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Abstract

Recently econometricians have shifted their attention from point and interval fore-

casts to density forecasts because at the heart of market risk measurement is the fore-

cast of the probability density functions of various �nancial variables. In this paper,

we propose a formal test for density forecast evaluation based on Neyman�s smooth

test procedure. Apart from accepting or rejecting the tested model, this approach

provides speci�c sources (such as the location, scale and shape of the distribution) of

rejection, thereby helping in deciding possible modi�cations of the assumed model.

Our applications to S&P 500 returns indicate capturing time-varying volatility and

non-gaussianity signi�cantly improve the performance of the model.



1 Introduction and Motivation

In the estimation literature in statistics there was a natural progression of point

estimation to interval estimation, and then to the full (non-parametric) density es-

timation. In the context of time series forecasting, we also observe similar pattern

of advancement from point forecast to interval forecast, and then �nally to density

forecast, though construction of density forecast in empirical work is a recent phe-

nomenon. It is, therefore, not surprising that evaluating density forecast techniques

is in its infancy. There has been only a few papers, we are aware of, that directly ad-

dress the question of evaluation of density forecasts; such as Diebold, Gunther and

Tay (1998), Berkowitz (2001), Hong (2001), Wallis (2003) and Sarno and Valente

(2004). The importance of density forecast evaluation cannot be overemphasized.

Recent developments in risk evaluation clearly indicate that we can no longer rely

on a few moments or certain regions of the distribution; very often we will need to

forecast the entire distribution. Also, as demonstrated by Diebold et al. (1998) and

Granger and Pesaran (2000), only when a forecast density coincides with the true

data generating process, then that forecast density will be preferred by all forecast

users regardless of their attitude to risk (loss function). The importance of density

forecast evaluation in economics has been aptly depicted by Crnkovic and Drachman

(1997, p. 47) as follows: �At the heart of market risk measurement is the forecast of

the probability density functions (PDFs) of the relevant market variables ... a fore-

cast of a PDF is the central input into any decision model for asset allocation and/or

hedging ... therefore, the quality of risk management will be considered synonymous

with the quality of PDF forecasts.�

Anderson (1994) showed that a modi�ed version of Pearson �2 statistic could

be decomposed into components directed at di¤erent moments of the original data

(Boero, Smith and Wallis 2004). He proposed a class of "Pearson analog" �2 tests

that can be used both against a general alternative hypothesis (omnibus test) as well

as for more speci�c alternatives (directional test) using some very simple (though

ad hoc) set of orthogonal polynomials.He proposed that a necessary condition for a

locally optimal test where the distributions underH0 andH1 di¤er in the kth moment

is that there should be k intersections between the two distributions, essentially

indicating that the number of class intervals should be at least one more than the

moments to be tested. He addressed the issue of size distortion of traditional score

types tests like Pearson �2, and also showed simulation results to illustrate that the

size corrected power of the modi�ed Pearson type test is better than the traditional
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Jarque-Bera test of normality. Boero et al. (2004) questioned the generality of the

modi�ed or "Pearson analog" tests proposed by Anderson (1994). The main reason

being the independence assumption of the di¤erent components of the test directed

towards location, scale, skewness or shape parameters of the distribution is violated

when the classes are non-equiprobable.

Sarno and Valente (2004) suggested a test based on integrated squared di¤erence

of the kernel density functions of the competing predictive density forecast models,

using a norm similar to Li (1996) as discussed in Pagan and Ullah (1999, pp. 68-69).

The asymptotically normal test statistic thus obtained is a natural analog of Diebold-

Mariano test (Diebold and Mariano 1995) for forecast accuracy in the domain of

point forecasts. The simulation results reported shows attractive size and power

properties with very little, if any, size distortion. The test statistic requires bootstrap

replications in order to calculate its standard error, and would be unsuitable for

either applications in a time series context with time-dependent parameters, or for

adaptive model selection for �nding the "best" model. Giacomini (2002) explored

weighted likelihood ratio tests proposed originally by Vuong (1989) for non-nested

hypotheses to compare competing, possibly misspeci�ed, models of density forecast

using decision theory based methods or "scoring rules" (Granger and Pesaran 1996,

2000).

From a pure statistical perspective, density forecast evaluation is essentially a

goodness-of-�t test problem. In a seminal paper, though never used directly in

econometrics, Neyman (1937) demonstrated how �all�goodness-of-�t testing prob-

lems can be converted into testing only one kind of hypothesis. Speci�cally Neyman

considered the probability integral transform (PIT) of the density f (x) : Under the

null hypothesis of correct speci�cation of f (x) ; PIT is distributed as U (0; 1) ir-

respective of the form of f (x) : As an alternative to the U (0; 1) density, Neyman

speci�ed a smooth density using normalized Legendre polynomials. A major ben-

e�t of Neyman�s formulation is that in addition to a formal test procedure we can

identify the speci�c sources of rejection when the data is not compatible with the

tested density function. Therefore, Neyman�s smooth test provides natural guidance

to speci�c directions to revise a model. The purpose of the paper is to use Neyman�s

idea to devise a formal test for density forecast evaluation.

The plan of the paper is as follows. In Section 2 we review Neyman (1937) smooth

test approach. For a fuller account see Rayner and Best (1989) and Bera and Ghosh

(2001). Section 3 uses the framework of Diebold et al. (1998) and proposes a smooth

test for density forecast evaluation. An application to S&P 500 returns data is given
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in Section 4. Section 5 provides some Monte Carlo results to examine size properties

of the proposed test. Section 6 concludes.

