + aν)
2,

where aν = limn→∞ E [δ(Xin)fν(Xin)] and fν (·) is defined in
Theorem 3.1.

Since {zν}∞ν=1 are IID N (0, 1), (zν + aν)
2 is stochastically larger

than z2ν for aν ≠ 0. This implies that our test has nontrivial
asymptotic local power against local alternatives that converge to
the null at rate n−1/2. See Fan (1998) for a similar remark.

4. Monte Carlo simulation

In this section we conduct a sequence of Monte Carlo
simulations to evaluate the finite sample performance of our test
and compare it with some existing tests.

4.1. Data generating processes

We consider the following data generating processes:

DGP1(m) : Yi = β0 +

m
j=1

βjXji + σ
(m)
i εi,

DGP2(m) : Yi = β0 +

m
j=1

βjXji + n−1/2
m
j=1

X2
ji + σ

(m)
i εi,

DGP3(m) : Yi = β0 + β1X1i + β2X2i
+ 2 sin(mX1i) sin(mX2i) + σiεi.

DGP1(m) specifies m covariates and is used to evaluate the size
performance of various tests. DGP2(m) specifiesm covariates and is
used to evaluate the local power of various tests. DGP3(m) specifies
two covariateswithm-dependent frequency under the alternative.
We allow for conditional heteroskedasticity in all models and
generate the covariates and heteroskedasticity as follows. In DGP1
and DGP2, when m = 2, X1 ∼ U(0, 1), X2 ∼ N(0, 1), and σ (2)

=

{0.1 + X1 + X2
2 }

1/2; when m = 5, Xj ∼ U(0, j) for j = 1, 2, 3, Xj ∼

N(0, (j−3)2) for j = 4, 5, andσ (5)
= {0.1+

3
j=1 Xj+

5
j=4 X

2
j }

1/2;
whenm = 10, Xj ∼ U(0, j) for j = 1, . . . , 5, Xj ∼ N(0, (j−5)2) for
j = 6, . . . , 10, and σ (10)

= {0.1 +
5

j=1 Xj +
10

j=6 X
2
j }

1/2; when
m = 20, Xj ∼ U(0, j) for j = 1 . . . , 10, Xj ∼ N(0, (j − 10)2) for
j = 11, . . . , 20, and σ (20)

= {0.1 +
10

j=1 Xj +
20

j=11 X
2
j }

1/2. In
DGP3, Xj ∼ N(0, 1) for j = 1, 2 and σ = {0.1 + X2

1 + X2
2 }

1/2. We
specifym = 1/2,m = 1, andm = 2 in DGP3 (m), corresponding to
low-, moderate-, and high-frequency alternatives, respectively. In
all cases, we generate εi independently from the standard normal
distribution and set βj’s to be 1.

We will test H0 : E(Yi|Xi) = β0 +
m

j=1 βjXji for some
(β0, . . . , βm) in DGP1 (m) and DGP2 (m) and H0 : E(Yi|Xi) =

β0 +
2

j=1 βjXji for some (β0, β1, β2) in DGP3 (m).

4.2. Test statistics

Wewill implement our test statistic Tn and denote it as MDD in
the following tables. For the purpose of comparison, we consider
three popular tests for the correct specification of functional forms
in the literature.

The first one is Zheng’s (1996) and Li and Wang’s (1998)
residual-based test:

Z&LW test : T Z&LW
n =

1
n(n − 1)

 
1≤i≠j≤n

1
Π

q
l=1hl

× K

Xi − Xj

h


ε̂iε̂j,

where ε̂i is the residual from the parametric regression under the
null, q denotes the dimension of Xi, K(·) is a product of univariate
Epanechnikov kernel, h =


h1, . . . , hq

′ is a bandwidth vector,
and a/b =


a1/b1, . . . , aq/bq

′ when a =

a1, . . . , aq

′ and b =
b1, . . . , bq

′ are both q × 1 vectors.
The second one is Härdle and Mammen’s (1993, HM) test that

is based on the comparison of the nonparametric estimate and the
smoothed parametric estimate of the conditional mean regression
function under the null:

HM test : THM
n = n


Π

q
l=1hl

1/2 n
i=1


ĝh(xi) − Kh,ng(xi, β̂)

2
,

where, Kh,n denotes the smoothing operator

Kn,hg(x, β̂) =

n
i=1

K


x−Xi
h


g(Xi, β̂)

n
i=1

K


x−Xi
h

 ,

β̂ denotes the least squares estimate of the regression coefficient
under the null, ĝh(x) is the Nadaraya–Watson kernel estimator of
E (Yi|Xi = x) by using the kernel function K (·) and bandwidth h.

