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What Difference Do New Factor Models Make in Portfolio Allocation?

Abstract

This paper examines the economic implications of new factor models and shows that the Hou-Xue-Zhang

four-factor model outperforms the Fama-French five-factor model for investing in anomalies in- and out-of-

sample. The difference in certainty-equivalent returns between the two models can be more than 6% per

year under modest model uncertainty and margin requirements. The outperformance of the Hou-Xue-Zhang

four-factor model appears to come from its better ability to describe the mean rather than the covariance

matrix of asset returns.

JEL Classification: G11; G12; C11
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1 Introduction

Much of asset pricing research involves searching for factors that improve the understanding of the cross-

section of expected stock returns. Based on the neoclassical Tobin q-theory of investment, Hou, Xue,

and Zhang (HXZ, 2015) propose a four-factor model that can explain 29 out of 36 significant anomalies.

Concurrently, motivated by the dividend discount model, Fama and French (FF5, 2015a, 2016) propose a

competing five-factor model that explains anomalies such as the low market beta, share repurchases, and

low stock return volatility. While many investors agree that stock returns can be described by a multifactor

model, there is little agreement regarding the exact identification of the factors; “it takes a model to beat

a model” is a frequently used adage. For example, Hou, Mo, Xue, and Zhang (2019) show that the HXZ

model explains more anomalies and produces smaller alphas than the FF5 model, concluding that “the FF[5]

five-factor model is in essence a noisy version of the q-factor model.”

Barillas and Shanken (2017, 2018) address the issue of how to compare models under the classic Sharpe

ratio improvement metric, in the spirit of Gibbons, Ross, and Shanken (GRS, 1989), and show that model

comparison is driven by the extent to which each model is able to price the factors in the other models.

A surprising result is that the test assets drop out of the analysis and are irrelevant for model comparison.

However, in a non-nested model comparison setting, the approach in Barillas and Shanken (2017, 2018)

cannot tell which model is better when both model are rejected (i.e., neither model is able to explain factors

in the other model).

“Essentially, all models are wrong, but some are useful.” Statistician George Box.

The anomalies literature is the scientific foundation ETFGI, an independent research consultancy firm,

reports that total assets under management of ETFs and other exchange traded products (ETPs) reach over

four trillion dollars worldwide and over 1.5 trillion dollars in the U.S. as of May 2017. As factor investing

becomes increasingly important, the financial press has rightfully called into question the reliability of the

underlying academic research. A Bloomberg article by Coy (2017) writes: “Most investors have a vague

sense they’re being ripped off. Here’s how it happens.... Researchers have more knobs to twist in search

of prized anomaly–a subtle pattern in the data that looks like it could be a moneymaker. They can vary the

period, the set of securities under consideration, or even the statistical method. Negative findings go in a file

drawer; positive ones get submitted to a journal (tenure!) or made into an ETF whose performance we rely

on for retirement.”
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This paper asks whether the HXZ is a better model for investing than the FF5. There are four reasons

for this alternative question. First, as shown by Pastor and Stambaugh (2000), a model that is better for

pricing is not necessarily better for investing, because investors are usually subject to model uncertainty and

margin requirements that prevent them from implementing certain extreme investment strategies suggested

by asset pricing models. Second, investing involves both the mean and covariance of asset returns. A model

that is worse for pricing is not necessarily worse for investing. There could be factors that account for

substantial return comovements, but they are not priced or have very low risk premiums (Constantinides,

1980). Although these factors do not improve the description of average asset returns, they are important

for an investor to control portfolio risk.

Third, factor investing is a widely explored strategy of the current investing canon. For example,

Ang (2014) shows that 70% of active returns of the Norwegian Government Pension Fund–Global can

be explained by exposures to risk factors. Within the exchange traded fund (ETF) marketplace, almost one

quarter (24%) of institutional decision makers currently use factor-based products,1 which allows investors

to effectively manage the risk and return trade-off without the need to buy or sell individual securities.

Finally and most importantly, as any model is an approximation of the true return-generating process, “it is

extremely difficult to evaluate factor pricing models based solely on their pricing performance” (Kogan and

Tian, 2017). Instead, investing provides an economic criterion for model comparison that accommodates

pricing errors and allows one to compare asset pricing models out-of-sample, which is advocated by

MacKinlay (1995) and Ang (2014), among others. They suggest out-of-sample performance as a criterion

for identifying a variable as a risk factor.

This paper focuses on the portfolio allocation problem in the standard mean-variance framework.

Because the distribution of asset returns is unknown, a Bayesian investor imposes a factor model, such as the

HXZ or the FF5 model, to reduce the dimension of the estimation problem and to allocate her wealth among

the factors. Although this restriction often improves the portfolio performance (MacKinlay and Pastor,

2000), the investor faces uncertainty regarding the model’s pricing ability. Following Pastor and Stambaugh

(2000) and Wang (2005), we assume that the investor has a prior belief, specified with varying degrees

of confidence in the factor model, and computes the optimal portfolio with her posterior belief, which is

1“The Evolution of Smart Beta ETFs”, Cogent Research, 2014. Other studies indicate an even greater use or future commitment
to factor-based investing by institutional investors. See, for example, “Beyond Active and Passive: Advanced Beta Comes of Age.”
Research report, State Street Global Advisors (SSGA), 2014. Several state pension funds have made the commitment (Missouri
State Employees’ Retirement System, Jefferson City; New Mexico Public Employees Retirement Association, Santa Fe, and;
Arizona State Retirement System, Phoenix, AZ).
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updated by the data. Moreover, to make the optimal portfolio implementable, the investor is subject to a

margin requirement that ranges from 0% to 50% (Pastor and Stambaugh, 2000). This assumption is justified

by Fama and French (2015b) who show that, without a short selling constraint, it is easy for an investor who

is investing in two anomalies to have a leverage ratio of more than 300, which is apparently unrealistic in

practice.

Our objective is to examine the extent to which investors’ prior beliefs about alternative pricing models

impact the utility derived from the implied portfolio choices, and “is not to choose one pricing model over

another” (Pastor and Stambaugh, 2000, p. 336).

We choose the long-short spread portfolios of 15 well-known anomalies in Novy-Marx and Velikov

(2016) as the non-benchmark risky assets in which to invest. We classify the anomalies into two groups.

The first group consists of five anomalies that can be explained by the HXZ model but not the FF5 model,

i.e., the alpha of each anomaly is insignificant with the HXZ model but is significant with the FF5 model.

The average alphas for the two models are 0.13% (t = 0.63) and 0.67% (t = 3.45). The second group

consists of 10 anomalies that cannot be explained by the HXZ or the FF5 model. In this case, the average

alphas for the two models are 0.72% (t = 4.11) and 0.75% (t = 4.44). These two groups of anomalies are

intentionally chosen to explore whether the HXZ model is better for investing when it performs better than

or the same as the FF5 model for pricing, respectively.2

We first compare the in-sample investing performances between the two models. When an asset pricing

model cannot explain the average returns of risky assets with significant alphas, imposing the model on

the return-generating process can lead to biased estimates for the predictive mean and covariance matrix of

asset returns, and therefore, results in certainty-equivalent return (CER) losses relative to the case without

imposing any model. As such, an asset pricing model is better for investing if it generates smaller CER

losses. Based on the two groups of anomalies, we find that the HXZ uniformly outperforms the FF5. For

example, the CER loss for an investor with a perfect confidence in the HXZ model is over 6% per year

less than the CER loss for an investor with a perfect confidence in the FF5 model when the two Bayesian

investors are both subject to a 10% margin requirement. The outperformance of the HXZ model is more

pronounced when the margin requirement is relaxed. In addition, if an investor with perfect confidence in the

2In Robert Novy-Marx’s data library, there are 32 anomalies (more comprehensive than the anomalies in Ken French’s data
library), including size, value, asset growth, and profitability that are used as factors in HXZ and FF5. Excluding anomalies that are
factor-related and are insignificant with both HXZ and FF5, 15 are left (since some of them are highly correlated, Novy-Marx and
Velikov (2016) use 23 out of 32 anomalies, including size, value, asset growth, and profitability). The results are quantitatively the
same when we use the anomaly net returns that consider transaction costs.
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HXZ model is forced to accept the portfolio chosen by another investor with an equally strong belief in the

FF5 model, the first investor perceives a CER loss of more than 7% per year when the margin requirement

is 10%.

If trading is costless, leverage can scale returns without limits. Using the words of Shapre (2011):

“If an investor can borrow or lend as desired, any portfolio can be leveraged up or down. A combination

with a proportion k invested in a risky portfolio and 1− k in the riskless asset will have an expected excess

return of k [times the excess return of the risky portfolio] and a standard deviation equal to k times the

standard deviation of the risky portfolio. Importantly, the Sharpe Ratio of the combination will be the same

as that of the risky portfolio.”

The impact costs is small on long-only portfolios, but rises quickly with leverage, reducing returns

quickly. As risk aversion declines to zero, both the expected return and volatility diverge, but so does

the impact of trading costs. [Plot a frontier without transaction costs, and with different transaction costs,

varying leverage]

In frictionless markets, two perfectly correlated assets with equal Shapre ratio generate the same efficient

frontier, and in fact the same payoff space. This equivalent fails in the presence of trading costs: as the more

volatile asset has a proportionally higher return, it can be traded to generate higher returns with lower

leverage ratios, resulting in an efficient frontier that dominates (for high returns) the one generated by the

less volatile asset.

We then compare the out-of-sample investing performances with two exercises. The first exercise

assumes that asset returns are independent and identically distributed (i.i.d) over time, and uses a bootstrap

simulation to compare the out-of-sample CERs between the two models. Surprisingly, when an investor has

a confidence of at least 90% and the margin requirement is 10%, the HXZ model generates 6% more CER

per year than the FF5 model. The second exercise relaxes the i.i.d assumption and compares the out-of-

sample CERs with real time data. We use an expanding window approach. At the end of each month, we

estimate the predictive mean and covariance matrix with the most up-to-date data, and apply the resulting

optimal portfolio to the next month’s returns. Then, we calculate the out-of-sample CERs with the realized

portfolio returns. The results show that, regardless of the margin requirement, the HXZ model performs

much better than the FF5 when the investor has a high confidence level, say 90%.

Finally, we explore the source of difference between the HXZ and FF5 models. The better investing
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performance of the HXZ model is a result of its better ability to describe the mean, the covariance matrix,

or both. We compare the performances of the global-minimum-variance portfolios between the two models,

which solely use the predictive covariance information for portfolio allocation. The result shows that the

two models perform equally well, no matter which group of anomalies is used as the non-benchmark assets.

Therefore, the better performance of the HXZ model for investing appears to stem from its better ability to

capture the mean of stock returns.

The studies that are most closely related to this paper are Pastor and Stambaugh (2000) and Wang

(2005), which incorporate model uncertainty, measured with investors’ varying beliefs about asset pricing

models, into the framework of portfolio allocation. Pastor and Stambaugh (2000) focus on the Fama and

French (FF3, 1993) three-factor model and the Daniel and Titman (1997) characteristic model, and find that

the two models generate indistinguishable performances under model uncertainty and margin requirements.

This paper concentrates on the two most recent competing factor models and finds that the HXZ model

uniformly outperforms the FF5 model, even in the case when they have the same degree of pricing ability

on the non-benchmark assets. Wang (2005) focuses on model uncertainty and does not consider the effect

of margin requirements. Moreover, despite its importance for investing, these two papers do not consider

out-of-sample performance.

This paper is also related to the literature in portfolio allocation with factor-based asset pricing models.

To evaluate the performance of different factor models for the covariance structure of individual stock

returns, Chan, Karceski, and Lakonishok (1998, 1999) show that the FF3 model does a fair job constructing

the global-minimum-variance portfolio. Also focusing on the estimation of the covariance structure, Briner

and Connor (2008) explore the trade-off between estimation errors and model specification errors.

Olivares-Nadal and DeMiguel (2018) show that incorporating transaction costs in the mean-variance

portfolio problem may help to reduce the impact of estimation error.

Brandt, Santa-Clara, and Valkanov (2009)

Barroso and Santa-Clara (2015), Chen and Velikov (2019), Olivares-Nadal and DeMiguel (2018),

Frazzini, Israel, and Moskowitz (2018)

The remainder of the paper is organized as follows. Section 2 reviews the HXZ and FF5 factor models

and discusses the importance of comparing them from the perspective of investing. Section 3 presents a

framework for making Bayesian portfolio allocation under model uncertainty and margin requirements, and
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shows that the HXZ model outperforms the FF5 model for investing in anomalies, in- and out-of-sample.

Section 4 concludes the paper.

2 New Factor Models

This section reviews the HXZ and FF5 factor models and discusses the importance of comparing them from

the perspective of investing.

The HXZ model is motivated by the neoclassical q-theory of investment and consists of four factors: a

market factor (MKT), a size factor (ME), an investment factor (I/A), and a profitability factor (ROE). The

first factor is the market excess return and the last three factors are constructed from a triple (2×3×3) sort

on size, investment-to-assets, and return-on-equity. More specifically, size is the market equity, which is

stock price per share times shares outstanding from the Center for Research in Security Prices (CRSP), I/A

is the annual change in total assets (Compustat annual item AT) divided by one-year-lagged total assets, and

ROE is income before extraordinary items (Compustat quarterly item IBQ) divided by one-quarter-lagged

book equity.

The FF5 model is based on the dividend discount valuation theory and adds an investment (CMA,

conservative-minus-aggressive) factor and a profitability (RMW, robust-minus-weak) factor to the FF3

model, which consists of market, size (SMB, small-minus-big), and value (HML, high-minus-low) factors.

More specifically, CMA is defined as the difference between the returns on diversified portfolios of low and

high investment stocks and RMW is defined as the difference between the returns on diversified portfolios

of stocks with robust and weak profitability.

Table 1 presents summary statistics for the HXZ and FF5 factors in the sample period of 1972:01–

2013:12. Panel A reports the average return (mean), t-statistic from the test that the average return of the

factor is zero, standard deviation (Std), skewness (Skew), kurtosis (Kurt), first-order autocorrelation (AC(1)),

and annualized Sharpe ratio (SR). Among the seven descriptive statistics, mean and Std are reported in

percent per month. The average monthly returns on the factors are all more than two standard errors above

zero, except for the FF5 size factor, SMB, which has an average monthly return of 0.23% (t = 1.71). The

HXZ size factor, ME, has a higher average monthly return of 0.31%, with a t-statistic of 2.20.