2 Neyman Smooth Test

We want to test the null hypothesis (H0) that our assumed density f (x) is the true

density function for the random variable X, based on n independent observations

x1; x2; :::; xn. The speci�cation of f (x) will be di¤erent depending on the problem at

hand. Neyman (1937, pp. 160-161) �rst transformed any hypothesis testing problem

of this type to testing only one kind of hypothesis using the probability integral

transform (PIT). Neyman suggested this test to rectify some of the drawbacks of

Pearson�s (1900) goodness-of-�t statistic [see Bera and Ghosh (2001) for more on

this issue, and for a historical perspective], and called it a smooth test since the

alternative density is close to the null density and has few intersections with the null

density.

We construct a new random variable Y by de�ning Yi = F (Xi) ; i = 1; 2; :::; n;

that is, the probability integral transform (PIT)

yi =

Z xi

�1
f (ujH0) du � F (xi) : (1)

Suppose under the alternative hypothesis, the density and the distribution func-

tions of X is given by g (:) and G (:) ; respectively. Then, in general, the distribution

function of Y is given by

H (y) = Pr (Y � y) = Pr (F (X) � y)
= Pr

�
X � F�1 (y)

�
= G

�
F�1 (y)

�
= G (Q (y)) ; (2)

where Q (y) = F�1 (y) is the quantile function of Y: Therefore, the density of Y can

be written as [see Bera and Ghosh (2001, p. 185)]

h (y) =
d

dy
H (y) = g (Q (y))

d

dy
F�1 (y) =

g (Q (y))

f (Q (y))
; 0 < y < 1: (3)

Although this is the ratio of two densities, h (y) is a proper density function when F

and G are strictly increasing functions. We will call h (:) the ratio density function

(RDF) since it is both a ratio of two densities and a density function itself. When
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f (:) is the true density we have Y � U (0; 1) : And, under the alternative hypothesis
h (y) will di¤er from 1 and that provides a basis for the Neyman smooth test.

Neyman (1937, p. 164) considered the following smooth alternative to the uniform

density:

h (y) = c (�) exp

"
kX
j=1

�j�j (y)

#
; (4)

where � = (�1; �2; :::; �k)
0 ; c (�) is the constant of integration and �j (y) are orthonor-

mal polynomials of order j satisfyingZ 1

0

�i (y)�j (y) dy = �ij; where �ij = 1 if i = j

= 0 if i 6= j:
(5)

Under H0 : �1 = �2 = ::: = �k = 0, since c (�) = 1; h (y) in (4) reduces to the uniform

density.

Under the alternative, we take h (y) as given in (4) and test �1 = �2 = ::: = �k = 0.

Therefore, the test utilizes (3) which looks more like a �likelihood ratio�. To get an

idea of the the exact nature of h (y), let us consider some particular cases. When

the two distributions di¤er only in location; for example, f (:) � N (0; 1) and g (:) �
N (�; 1) ; ln(h (y)) = �y� 1

2
�2; which is linear in y: Similarly, if the distributions di¤er

in scale parameter, such as, f (:) � N (0; 1) and g (:) � N (0; �2) ; �2 6= 1; ln (h (y)) =
y2

2

�
1� 1

�2

�
� 1
2
ln�2; a quadratic function of y: Considering some commonly used non-

normal densities as alternatives, we note that f (:) � N (0; 1) and g (:) � �24 yield

ln (h (z)) = 1
2
z2� 1

2
z+ln z+ln

�p
2�
4

�
: If we have f (:) � N (0; 1) and g (:) � t4; then

we have ln (h (z)) = z2

2
+ 5
2
ln
h
1 + z2

4

i
+ln

�p
2�
2

�
: These illustrative examples suggest

that departures from the null hypothesis can be tested using an appropriate function

(or functions) estimating the RDF, h (y). From observing the plots of the di¤erent

ordered normalized Legendre polynomials, we believe that the test will not only be

powerful but also informative on identifying particular source(s) of departure(s) from

H0 (Ghosh 2003).

Using the multiparameter version of the generalized Neyman-Pearson lemma,

Neyman (1937) derived the locally most powerful unbiased (LMPU) symmetric test

for H0 : �1 = �2 = ::: = �k = 0 against the alternative H1 : at least one �i 6= 0, for
small values of �0is. The test is symmetric in the sense that the asymptotic power of

the test depends only on the Euclidean distance,

� =
�
�21 + :::+ �

2
k

� 1
2 ; (6)
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between H0 and H1. The test statistic is

	2k =
kX
j=1

1

n

"
nX
i=1

�j (yi)

#2
; (7)

which under H0 asymptotically follows a �2k; and under H1 follows a non-central �
2
k

with non-centrality parameter �2.