The last one is the ICM test Bierens and Ploberger’s (1997) ICM
test:

ICM test : T B
n =

1
n

n
i=1

n
j=1

ε̂jε̂i

×

q
k=1

exp


Φ(Xki) + Φ(Xkj)
2

/2


,

where ε̂i is the residual from the parametric regression under the
null and Φ is a one-to-one mapping function from the support of
X to itself: Φ(Xli) = tan−1((Xli − X̄l)/sl), where X̄l and sl denotes
the sample mean and sample standard deviation of {Xli}

n
i=1 with Xli

being the lth component of Xi. Fan and Li (2000) also consider the
above specification for the ICM test.

In all cases, we choose the bandwidth according to Silverman’s
rule of thumb: hl = 1.06sln−1/(4+q) for l = 1, . . . , q. After suitable
normalization, both T Z&LW

n and THM
n are asymptotically standard

normally distributed under the null and they can detect local
alternatives converging to the null at the nonparametric rate. In
contrast, the ICM test has asymptotic null distribution similar to
our MDD test and it can detect local alternatives converging to the
null at the usual parametric rate.

To implement all tests, we consider the wild bootstrap to
obtain the bootstrap p-values despite the fact the two kernel-
based tests are asymptotically N (0, 1) under the null. The wild
bootstrap procedure is the same as that in Wu (1986) and Härdle
andMammen (1993) and the justification of its asymptotic validity
is standard. See, e.g., Su et al. (2015b) and Su et al. (2015a).

We will consider various sample sizes. When we have two
covariates, we let n change from 50 to 400; when we have 5 or
more covariates, we let n change from 200 to 800. The number of
bootstrap resamples is 400 and the number of replications is 1000
in each scenario.
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Table 1
Empirical size under the null hypothesis.

DGP Level 0.1 0.05 0.01
n MDD Z&LW HM ICM MDD Z&LW HM ICM MDD Z&LW HM ICM

DGP1(2) 50 0.130 0.136 0.126 0.123 0.050 0.062 0.060 0.045 0.006 0.010 0.007 0.006
100 0.119 0.117 0.115 0.116 0.060 0.063 0.054 0.054 0.012 0.013 0.011 0.006
200 0.103 0.102 0.125 0.105 0.052 0.052 0.059 0.050 0.015 0.009 0.008 0.009
400 0.096 0.091 0.096 0.102 0.039 0.040 0.041 0.052 0.009 0.008 0.008 0.007

DGP1(5) 200 0.131 0.125 0.079 0.021 0.067 0.054 0.040 0.006 0.021 0.008 0.005 0.000
400 0.109 0.107 0.091 0.033 0.053 0.059 0.035 0.005 0.007 0.015 0.005 0.000
800 0.108 0.099 0.103 0.038 0.057 0.047 0.045 0.008 0.009 0.008 0.006 0.000

DGP1(10) 200 0.113 0.129 0.003 0.000 0.047 0.071 0.000 0.000 0.013 0.017 0.000 0.000
400 0.113 0.105 0.000 0.000 0.056 0.052 0.000 0.000 0.010 0.009 0.000 0.000
800 0.092 0.096 0.000 0.000 0.040 0.049 0.000 0.000 0.009 0.009 0.000 0.000

DGP1(20) 200 0.202 0.183 0.006 0.000 0.083 0.098 0.000 0.000 0.007 0.023 0.000 0.000
400 0.113 0.142 0.000 0.000 0.051 0.061 0.000 0.000 0.005 0.013 0.000 0.000
800 0.120 0.125 0.000 0.000 0.052 0.062 0.000 0.000 0.007 0.010 0.000 0.000

Table 2
Empirical power under the local alternatives.