Although both HXZ and FF5 use annual asset growth as the proxy for investment, the investment factor
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(I/A) in the HXZ model has a higher average monthly return (0.44% versus 0.37%) and a lower standard

deviation (1.87% versus 2.00%) than the investment factor (CMA) in the FF5 model. As a result, I/A has

a higher annualized Sharpe ratio than CMA (0.82 versus 0.66). Moreover, I/A is less persistent than CMA

and their first-order autocorrelations are 0.06 and 0.12, respectively.

The most striking difference between HXZ and FF5 is the profitability factor. First, the HXZ profitability

factor (ROE) uses monthly earnings data, whereas the FF5 profitability factor (RMW) uses annual operating

profit data. HXZ (2015) argues that the ROE factor is designed to capture anomalies, such as price

momentum, earnings surprise, and financial distress, that are all studied at a monthly frequency. Next,

since the ROE factor in the HXZ model contains the most up-to-date information about future ROE, its

standard deviation is slightly higher than the CMW factor (2.62% versus 2.25%), and its average monthly

return almost doubles (0.57% versus 0.29%). This is reflected directly in the annualized Sharpe ratio, which

is 0.75 for ROE and 0.44 for RMW. Finally, ROE has a more negative skewness value (−0.75 versus−0.44)

and a smaller kurtosis value (8.01 versus 14.4) than RMW.

Panel B of Table 1 reports the contemporaneous correlations of all of the factors. The market factors

in the HXZ and the FF5 models have a perfect correlation of 1, and the size factors have a correlation of

0.98. Together with the descriptive statistics in Panel A, we assume that the market and size factors in

the two models are indistinguishable and use the returns of MKT and SMB in the FF5 model for portfolio

allocation throughout the paper.3 The negative correlations of MKT with the investment and profitability

factors suggest the necessity of new factors that can hedge the market risk. The two investment factors (I/A in

the HXZ and CMA in the FF5) have a correlation of 0.90, and the two profitability factors (ROE and RMW)

have a correlation of 0.67. An interesting observation is that the value factor (HML) in the FF5 model has a

high correlation with the investment factor (I/A or CMA) and a low correlation with the profitability factor

(ROE or RMW), suggesting that the redundancy of HML for pricing, shown in FF5 (2015a), is mainly due

to the investment factor (I/A or CMA). Since ME and SMB, RMW and ROE, and CMA and IA are different

versions of the same underlying construct, to avoid overfitting, we only consider models that contain at most

one of the factors in constructing portfolios.

Table 1 raises a question about the main difference in the two models in explaining the cross-section of

stock returns. Using factor regressions as FF3 (1993), Hou, Xue, and Zhou (2016) compare the two models

3In portfolio allocation, when assets i and j are highly correlated, the estimation of the covariance is highly volatile with
extreme entries on (i, i),(i, j),( j, i) and ( j, j), resulting in extreme portfolio positions in assets i and j that swing dramatically over
time.
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on conceptual and empirical grounds, finding that the HXZ model explains more anomalies (29 vs. 17 out

of 36) and has less average monthly alphas (0.20% vs. 0.36%). As such, Hou, Mo, Xue, and Zhang (2019)

conclude that “the FF[5] five-factor model is in essence a noisy version of the q-factor model”.

However, alpha is not an appropriate metric for model comparison and can generate counterintuitive

results. For example, over the sample period of 1972:01–2013:12, the monthly alpha of the momentum

factor is 0.78% (t = 3.94) for the CAPM model but is 0.95% (t = 4.82) for the FF3 model, which is in stark

contrast to most studies, if not all, that the FF3 is a better pricing model. Another example is from Fama and

French (2016) c who find that the FF5 model exaggerates, instead of shrinking, the accrual anomaly. The

FF5 alpha is 0.31% (t = 2.27) and the FF3 alpha is 0.27% (t = 1.96) over the sample period of this paper. In

general, Barillas and Shanken (2015) show that zero alpha for a non-benchmark asset is neither a sufficient

nor a necessary condition for model comparison.

In terms of investing, Figure 1 plots the mean-variance frontiers for investing in the factors of the HXZ,

the FF5, or both, where the market and size factors in the two models are assumed to be the same and

refer to the MKT and SMB factors in the FF5. Three observations follow the figure immediately. First, the

frontier of the FF5 does not lie inside or overlaps that of the HXZ. Second, the global minimum-variance of

investing in the HXZ is different from that of the FF5. Specifically, the standard deviation and mean of the

global minimum-variance for investing in the HXZ are 1.03% and 0.44%, which are in contrast to 0.97%

and 0.34% for investing in the FF5. This difference suggests that the HXZ factors cannot mimic the global

minimum-variance portfolio of FF5. Third and lastly, if one invests in both the HXZ and FF5 factors (FF5’s

five factors plus HXZ’s I/A and ROE factors), the standard deviation and mean of the global minimum-

variance are 0.94% and 0.38%, respectively. Therefore, this strategy can reduce the minimum-variance and

improve its expected return, relative to investing in the HXZ or the FF5 alone.

According to Barillas and Shanken (2017), a factor model is better for pricing if it can price the factors

in the competing model with zero alphas. Hou, Mo, Xue, and Zhang (2019) show that the HXZ outperforms

the FF5 for investing by using the mean-variance efficiency test of Gibbons, Ross, and Shanken (GRS,

1989). Similarly, a factor model is better for investing if it can mimic the performance of the competing

model, i.e., it outperforms any portfolio spanned by the competing model in terms of the Sharpe ratio. As

such, we turn to Huberman and Kandel (1987) and run a mean-variance spanning test on the hypothesis that

whether the competing factors’ returns can be spanned or replicated in the mean-variance space of the factor

model.
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Following Kan and Zhou (2012), we carry out six spanning tests: Wald test under conditional

homoscedasticity, Wald test under independent and identically distributed (i.i.d.) elliptical distribution,

Wald test under conditional heteroscedasticity, Bekerart-Urias spanning test with errors-in-variables (EIV)

adjustment, Bekerart-Urias spanning test without the EIV adjustment and DeSantis spanning test.

The six spanning test results reported in Table 2 strongly reject the hypothesis that the FF5 factors

are inside the mean-variance frontier of the HXZ factors. Delving deeper, we also test whether the FF5’s

investment and profitability factors (CMA and RMW) can be replicated by the HXZ factors, and find that

the answer is negative. Hence, it not clear whether the HXZ model is better for investing, which is the focus

of this paper. For comparison, in the last column of Table 2, we include the GRS statistics and confirm the

finding of HXZ (2016) that their model can price the FF5 factors well.

3 Comparing Factor Models in Portfolio Allocation

This section presents the mean-variance portfolio allocation problem under model uncertainty and margin

requirements. The objective is to compare asset pricing models from the perspective of investing. For

a given investment universe, we calculate the portfolio that is selected by a Bayesian investor who bases

her prior belief in the HXZ or the FF5 model, and compare the performances of the two models in- and

out-of-sample.

3.1 Portfolio allocation under model uncertainty and margin requirements

Consider the portfolio allocation problem in a universe with a risk-free asset and n risky assets. Without

loss of generality, we assume that the risk-free rate r f is constant over time throughout the paper. Let

rt = [r′1t ,r
′
2t ]
′ be the long-short spread returns, as in Pastor and Stambaugh (2000), where the long side is a

risky asset and the short side is either a risky asset or a risk-free asset, r1t is the first m non-benchmark assets,

and r2t is the last k (= n−m) benchmark assets. For example, when the HXZ is the benchmark model, r2t

is the HXZ four-factor returns and the HML, CMA, and RMW factor returns are included in r1t , which

then has n−4 elements. Similarly, when the FF5 is the benchmark model, r2t is the FF5 five-factor returns

and the I/A and ROE factor returns are simply included in r1t , which then has n− 5 elements. DeMiguel,

Nogales, and Uppal (2014)
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Suppose rt follows a multivariate normal distribution and is i.i.d. over time. The true mean and

covariance matrix are denoted as follows corresponding to the m assets and k factors:

µ =

 µ1

µ2

 , V =

 V11 V12

V21 V22

 , (1)

which can be summarized in a regression model:

r1t = α +Br2t +ut , (2)

where u follows a multivariate normal distribution with mean zero and covariance matrix equal to Σ. With

this factor structure, one can write the mean and covariance matrix of the risky assets as

µ =

 α +Bµ2

µ2

 , V =

 BV22B′+Σ BV22

V22B′ V22

 . (3)

The asset pricing model is true if and only if α = 0m×1, where 0m×1 is an m×1 vector of zeros.

In the portfolio allocation framework using asset pricing models, the mean-variance investor chooses

to believe or not to believe the asset pricing model. If she does not believe the asset pricing model at all,

she estimates µ and V without restricting α to zero. The maximum likelihood estimates of α,B, and Σ are

denoted by α̂, B̂, and Σ̂, respectively. The investor estimates µ and V in (3) as:

µ̂ =

 µ̂1

µ̂2

=

 α̂ + B̂µ̂2

µ̂2

 , V̂ =

 B̂V̂22B̂′+ Σ̂ B̂V̂22

V̂22B̂′ V̂22

 , (4)

where µ̂2 and V̂22 are the sample mean and covariance matrix of r2t .

When the investor has a dogmatic belief about the asset pricing model, she estimates µ and V by

imposing α = 0m×1. Let B̄ and Σ̄ be the maximum likelihood estimates of B and Σ with the restriction.

The estimates of µ and V are

µ̄ =

 B̄µ̂2

µ̂2

 , V̄ =

 B̄V̂22B̄′+ Σ̄ B̄V̂22

V̂22B̄′ V̂22

 . (5)
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In this paper, we assume that the investor places a confidence level of ω in the asset pricing model, in

the spirit of Wang (2005). Let R = {rt , t = 1, · · · ,T} and Ŝ2 = µ̂ ′2V̂−1
22 µ̂2 be the squared Sharpe ratio of the

ex ante tangency portfolio with the same mean and covariance matrix of the k factors. With a Bayesian

approach, Wang (2005) shows that the investor estimates the predictive mean and covariance matrix as:

µ̃ = E(rT+1|R,ω) =

 µ̂1 +ω(B̄µ̂2− µ̂1)

µ̂2

 , (6)

Ṽ = Var(rT+1|R,ω) =

 ψ0 +ωψ1 +ω2ψ2 b[ωB̄+(1−ω)B̂]V̂22

bV̂22[ωB̄+(1−ω)B̂]′ bV̂22

 , (7)

where

ψ0 = bB̂V̂22 pB̂′+hδ̂ Σ̂, (8)

ψ1 = b(B̄− B̂)V̂22B̂′+bB̂V̂22(B̄− B̂)′+h(δ̄ − δ̂ )Σ̂+hδ̂ (Σ̄− Σ̂), (9)

ψ2 = b(B̄− B̂)V̂22(B̄− B̂)′+h(δ̄ − δ̂ )(Σ̄− Σ̂), (10)

and where δ̄ , δ̂ ,b, and h are scalars and are defined as follows:

δ̄ =
T (T −2)+ k
T (T − k−2)

− k+3
T (T − k−2)

· Ŝ2

1+ Ŝ2
, (11)

δ̂ =
(T −2)(T +1)
T (T − k−2)

, (12)

b =
T +1

T − k−2
, (13)

h =
T

T −m− k−1
. (14)

From (6) and (7), the HXZ and FF5 models imply different restrictions on α and yield different

predictive means and covariance matrices. As a result, their optimal portfolios are different. When ω = 0, the

predictive mean and covariance are the sample mean and covariance matrix, which are unbiasedly estimated

without the restriction on α . When ω = 1, the predictive mean and covariance matrix are fully determined

by the estimates that restrict α to zero.

Let x denote the n-vector with the ith element xi. With µ̃ and Σ̃, the Bayesian investor is assumed to
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choose x to maximize the mean-variance objective function:

max
x

x′µ̃− γ

2
x′Ṽ x, (15)

where γ is the coefficient of relative risk aversion. For simplicity, we assume that γ is equal to three

throughout the paper. Without any constraint, the optimal portfolio weight x̃ is

x̃ =
1
γ

Ṽ−1
µ̃ =

1
γ

 Σ̃−1α̃

Ṽ−1
22 µ̃2− B̃′Σ̃−1α̃

 . (16)

One important characteristic in (16) is that if some of the non-benchmark assets in r1 have non-zero

alphas, the investor with benchmark assets of r2 should improve her portfolio Sharpe ratio by changing her

portfolio weights on the non-benchmark assets in proportion to their alphas. The alpha of a non-benchmark

asset, calculated with respect to a given asset pricing model, measures the change in the portfolio’s Sharpe

ratio that is driven by a marginal increase in the asset weight of the portfolio. Thus, the sign of alpha

is the direction of the marginal adjustment in portfolio weight space that yields the maximal increase in

the portfolio’s Sharpe ratio. Therefore, alphas explain the optimal way to marginally adjust the portfolio

relative to the benchmark: increase the weights of non-benchmark assets with positive alphas, and decrease

the weights with negative alphas.

In the framework of asset pricing, by the mathematical definition, the adjustment to the portfolio weight

can be infinitesimal. However, in the framework of investing, the adjustment is actually finite as the investor

is usually subject to portfolio constraints Almazan, Brown, Carlson, and Chapman (2004). Certain risky

assets are not tradable because the investor cannot sell short with full use of the proceeds. Fama and French

(2015b) show that, without a short selling constraint, it is easy for an investor who is investing in two

anomalies to have a leverage ratio of more than 300, which is apparently unrealistic in practice. DeMiguel,

Garlappi, Nogales, and Uppal (2009)

Following Pastor and Stambaugh (2000), we assume that the mean-variance investor in the optimization

problem (15) is subject to the following margin requirements:

∑
j∈Λ

2|x j|+ ∑
j 6∈Λ

|x j| ≤ c, (17)
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where Λ denotes the set of positions in which the short position for the spread return j is risky, and c is

the maximum permitted total value of risky long and short positions per dollar of the investor’s wealth. For

example, c= 2 corresponds to a margin requirement of 50% and c= 10 corresponds to a margin requirement

of 10%. When c = ∞, there is no margin requirement and the investor will invest in the capital market line

with the maximum Sharpe ratio that she can obtain.