We now show that the test statistic 	2k can be simply obtained using Rao�s (1948)

score (RS) test principle. Taking (4) as the PDF under the alternative hypothesis,

the log-likelihood function l (�) can be written as

l (�) = n ln c (�) +
kX
j=1

�j

nX
i=1

�j (yi) : (8)

The RS test for testing the null H0 : � = �0 is given by

RS = s (�0)
0 I (�0)�1 s (�0) ; (9)

where s (�) is the score vector @l (�) =@�; I (�) is the information matrix E
h
�@2l(�)
@�@�0

i
and in our case, �0= 0: It is easy to see that

s (�j) =
@l (�)

@�j

= n
@ ln c (�)

@�j
+
p
nuj; j = 1; 2; :::; k; (10)

with uj =
nX
i=1

�j (yi) =
p
n:

Di¤erentiating the identity
R 1
0
h (z) dz = 1 with respect to �j, we have

@c (�)

@�j

Z 1

0

exp

"
kX
j=1

�j�j (y)

#
dy + c (�)

Z 1

0

exp

"
kX
j=1

�j�j (y)

#
�j (y) dy = 0: (11)

Evaluating (11) under � = 0; we have @ ln c(�)
@�j

���
�=0

= @c(�)
@�j

� 1
c(�)

���
�=0

= 0; and there-

fore, under the null hypothesis

s (�j) =
p
nuj: (12)
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To get the information matrix, let us �rst note from (10) that

@2l (�)

@�j@�l
= n

@2 ln c (�)

@�j@�l
, (13)

which is a constant. Therefore, under H0 the (j; l)
th element of the information

matrix I (�) is simply �n@2 ln c (�) =@�j@�l evaluated at � = 0: Di¤erentiating (11)
with respect to �l and evaluating it at � = 0; after some simpli�cation, we have

@2c (�)

@�j@�l

����
�=0

+

Z 1

0

�j (y)�l (y) dy = 0: (14)

Using the orthonormal property in (5)

@2c (�)

@�j@�l

����
�=0

= ��jl: (15)

Further, using (11), c (�) = 1, @c(�)
@�j

and @c(�)
@�j

= 0 for any j, we have

@2 ln c (�)

@�j@�l
=
@

@�l

�
@c (�)

@�j

1

c (�)

�
=

@2c(�)
@�j@�l

c (�)� @c(�)
@�j

@c(�)
@�l

(c (�))2
;

and, hence

I (�0) = nIk; (16)

where Ik is a k�k identity matrix. Combining (9), (12) and (16) the RS test statistic
has the simple form

RS =
kX
j=1

u2j : (17)

Neyman�s approach was to compute the smooth test statistic in terms of the

probability integral transform Y de�ned in (1). It is, however, easy to recast the

testing problem in terms of the original observations on X and PDF, say, f (x; ).

Writing (1) as y = F (x; ) and de�ning �i (y) = �i(F (x; )) = qi (x; ) ; we can

express the orthogonality condition (5) asZ 1

0

f�i (F (x; ))g f�j (F (x; ))g dF (x; ) =
Z 1

0

fqi (x; )g fqj (x; )g f (x; ) dx = �ij:
(18)
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Then, from (4) the density under the alternative hypothesis takes the form

g (x; ; �) = h (F (x; ))
dy

dx

= c (�; ) exp

"
kX
j=1

�jqj (x; )

#
f (x; ) : (19)

Under this formulation we have the same test statistic 	2k, but now written in terms

of the original observations, x1; x2; :::; xn:

	2k =
kX
j=1

1

n

"
nX
i=1

qj (xi; )

#2
: (20)

In order to implement this we need to replace the nuisance parameter  by an e¢ cient

estimate ̂; and that will not change the asymptotic distribution of the the test

statistic (Thomas and Pierce 1979), although there could be some possible change in

the variance of the test statistic [see, for example, Boulerice and Ducharme (1995)].

3 Smooth Test for Density Forecast Evaluation

Suppose that we have time series data (say, the daily returns to the S&P 500 Com-

posite Index) given by fxtgmt=1. One of the most important questions that we would
like to answer is, what is the sequence of the true density functions fgt (xt)gmt=1 that
generated this particular realization of the data? At time t we know all the past

values of xt; i.e., the information set at time t is 
t = fxt�1; xt�2; :::g : Let us denote
the one-step-ahead forecast of the sequence of densities as fft (xt)g conditional on

t. Our objective is to determine to what extent the forecast density fftg depicts
the true density fgtg : The main problem in performing such a test is that both

the actual density gt (:) and the one-step-ahead predicted density ft (:) could depend

on the time t and, thus, on the information set 
t: This problem is unique, since,

on one hand, it is a classical goodness-of-�t problem but, on the other, it is also a

combination of several di¤erent, possibly dependent, goodness-of-�t tests.

One approach to handling this particular problem would be to reduce it to a more

tractable one in which we have the same, or similar, hypotheses to test, rather than

a host of di¤erent hypotheses. Following Neyman (1937) this is achieved using the
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probability integral transform

yt =

Z xt

�1
ft (u) du: (21)

which has the density function

ht (yt) = 1; 0 < yt < 1; (22)

under the null hypothesis H0 : gt (:) = ft (:) ; i.e., our forecasted density is the true

density.

If we are only interested in performing a goodness-of-�t test that the variable

yt follows a uniform distribution, we can use a parametric test like Pearson�s �2

on grouped data or non-parametric tests like the Kolmogorov-Smirnov (KS) or the

Cramér-von Mises (CvM) or a test using the Kuiper statistics (see Crnkovic and

Drachman 1997, p. 48). Any of these suggested tests would work as a good omnibus

test of goodness-of-�t. If we fail to reject the null hypothesis we can conclude that

there is not enough evidence that the data is not generated from the forecasted

density ft (:) ; however, a rejection would not throw any light on the possible form of

the true density function.

The fundamental basis of Neyman�s smooth test is the result that when x1; x2; :::; xn
are independent and identically distributed (IID) with a common density f (:) ; then

the probability integral transforms y1; y2; :::; yn de�ned in equation (21) are IID,

U (0; 1) random variables. In econometrics, however, we very often have cases in

which x1; x2; :::; xn are not IID. In that case we can use Rosenblatt�s (1952) general-

ization of the above result.