DGP Level 0.1 0.05 0.01
n MDD Z&LW HM ICM MDD Z&LW HM ICM MDD Z&LW HM ICM

DGP2(2) 50 0.759 0.679 0.674 0.529 0.651 0.554 0.577 0.289 0.285 0.229 0.253 0.063
100 0.812 0.726 0.749 0.570 0.724 0.636 0.640 0.395 0.395 0.308 0.354 0.090
200 0.860 0.751 0.790 0.640 0.718 0.612 0.669 0.418 0.491 0.392 0.444 0.145
400 0.846 0.772 0.799 0.641 0.746 0.660 0.691 0.445 0.501 0.396 0.449 0.185

DGP2(5) 200 0.801 0.634 0.448 0.109 0.692 0.501 0.295 0.025 0.454 0.259 0.115 0.001
400 0.837 0.640 0.514 0.132 0.752 0.512 0.367 0.049 0.525 0.295 0.147 0.001
800 0.838 0.612 0.474 0.135 0.743 0.490 0.343 0.051 0.516 0.262 0.160 0.006

DGP2(10) 200 0.979 0.880 0.038 0.000 0.953 0.786 0.006 0.000 0.820 0.522 0.000 0.000
400 0.987 0.886 0.025 0.000 0.969 0.811 0.003 0.000 0.890 0.580 0.000 0.000
800 0.977 0.834 0.023 0.000 0.961 0.757 0.001 0.000 0.873 0.548 0.000 0.000

DGP2(20) 200 0.709 0.420 0.006 0.000 0.545 0.283 0.000 0.000 0.248 0.092 0.000 0.000
400 0.643 0.345 0.000 0.000 0.523 0.218 0.000 0.000 0.283 0.088 0.000 0.000
800 0.611 0.325 0.000 0.000 0.492 0.216 0.000 0.000 0.279 0.075 0.000 0.000

Table 3
Empirical power under alternatives with different frequencies.

DGP Level 0.1 0.05 0.01
n MDD Z&LW HM ICM MDD Z&LW HM ICM MDD Z&LW HM ICM

DGP3(1/2) 50 0.758 0.583 0.504 0.715 0.613 0.433 0.367 0.550 0.286 0.156 0.155 0.237
100 0.962 0.865 0.806 0.906 0.901 0.764 0.687 0.833 0.688 0.493 0.421 0.548
200 0.997 0.986 0.978 0.983 0.997 0.971 0.955 0.969 0.970 0.907 0.840 0.893
400 1.000 1.000 0.999 0.999 1.000 0.999 1.000 0.998 0.999 0.998 0.994 0.993

DGP3(1) 50 0.984 0.792 0.900 0.848 0.964 0.675 0.820 0.768 0.852 0.439 0.615 0.603
100 0.999 0.932 0.984 0.913 0.995 0.872 0.970 0.837 0.990 0.794 0.935 0.783
200 1.000 0.988 1.000 0.973 1.000 0.978 1.000 0.949 1.000 0.955 0.997 0.893
400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000 0.998 1.000 0.988

DGP3(2) 50 0.766 0.184 0.489 0.170 0.600 0.117 0.307 0.091 0.226 0.041 0.109 0.013
100 0.951 0.209 0.743 0.154 0.904 0.136 0.603 0.064 0.654 0.074 0.301 0.012
200 1.000 0.318 0.974 0.142 0.997 0.213 0.933 0.069 0.982 0.120 0.732 0.010
400 1.000 0.424 1.000 0.169 1.000 0.343 1.000 0.094 1.000 0.278 0.991 0.015

4.3. Simulation results

We report the simulation results in Tables 1–3 for DGP1 (m)-
DGP3 (m), respectively, where the nominal significance levels are
given by 0.01, 0.05, and 0.1. Table 1 reports the empirical levels of
the four tests for DGP1 (m) with different numbers of covariates.
The findings are interesting. First, when the number of covariates
is small (m = 2), all four tests perform quite well in terms of
empirical level for the number of observations as small size as 50,
and the empirical levels generally improve as n increases. Second,
as m increases, the levels for both HM and ICM tests diminish
rapidly to zero and the degeneracy of the levels does not improve
when the sample size increases from200 to 800. This indicates that
either the HM test or the ICM test has severe size distortions due
to the curse of dimensionality in nonparametrics. In particular, the

HM test requires nonparametric estimation under the alternative.
Third, bothMDD and Z&LW tests perform very well unlessm is too
big (20) and n is small (200). As for the Z&LW test, even though
it is a kernel-based nonparametric tests, it does not require the
estimation of the regression model under the alternative. Perhaps,
this explains why it is not sensitive to the number of covariates.
Overall, our MDD dominates the other three tests in terms of
empirical level.