Another reason for using constraint (17) is that it has a good statistical property when controlling for

estimation risk. For simplicity, suppose the short position of any spread return j in constraint (17) is a

risk-free asset. Then, (17) reduces to

n

∑
j=1
|x j|= ‖x‖1 ≤ c. (18)

Given the true mean µ and and covariance matrix V , the utility loss of the optimal portfolio x̃ from using the

predictive µ̃ and covariance Ṽ has an upper bound as:

∣∣(x̃′µ̃− γ

2
x̃′Ṽ x̃)− (x̃′µ− γ

2
x̃′V x̃)

∣∣ ≤ ∣∣x̃′µ̃− x̃′µ|+ γ

2

∣∣x̃′Ṽ x̃− x̃′V x̃
∣∣

≤ ‖µ̃−µ‖∞‖x̃‖1 +
γ

2
‖Ṽ −V‖∞‖x̃‖2

1, (19)

where ‖x̃‖1 is the L1 norm of vector x̃, and ‖µ̂ − µ‖∞ and ‖V̂ −V‖∞ are the maximum component-wise

estimation errors (Fan, Zhang, and Yu, 2012).4 Therefore, if ‖x̃‖1 is bounded above (economically, it is a

margin requirement), the utility loss resulting from estimation errors is controlled by the largest component-

wise errors of ‖µ̃ − µ‖∞ and ‖Ṽ −V‖∞. As long as each element is estimated well, the overall utility is

approximated well without the accumulation of estimation errors.

3.2 Anomalies that are considered for investing

We choose 15 anomaly long-short spread portfolio returns from Novy-Marx and Velikov (2016) as the non-

benchmark risky assets and report their descriptive statistics in Table 3, which include the annualized Sharpe

ratio, alpha, t-statistic, and R2 of regressing each anomaly return on the factors in the HXZ and the FF5,

respectively.

We intentionally classify the anomalies into two groups to explore whether the HXZ model is better for

4If x is an N-dimensional vector, ‖x‖1 = ∑
N
j=1 |x j| and ‖x‖∞ = max j |x j|. If X is an M×N-dimensional matrix, ‖X‖∞ =

maxi ∑
N
j=1 |xi, j|, where xi, j is the element in row i and column j of X .
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investing when it performs better than or the same as the FF5 model for pricing. Panel A of Table 3 consists

of five anomalies: return-on-book equity (RetBE), ValMom, idiosyncratic volatility (IVOL), momentum,

and return-on-market equity (RetME). These anomaly long-short portfolio returns can be explained by the

HXZ model with insignificant alphas, but cannot be explained by the FF5 model with significant alphas. The

average alpha is 0.13% (t = 0.63) for the HXZ model and is 0.67% (t = 3.45) for the FF5 model. A striking

result is that the average R2 statistics of these two models are 50% and 53%, respectively, implying that

although the HXZ outperforms the FF5 in terms of alpha, there are half variations in the average anomaly

returns that are left unexplained by both of them.

Panel B of Table 3 consists of 10 anomalies: accruals, net issuance (rebal.:A), investment, gross margins,

ValMomProf, industry momentum (IndMom), industry relative reversals (IndRelRev), high-frequency

combo (HighFreqCom), seasonality, and industry low volatility (IndLowVol). None of these anomalies

cannot be explained by the HXZ model or the FF5 model, and the average alphas are 0.72% (t = 4.11) and

0.75% (t = 4.44), respectively. The average regression R2s of the two models are 18% and 22%, suggesting

that there are more than three quarters of variations in the average anomaly returns left unexplained by both

models. Compared with Table 1, the high average annualized Sharpe ratio, 0.71, is slightly smaller than that

of I/A and ROE in the HXZ model (0.82 and 0.75), but it is larger than any other factors.

3.3 Predictive means and standard deviations

Before analyzing the portfolio decisions, we examine the predictive means and standard deviations of risky

assets in Table 4. The results for the covariances of individual assets are similar to the standard deviations

and are omitted to save space. If there are no substantial differences in these parameter estimates, it is

unlikely that there are dramatic differences in portfolio allocations.

According to (6) and (7), imposing an asset pricing model on the return-generating process with a

confidence of ω has a first-order effect on the predictive mean and a second-order effect on the predictive

variance. Panels A and B of Table 4 report the predictive means. It is apparent that by varying the confidence

ω and asset pricing model, the predictive mean of each asset is dramatically changed. For example, the

predictive mean of the return-on-book equity (RetBE) anomaly return is 0.71% per month if the investor is

agnostic about the HXZ and the FF5 by setting ω = 0 (the sample mean in this case). In contrast, if the

investor believes dogmatically in one of them (ω = 1), the predictive mean is 0.70% for the HXZ model
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and is 0.25% for the FF5 model. The dramatic estimation bias for using the FF5 model is due to the fact

that the FF5 model cannot explain the RetBE anomaly. When one imposes a constraint by setting the alpha

equal to zero when estimating the predictive mean, the estimate is dramatically biased. Instead, since the

HXZ model explains the anomaly with an insignificant alpha, the model is likely to capture the true mean

of the return-generating process and the potential estimation bias is negligible, as the imposed constraint is

nearly slack. This argument is supported by Panel B of Table 4. Since each anomaly in this panel cannot

be explained by the two models, the estimates with them for the predictive mean dramatically deviate from

the unbiased estimate, the sample mean by setting ω = 0. For instance, the unbiased predictive mean of the

accrual anomaly is 0.26% per month, whereas it is −0.07% for the HXZ model and −0.02% for the FF5

model when ω = 1.

Panels C and D of Table 4 report the predictive standard deviations. In contrast with the results in Panels

A and B, the difference in estimates between the two models is relatively small. This result is consistent

with Chan, Karceski, and Lakonishok (1999) who show that various models for forecasting covariances

generally perform quite similarly. In Panel C, although each anomaly can be explained by the HXZ model

but not the FF5, the estimates of the predictive standard deviations with the two models are virtually the

same. When ω = 1, the biggest difference in the estimated predictive standard deviations between the two

models is 0.09% in the momentum anomaly, and amounts to only 1% of the estimate when ω = 0 (the case

with an unbiased predictive variance estimate). In Panel D, when ω = 1, the biggest difference is 0.08% in

the ROE factor, which amounts to approximately 3% of the estimate of ω = 0.

A striking characteristic in Panel D is that the differences between ω = 1 and ω = 0 for both models

are generally larger than that in Panel C. For example, regarding the HighFreqCom anomaly, the predictive

standard deviations with the two models are 4.04% and 4.05% when ω = 1, and are both 3.77% when

ω = 0. The biases, 0.27% and 0.28%, amount to approximately 7% of 3.77%. We attribute this larger bias

between ω = 1 and ω = 0 to the larger proportion of variations in the average anomaly returns that are left

unexplained by the two factor models, as shown by the lower regression R2s in Table 3. Therefore, when

there is a significant mispricing error, imposing an asset pricing model leads to a large bias in the estimation

of the predictive standard deviation. To some extent, our finding is consistent with MacKinlay and Pastor

(2000) that when a risk factor is missing from an asset pricing model, the resulting mispricing is embedded

within the residual covariance matrix.

15



3.4 In-sample comparison

Table 5 reports optimal allocations per $100 of wealth when prior beliefs are centered on either of the two

asset pricing models, with varying degrees of confidence ω . The risky assets include the five anomalies that

can be explained by the HXZ but not the FF5 model (see details in Panel A of Table 3), five factors in the

FF5, and the investment and profitability factors in the HXZ model. Hence, the investment universe consists

of 12 risky assets and one risk-free asset. When the investor employs the HXZ model, the non-benchmark

assets are the five anomalies plus the HML, CMA, and RMW factors in the FF5. Similarly, when the FF5

is the asset pricing model, the non-benchmark assets are the five anomalies plus the I/A and ROE factors in

the HXZ model.

As confidence decreases, the optimal portfolio converges to the portfolio based on the sample mean and

covariance matrix of anomaly returns (the case of ω = 0), regardless of the asset pricing model. The aim

here is to explore the extent to which this behavior occurs at interesting confidence levels of ω . The results

in Table 5 are reported for ω = 0.75 and 0.5 as well as the limiting cases ω = 1 (exact pricing) and ω = 0

(no use of a pricing model).

We consider three levels of margin requirements, c = 2,10, and ∞. Panel A reports the results of c = 2,

which is a constraint with a 50% margin requirement. The first two columns, with ω = 1, display the

allocations corresponding to the dogmatic beliefs in each of the two asset pricing models. In this case, each

asset pricing model estimates the parameters of the non-benchmark assets by restricting alphas equal to

zero. According to Table 3 and HXZ (2016), ex post, the HXZ model explains the average returns of the

five anomalies and the HML, CMA, and RMW factors. Hence, the zero alpha constraint for the HXZ model

is nearly slack and innocuous. With this tight margin requirement constraint, the optimal portfolio under the

HXZ model includes four assets: RetBE (19.8), ValMom (37.3), momentum (12.4), and MKT (61.0), where

only MKT is a benchmark asset.

The allocation under the FF5 factor is different, investing in two anomaly assets with small positions,

ValMom (12.6) and IVOL (6.5), and in the CMA and MKT factors with large positions (44.7 and 72.5). This

result in this panel is in stark contrast to Pastor and Stambaugh (2000), who show that, with a 50% margin

requirement, it makes no difference whether the mean-variance investor uses the FF3 model or the Daniel-

Titman’s characteristic model, even though the non-benchmark assets are constructed to exploit differences

between them. One potential explanation is that the two models in Pastor and Stambaugh (2000) have
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the same power in explaining the non-benchmark assets, whereas the HXZ and the FF5 in this paper have

different powers in explaining the non-benchmark assets.

For a given c, let x̃ be the optimal portfolio under the predictive mean µ̃ and covariance Ṽ . We compute

the in-sample expected utility or certainty-equivalent return (CER) as:

CER(x̃, µ̃,Ṽ ) = x̃′µ̃− γ

2
x̃′Ṽ x̃. (20)

Moreover, we calculate the Sharpe ratio as:

SR(x̃, µ̃,Ṽ ) =
x̃′µ̃√
x̃′Ṽ x̃

. (21)

The investing problem (15) treats the risky assets as on an individual basis, ignoring the fact that they are

constructed as portfolios of individual stocks, and a given stock can appear in a non-benchmark portfolio

and in each of the benchmark factors. For this reason, one can argue that the returns on the risky assets are

correlated; large differences in position-by-position allocations need not necessarily produce economically

significant differences in the overall portfolio characteristics. As a result, the CER and SR are more sensible

measures for model comparison.

The last two rows of each panel in Table 5 report the in-sample CER and SR. To facilitate understanding,

we multiply the monthly CER by 1,200 to express it as percent per year and multiply the monthly SR by
√

12

for an annual value. The last two rows of Panel A demonstrate that, even with a 50% margin requirement,

the CER and SR with different asset pricing models are apparently different. With a dogmatic belief, ω = 1,

the investor with the HXZ model can realize a CER of 9% per year. In contrast, she can only obtain a CER

of 6.2% with the FF5 model. The difference in CERs suggests that the investor can obtain 23 more basis

points per month using the HXZ model. The annualized SR is 0.93 for the HXZ model and 0.75 for the FF5

model.

When the confidence level ω decreases, the optimal portfolios for the two asset pricing models changes

accordingly. However, the changes for the FF5 are more dramatic. From (6) and (7), as ω decreases,

the predictive mean and covariance matrix of the risky assets approach the mean and covariance matrix

estimated without the constraint of alphas equal to zero. As the HXZ can explain all of the non-benchmark

assets with insignificant alphas, its estimates of the mean and covariance matrix are close to the estimates

without the constraint. Hence, a change in ω has a smaller effect on the optimal portfolio chosen by the
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HXZ model. For example, when ω decreases from 1 to 0.75, the investment in the ValMom anomaly

slightly decreases from 37.3 to 34.3 per $100. In stark contrast, the investment with the FF5 model increases

dramatically from 12.6 to 29.6.

The case of ω = 0.5 deserves special discussion. In a Bayesian framework, given the residual covariance

matrix Σ of r1t in (3), if the prior distribution of α is chosen to satisfy Var(α|Σ) = Var(α̂|Σ), Wang (2005)

shows that the required confidence ω should be set to 0.5. Panel A shows that, in this case, the optimal

investment in ValMom is 31.3 with the HXZ and is slightly different with the case of ω = 0.75. The optimal

investment with the FF5 model is 40.2 per $100 of wealth, which is significantly different from the case of

ω = 0.75.

When the investor is agnostic about any asset pricing model and sets ω equal to 0, the predictive means

and covariance matrices with the two models are the same, which are the estimates without restriction on the

alphas of the non-benchmark assets. The optimal portfolio is reported in the last column, and the first four

anomalies and the MKT factor receive non-zero weights. Since the estimates in this case are unbiased, and

when the sample size increases, the portfolio should unbiasedly converge to the one with true parameters.

Panel B of Table 5 reports the results with c = 10. That is, for each dollar of investment, the maximum

value of risky positions is at most $10 or the margin requirement is 10%. Three observations follow this

panel. First, as the margin requirement is relaxed, the investments in the factors of either asset pricing

model dramatically increase. For example, with a dogmatic belief of ω = 1, the investor with the HXZ

model allocates 189.3, 134.2, 38.2, and 121.8 to the I/A, ROE, SMB, and MKT factors for each $100 of

wealth; these values are in sharp contrast to the case of c = 2, in which the only one non-zero allocation on

the factors is MKT with a position of 61. Similarly, the investor with the FF5 model allocates 259.4, 126.5,

38.8, and 126.2 to the CMA, RMW, SMB, and MKT factors, which are significantly larger than the case of

c = 2. Second, among the 12 risky assets, only the MKT short side is a risk-free asset and the investment

in this asset is equal to 100 minus the investment in MKT. From Panel B, for any value of ω , all of the

investments in MKT are larger than 100. As such, the investments in the risk-free asset in these cases are

negative, implying that the investor is borrowing money. Third and lastly, the investing performances, CER

and SR, significantly improve relative to Panel A. The differences in CERs between the HXZ and the FF5

also become larger, and they are 7.2%, 6.8%, and 5.4% per year when ω = 1,0.75, and 0.5, respectively.