Theorem 1 (Rosenblatt) Let (X1; X2; :::; Xn) be a random vector with absolutely

continuous density function f (x1; x2; :::; xn) : Then, the n random variables de�ned

by

Y1 = P (X1 � x1) ; Y2 = P (X2 � x2jX1 = x1) ;

:::; Yn = P (Xn � xnjX1 = x1; X2 = x2; :::; Xn�1 = xn�1)

are IID U (0; 1) :

The above result can immediately be seen using the Change of Variable theorem
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that gives

P (Yi � yi; i = 1; 2; :::; n) =
Z y1

0

Z y2

0

:::

Z yn

0

f (x1) dx1f (x2jx1) dx2:::f (xnjx1; :::; xn�1) dxn

=

Z y1

0

Z y2

0

:::

Z yn

0

dt1dt2:::dtn (23)

= y1y2:::yn:

Hence, Y1; Y2; :::; Yn are IID U (0; 1) random variables.

Diebold et al. (1998) used Theorem 1, to test H0 : gt (:) = ft (:) by checking

whether the probability integral transform yt in (21) follows IID U (0; 1) : They em-

ployed a graphical (visual inspection) approach to decide on the structure of the

alternative density function by a two-step procedure. First, they visually inspected

the histogram of yt to see if it comes from U (0; 1) distribution. Then, they looked at

the individual correlograms of each of the �rst four powers of the variable zt = yt�0:5
in order to check for any residual e¤ects of bias, variance or higher-order moments.

In the absence of a more analytical test of goodness-of-�t, this graphical method has

also been used in Diebold, Tay and Wallis (1999) and Diebold, Hahn and Tay (1999).

For more on interval and density forecasting along forecast evaluation methods, see

Diebold and Lopez (1996), Christo¤erson (1998) and Tay and Wallis (2000). The

procedure suggested is very attractive due to its simplicity of execution and intu-

itive justi�cation; however, the resulting size and power of this informal procedure

is unknown.

Neyman�s smooth test provides an analytic tool to determine the structure of

the density under the alternative hypothesis using orthonormal polynomials (nor-

malized Legendre polynomials). Speci�cally, Neyman used �j (y) as the orthogonal

polynomials that can be obtained by using the following conditions,

�j (y) = aj0 + aj1y + :::+ ajjy
j; ajj 6= 0;

given the restrictions of orthogonality given in (5). Solving these the �rst �ve

�j (y) are (Neyman 1937, pp. 163-164) �0 (y) = 1; �1 (y) =
p
12
�
y � 1

2

�
; �2 (y) =p

5
�
6
�
y � 1

2

�2 � 1
2

�
; �3 (y) =

p
7
�
20
�
y � 1

2

�3 � 3 �y � 1
2

��
; �4 (y) = 210

�
y � 1

2

�4�
45
�
y � 1

2

�2
+ 9

8
:

While, on one hand, the smooth test provides a basis for a classical goodness-of-

�t test, on the other hand, it can also be used to determine the sensitivity of the

power of the test to departures from the null hypothesis in di¤erent directions, for
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example, deviations in scale (variance) and the shape of the distribution (skewness

and kurtosis). We can see that the 	2k statistic for Neyman�s smooth test de�ned in

equation (7) is comprised of k components of the form 1
n
(
Pn

i=1 �j (yi))
2
; j = 1; :::; k;

which are nothing but the squares of the e¢ cient score functions. Using Rao(1948)

and Neyman (1959) one can risk the �educated speculation� that an optimal test

should be based on the score function [for more on this, see Bera and Billias (2001a,

b)]. From that point of view, we achieve optimality using the smooth test.

There is one more issue that is central to any test applied to real data when

the density function f (:) under the null hypothesis is completely unknown. Hence,

we have to estimate the PDF generating the data using an estimation sample. Let

us assume that we know a general functional form of the density function f (:; �)

generating the data but have to estimate the parameter � based on the estimation

sample of size m: As we mentioned earlier our test is based on a sample of size n:

The "true" test statistic is given in (7), with

yi = F (xi; �) =

Z xi

0

f (u; �) du; i = 1; 2; :::; n: (24)

However, since we do not know the true value of �; we estimate it using �̂ to get

	̂2k =
kX
j=1

û2j =
kX
j=1

1

n

 
nX
i=1

�j (ŷi)

!2
; (25)

where ŷi = F
�
xi; �̂

�
=
R xi
0
f
�
u; �̂

�
du; i = 1; 2; :::; n; are the estimated PITs and �̂

is any
p
m�consistent estimator of �: We have the following theorem which shows

that for certain values of m and n; we can ignore the e¤ect of parameter estimation

on our results.

Theorem 2 Let m and n be the estimation and test sample sizes, respectively, �̂ be

a
p
m�consistent estimator of the parameter � and E

h
d�j(F (xi;�))

d�

i
< 1. Then, if

n = O
�
m

1
2

�
, under the null hypothesis H0; 	̂2k �	2k = op (1).

Proof. See Appendix A.