Table 2 reports the empirical power for DGP2 (m)whenm takes
different values. We summarize some important findings from
Table 2. First, the ICM test has reasonable power whenm = 2. But
asm increase, the ICM test does not have any power to detect local
deviations from the null. It is even inferior to the two kernel-based
tests (Z&LWandHM)which have power to detect local alternatives
converging to the null at a slower rate than n−1/2. This is due to the
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fact that the approximation of integrated moments in ICM would
be inaccurate in the case of large m. Second, HM test has certain
power when m increases from 2 to 5 but it loses power when m
increases further. We conjecture that this is due to the fact that the
implementation of HM test requires the nonparametric estimation
of functional form which suffers curse of dimensionality. Third,
as expected both MDD and Z&LW tests have power even in the
presence of a large number of covariates. In general, our MDD test
dominates the Z&LW test in terms of local empirical power. This is
also consistent with the theory because our test can detect n−1/2-
local alternatives while Z&LW test can detect local alternatives
converging to the null at a slower rate than n−1/2. In sum, for the
usual n−1/2-local alternatives, our MDD test outperforms all of its
competitors under investigation.

Table 3 reports the empirical power for DGP3 (m) when the
alternatives are at different frequencies. First, when the frequency
is low (m = 1/2) or moderate (m = 1), all four tests have
reasonable power. Second, when the frequency is low and the
sample size is small, the ICM test performs fairly well and it
outperforms the Z&LW and HM tests. Third, the ICM test does not
have power in the high-frequency case as expected. Fourth, our
MDD test is almost always the best of all.

In summary, our MDD test generally has well-controlled size
and it is not sensitive to the inclusion of many covariates in
the regression model. It also has higher empirical power than its
competitors against both local alternatives and global alternatives.

5. Conclusion

In this paper we have proposed a novel consistent model spec-
ification test based on the MDD of the error term given the covari-
ates. The MDD equals zero if and only if error term is conditionally
mean independent of the covariates. It does not require any non-
parametric estimation under the null or alternative and is applica-
ble even if we have many covariates in the regression model. We
have established the asymptotic distributions of our test statistic
under the null and a sequence of Pitman local alternatives converg-
ing to the null at the usual parametric rate. Simulations demon-
strate that our MDD test has superb performance and generally
dominates its competitors in a variety of scenarios.

Several extensions are possible. First, it is easy to extend
our method to test the correct specification of a semiparametric
models, e.g., partially linear, additive, or single index models.
In this case, one needs to estimate the semiparametric model
under the null and apply undersmoothing to ensure that the
bias in the semiparametric estimation is asymptotically vanishing.
Second, one can extend our test to test for the correct specification
of a conditional mean model in panel data models where
complications will arise due to the presence of unobserved
individual heterogeneity. Third, we conjecture that it is also
possible to extend the distance covariance or MDD to measure the
dependence between two randomvectors/variables conditional on
a third one that is dimension-free. Recently there is a growing

interest in testing conditional independence; see, e.g., Su and
White (2007, 2008, 2014), Song (2009), Linton and Gozalo (2014),
andHuang et al. (2016). But all of these tests are subject to the curse
of dimensionality issue and are generally not applicable when the
dimension of conditioning variable is large (e.g., larger than 6). So it
is worthwhile to consider a dimension-freemeasure of conditional
dependence based onwhich a sample analogue can be constructed
and used to test for the null of conditional independence.We leave
these topics for future research.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.econlet.2017.05.002.

References

Amemiya, T., 1985. Advanced Econometrics. Harvard University Press, Cambridge,
Massachusetts.

Bierens, H.J., 1982. Consistent model specification tests. J. Econometrics 20,
105–134.