Panel C of Table 5 is the case in which there is no margin requirement, i.e., c = ∞. When ω = 1, each

asset pricing model estimates the parameters of the non-benchmark assets with zero alphas, the portfolio
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weights for these assets are zero. As a result, the investor allocates her wealth among the factors of the model

that she employs. However, when the investor does not have a dogmatic belief but places a confidence of

ω = 0.75, she will allocate across all of the risky assets, regardless of the asset pricing model. An interesting

result with this panel is that, while the portfolio is more diversified when the investor’s confidence level

decreases, the CER and SR do not improve substantially. Instead, the allocations on the non-benchmark

assets are generally much smaller than the investments in the factors. In terms of the alternative interpretation

of the margin requirements in (19), the small portfolio weights on the non-benchmark assets are partially

due to estimation errors.

Table 6 reports the optimal portfolio choices, CERs, and SRs when the investment universe of risky

assets are the 10 anomalies, five factors in the FF5, and I/A and ROE in the HXZ model. The key difference

between Tables 5 and 6 is that each of the anomaly returns in Tables 6 cannot be explained by the HXZ or

the FF5 model. From Table 3, both models have similar degrees of mispricing errors for the 10 anomalies.

In this sense, they could have similar investing performance.

Panel A of Table 6 shows the results of c = 2. The differences in CERs between the HXZ and the FF5

are 1.5%, 1.6%, and 1.2% per year when ω = 1, 0.75, and 0.5. An interesting finding is that the investor

does not invest in the benchmark assets at all when ω = 0. Panel B shows that when the margin requirement

is relaxed by setting c = 10, the optimal portfolio covers more assets and increases allocations on the factors

significantly. In this case, the differences in CERs between the HXZ and the FF5 are 6.9%, 6.6%, and

4.6% per year when ω = 1, 0.75, and 0.5. Panel C strengthens this result and allocates to all of the risky

assets with non-zero weights when the investor is uncertain about the asset pricing model. In addition to

the difference in CERs between the two models being increasing, the level of CER for each model increases

dramatically. The reason is intuitive as all of the risky assets have non-zero alphas, and the investor invests

more in the anomalies by enjoying the “arbitrage” opportunities.

As a mean-variance investor, if the distribution of asset returns is known, imposing an asset pricing

model by setting alphas equal to zero can lead to biased estimates of the portfolio parameters, which gives

rise to a CER loss. A better asset pricing model is the one that yields smaller biases in the predictive

mean and covariance matrix. As a result, it should have a smaller CER loss. Suppose the true mean and

covariance matrix are µ and V , and xo is the resulting optimal portfolio for a given c. We calculate the CER

as CERo = x′oµ− γ

2 x′oV xo. Then we calculate the CER of a suboptimal allocation xs as CERs = x′sµ−
γ

2 x′sV xs,

where xs is an allocation that is optimal for the same c and ω under the predictive distribution from imposing
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an asset pricing model. For example, if an asset pricing model is imposed, xs is the optimal allocation from

using the predictive mean and covariance matrix, µ̃ and Ṽ , that are estimated according to (6) and (7). The

difference CERo−CERs provides an economic measure of CER loss from imposing a pricing constraint on

the distribution of asset returns.

Figure 2 displays the annualized CER losses for an investor who believes in the sample mean and

covariance matrix that are estimated without imposing any asset pricing model, but is forced to hold a

portfolio chosen by another investor with a confidence ω in the HXZ or the FF5 model. The risky assets are

the same as Table 5, including five anomalies that can be explained by the HXZ but not the FF5 model, five

factors in the FF5, and the investment and profitability factors in the HXZ model. For each of four values

of c, the figure plots the CER loss versus confidence ω . Losses are calculated for portfolios from the HXZ

model and from the FF5 model. The goal is to explore whether the HXZ is a better model for investing

when it is a better model for pricing, as shown in Panel A of Table 3.

Figure 2 makes three statements. First, the CER loss increases monotonically with respect to the

confidence level ω . When ω = 0, the investor does not believe in the asset pricing model and the predictive

mean and covariance matrix are the same as the sample mean and covariance matrix. In this case, there is

no CER loss. When ω increases, the investor places a larger weight on the mean and covariance matrix that

are estimated by setting the alphas of non-benchmark assets equal to zero. The resulting predictive mean

and covariance matrix are more likely to be biased, and therefore, the CER loss is more likely to increase.

Second, the CER loss increases with respect to c. As c increases, the constraint of margin requirements

becomes less likely to be binding and the optimal portfolio is closer to the one suggested by the predictive

mean and covariance matrix. Hence, the CER loss increases. Third and finally, the CER loss for imposing

the HXZ model is negligible and essentially plots as a flat line at zero, regardless of the values of c and ω .

When ω = 1, the CER loss increases from 0.4% per year at c = 2, to 1.3% per year at c = 10, and to 2.5%

per year at c = ∞. In this case, the CER loss for imposing the FF5 model is dramatic, and it increases from

2.7% per year at c = 2, to 8.2% per year at c = 10, and to 16.0% per year at c = ∞. Hence, when ω = 1, the

HXZ outperforms the FF5 by 2.3% at c = 2, by 6.9% at c = 10, and by 13.5% at c = ∞. As such, one can

conclude that the HXZ is a better model for investing in these non-benchmark assets.

Figure 3 displays the annualized CER losses for the case in which 10 anomaly spread returns cannot be

explained by the HXZ or the FF5 model. As in Figure 2, the investor is assumed to believe in the sample

mean and covariance matrix but is forced to hold the portfolio chosen by another investor with confidence ω
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in the HXZ or the FF5 model. The risky assets are those in Table 6, including 10 anomalies that cannot be

explained by the HXZ or the FF5 model, five factors in the FF5, and the investment and profitability factors

in the HXZ model. The goal here is to explore whether the HXZ is a better model for investing even when

it performs similarly to the FF5 model for pricing the anomalies in Panel B of Table 3.

Figure 3 shows a similar pattern to Figure 2. As c increases or ω increases, the CER loss increases

monotonically. The difference between these two figures is that the magnitude of CER losses in Figure 3 is

much larger than that in Figure 2 for both models. Given that ω = 1, when c = 2,10, and ∞, the CER losses

for the HXZ model are 5.3%, 26.4%, and 67.6%, and they are 8.2%, 34.8%, and 81.1% for the FF5 model,

respectively. Thus, when c = 2,10, or ∞, the outperformance of the HXZ in terms of CER is 2.9%, 8.4%, or

13.5%, which is surprisingly similar to that in Figure 2. Summarizing these two figures, one can conclude

that the HXZ outperforms the FF5 model for investing in anomalies, regardless of their pricing abilities.

Figure 4 displays precisely the same analysis except that the CER losses are computed for an investor

who believes in the HXZ model with confidence ω but is forced to hold the portfolio chosen by another

investor with the same degree of confidence in the FF5 model (left two panels), and vice versa (right two

panels). The upper two panels correspond to the risky assets in Figure 2 and the lower two panels correspond

to the risky assets in Figure 3. When ω = 1 and c = 2, the CER loss for the investor who believes in one

model but is forced to use another model is always less than 2% per year. When c = 10, the CER losses

for the investor who believes the HXZ but is forced to use the FF5 are more than 7% per year, which is an

economically large magnitude, regardless of the risky assets. Similarly, the CER losses for the investor who

believes in the FF5 but is forced to use the HXZ are about 6% per year. When c = ∞, all of the CER losses

are more than doubled, in comparison to c = 10.

3.5 Out-of-sample comparison

A model with better in-sample performance for investing does not necessarily mean it has better out-of-

sample performance because of estimation errors. For example, DeMiguel, Garlappi, and Uppal (2009)

report that the Sharpe ratio is 0.219 for the mean-variance model with assets MKT, SMB, and HML, whereas

the Sharpe ratio is 0.096 with assets MKT, SMB, HML, MOM, 10 book-to-market portfolios, and 10 size

portfolios. This example suggests that comparing models out-of-sample is important in that adding more

assets could reduce portfolio performance if the estimation errors are not controlled. Kan and Wang (2017)
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explicitly consider the out-of-sample utility loss using the sample mean and covariance matrix.5

3.5.1 Pseudo out-of-sample analysis

We follow Kozak, Nagel, and Santosh (2018) and perform a bootstrap simulation for out-of-sample

comparison, which maintains the i.i.d property over time, an assumption made in the main framework.

We randomly sample (with replacement) T +300 returns on the risky assets and use the first T to calculate

the portfolio weights, which are used for the remaining 300 observations to calculate the out-of-sample CER

(CEROS),

CEROS = µ̂x̃−
γ

2
σ̂

2
x̃ , (22)

where µ̂x and σ̂2
x̃ are the sample mean and variance of the 300 out-of-sample excess returns of portfolio x̃

that is based on the first T observations. Similarly, we calculate the out-of-sample Sharpe ratio (SROS) as

SROS =
µ̂x̃

σ̂x̃
. (23)

We repeat the procedure 1,000 times and report the average CEROS. As the sample size is important for

out-of-sample performance, we consider five values of T : 60, 120, 240, 360, and 600.

Table 7 reports the annualized CEROS for investing in the anomalies that can be explained by the HXZ

but not the FF5 model. In contrast to the in-sample comparison in Table 5, this table considers two more

values of ω , 0.95 and 0.90, in addition to 1, 0.75, 0.50, and 0. Table 7 makes four statements. First, for

given values of c and ω , the CEROS increases as the sample size T increases. For example, when c = 10 and

ω = 1, the annualized CEROS of the HXZ model is 18.1% when T = 60, and it increases monotonically to

26.4% when T = 600. Similarly, the annualized CEROS of the HXZ model increases from 12.2% to 19.8%

in this case. Second, when c = 2, since the HXZ model is a “correct” pricing model and explains all of

the anomalies, its CEROS is flat and does not change as ω decreases. This pattern holds true regardless of

the sample size T . In contrast, since the FF5 model cannot explain the anomalies and its estimates for the

predictive mean and covariance matrix are biased, the CEROS increases in general when ω decreases. For

5In the literature, there is a large number of papers that explain why the out-of-sample performance could be poor and how to
improve it, such as MacKinlay and Pastor (2000), Jagannathan and Ma (2003), Siegel and Woodgate (2007), Garlappi, Uppal, and
Wang (2007), DeMiguel, Garlappi, and Uppal (2009), Tu and Zhou (2011), and DeMiguel, Plyakha, Uppal, and Vilkov (2013),
among others.
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example, when T = 60, the annualized CEROS increases from 4.6% at ω = 1 to 6.2% at ω = 0; and when

T = 600, it increases from 7.3% at ω = 1 to 9.8% at ω = 0. Third, fixing ω , the CEROS does not necessarily

increase when the margin requirement is relaxed (increasing c). When ω = 1 and T = 60, the annualized

CEROS values at c = 2,10, and ∞ are 6.3%, 18.1%, and 14.8% for the HXZ model, and they are 4.6%,

12.2%, and −4.0% for the FF5 model. Finally and more importantly, the HXZ outperforms the FF5 model

with large CEROSs when ω ≥ 0.5. Even with a modest confidence of ω = 0.75, when T = 600, the HXZ

outperforms the FF5 by 5.2% at c = 10 and by 8.0% at c = ∞.

Table 8 reports the annualized SROS with the same investment setting as Table 7. Consistent with Table

7, the HXZ model outperforms the FF5 model in terms of SROS, and the outperformance achieves the

maximum when ω = 1 and is slightly more pronounced when T is small. An interesting result is that the

SROS increases when c increases for given T and ω .

Tables 9 and 10 report the annualized CEROS and SROS for investing in anomalies that cannot be

explained by the HXZ or the FF5 model, whose in-sample results are reported in Table 6. From Panel B of

Table 3, the HXZ and FF5 models have equal pricing abilities in terms of the average alpha and regression

R2. However, with respect to investing, the HXZ outperforms the FF5 significantly out-of-sample. For

example, when ω = 1 and T = 600, the annualized CEROS values with the HXZ model are 2.6%, 8.4%,

and 13.8% larger than the corresponding values of the FF5 at c = 2,10, and ∞. When ω = 0.90, the

corresponding counterparts are still 2.1%, 6.8%, and 12.4%, respectively. Different from Table 7, the CEROS

values with non-zero ω values for both models are less than the values of ω = 0, because the estimates for

the predictive mean and covariance matrix by imposing either of the two models are biased.

3.5.2 Real-time out-of-sample analysis

The previous analysis assumes that the risky returns are i.i.d over time. In practice, however, this assumption

does not hold and expected returns are varying over time,6 which means that the expected returns are moving

targets and can never be estimated accurately (Garleanu and Pedersen, 2013). As such, the outperformance

of the HXZ model in the previous subsection may not exist in real time.

We use an expanding window approach to compare their out-of-sample performances. With an initial

window of 120 months, in each month t, we use data from month 1 to month t to compute the various

6We keep the normality assumption as it works well in evaluating portfolio performance in a mean-variance framework (Tu
and Zhou, 2004).
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portfolio rules, and apply them to determine the investments in the next month. For instance, let x̃t be the

estimated optimal portfolio in month t and rt+1 be the excess return on the risky assets realized in month

t + 1. The realized excess return on the portfolio is rx̃,t+1 = x̃′trt+1. We then compute the average value of

the realized returns, µ̂x̃, and the variance, σ̂2
x̃ . The out-of-sample CER can be calculated accordingly.

Figure 5 plots the CEROSs for investing in anomalies that can be explained by the HXZ but not the FF5

model. As shown in Table 7, when ω is high, the difference in CEROSs between the HXZ and the FF5 is

economically significant. For example, when ω = 1, the CEROS values for the two models are 22.2% and

16.3% at c = 10, and 28.3% and 20.6% at c = 20, respectively. The difference in CEROSs suggests that the

HXZ outperforms the FF5 by 5.8% or 6.7% per year when the investor is subject to a 10% or 5% margin

requirement. Figure 6 plots the CEROS values for investing in the anomalies that cannot be explained by the

HXZ or the FF5 model, as in Table 9. When ω = 1 and c = 20, the CEROS values for the two models are

34.8% and 27.5% with a difference of 7.3% per year. Even in the case of c = 10, the difference is 3.2% per

year. Therefore, summarizing these two figures, one can conclude that, under modest model uncertainty and

margin requirements, the difference in CEROSs between the two models can be more than 6% per year.