4 Application to Asset Returns on S&P 500

We consider the daily returns on the value-weighted S&P 500 Composite Index from

July 3, 1962 to December 31, 2003. The sample is split into in-sample and out-

10



of-sample periods for model estimation and density forecast evaluation. There are

8431 in-sample observations (07/03/62-12/29/95) and 2016 out-of-sample observa-

tions (01/02/96-12/31/2003). In order to obtain a test with desirable actual size

using the smooth test principle, we chose a signi�cantly smaller sample size for

the evaluation sample compared to the estimation sample. Diebold et al. (1998)

also used daily data on the value-weighted S&P 500 returns with dividends, from

02/03/62 through 12/29/95 in order to demonstrate the e¤ectiveness of a graphi-

cal procedure based on the probability integral transform, however in their case the

sample split was at the middle of the data range. Figure 1 compares the density

estimates between the in-sample and the out-of-sample data.

Figure 1: Kernel Density Estimates of S&P 500 Returns

Following Diebold et al. (1998), we used progressively richer models to �nd the best

model to �t the estimation sample and then freeze it to do forecasting of the evalua-

tion data. Using the empirical distribution function (EDF) of the estimation sample,

we generate the PIT of the evaluation data and present an estimate of its density

(histogram) in Figure 2 From a visual analysis of the histogram it is clear that the

PITs do not seem to follow an U (0; 1) distribution, the conclusion is more apparent

if we compare the PDF of U (0; 1) distribution with the ratio density function (RDF)

of the PIT (Bera, Ghosh and Xiao 2004). In order to better �t the model for fore-

casting future observations, we use a naive MA(1), MA(1)- normal-GARCH(1,1) and

11



�nally, a MA(1)-t-GARCH(1,1) model to the estimation sample where the degrees

of freedom of the t-distribution is obtained through maximum likelihood method.

From visual analysis of the histograms we can infer that introducing a time varying

conditional heteroskedasticty term clearly improves the forecast and it also causes

the histograms of the PITs to be closer to that of an U (0; 1) PDF. However, the im-

provement is not very apparent with the introduction of a non-Gaussian error term

(Figure 4 and Figure 5).
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Figure 2: Histogram for the probability integral transforms using EDF
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Fig. 3: Histogram for the PIT with MA(1)-normal model
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Figure 4: Histogram for PIT with MA(1)-normal GARCH(1,1) model
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Figure 5: Histogram for the PIT with MA(1)-t-GARCH (1,1)

Data Estimation Test

Observations 8431 2016

Mean 0.00032 0.00037

Standard Deviation 0.00858 0.01246

Skewness Coe¢ cient -1.5624 -0.0089

Excess Kurtosis 43.7935 2.3472

Minimum -0.20467 -0.06867

1st Quartile -0.00394 -0.00649

Median 0.00036 0.00039

3rd Quartile 0.00457 0.00744

Maximum 0.09099 0.05731

Table 3. Return distribution for estimation and test samples
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Test Critical Values

Statistic Upper .1%

D+ 4.19843 1.859

D� 4.89182 1.859

KS 4.89182 1.95

Kuiper 9.0979 2.303

CvM 10.62024 1.167

A-D 94.37819 6.0

W 10.60013 0.385

Table 4. Goodness-of-Fit statistics based on EDF with m = 8431 and n = 2016,

Critical values are from D�Agostino and Stephens (1986).

As attractive as it may seem, this graphical procedure is a subjective method of iden-

tifying the problems of a forecasted PDF after comparison with the true distribution

(See Figure 1). This also implies that we cannot evaluate the performance of such

an informal test of hypothesis with other existing tests of goodness-of-�t like the

Kolmogorov-Smirnov (KS), Cramér-von Mises (CvM) or Anderson-Darling (A-D)

reported in Table 4 in terms of size and power characteristics. Although, to do full

justice to the precursor of the current paper we should also mention that Berkowitz

(2001, p. 466) commented on the Diebold et al.(1998) procedure: �Because their in-

terest centers on developing tools for diagnosing how models fail, they do not pursue

formal testing.�

Our aim is to use a formal test using Neyman�s smooth test principle. We use

order k = 4 which we believe is su¢ cient to capture most of the global characteristics

of distribution of value-weighted S&P 500 returns. In Table 5, we report the results
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of the smooth test.

Hypothesis 	̂24 û21 û22 û23 û24

EDF 608.2575��� 0.2304 522.0063��� 0.0197 86.0012���

(0.00000) (0.63123) (0.00000) (0.88843) (0.00000)

MA(1) 390.3732��� 1.6088 203.3362��� 0.2192 185.209���

with Normal error (0.00000) (0.20466) (0.00000) (0.63966) (0.00000)

MA(1)- 13.4074��� 1.0692 12.137��� 0.1364 0.0648

Normal GARCH (1,1) (0.00945) (0.30112) (0.00049) (0.71188) (0.79905)

MA(1)- 1.8544 1.0572 0.3445 0.3837 0.0691

t8 GARCH (1,1) (0.76252) (0.30386) (0.55722) (0.53566) (0.79272)

��� significant at 1% level:

Table 5.Neyman�s smooth statistics and components (p-values are in parenthesis).

Initially, we used the empirical distribution function of the estimation sample to

calculate the PIT of each observation of the test sample and computed the smooth

test statistic. We should mention that this is a non-parametric procedure since we do

not assume any structure of the underlying PDF generating the model. However, this

does not take account of the dependent structure of the data. Using an order k = 4;

we get a score test statistic of 608.2575 which is statistically highly signi�cant. We

also can identify that the main sources of this deviation in the overall 	̂24 statistic are

the second (û22) and fourth (û
2
4) components. From analyzing this we can infer that,

there are departures, mainly, in the directions of the second and the fourth order

polynomials, which in turn would indicate the sources of departure are most likely in

the second and fourth moments. Therefore, through pure non-parametric estimation

of the EDF with no assumption of time varying conditional heteroskedasticty, we

can conclude that there are deviations in the directions of the second and fourth

order polynomials that can be related to second and fourth moments. We should

also point out that the nature of the normalized Legendre polynomials indicate that

the second order term is present in the fourth order polynomial, hence it would be

di¢ cult to pin point whether the main direction of departure is in the second or the

fourth moments of the distribution.