Bierens, H.J., 1990. A consistent conditional moment test of functional form.
Econometrica 58, 1443–1458.

Bierens, H.J., Ploberger, W., 1997. Asymptotic theory of integrated conditional
moment tests. Econometrica 65, 1129–1151.

Fan, Y., 1998. Goodness-of-fit tests based on kernel density estimators with fixed
smoothing parameters. Econometric Theory 14, 604–621.

Fan, Y., Li, Q., 2000. Consistent model specification tests. Econometric Theory 16,
1016–1041.

Härdle, W., Mammen, E., 1993. Comparing nonparametric versus parametric
regression fits. Ann. Statist. 1926–1947.

Huang, M., Sun, Y., White, H., 2016. A flexible nonparametric test for conditional
independence. Econometric Theory 32, 1434–1482.

Jennrich, R.I., 1969. Asymptotic properties of nonlinear least squares estimators.
Ann. Math. Statist. 40, 633–643.

Li, Q., Wang, S., 1998. A simple consistent bootstrap test for a parametric regression
function. J. Econometrics 87, 145–165.

Li, R., Zhong, W., Zhu, L., 2012. Feature screening via distance correlation learning.
J. Amer. Statist. Assoc. 107, 1129–1139.

Linton, O., Gozalo, P., 2014. Testing conditional independence restrictions.
Econometric Rev. 33, 523–552.

Shao, X., Zhang, J., 2014. Martingale divergence correlation and its use in high
dimensional variable screening. J. Amer. Statist. Assoc. 109, 1302–1318.

Song, K., 2009. Testing conditional independence via Rosenblatt transform. Ann.
Statist. 37, 4011–4045.

Su, L., Hoderlein, S., White, H., 2015a. Testing monotonicity in unobservables with
panel data. Working Paper, Singapore Management University.

Su, L., Jin, S., Zhang, Y., 2015b. Specification test for panel data models with
interactive fixed effects. J. Econometrics 186, 222–244.

Su, L., White, H., 2007. A consistent characteristic function-based test for
conditional independence. J. Econometrics 141, 807–834.

Su, L., White, H., 2008. A nonparametric Hellinger metric test for conditional
independence. Econometric Theory 24, 829–864.

Su, L., White, H., 2014. Testing conditional independence via empirical likelihood.
J. Econometrics 182, 27–44.

Székely, G.J., Rizzo, M.L., 2009. Brownian distance covariance. Ann. Appl. Stat. 3,
1236–1265.

Székely, G.J., Rizzo, M.L., 2014. Partial distance correlation with methods for
dissimilarities. Ann. Statist. 42, 2382–2412.

Székely, G.J., Rizzo, M.L., Bakirov, N.K., 2007. Measuring and testing dependence by
correlation of distances. Ann. Statist. 35, 2769–2794.

Wu, C.-F., 1981. Asymptotic theory of nonlinear least squares estimation. Ann.
Statist. 9, 501–513.

Wu, C.-F., 1986. Jackknife, bootstrap and other resampling methods in regression
analysis. Ann. Statist. 14, 1261–1295.

Zheng, J.X., 1996. A consistent test of functional form via nonparametric estimation
techniques. J. Econometrics 75, 263–289.

http://dx.doi.org/10.1016/j.econlet.2017.05.002
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref1
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref2
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref3
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref4
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref5
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref6
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref7
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref8
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref9
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref10
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref11
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref12
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref13
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref14
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref16
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref17
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref18
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref19
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref20
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref21
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref22
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref23
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref24
http://refhub.elsevier.com/S0165-1765(17)30180-5/sbref25

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	5-2017

	A Martingale Difference-Divergence-based test for specification
	Liangjun SU
	Xin ZHENG
	Citation


	A martingale-difference-divergence-based test for specification
	Introduction
	The hypotheses and statistic
	The hypotheses
	Test statistic

	Asymptotic properties
	Basic assumptions
	Asymptotic distribution under the null
	Local power analysis


	Monte Carlo simulation
	Data generating processes
	Test statistics
	Simulation results

	Conclusion
	Supplementary data
	References