3.6 Source of difference between the HXZ and the FF5

In the mean-variance framework, the only two parameters are the predictive mean and covariance matrix

of risky assets. The better investment performance of the HXZ model must come from its better ability to

capture the mean, the covariance matrix, or both.

This subsection considers the global-minimum-variance portfolio allocation. That is, the investor

chooses portfolio x to minimize x′Ṽ x with the margin requirement (17), where Ṽ is the predictive covariance

matrix and is given in (7). Mathematically, this is an extreme case of (15) with γ = ∞. The goal here is

to show that whether the estimates of Ṽ with the HXZ and the FF5 are different enough to yield different

portfolios.

Figures 7 and 8 plot the in-sample annualized Sharpe ratio losses from the perspective of a global-

minimum-variance investor, who knows the true mean and covariance matrix but is forced to hold the global-

minimum-variance portfolio chosen by another investor who places a confidence of ω in the HXZ or the

FF5 model, where the sample mean and covariance matrix are assumed to be the true mean and covariance

matrix. In addition to the five factors in FF5 and investment and profitability factors in HXZ, the risky
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assets also include five anomalies that can be explained by the HXZ but not the FF5 model (Figure 7), or 10

anomalies that cannot be explained by the HXZ or the FF5 (Figure 8).

A striking pattern in Figure 7 is that the Sharpe ratio loss is negligible and is always less than 0.1 for

both models, regardless of c and ω . In fact, the Sharpe ratio losses are virtually the same when c exceeds

10. This suggests that imposing one of the two asset pricing models does not lead to a significant bias for

estimating the risky assets’ covariance matrix. In Figure 8, the Shapre ratio loss is large; it is at least 0.2 for

both models. However, the losses for the HXZ and FF5 are similar for given c and ω , suggesting that the

predictive means and covariance matrix with the two pricing models are biased and similar. The evidence

in these two figures is similar to Chan, Karceski, and Lakonishok (1999), who focus on individual stocks

and find that the FF3 model performs the same as a nine-factor model under the global-minimum-variance

criterion.

With this simple exercise, one can conclude that the better performance of the HXZ model for investing

appears to come from its better ability to describe the average returns of risky assets.

4 Conclusion

This paper shows that the HXZ model outperforms the FF5 model for investing in anomalies in- and out-

of-sample. Based on the well established framework of Pástor and Stambaugh (2000) and Wang (2005),

the out-of-sample certainty-equivalent return of the HXZ model can be 6% per year more than the FF5

under modest model uncertainty and margin requirements. The finding in this paper is a complement, in an

economic way, to concurrent studies by Hou, Mo, Xue, and Zhang (2019) and Barillas and Shanken (2017,

2018) who focus on pricing rather than investing.

This paper assumes that asset returns are i.i.d over time. It is of interest to relax this assumption

and explore how conditional information affects the investing performance of the two models. While the

investment framework does incorporate the investor’s varying beliefs in the asset pricing models, it does not

address the linkage between the priors and the economic objectives, which can significantly improve the

investing performance (Tu and Zhou, 2010). From the perspective of investing, it is undoubtedly interesting

to include more competing models, such as Stambaugh and Yuan (2017).
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Figure 1 In-sample mean-variance frontiers (in % per month). This figure plots the mean-variance
frontiers for investing in the Hou, Xue, and Zhang (HXZ, 2015) four factors, or the Fama and French
(FF5, 2015a) five factors, or all the HXZ and FF5 factors. In calculating the frontiers, the HXZ model is
assumed to have the same market and size factors as the FF5 model. The sample period is 1972:01–2013:12.
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Figure 2 In-sample certainty-equivalent return (CER, in % per year) loss from the perspective of a mean-
variance investor, who knows the true mean and covariance but is forced to hold the portfolio chosen by
another investor who places a confidence ω in the Hou, Xue, and Zhang (HXZ, 2015) four-factor model or
the Fama and French (FF5, 2015a) five-factor model. The risky assets include five anomalies from Novy-
Marx and Velikov (2016) that can be explained by the HXZ model but not the FF5 model, five factors in the
FF5 model, and investment and profitability factors in the HXZ model. The sample mean and covariance
are assumed to be the true mean and covariance. c is the maximum value of risky positions that can be
established per dollar of wealth. The investor’s risk aversion is set to 3. The sample period is 1973:07–
2013:12.
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Figure 3 In-sample certainty-equivalent return (CER, in % per year) loss from the perspective of a mean-
variance investor, who knows the true mean and covariance but is forced to hold the portfolio chosen by
another investor who places a confidence ω in the Hou, Xue, and Zhang (HXZ, 2015) four-factor model or
the Fama and French (FF5, 2015a) five-factor model. The risky assets include 10 anomalies from Novy-
Marx and Velikov (2016) that cannot be explained by the HXZ or the FF5 models, five factors in the FF5
model, and investment and profitability factors in the HXZ model. c is the maximum value of risky positions
that can be established per dollar of wealth. The sample mean and covariance are assumed to be the true
mean and covariance. The investor’s risk aversion is set to 3. The sample period is 1972:01–2013:12.
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Figure 4 In-sample certainty-equivalent return (CER, in % per year) loss from the perspective of a mean-
variance investor, who believes in the Hou, Xue, and Zhang (HXZ, 2015) model with a confidence ω but is
forced to hold the portfolio chosen by another investor with the same degree of confidence in the Fama and
French (FF5, 2015a) five-factor model (left two panels), and vice versa (right two panels). In addition to the
five factors in the FF5 model and the investment and profitability factors in HXZ model, the risky assets also
include five anomalies from Novy-Marx and Velikov (2016) that can be explained by the HXZ model but not
the FF5 model (upper two papnels), or 10 anomalies that cannot be explained by the HXZ or the FF5 models.
c is the maximum value of risky positions that can be established per dollar of wealth. The investor’s risk
aversion is set to 3. The sample period is 1973:07–2013:12 for upper panels and 1972:01–2013:12 for lower
panels.
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Figure 5 Out-of-sample certainty-equivalent return (CER, in % per year) for a mean-variance Bayesian
investor with risk aversion equal to 3. c is the maximum value of risky positions that can be established
per dollar of wealth. ω is the confidence level the investor places in the Hou, Xue, and Zhang (HXZ,
2015) four-factor model or the Fama and French (FF5, 2015a) five-factor model. The risky assets include
five anomalies from Novy-Marx and Velikov (2016) that can be explained by the HXZ model but not the
FF5 model, five factors in the FF5, and investment and profitability factors in the HXZ model. We use an
expanding window approach in calculating the out-of-sample CER, where the initial window is 120 months.
In each month t, we use data from month 1 to month t to compute the various portfolio rules, and apply them
to determine the investments in the next month. For instance, let x̃t be the estimated optimal portfolio in
month t and rt+1 be the excess return on the risky assets realized in month t +1. The realized excess return
on the portfolio is rx̃,t+1 = x̃′trt+1. We then compute the mean and variance of the realized returns as µ̂x̃ and
σ̂2

x̃ . The out-of-sample CER is thus given by CEROS = µ̂x̃−γσ̂2
x̃ /2. The sample period is 1973:07–2013:12.
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Figure 6 Out-of-sample certainty-equivalent return (CER, in % per year) for a mean-variance Bayesian
investor with risk aversion equal to 3. c is the maximum value of risky positions that can be established per
dollar of wealth. ω is the confidence level the investor places in the Hou, Xue, and Zhang (HXZ, 2015)
four-factor model or the Fama and French (FF5, 2015a) five-factor model. The risky assets include 10
anomalies from Novy-Marx and Velikov (2016) that cannot be explained by the HXZ or the FF5 models,
five factors in the FF5, and investment and profitability factors in the HXZ model. We use an expanding
window approach in calculating the out-of-sample CER, where the initial window is 120 months. In each
month t, we use data from month 1 to month t to compute the various portfolio rules, and apply them to
determine the investments in the next month. For instance, let x̃t be the estimated optimal portfolio in month
t and rt+1 be the excess return on the risky assets realized in month t +1. The realized excess return on the
portfolio is rx̃,t+1 = x̃′trt+1. We then compute the mean and variance of the realized returns as µ̂x̃ and σ̂2

x̃ .
The out-of-sample CER is thus given by CEROS = µ̂x̃− γσ̂2

x̃ /2. The sample period is 1972:01–2013:12.
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Figure 7 In-sample annualized Sharpe ratio loss from the perspective of a global-minimum-variance
investor, who knows the true mean and covariance but is forced to hold the global-minimum-variance
portfolio chosen by another investor who places a confidence ω in the Hou, Xue, and Zhang (HXZ, 2015)
four-factor model or the Fama and French (FF5, 2015a) five-factor model. The risky assets include five
anomalies from Novy-Marx and Velikov (2016) that can be explained by the HXZ but not the FF5 model,
five factors in the FF5 model, and investment and profitability factors in the HXZ model. c is the maximum
value of risky positions that can be established per dollar of wealth. The sample mean and covariance are
assumed to be the true mean and covariance. The sample period is 1973:07–2013:12.
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Figure 8 In-sample annualized Sharpe ratio loss from the perspective of a global-minimum-variance
investor, who knows the true mean and covariance but is forced to hold global-minimum-variance portfolio
chosen by another investor who places a confidence ω in the Hou, Xue, and Zhang (HXZ, 2015) four-factor
model or the Fama and French (FF5, 2015a) five-factor model. The risky assets include 10 anomalies from
Novy-Marx and Velikov (2016) that cannot be explained by the HXZ and the FF5 models, five factors in
the FF5 model, and investment and profitability factors in the HXZ model. c is the maximum value of risky
positions that can be established per dollar of wealth. The sample mean and covariance are assumed to be
the true mean and covariance. The sample period is 1972:01–2013:12.
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Table 1 Summary statistics of factors

Panel A of this table reports the summary statistics of asset pricing factors, where MKTHXZ, ME, I/A,
and ROE are the market, size, investment, and profitability factors in Hou, Xue, and Zhang (2015), and
MKT, SMB, HML, CMA, and RMW are the market, size, value, investment, and profitability factors in
Fama and French (2015a), respectively. t-value is from the test that the average return of the factor is zero,
and is calculated using White heteroskedasticity robust standard error. AC(1) represents the first-order
autocorrelation. Annualized Sharpe ratio for each individual factor is calculated as the mean return divided
by its standard deviation and multiplied by

√
12. Panel B reports the cross-sectional correlations of the

factors. The sample period is 1974:01–2016:12.

Panel A: Summary statistics
Mean t-value Volatility Skewness Kurtosis AC(1) Sharpe

ratio
MKTHXZ 0.57 2.85 4.55 −0.57 5.19 0.07 0.43
ME 0.35 2.58 3.05 0.63 9.28 0.00 0.39
I/A 0.40 4.92 1.84 0.21 4.81 0.09 0.75
ROE 0.56 4.84 2.61 −0.71 7.85 0.11 0.74

MKT 0.59 2.96 4.55 −0.54 5.06 0.07 0.45
SMB 0.28 2.14 2.99 0.38 7.20 0.00 0.33
HML 0.36 2.78 2.94 0.08 5.12 0.16 0.42
CMA 0.34 3.91 1.98 0.39 4.89 0.12 0.60
RMW 0.30 2.88 2.36 −0.36 15.31 0.14 0.44

Panel B: Correlation
MKTHXZ ME I/A ROE MKT SMB HML CMA RMW

MKTHXZ 1.00 0.23 −0.37 −0.21 1.00 0.22 −0.27 −0.39 −0.28
ME 1.00 −0.10 −0.32 0.22 0.97 0.00 −0.01 −0.40
I/A 1.00 0.08 −0.37 −0.13 0.67 0.91 0.18
ROE 1.00 −0.20 −0.39 −0.10 −0.04 0.67
MKT 1.00 0.22 −0.27 −0.40 −0.27
SMB 1.00 −0.04 −0.04 −0.40
HML 1.00 0.69 0.17
CMA 1.00 0.07
RMW 1.00
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Table 2 Mean-variance spanning tests

This table reports the results of testing whether factors in Fama and French (2015a) can be spanned by
the Hou, Xue, and Zhang (2015) four factors. W is the Wald test under conditional homoskedasticity,
We is the Wald test under the i.i.d. elliptical distribution, Wa is the Wald test under the conditional
heteroskedasticity, J1 is the Bekerart-Urias test with the Errors-in-Variables (EIV) adjustment, J2 is
the Bekerart-Urias test without the EIV adjustment, and J3 is the DeSantis test. All of the six tests
have an asymptotic Chi-Squared distribution with 2m degrees of freedom, where m is the number of
non-benchmark assets. As a comparison, the last column reports the GRS statistics of Gibbons, Ross, and
Shanken (GRS, 1989). The p-values are reported in the parentheses. The sample period is 1974:01–2016:12.

Non-benchmarks W We Wa J1 J2 J3 GRS

FF5 169.38 76.83 103.97 60.40 58.74 88.00 0.97
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.44)

CMA 19.95 10.31 13.33 10.95 10.92 12.79 0.31
(0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.58)

RMW 71.30 28.78 35.33 17.38 17.26 20.90 0.19
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.67)
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Table 3 Anomalies with significant HXZ and FF5 alphas

This table reports the summary statistics of 20 anomalies without and with taking account of transaction costs when constructing the long-short spread
portfolios. Following DeMiguel et al. (2018), the transaction cost for stock i at time t is calculated as κi,t = ytzi,t , where yt and zi,t capture the variation
of the transaction cost parameter with time and firm size, respectively. Specifically, yt decreases linearly from 3.3 in January 1974 to 1.0 in January
2002, and after that it remains at 1.0; zi,t = 0.006− 0.0025×mei,t , where mei,t is the market capitalization of firm i at time t after being normalized
cross-sectoinally so that it takes values between zero and one. The sample period is 1974:01–2016:12.