At the next stage to start with a simple parametric model, we estimate an MA(1)

model with Gaussian error terms, and we obtain a highly signi�cant 	̂24 statistic of

390.3732. The discrepancy from the null hypothesis seems to be again in the direc-

tions of the second (û22 =203.33619) and fourth (û
2
4 =185.20897) orders polynomials.
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However, in this case the discrepancy in the fourth order term seems to be more pro-

nounced than the purely non-parametric case. We still do not �nd the third order

term to be statistically signi�cant. Keeping this result in mind, we proceed to incor-

porate a time varying volatility model through a GARCH(1,1) model for conditional

heteroskedasticty keeping the MA(1) component for the conditional mean (or level)

equation with Gaussian errors. This more general framework nests the previously

used naive MA(1) model with normal errors. The 	̂24 statistic is now reduced sub-

stantially (390.3732 to 13.4074), although it is still highly signi�cant at the 1% level.

A cursory inspection of the components revealed that only the second component is

still signi�cant although by a much lesser degree (û22 is now 12.137 compared to the

earlier value of 203.3362). Therefore, introduction of conditional heteroskedasticty

into the forecast density model substantially improves its performance. Finally, we

introduce a non-Gaussian error term in the form of Student�s t distribution along

with the MA(1)-GARCH(1,1) formulation. With this general model, we �nd that

	̂2k =1.8544, which is not in the rejection region of �
2
4, and so are all its 4 components.

This implies that a time varying conditional heteroskedasticty component together

with the MA(1) conditional mean model with Student�s t density for the error term

provides an acceptable model.

We also tried higher orders beyond k = 4 but the marginal impact was negligible

in the �nal model. Therefore, we believe k = 4 is su¢ cient for the data on hand.(we

also applied data-driven smooth test methods proposed by Ledwina (1994), and in

most cases k was between 2 and 4). We chose t distribution with 8 degrees of freedom,

since that was the closest integer value that maximizes the likelihood functions. We

should mention that, although we have chosen to divide our sample into 8431 and

2016 observations, this is not necessarily an optimal split. We used a 4:1 split as a

rule of thumb as this was an acceptable choice using cross-validation type methods.

In fact, we have seen that the actual size of the test goes up on average as we increase

the size of the test sample keeping the estimation sample �xed. Diebold et al. (1998)

used 4133 and 4298 split, and we suspect that this sample splitting will have very

large implied size. In a previous version of this paper we kept the estimation sample

4133 (with a test sample size of 1000) so as to compare the results obtained by

Diebold et al. and our formal test procedure. Our current results turned out to be

quite similar to those of the previous ones, with some di¤erences, particularly in the

signi�cance of the fourth order Legendre polynomial.

From Table 5, overall, we can conclude that there is no evidence to suggest that

the forecasted model MA(1)-t-GARCH(1,1) fails to predict the density of the future
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realizations of S&P 500 returns. We can also see from the results based on the EDF

that there is more of unaccounted volatility than other departures. Looking at the

û22 and û
2
4 components we can say that, introduction of conditional heteroskedasticty

improved the model by reducing the �butter�y�pattern in the PIT histogram (or the

ratio density function). It is not clear from pure visual inspection of Figures 4 and

5 that a non-Gaussian error term should be incorporated in the model [see Diebold

et al. (1998)]. However, application of the smooth test indicated a better �t for

the model with the errors following a Student�s t distribution where û22 component

reduced from highly signi�cant 12:137 to statistically insigni�cant 0:3445 (see Table

5). Although the smooth test did not directly address whether there was dependence

in the data, it did pick up the e¤ect of this unaccounted dependence in the data

incorporating conditional heteroskedasticity.

One possible interpretation of the apparent failure of the normal GARCH(1,1)

could be the possibility of a hidden Markov type model that Weigend and Shi (2000)

discussed in evaluating the density of daily returns of S&P 500 index. They assumed

one of several �states�or �experts�generates the true observation in certain �nancial

time series data, like S&P 500 returns, where the signal to noise ratio is pretty small

and the discrete number of states jump from one to the other with a time-varying

or time invariant transition probability matrix. They reported that their model

performed slightly better than normal GARCH(1,1) model. In fact, they worked

under a more restrictive Gaussian framework although a more general exponential

family distribution would have been more appropriate.

Our results from the smooth test indicate that part of the reason for the strong

signi�cance of the fourth order orthogonal polynomial in our naive models, a term

connected to the kurtosis of the distribution of the PIT, is a deviation in the second

and fourth moments. This also indicates leptokurtic nature of the original data. We

should, however, note that since both the second and the fourth order terms are

present in the normalized Legendre polynomial �4 (y) ; it is not possible to exactly

separate out these two e¤ects.