Without transaction costs With transaction costs

Anomaly Mean tMean αFF5 tFF5 αHXZ tHXZ Mean tMean αFF5 tFF5 αHXZ tHXZ

Lbp 0.41 2.02 0.88 5.46 0.92 4.99 0.31 1.49 0.77 4.78 0.82 4.46
Cei 0.53 2.89 0.29 2.29 0.33 2.28 0.47 2.52 0.22 1.75 0.26 1.82
Noa 0.53 3.74 0.70 4.91 0.60 3.97 0.43 3.07 0.60 4.22 0.52 3.38
dWc 0.21 2.18 0.35 3.62 0.35 3.52 0.11 1.19 0.25 2.64 0.26 2.65
dFin 0.14 1.49 0.34 3.86 0.27 2.82 0.05 0.49 0.24 2.78 0.18 1.87
Cop 0.54 3.02 0.60 5.02 0.50 3.88 0.45 2.50 0.51 4.20 0.42 3.17
Aton 0.30 2.00 0.32 2.25 0.30 2.05 0.24 1.61 0.26 1.84 0.25 1.67
Atoq 0.61 3.95 0.63 4.09 0.51 3.28 0.34 2.19 0.36 2.33 0.25 1.58
Olaq 0.71 3.46 0.79 4.68 0.41 2.60 0.23 1.08 0.31 1.82 −0.06 −0.35
Claq 0.78 4.66 0.84 5.02 0.72 4.23 0.12 0.69 0.19 1.11 0.08 0.47
Tbiq 0.15 1.06 0.33 2.22 0.37 2.46 −0.30 −2.08 −0.12 −0.81 −0.07 −0.48
Oq 0.29 1.42 0.71 5.14 0.48 3.46 0.03 0.12 0.45 3.22 0.22 1.59
Kzq 0.22 1.15 0.50 3.07 0.38 2.27 0.00 −0.02 0.28 1.70 0.16 0.97
Acc 0.48 3.44 0.58 4.08 0.53 3.56 0.35 2.57 0.45 3.19 0.41 2.79
Cashdebt 0.15 0.85 0.38 2.96 0.40 2.79 0.08 0.43 0.31 2.38 0.33 2.30
Chinv 0.44 3.26 0.40 3.08 0.34 2.48 0.32 2.34 0.27 2.09 0.22 1.61
Gma 0.09 0.59 0.39 2.87 0.33 2.30 0.03 0.19 0.32 2.39 0.27 1.89
Pchcurrat 0.20 1.92 0.31 2.81 0.28 2.50 0.06 0.53 0.16 1.41 0.15 1.26
Cashq 0.30 1.57 0.77 5.01 0.61 3.30 0.01 0.03 0.48 3.09 0.33 1.75
Ear 0.77 5.30 0.87 5.74 0.69 4.51 0.36 2.47 0.46 3.05 0.28 1.82
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Table 4 Predictive means and standard deviations of anomalies.

This table reports the predictive means (in percentage) and standard deviations of the anomaly long-short spread
returns from Novy-Marx and Velikov (2016) and different benchmark factors in Hou, Xue, and Zhang (HXZ, 2015)
and Fama and French (FF5, 2015a), respectively. The statistics are based on the predictive distribution using monthly
returns over 1973:07–2013:12 for Panels A and C and over 1972:01–2013:12 for Panels B and D. ω is the confidence
level the investor places in the HXZ or the FF5 model.

ω = 1 ω = 0.75 ω = 0.5 ω = 0
HXZ FF5 HXZ FF5 HXZ FF5 All

Panel A: Predictive means of anomalies that can be explained by HXZ but not FF5
RetBE 0.70 0.25 0.70 0.36 0.70 0.48 0.71
ValMom 0.87 0.45 0.87 0.55 0.87 0.66 0.88
IVOL 0.41 0.19 0.46 0.30 0.51 0.41 0.62
Momentum 1.04 0.24 1.07 0.47 1.10 0.70 1.16
RetME 0.86 0.46 0.92 0.63 0.98 0.79 1.11
HML 0.33 0.37 0.34 0.37 0.35 0.37 0.37
CMA 0.36 0.38 0.36 0.38 0.37 0.38 0.38
RMW 0.26 0.29 0.27 0.29 0.27 0.29 0.29
I/A 0.44 0.35 0.44 0.37 0.44 0.39 0.44
ROE 0.58 0.19 0.58 0.29 0.58 0.39 0.58
SMB 0.31 0.31 0.31 0.31 0.31 0.31 0.31
MKT 0.56 0.56 0.56 0.56 0.56 0.56 0.56

Panel B: Predictive means of anomalies that cannot be explained by HXZ or FF5
Accruals −0.07 −0.02 0.01 0.05 0.09 0.12 0.26
Net issuance 0.40 0.41 0.49 0.49 0.58 0.58 0.76
Investment 0.31 0.26 0.37 0.33 0.43 0.40 0.55
Gross margins −0.27 −0.26 −0.20 −0.19 −0.13 −0.12 0.02
ValMomProf 0.71 0.37 0.89 0.64 1.07 0.90 1.43
IndMom 0.18 −0.04 0.33 0.17 0.48 0.37 0.78
IndRelRev 0.10 0.21 0.30 0.38 0.50 0.55 0.90
HighFreqCom 0.35 0.21 0.63 0.52 0.90 0.83 1.45
Seasonality 0.06 0.03 0.25 0.22 0.43 0.41 0.80
IndLowVol 0.29 0.26 0.48 0.46 0.68 0.66 1.07
HML 0.33 0.39 0.35 0.39 0.36 0.39 0.39
CMA 0.36 0.37 0.36 0.37 0.36 0.37 0.37
RMW 0.26 0.29 0.27 0.29 0.27 0.29 0.29
I/A 0.44 0.34 0.44 0.37 0.44 0.39 0.44
ROE 0.57 0.18 0.57 0.28 0.57 0.37 0.57
SMB 0.23 0.23 0.23 0.23 0.23 0.23 0.23
MKT 0.53 0.53 0.53 0.53 0.53 0.53 0.53
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Table 4 (continued)

ω = 1 ω = 0.75 ω = 0.5 ω = 0
HXZ FF5 HXZ FF5 HXZ FF5 All

Panel C: Predictive standard deviations of anomalies that can be explained by HXZ but not FF5
RetBE 5.30 5.36 5.30 5.35 5.30 5.33 5.30
ValMom 5.01 5.07 5.01 5.06 5.01 5.04 5.00
IVOL 7.53 7.55 7.53 7.54 7.52 7.53 7.52
Momentum 7.30 7.39 7.29 7.37 7.29 7.34 7.27
RetME 5.36 5.42 5.35 5.40 5.34 5.37 5.31
HML 3.06 3.05 3.06 3.05 3.06 3.05 3.06
CMA 2.03 2.02 2.03 2.02 2.03 2.02 2.02
RMW 2.30 2.28 2.30 2.28 2.29 2.28 2.29
I/A 1.90 1.92 1.90 1.92 1.90 1.91 1.90
ROE 2.64 2.71 2.64 2.70 2.64 2.68 2.64
SMB 3.09 3.09 3.09 3.09 3.09 3.09 3.09
MKT 4.69 4.70 4.69 4.70 4.69 4.70 4.69

Panel D: Predictive standard deviations of anomalies that cannot be explained by HXZ or FF5
Accruals 3.27 3.27 3.26 3.27 3.26 3.26 3.25
Net issuance 3.12 3.12 3.10 3.10 3.08 3.08 3.05
Investment 3.19 3.19 3.18 3.18 3.17 3.17 3.15
Gross margins 3.26 3.26 3.26 3.26 3.26 3.27 3.27
ValMomProf 5.17 5.22 5.13 5.16 5.09 5.11 5.01
IndMom 6.24 6.25 6.22 6.23 6.21 6.22 6.18
IndRelRev 4.63 4.63 4.60 4.60 4.58 4.58 4.53
HighFreqCom 4.04 4.05 3.97 3.98 3.90 3.91 3.77
Seasonality 4.21 4.21 4.18 4.19 4.16 4.17 4.12
IndLowVol 3.67 3.67 3.63 3.63 3.59 3.59 3.51
HML 3.06 3.03 3.06 3.03 3.05 3.03 3.05
CMA 2.02 2.01 2.02 2.01 2.01 2.01 2.01
RMW 2.28 2.26 2.28 2.26 2.28 2.26 2.28
I/A 1.88 1.91 1.88 1.91 1.88 1.90 1.88
ROE 2.63 2.71 2.63 2.70 2.63 2.68 2.63
SMB 3.09 3.10 3.09 3.10 3.09 3.10 3.09
MKT 4.64 4.64 4.64 4.64 4.64 4.64 4.64
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Table 5 Optimal allocations (in-sample) for investing in anomalies that can be explained by the
HXZ but not the FF5.

This table reports optimal allocations (position sizes) per $100 of wealth for a mean-variance Bayesian investor
with relative risk aversion equal to 3. c is the maximum value of risky positions that can be established per dollar of
wealth. ω is the confidence level the investor places in the Hou, Xue, and Zhang (HXZ, 2015) four-factor model or the
Fama and French (FF5, 2015a) five-factor model. Optimization is based on the predictive distribution using monthly
returns over 1973:07–2013:12. The risky assets include five anomalies from Novy-Marx and Velikov (2016) that can
be explained by the HXZ model but not the FF5 model, five factors in the FF5, and investment and profitability factors
in the HXZ model. Also reported are the certainty-equivalent return (CER, in % per year), and annualized Sharpe ratio
(SR) of the portfolio’s return with respect to the given predictive distribution.

ω = 1 ω = 0.75 ω = 0.5 ω = 0
HXZ FF5 HXZ FF5 HXZ FF5 All

Panel A: c = 2
RetBE 19.8 0.0 18.7 0.0 17.6 6.8 3.5
ValMom 37.3 12.6 34.3 29.6 31.3 40.2 19.8
IVOL 0.0 6.5 0.0 14.5 0.0 14.4 12.1
Momentum 12.4 0.0 16.4 0.0 20.4 0.0 31.0
RetME 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HML 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CMA 0.0 44.7 0.0 16.6 0.0 0.0 0.0
RMW 0.0 0.0 0.0 0.0 0.0 0.0 0.0
I/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ROE 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SMB 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MKT 61.0 72.5 61.2 78.5 61.4 77.1 67.2

CER 9.0 6.2 9.1 6.6 9.2 7.3 9.5
SR 0.93 0.75 0.93 0.75 0.92 0.79 0.91
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Table 5 (continued)

ω = 1 ω = 0.75 ω = 0.5 ω = 0
HXZ FF5 HXZ FF5 HXZ FF5 All

Panel B: c = 10
RetBE 22.2 4.7 22.9 32.0 23.6 41.8 16.4
ValMom 54.7 7.5 49.1 18.0 43.5 16.9 28.8
IVOL 0.0 0.0 0.0 7.7 0.0 22.6 18.9
Momentum 0.5 0.0 6.4 0.8 12.2 7.2 24.9
RetME 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HML 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CMA 0.0 259.4 0.0 242.5 0.0 133.4 0.0
RMW 0.0 126.5 0.0 77.1 0.0 1.3 0.0
I/A 189.3 0.0 194.8 0.0 200.3 100.5 191.8
ROE 134.2 0.0 127.1 0.0 120.0 30.1 98.5
SMB 38.2 38.8 38.6 55.1 39.0 77.3 55.5
MKT 121.8 126.2 122.2 133.7 122.7 137.8 130.3

CER 26.6 19.4 26.7 19.9 26.7 21.3 27.0
SR 1.42 1.21 1.42 1.22 1.42 1.25 1.43

Panel C: c = ∞

RetBE 0.0 0.0 −16.8 −16.1 −33.7 −32.6 −67.7
ValMom 0.0 0.0 −15.4 −14.7 −30.9 −29.9 −62.1
IVOL 0.0 0.0 13.7 13.1 27.5 26.6 55.2
Momentum 0.0 0.0 10.3 9.9 20.7 20.1 41.6
RetME 0.0 0.0 17.7 16.9 35.5 34.4 71.3
HML 0.0 −70.9 12.8 −41.3 25.7 -11.2 51.7
CMA 0.0 577.8 28.7 463.7 57.5 350.3 115.6
RMW 0.0 376.7 −2.9 281.7 −5.7 186.5 −11.5
I/A 597.3 0.0 560.9 105.0 524.9 213.6 454.1
ROE 416.5 0.0 403.3 84.8 390.4 172.5 365.6
SMB 238.2 161.3 255.6 194.2 273.4 229.4 309.8
MKT 180.6 187.6 189.2 192.2 198.2 198.5 216.6

CER 40.7 27.4 40.8 28.3 41.2 31.0 42.6
SR 1.56 1.28 1.57 1.30 1.57 1.36 1.60
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Table 6 Optimal allocations (in-sample) for investing in anomalies that cannot be explained by the
HXZ or FF5.

This table reports optimal allocations (position sizes) per $100 of wealth for a mean-variance Bayesian investor
with risk aversion equal to 3. c is the maximum value of risky positions that can be established per dollar of wealth.
ω is the confidence level the investor places in the Hou, Xue, and Zhang (HXZ, 2015) four-factor model or the Fama
and French (FF5, 2015a) five-factor model. Optimization is based on the predictive distribution using monthly returns
over 1972:01–2013:12. The risky assets include 10 anomalies from Novy-Marx and Velikov (2016) that cannot be
explained by the HXZ and the FF5 model, five factors in the FF5, and investment and profitability factors in the HXZ
model. Also reported are the certainty-equivalent return (CER, in % per year), and annualized Sharpe ratio (SR) of the
portfolio’s return with respect to the given predictive distribution.

ω = 1 ω = 0.75 ω = 0.5 ω = 0
HXZ FF5 HXZ FF5 HXZ FF5 All

Panel A: c = 2
Accruals 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Net issuance 0.0 26.6 0.0 34.3 0.0 0.0 0.0
Investment 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gross margins 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ValMomProf 33.1 3.6 54.8 30.6 51.7 42.3 33.7
IndMom 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IndRelRev 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HighFreqCom 0.0 0.0 4.3 3.1 30.7 37.5 66.3
Seasonality 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IndLowVol 0.0 0.0 0.0 0.0 0.0 0.4 0.0
HML 0.0 25.6 0.0 1.2 0.0 0.0 0.0
CMA 0.0 11.3 0.0 0.0 0.0 0.0 0.0
RMW 0.0 0.0 0.0 0.0 0.0 0.0 0.0
I/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ROE 39.4 0.0 13.8 0.0 0.0 0.0 0.0
SMB 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MKT 55.0 65.8 54.3 61.6 35.3 39.7 0.0

CER 7.4 5.9 8.4 6.8 10.3 9.1 15.6
SR 0.88 0.75 0.89 0.80 1.10 0.99 1.62
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Table 6 (continued)

ω = 1 ω = 0.75 ω = 0.5 ω = 0
HXZ FF5 HXZ FF5 HXZ FF5 All

Panel B: c = 10
Accruals 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Net issuance 0.0 19.5 3.9 54.9 39.9 92.6 36.4
Investment 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gross margins 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ValMomProf 42.2 12.4 65.5 46.8 85.5 73.9 118.6
IndMom 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IndRelRev 0.0 0.0 0.0 7.7 9.5 26.2 33.5
HighFreqCom 0.0 0.0 31.3 31.4 86.8 84.0 173.2
Seasonality 0.0 0.0 0.0 0.0 0.0 11.2 27.0
IndLowVol 0.0 0.0 26.5 30.1 65.9 64.3 103.4
HML 0.0 0.0 0.0 3.3 0.0 6.1 0.0
CMA 0.0 259.7 0.0 164.4 0.0 0.0 0.0
RMW 0.0 130.1 0.0 85.8 0.0 0.0 0.0
I/A 241.4 0.0 185.6 18.4 76.3 74.2 0.0
ROE 155.3 0.0 134.1 0.0 98.0 29.4 73.0
SMB 0.0 13.5 0.0 0.0 0.0 0.0 0.0
MKT 122.2 130.5 106.3 114.6 76.1 76.2 15.6

CER 25.3 18.4 27.2 20.6 32.7 28.1 55.7
SR 1.39 1.15 1.45 1.22 1.58 1.42 2.11

Panel C: c = ∞

Accruals 0.0 0.0 23.9 22.8 50.9 49.2 117.1
Net issuance 0.0 0.0 34.9 33.3 74.4 71.9 171.1
Investment 0.0 0.0 15.4 14.7 32.8 31.6 75.3
Gross margins 0.0 0.0 20.3 19.4 43.3 41.8 99.6
ValMomProf 0.0 0.0 28.5 27.1 60.6 58.5 139.3
IndMom 0.0 0.0 6.0 5.7 12.8 12.4 29.5
IndRelRev 0.0 0.0 34.0 32.4 72.4 69.9 166.4
HighFreqCom 0.0 0.0 50.8 48.4 108.3 104.5 248.8
Seasonality 0.0 0.0 27.8 26.5 59.2 57.1 136.0
IndLowVol 0.0 0.0 44.8 42.7 95.4 92.1 219.3
HML 0.0 −39.2 3.4 −26.5 7.2 −13.2 16.5
CMA 0.0 531.3 19.7 421.1 41.9 313.8 96.3
RMW 0.0 357.2 −5.6 265.2 −11.9 172.3 −27.4
I/A 598.0 0.0 504.5 49.2 417.6 106.2 269.5
ROE 396.6 0.0 379.0 74.9 371.4 161.6 395.8
SMB 201.5 127.2 184.9 127.1 172.4 131.8 163.7
MKT 178.2 182.7 157.7 160.0 140.1 140.7 116.1

CER 37.8 24.5 41.3 28.4 52.5 41.4 105.4
SR 1.51 1.21 1.57 1.31 1.78 1.58 2.52
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Table 7 Out-of-sample certainty-equivalent return (CER) for investing in anomalies that can be explained by the HXZ but not the FF5.

This table reports the out-of-sample CER (in % per year) for a mean-variance Bayesian investor with risk aversion equal to 3. c is the maximum value of risky
positions that can be established per dollar of wealth. ω is the confidence level the investor places in the Hou, Xue, and Zhang (HXZ, 2015) four-factor model or
the Fama and French (FF5, 2015a) five-factor model. The risky assets include five anomalies from Novy-Marx and Velikov (2016) that can be explained by the HXZ
model but not the FF5 model, five factors in the FF5, and investment and profitability factors in the HXZ model over 1973:07–2013:12. We randomly sample (with
replacement) T +300 returns of the risky assets and use the first T to calculate the portfolio weights, which are used to the remaining 300 observations for calculating
the out-of-sample CER. The procedure is repeated 1,000 times; average CERs are shown.

ω = 1 ω = 0.95 ω = 0.90 ω = 0.75 ω = 0.50 ω = 0
T HXZ FF5 HXZ FF5 HXZ FF5 HXZ FF5 HXZ FF5 All

Panel A: c = 2
60 6.3 4.6 6.3 4.8 6.4 5.0 6.4 5.4 6.5 5.9 6.2

120 7.5 5.6 7.6 5.8 7.6 6.0 7.7 6.5 7.7 7.1 7.5
240 8.7 6.5 8.8 6.7 8.8 7.0 8.9 7.6 8.9 8.4 8.7
360 9.2 6.8 9.2 7.1 9.3 7.4 9.4 8.1 9.4 8.9 9.2
600 9.6 7.3 9.7 7.6 9.7 8.0 9.8 8.8 9.9 9.5 9.8

Panel B: c = 10
60 18.1 12.2 18.1 12.6 18.1 13.0 17.9 14.2 16.4 15.1 11.0

120 22.2 15.9 22.3 16.4 22.3 16.9 22.2 18.3 21.5 19.9 18.1
240 24.8 18.2 24.8 18.7 24.9 19.2 24.9 20.8 24.6 22.9 22.7
360 25.7 19.2 25.8 19.7 25.9 20.2 26.0 21.8 25.9 24.1 24.6
600 26.4 19.8 26.5 20.4 26.5 20.9 26.7 22.5 26.7 25.0 26.0

Panel C: c = ∞

60 14.8 −4.0 14.7 −2.7 14.3 −1.7 10.9 −0.7 −3.6 −8.0 −90.1
120 29.3 14.0 29.3 15.3 29.2 16.5 27.9 18.9 22.5 18.9 −4.6
240 35.2 21.1 35.3 22.4 35.3 23.7 34.8 26.7 32.6 29.3 21.8
360 37.3 23.3 37.4 24.7 37.4 26.0 37.2 29.2 35.9 32.5 29.6
600 38.7 24.9 38.8 26.2 38.8 27.5 38.8 30.8 38.2 34.7 34.8
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Table 8 Out-of-sample annualized Share ratio for investing in anomalies that can be explained by the HXZ but not the FF5.

This table reports the out-of-sample Sharpe ratio for a mean-variance Bayesian investor with risk aversion equal to 3. c is the maximum value of risky positions that
can be established per dollar of wealth. ω is the confidence level the investor places in the Hou, Xue, and Zhang (HXZ, 2015) four-factor model or the Fama and French
(FF5, 2015a) five-factor model. The risky assets include five anomalies from Novy-Marx and Velikov (2016) that can be explained by the HXZ model but not the FF5
model, five factors in the FF5, and investment and profitability factors in the HXZ model over 1973:07–2013:12. We randomly sample (with replacement) T + 300
returns of the risky assets and use the first T to calculate the portfolio weights, which are used to the remaining 300 observations for calculating the out-of-sample
Sharpe ratio. The procedure is repeated 1,000 times; average Sharpe ratios (annualized by multiplying

√
12) are shown.

ω = 1 ω = 0.95 ω = 0.90 ω = 0.75 ω = 0.50 ω = 0
T HXZ FF5 HXZ FF5 HXZ FF5 HXZ FF5 HXZ FF5 All

Panel A: c = 2
60 0.71 0.63 0.71 0.64 0.72 0.65 0.72 0.67 0.71 0.69 0.68

120 0.79 0.72 0.79 0.73 0.80 0.73 0.80 0.76 0.80 0.77 0.77
240 0.88 0.79 0.88 0.81 0.88 0.82 0.89 0.85 0.88 0.87 0.86
360 0.92 0.84 0.93 0.86 0.93 0.87 0.93 0.90 0.93 0.92 0.90
600 0.97 0.88 0.97 0.90 0.98 0.92 0.98 0.95 0.98 0.97 0.96

Panel B: c = 10
60 1.12 0.92 1.12 0.93 1.12 0.95 1.11 0.99 1.08 1.02 0.99

120 1.23 1.03 1.23 1.05 1.23 1.07 1.22 1.11 1.20 1.15 1.12
240 1.33 1.14 1.33 1.16 1.33 1.17 1.32 1.22 1.30 1.27 1.23
360 1.37 1.19 1.37 1.21 1.37 1.22 1.37 1.27 1.35 1.32 1.29
600 1.40 1.23 1.40 1.25 1.40 1.27 1.40 1.31 1.38 1.36 1.33

Panel C: c = ∞

60 1.34 0.98 1.34 1.00 1.34 1.02 1.32 1.07 1.24 1.08 1.06
120 1.45 1.11 1.45 1.14 1.45 1.16 1.44 1.22 1.38 1.26 1.24
240 1.51 1.19 1.52 1.22 1.52 1.25 1.51 1.32 1.48 1.38 1.38
360 1.54 1.22 1.54 1.25 1.54 1.28 1.54 1.36 1.52 1.43 1.44
600 1.55 1.25 1.56 1.28 1.56 1.31 1.56 1.39 1.55 1.47 1.50
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Table 9 Out-of-sample certainty-equivalent return (CER) for investing in anomalies that cannot be explained by the HXZ or the FF5.

This table reports the out-of-sample CER (in % per year) for a mean-variance Bayesian investor with risk aversion equal to 3. c is the maximum value of risky
positions that can be established per dollar of wealth. ω is the confidence level the investor places in the Hou, Xue, and Zhang (HXZ, 2015) four-factor model
or the Fama and French (FF5, 2015a) five-factor model. The risky assets include 10 anomalies from Novy-Marx and Velikov (2016) that cannot be explained by
the HXZ or the FF5 models, five factors in the FF5, and investment and profitability factors in the HXZ model over 1972:01–2013:12. We randomly sample (with
replacement) T +300 returns of the risky assets and use the first T to calculate the portfolio weights, which are used to the remaining 300 observations for calculating
the out-of-sample CER. The procedure is repeated 1,000 times; average CERs are shown.

ω = 1 ω = 0.95 ω = 0.90 ω = 0.75 ω = 0.50 ω = 0
T HXZ FF5 HXZ FF5 HXZ FF5 HXZ FF5 HXZ FF5 All

Panel A: c = 2
60 6.7 5.1 7.0 5.5 7.4 6.0 8.6 7.6 10.4 10.0 11.7

120 7.9 5.7 8.3 6.2 8.7 6.8 10.1 9.0 12.0 11.6 13.1
240 8.7 6.3 9.1 6.8 9.5 7.4 11.0 9.8 13.0 12.6 14.0
360 9.0 6.5 9.4 7.1 9.8 7.8 11.4 10.2 13.4 13.0 14.4
600 9.3 6.7 9.8 7.4 10.2 8.1 11.7 10.2 13.8 13.5 14.9

Panel B: c = 10
60 20.6 12.6 21.7 14.2 23.1 16.2 28.0 23.5 35.9 34.2 41.2

120 23.9 15.7 25.0 17.3 26.5 19.6 32.2 28.1 41.3 40.1 47.7
240 26.1 17.8 27.1 19.4 28.4 21.7 34.7 31.1 44.6 44.1 51.4
360 27.0 18.6 27.9 20.1 29.2 22.3 35.6 32.1 45.9 45.6 52.8
600 27.8 19.4 28.5 20.8 29.7 22.9 36.5 33.1 46.9 46.9 53.7

Panel C: c = ∞

60 11.3 −7.1 16.0 −1.5 20.4 3.8 31.3 17.8 35.7 29.2 −146
120 25.9 10.8 31.1 16.8 36.1 22.6 49.5 38.8 63.8 58.5 13.8
240 31.7 17.7 37.0 23.8 42.2 29.7 56.6 46.6 75.1 69.8 66.3
360 33.9 20.0 39.2 26.0 44.4 32.0 58.9 48.9 78.3 72.9 80.7
600 35.4 21.6 40.7 27.6 45.9 33.5 60.5 50.7 81.0 75.5 91.6
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Table 10 Out-of-sample annualized Share ratio for investing in anomalies that cannot be explained by the HXZ or the FF5.

This table reports the out-of-sample Sharpe ratio for a mean-variance Bayesian investor with risk aversion equal to 3. c is the maximum value of risky positions that
can be established per dollar of wealth. ω is the confidence level the investor places in the Hou, Xue, and Zhang (HXZ, 2015) four-factor model or the Fama and French
(FF5, 2015a) five-factor model. The risky assets include 10 anomalies from Novy-Marx and Velikov (2016) that cannot be explained by the HXZ or FF5 models, five
factors in the FF5, and investment and profitability factors in the HXZ model over 1972:01–2013:12. We randomly sample (with replacement) T +300 returns of the
risky assets and use the first T to calculate the portfolio weights, which are used to the remaining 300 observations for calculating the out-of-sample Sharpe ratio. The
procedure is repeated 1,000 times; average Sharpe ratios (annualized by multiplying

√
12) are shown.