5 Monte Carlo Evidence

Figure 6 shows the distribution of the 	̂24 statistic under the null hypothesis of correct

speci�cation of the model, t-GARCH(1,1), with the �24 distributions for samples of

size 1000. We also inspect the plots (presented in Figure 7) of the components to

check whether the individual u2i asymptotically follow the �
2
1 distribution.
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Figure 6: Histogram and distribution of 	24 under the null hypothesis
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Figure 7: Distribution of individual u2

However, since we are using estimated parameters in place of the true parameters of

the distribution, we must estimate the distribution with su¢ cient accuracy in order

to do evaluate the performance of forecasts. We generated a sample of size 2500 from
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a t7 �GARCH(1; 1) distribution:

yt =

r
5ht
7
t7

ht = 0:2 + 0:15y
2
t�1 + 0:65ht�1: (26)

After estimating the parameters of the sample with the �rst 2000 observations (m =

2000) we freeze it and generate the density forecast for the last 500 observations

(n = 500). Hence we obtain the probability integral transform of the latter 500

observations using the estimated PDF. We performed the modi�ed smooth test on

the forecasted sample and replicated it to get the size properties of this test. Our

results, though not reported here but available upon request, show that even with

estimated parameters the 	24 statistic seem to follow a central �2 distribution with

4 degrees of freedom, and also, the individual component u2i seem to follow the �21
distribution under the correct speci�cation of the model.

One of the very important questions that left to be answered is what should be

the sample split in order to estimate the parameters to a fair degree of accuracy so

that the modi�ed smooth test is consistent and an empirical level of signi�cance close

to the nominal size: We kept the initial estimation sample size m = 2000 �xed and

considered several testing sample sizes (n). The actual sizes for di¤erent values of n

with 200 replications are plotted in Figure 8 when the nominal level is 5%. We note

that with n; the empirical size tends to go up, and after the value of n = 500; the size

goes up considerably (with m being �xed at 2000). Therefore, for our smooth test

on S&P 500 returns with m = 8431, we chose the maximum 4:1 split of the sample

size, i.e., selected the test sample size n = 2016; close to m=4.

Figure 8. Plot of the size of the test as a function of n (m = 2000)
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For small sample sizes we can use cross validation based method to decide on the

sample split. Since, our main objective is to minimize size distortion in �nite or

small samples we can select the sample size that minimizes the distance from the

distribution under H0 or in other words, minimizes distance between the density of

PIT and the uniform distribution. We should admit that where the exact sample

split should occur is not a easy problem to solve analytically and this investigation

is part of our ongoing research.

6 Conclusion and Further Research

One of the main problems in the area of market risk management has been the

evaluation of the probability density forecasts. Using Neyman�s (1937) smooth test

procedure we suggest an easily implementable formal test to achieve that. When

a forecast probability density is rejected, this procedure can identify the speci�c

source(s) of rejection. Our approach is illustrated with an application to S&P 500

returns. Our test can also be used in areas of macroeconomics such as evaluating

the density forecasts of realized in�ation rates. Diebold, Tay and Wallis (1999)

used a graphical technique for the density forecasts of in�ation from the Survey of

Professional Forecasters.

Neyman�s smooth test can also be extended to a multivariate setup of dimension

N for m time periods, by taking a combination of Nm sequences of univariate densi-

ties as discussed by Diebold, Hahn and Tay (1999). This could be particularly useful

in �elds like �nancial risk management to evaluate densities for high-frequency �nan-

cial data like stock or derivative (options) prices and foreign exchange rates. While

our smooth test using estimated parameters provides speci�c directions for the alter-

native models based on the data on S&P 500 returns, it should be bourne in mind

that originally the smooth test was not designed for dependent data. In our empirical

applications to stock returns, we have tried to capture dependence through condi-

tional heteroskedasticty. It will be more interesting to incorporate the dependence

structure directly into the density function. Currently, we have work-in-progress

along that direction. Since the Smooth test is essentially a score test, it enjoys cer-

tain optimal properties, and also, we do not need to estimate the parameters under

the alternative hypothesis. The latter bene�t makes it conducive to models with a

large number of parameters, particularly when we want to incorporate complicated

dependence structures.
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Appendices

Appendix A (Proof of Theorem 2)
Proof. From equations (7), (24) and (25)

	̂2k �	2k =
kX
j=1

1

n

24 nX
i=1

�j

�
F
�
xi; �̂

��!2
�
 

nX
i=1

�j (F (xi; �))

!235
=

kX
j=1

�
û2j � u2j

�
: (27)

Now applying the Mean Value Theorem, we get

û2j =
1

n

"
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��#2
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where �� is such that
����̂ � ���� � j�� � �j :

Hence, û2j � u2j =
2
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�
�̂ � �

�" nX
i=1

�j (F (xi; �
�))

#"
nX
i=1

d�j (F (xi; �
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�))

#
(28)

�
"
1

n

nX
i=1

d�j (F (xi; �
�))

d�

#
:

Furthermore, we know that under H0 : yi = F (xi; �) is distributed as U (0; 1) for
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i = 1; 2; :::; n: Hence, using orthogonality of �j (:) under H0 for j = 1; 2; :::; k;

E (�j (yi)) =

Z 1

0

�j (u) du = 0: (29)

Applying the WLLN (Khinchine�s theorem, Rao(1973 p. 112) we have as n!1

1

n

nX
i=1

�j (F (xi; �))
p! E (�j (yi)) = 0: (30)

For arbitrary but �xed m; �� is �xed. For i = 1; 2; :::; n; F (xi; �
�) is a ( an

absolutely) continuous function of xi: Hence, if X1; X2; :::; Xn are IID random vari-

ables having a CDF F (x; �) then, y�i = F (xi; �
�) ; i = 1; 2; :::; n are also IID with a

density function (called the ratio density function or RDF)

h (y) =
f (x; �)

f (x; ��)
=

f (F�1 (y; �) ; �)

f (F�1 (y; ��) ; ��)
:

Hence, y1; y2; ::; yn are IID random variables with a density function h (y) and has a

�nite �rst moment. Using the WLLN, for j = 1; 2; :::; k;

1

n

nX
i=1

�j (F (xi; �
�))

p! E [�j (F (xi; �
�))] : (31)

Now, we have �̂
p! � as �̂ is a

p
m�consistent estimator of �: Since,

����̂ � ���� �
j�� � �j ; �� is also converges to � in probability. If �j (F (x; �)) is a continuous
function of � at � = ��; we have

E [�j (F (x; �
�))]

p! E [�j (F (x; �))] , j = 1; 2; :::; k: (32)

Hence, as m and n go to in�nity, using results in (29), (30), (31) and (32), we

have

1
n

Pn
i=1 �j (F (xi; �

�))
p! E [�j (F (xi; �

�))]
p! E [�j (F (x; �))] = 0;

i.e., 1
n

Pn
i=1 �j (F (xi; �

�)) = a1 = op (1) :
(33)

We should note that this result holds only under H0, otherwise we will only have
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1
n

Pn
i=1 �j (F (xi; �

�)) =Op (1). Applying the WLLN again, for su¢ ciently large m;
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Hence from equation (28) using the results in (33), (34) and (35), we obtain
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From (27) using (36) for �xed k;

	̂2k �	2k =
np
m
op (1) : (37)

which proves Theorem 2.

Appendix B (Data and Computational Methods)
The data used for the empirical analysis was the returns on value-weighted S&P

500 Composite Index with dividends. The data for the time period July 3, 1962 till

December 31, 2003 was extracted from CRSP Daily Returns database from WRDS.

This is the most current data available at the time of completion of this paper.
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We have estimated the following MA(1)-GARCH (1,1) model

yt = �0 + �1"t�1 + "t

V ("tj
t) = ht = �0 + �1y2t�1 + �2ht�1; (38)

with conditionally Gaussian or Student�s t error distribution. For our Monte Carlo

experiments, we set the initial values at "0 = 0 and h0 = 1 as defaults. From (38)

"1 = y1 � �0 � �1"0 = ~y1
) "2 = y2 � �0 � �1"1 = y2 � �0 � �1~y1
) "3 = y3 � �0 � �1 (y2 � �0 � �1~y1) = y3 � �0 (1� �1)� �1y2 + �21 ~y1:

For a general t,

"t = yt � �0
�
1� �1 + �21 + :::+ (�1)

t�2 �t�21

�
� �1yt�1 + �21yt�2 + :::+ (�1)

t�1 �t�11 ~y1

= yt � �0
1� (��1)t�1

1� (��1)
� �1yt�1 + �2yt�2 + :::+ (�1)t�1 �t�11 ~y1: (39)

In matrix notation, this can be written as

� = By + a

where � = ("1; "2; :::; "t)
> ; y = (~y1; y2; y3; :::; yt)

> ;

B =

26666664
1 0 0 � � � 0

(��1) 1 0 � � � 0

(��1)2 (��1) 1 � � � 0

� � � � � � � � � � � � � � �
(��1)t�1 (��1)t�2 (��1)t�3 � � � 1

37777775 = (��1)
P ;

with P=

26666664
1 0 0 0

2 1 0 0

3 2 1 0

t t� 1 t� 2 1

37777775 ; and a = �
�0

1 + �1

26666664
1

1 + �1

(1� �21)

�
1� (��1)t�1

�

37777775 : (40)

The elements of P are obtained as pij; with pij = max(i�j; 0)�min(max(i�j; 0); 1):
To simplify ht; we write
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ht = �0 + �1y
2
t�1 + �2ht�1 = kt�1 + �2ht�1; where kt = �0 + �1y

2
t�1:

with default initial value of h0 = 1 or k0 = �0 + �1h0 = ~k0; we can write

h1 = k0 + �2h0 ) h2 = k1 + �2k0 + �
2
2h0 = k1 + �2

~k0;

i.e., in general, ht = kt�1 + �2kt�2 + :::+ �t�12
~k0:

In matrix notation

h = Ak;

where h = (h1; h2; :::; ht)
> ; k =

�
~k0; k1; :::; kt�1

�>
and the lower triangular matrix

A =

26666664
1 0 0 � � � 0

(�2) 1 0 � � � 0

(�2)
2 (�2) 1 � � � 0

� � � � � � � � � � � � � � �
(�2)

t�1 (�2)
t�2 (�2)

t�3 � � � 1

37777775 = �
P
2 ;

where �P2 is a matrix where the components are powers, i.e., �
pij
2 . We use this to

evaluate the series of conditional means and standard deviations using BHHH type

Algorithm. We used S+Finmetrics to obtain the parameter estimates for the GARCH

model with conditional Gaussian and Student�s t distributions. The above matrix

notations were used to vectorize the calculations. Given the estimates �̂1; �̂0; �̂1 and

�̂2; we calculated the estimated probability integral transforms ass
df

(df � 2)ht

�
yt � �̂1"t�1

�
� tdf ;

where df is the degrees of freedom for the conditional Student�s t distribution. We

use a similar algorithm for the conditionally Gaussian distribution
�
yt � �̂1"t�1

�
=ht

having a standard normal distribution. We can also estimate the MA(1) model with

the above procedure by selecting �1 = �2 = 0 in equation (38).
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