ω = 1 ω = 0.95 ω = 0.90 ω = 0.75 ω = 0.50 ω = 0
T HXZ FF5 HXZ FF5 HXZ FF5 HXZ FF5 HXZ FF5 All

Panel A: c = 2
60 0.85 0.72 0.87 0.75 0.90 0.79 0.99 0.94 1.13 1.11 1.21

120 0.97 0.79 0.99 0.84 1.02 0.89 1.11 1.07 1.25 1.26 1.35
240 1.04 0.84 1.06 0.89 1.09 0.95 1.18 1.15 1.33 1.35 1.46
360 1.08 0.87 1.10 0.93 1.12 0.99 1.21 1.19 1.38 1.41 1.52
600 1.12 0.89 1.14 0.95 1.15 1.01 1.23 1.22 1.43 1.48 1.58

Panel B: c = 10
60 1.21 0.93 1.25 0.99 1.30 1.07 1.47 1.33 1.69 1.65 1.73

120 1.33 1.03 1.37 1.10 1.42 1.18 1.63 1.50 1.87 1.85 1.90
240 1.43 1.12 1.46 1.18 1.51 1.27 1.76 1.65 2.03 2.03 2.01
360 1.48 1.16 1.50 1.22 1.56 1.31 1.81 1.72 2.09 2.10 2.04
600 1.52 1.20 1.54 1.26 1.59 1.35 1.87 1.78 2.15 2.17 2.07

Panel C: c = ∞

60 1.28 0.91 1.36 1.01 1.43 1.11 1.62 1.38 1.78 1.65 1.76
120 1.39 1.04 1.48 1.16 1.57 1.29 1.81 1.62 2.03 1.94 2.06
240 1.45 1.11 1.55 1.25 1.64 1.39 1.91 1.76 2.18 2.13 2.25
360 1.47 1.14 1.57 1.29 1.67 1.43 1.94 1.81 2.24 2.20 2.33
600 1.49 1.17 1.59 1.31 1.69 1.46 1.98 1.85 2.29 2.26 2.41
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Online Appendix

Table A1 Average returns and alphas of 121 anomalies

This table reports the average returns and alphas of high minus low spread portfolios of 121 anomalies,
where the alphas are calculated with the FF3, HXZ, and FF5 models, respectively. All portfolios are
value-weighted and rebalanced annually or quarterly, where the first 66 are based on Hou, Xue, and Zhang
(2019) and the rest 55 on Green, Hand, and Zhang (2017). An anomaly is included if it is available over the
sample period 1974:01–2016:12.

id Anomaly Mean tMean αFF3 tFF3 αHXZ tHXZ αFF5 tFF5

1 Bm 0.58 2.70 −0.09 −0.67 0.24 1.40 −0.10 −0.71
2 Mv −0.42 −1.88 0.05 0.53 −0.11 −1.10 −0.08 −0.85
3 Dvp 0.30 1.30 0.18 1.04 0.33 1.75 0.02 0.14
4 Top 0.44 2.40 0.24 1.72 0.26 1.62 0.11 0.80
5 Nop 0.52 2.49 0.48 3.42 0.27 1.63 0.09 0.67
6 Ame 0.32 1.51 −0.42 −3.10 −0.27 −1.56 −0.49 −3.55
7 Em −0.27 −1.41 0.00 −0.02 −0.65 −3.94 −0.45 −2.80
8 Ssgrow −0.33 −2.07 −0.19 −1.31 0.02 0.17 0.04 0.34
9 Ebp 0.43 2.28 −0.09 −0.64 0.33 2.04 0.04 0.32
10 Lbp −0.41 −2.02 −0.42 −2.32 −0.92 −4.99 −0.88 −5.46
11 Ndp 0.63 2.76 0.31 1.52 0.38 1.80 0.45 2.18
12 Dur −0.65 −3.35 −0.09 −0.71 −0.30 −1.76 −0.03 −0.26
13 Cdi −0.01 −0.05 −0.01 −0.05 0.14 1.03 0.09 0.71
14 Ndf −0.29 −2.23 −0.27 −2.11 0.02 0.18 −0.06 −0.44
15 Nxf −0.30 −1.62 −0.56 −3.91 −0.12 −0.86 −0.17 −1.30
16 Cei −0.53 −2.89 −0.58 −4.43 −0.33 −2.28 −0.29 −2.29
17 Aci −0.34 −2.47 −0.35 −2.54 −0.13 −0.91 −0.32 −2.23
18 Noa −0.53 −3.74 −0.65 −4.60 −0.60 −3.97 −0.70 −4.91
19 Tacc −0.21 −1.47 −0.07 −0.54 −0.05 −0.38 0.00 −0.02
20 Pta −0.25 −1.64 −0.22 −1.62 −0.17 −1.20 −0.03 −0.19
21 dWc −0.21 −2.18 −0.25 −2.66 −0.35 −3.52 −0.35 −3.62
22 dCoa −0.22 −1.50 −0.02 −0.15 0.17 1.37 0.17 1.44
23 dNco −0.25 −2.43 −0.16 −1.51 0.16 1.59 0.03 0.34
24 dNca −0.48 −3.53 −0.36 −2.68 −0.12 −0.96 −0.20 −1.61
25 dNcl −0.11 −0.94 0.03 0.29 0.16 1.29 0.17 1.39
26 dFin 0.14 1.49 0.21 2.42 0.27 2.82 0.34 3.86
27 dSti 0.17 1.00 0.33 2.01 0.27 1.60 0.34 2.12
28 dLti −0.01 −0.10 0.09 0.56 0.07 0.42 0.16 1.02
29 dFnl −0.33 −2.78 −0.34 −2.83 −0.04 −0.32 −0.15 −1.26
30 Cop 0.54 3.02 0.98 7.25 0.50 3.88 0.60 5.02
31 Rna −0.02 −0.14 0.25 1.69 −0.01 −0.08 0.02 0.16
32 Pm 0.11 0.50 0.50 3.25 0.03 0.23 0.11 0.93
33 Aton 0.30 2.00 0.34 2.42 0.30 2.05 0.32 2.25
34 F g7 0.24 1.66 0.40 2.87 0.16 1.12 0.28 2.09
35 Oscore 0.07 0.35 −0.41 −2.70 −0.19 −1.29 −0.23 −1.63
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Table A1 (continued)

id Anomaly Mean tMean αFF3 tFF3 αHXZ tHXZ αFF5 tFF5

36 Zscore −0.23 −1.44 0.18 1.52 0.06 0.39 0.16 1.30
37 Ol 0.35 2.22 0.34 2.17 0.00 0.03 0.06 0.38
38 gAd 0.06 0.31 0.13 0.71 0.40 2.08 0.41 2.19
39 Rdm 0.69 2.86 0.23 1.11 0.71 3.36 0.45 2.15
40 Etr −0.17 −1.51 −0.14 −1.21 −0.03 −0.26 −0.11 −0.91
41 Lfe 0.18 1.30 0.31 2.28 0.20 1.42 0.38 2.71
42 Kz 0.28 1.65 −0.05 −0.38 −0.10 −0.68 −0.14 −1.08
43 Sa 0.09 0.35 −0.17 −1.51 0.19 1.50 0.27 3.20
44 Ala −0.04 −0.21 0.00 0.03 0.30 2.15 0.34 2.74
45 Ww 0.05 0.22 −0.32 −2.41 0.02 0.17 0.02 0.18
46 Adm 0.62 2.58 0.08 0.42 0.00 0.01 −0.17 −0.87
47 Bca 0.24 1.07 0.44 2.18 −0.14 −0.71 −0.08 −0.42
48 Oca ia 0.60 4.53 0.63 4.74 0.17 1.32 0.35 2.71
49 Iaq −0.29 −1.44 0.11 0.67 −0.04 −0.23 0.31 1.97
50 Rnaq 0.48 2.24 0.82 4.39 0.01 0.08 0.36 2.33
51 Pmq 0.47 2.05 0.86 4.67 −0.02 −0.16 0.39 2.51
52 Atoq 0.61 3.95 0.76 4.98 0.51 3.28 0.63 4.09
53 Ctoq 0.48 3.01 0.56 3.42 0.03 0.23 0.18 1.24
54 Glaq 0.45 2.49 0.70 4.02 0.25 1.44 0.47 2.73
55 Oleq 0.66 2.79 0.93 4.50 −0.19 −1.23 0.23 1.46
56 Olaq 0.71 3.46 1.15 6.34 0.41 2.60 0.79 4.68
57 Claq 0.78 4.66 0.98 6.01 0.72 4.23 0.84 5.02
58 Zq −0.13 −0.69 0.31 2.08 −0.26 −1.63 0.15 0.97
59 Tbiq 0.15 1.06 0.31 2.13 0.37 2.46 0.33 2.22
60 Blq 0.20 1.06 −0.13 −0.83 −0.52 −3.02 −0.48 −3.26
61 Oq −0.29 −1.42 −0.85 −6.30 −0.48 −3.46 −0.71 −5.14
62 Sgq 0.30 1.50 0.59 3.31 0.05 0.28 0.57 3.10
63 Olq 0.62 3.58 0.69 4.00 0.17 1.02 0.35 2.15
64 Tanq −0.02 −0.11 −0.08 −0.46 −0.01 −0.06 −0.07 −0.37
65 Kzq −0.22 −1.15 −0.63 −3.93 −0.38 −2.27 −0.50 −3.07
66 Alaq 0.22 0.94 0.22 1.10 0.53 2.49 0.55 2.68
67 Acc −0.48 −3.44 −0.47 −3.31 −0.53 −3.56 −0.58 −4.08
68 Age −0.02 −0.09 0.15 1.30 −0.24 −2.06 −0.27 −2.81
69 Agr −0.48 −3.00 −0.24 −1.73 0.09 0.70 0.07 0.55
70 Bm ia 0.52 2.81 0.06 0.38 0.26 1.55 0.10 0.67
71 Cashdebt 0.15 0.85 0.54 3.66 0.40 2.79 0.38 2.96
72 Cfp 0.57 2.52 0.48 2.60 0.00 0.00 0.01 0.05
73 Cfp ia 0.34 2.31 0.25 1.73 0.21 1.33 0.16 1.08
74 Chatoia 0.10 0.77 0.07 0.52 −0.06 −0.41 0.03 0.23
75 Chcsho −0.55 −3.75 −0.43 −3.55 −0.18 −1.43 −0.15 −1.32
76 Chempia 0.00 0.02 0.01 0.08 0.18 1.17 0.19 1.35
77 Chinv −0.44 −3.26 −0.38 −2.78 −0.34 −2.48 −0.40 −3.08
78 Chpmia −0.19 −1.35 −0.17 −1.15 −0.13 −0.83 −0.11 −0.73
79 Currat −0.04 −0.18 −0.01 −0.10 0.29 1.87 0.37 3.20
80 Depr 0.04 0.26 0.04 0.27 0.40 2.67 0.32 2.40
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Table A1 (continued)

id Anomaly Mean tMean αFF3 tFF3 αHXZ tHXZ αFF5 tFF5

81 Egr −0.43 −2.69 −0.31 −2.21 −0.10 −0.74 −0.09 −0.71
82 Ep 0.47 1.89 0.47 2.20 0.11 0.48 0.07 0.38
83 Gma 0.09 0.59 0.42 3.07 0.33 2.30 0.39 2.87
84 gCapx −0.36 −2.44 −0.24 −1.71 0.14 1.01 −0.03 −0.23
85 gLtnoa −0.45 −3.13 −0.32 −2.24 −0.04 −0.25 −0.15 −1.07
86 Herf −0.03 −0.26 −0.14 −1.14 −0.29 −2.20 −0.32 −2.66
87 Hire −0.27 −1.72 −0.10 −0.77 0.32 2.68 0.21 1.85
88 Invest −0.51 −3.68 −0.43 −3.17 −0.23 −1.73 −0.32 −2.56
89 Lev 0.30 1.39 −0.40 −2.76 −0.36 −1.90 −0.53 −3.62
90 Lgr −0.21 −1.62 −0.05 −0.45 0.21 1.92 0.17 1.53
91 Mve ia −0.22 −1.53 0.04 0.39 0.02 0.23 −0.03 −0.30
92 Operprof 0.22 1.38 0.41 2.67 0.14 0.90 0.15 1.08
93 Orgcap 0.41 1.80 0.60 2.68 −0.06 −0.28 0.18 0.80
94 Pchcapx ia −0.04 −0.24 −0.02 −0.11 0.22 1.43 0.23 1.54
95 Pchcurrat −0.20 −1.92 −0.25 −2.34 −0.28 −2.50 −0.31 −2.81
96 Pchdepr 0.15 1.15 0.16 1.17 0.33 2.39 0.22 1.62
97 Pchgm Pchsale 0.17 1.33 0.25 2.05 0.13 1.07 0.21 1.68
98 Pchquick −0.08 −0.69 −0.08 −0.67 −0.19 −1.53 −0.15 −1.27
99 Pchsale Pchinvt 0.33 2.44 0.34 2.47 0.11 0.78 0.25 1.74
100 Pchsale Pchrect −0.01 −0.09 0.07 0.53 0.17 1.30 0.13 1.03
101 Pchsale Pchxsga −0.06 −0.40 0.04 0.26 −0.09 −0.66 0.03 0.19
102 Pchsaleinv 0.30 2.09 0.35 2.40 0.21 1.37 0.31 2.06
103 Pctacc −0.18 −1.21 −0.20 −1.43 0.10 0.69 −0.02 −0.11
104 Quick −0.07 −0.37 0.05 0.38 0.42 2.62 0.46 3.70
105 Roic 0.18 0.92 0.55 3.47 0.11 0.75 0.16 1.42
106 Salecash 0.12 0.68 −0.08 −0.53 −0.44 −2.68 −0.51 −4.03
107 Saleinv 0.23 1.65 0.40 3.32 0.24 1.92 0.24 1.94
108 Salerec 0.41 2.54 0.49 3.20 0.18 1.16 0.21 1.45
109 Sgr −0.04 −0.22 0.19 1.30 0.40 3.03 0.44 3.53
110 Sp 0.58 2.86 −0.02 −0.16 −0.03 −0.19 −0.20 −1.52
111 Tang 0.07 0.41 0.17 1.20 0.40 2.54 0.46 3.26
112 Tb 0.20 1.40 0.23 1.65 0.15 1.02 0.15 1.01
113 Aeavol 0.15 1.29 0.14 1.28 0.16 1.32 0.20 1.75
114 Cashq 0.30 1.57 0.43 2.67 0.61 3.30 0.77 5.01
115 Chtxq 0.53 2.79 0.74 4.14 0.13 0.74 0.68 3.70
116 Cinvq −0.14 −1.07 −0.09 −0.68 −0.21 −1.43 −0.07 −0.51
117 Ear 0.77 5.30 0.90 6.09 0.69 4.51 0.87 5.74
118 Roaq 0.57 2.65 1.00 5.48 0.08 0.60 0.52 3.59
119 Roavol −0.10 −0.54 −0.27 −1.78 0.23 1.50 0.07 0.46
120 Roeq 0.60 2.53 1.04 5.14 −0.11 −0.86 0.43 2.71
121 Rsup 0.29 1.74 0.41 2.42 −0.20 −1.34 0.17 1.02
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