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Abstract

Underlying each stock trades hundreds of options at different strike prices and maturities. The order flows
from these option transactions reveal important information about the underlying stock price. How to aggre-
gate the trade information of different option contracts underlying the same stock presents an interesting and
important question for developing microstructure theories and price discovery mechanismsin the derivatives
markets. This paper takes options on QQQQ, the Nasdag 100 tracking stock, as an example and examines
different order flow consolidation mechanisms in terms of their effectiveness in extracting information about
the underlying stock price and volatility movements. The analysis |eads usto propose an aggregation weight-
ing scheme that depends both on the liquidity of each option contract and the contract’s risk exposure, delta
for stock price movement information and vega for volatility movement information. Based on this weight-
ing scheme, we identify significantly positive correlations between the aggregate option order flows and the
realized returns and volatilities. In particular, the deltabuy pressure positively predicts the underlying return
and the vega buy pressure positively predicts the change of volatilities.
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1. Introduction

In the absence of market frictions and under the log-normal stock price dynamics assumed in Black and
Scholes (1973) and Merton (1973), options can be perfectly replicated by a portfolio of risk free bond and
the underlying instrument. Option trading is thus redundant in this idealistic world. In reality, however, the
market shows a strong demand for options for two major reasons. First, the risks in the stock market cannot
be completely spanned by the stock trading alone. For example, the presence of discontinuous stock price
movements of random sizes necessitates the inclusion of options across a whole spectrum of strikes to span
the jump risk (Carr and Wu (2004)). The presence of stochastic volatility in stock movement, on the other
market, makes the options market the de facto market for trading volatility risks (Carr and Wu (2009)).

The second major reason for options trading is informational. Even in the absence of stock price jumps
and stochastic volatility, investors may choose to trade options to gain exposure to the stock given the
high leverage provided by options (Black (1975)). Easley, O'Hara, and Srinivas (1998) further argue that
informed traders may prefer the options market because they can better hide themselves among the multiple
option contracts available on one security. Trading options also allowstheinformed traders to take advantage
of volatility information that is not profitable on the stock market alone according to the first argument above.
The disadvantage of trading options for stock exposure is the much higher transaction cost associated with
options trading. Thus, only when the perceived information advantage (and hence price movement) is large
enough, do the benefits of high leverage and multiple contract availability overshadow the large transaction

costs (Holowczak, Simaan, and Wu (2006)).

Thereis along history and along list of studies on the information flow between the options market
and stock market. One remaining challenge is how to effectively aggregate the information in the multiple
option contracts underlying the same stock. When the underlying stock price moves, no arbitrage dictates
that the prices on al the option contracts underlying this stock will move accordingly. When an options
market maker takes on a position in any of the options underlying the same stock, the market maker will
use the same stock to perform delta hedging. Hence, it is important to aggregate the information from the
diverse option transactions at different strikes and maturities before one links the option transactions to stock

price movements.

So far, most studies either use only one pair of option contracts (e.g. see Chan, Chung, and Fong

(2002) and Holowczak, Simaan, and Wu (2006)) or simply regard different contracts as equally informative
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(e.0. see Eadey, O’'Hara, and Srinivas (1998), Chakravarty, Gulen, and Mayhew (2004), Cao, Chen, and
Griffin (2005), and Pan and Poteshman (2006)) to simplify the problem. Picking one pair of contracts while
discarding al the others can potentially distort the estimated relations due to missing variable problems,
because options underlying the same stock share tight linkages. One can think of the case where the chosen
option contract has asmall transaction while most other options experience large transactions pointing to an
opposite direction for the stock price movement. In this case, the large transactions of the omitted option
contracts, rather than small transaction of the chosen contract, are likely to dictate the direction of the stock
price movement. Equal weighting can be equally problematic as informed traders do not randomly pick an
option contract to trade. Instead, they will consider market depth, liquidity, and leverage to optimize their
contract allocation. Two studies take different methods by assigning different weights to option contracts
though. Bollen and Whaley (2004) examine the impact of absolute delta weighted option order flows on
implied volatility functions. Ni, Pan, and Poteshman (2008) use price-scaled vega weighted option volumes

to predict realized volatilities in the cross section.

Ancther important but rarely raised question in this strand of empirical research is how to aggregate
the order flows across trades with different sizes. While most researchers focus on option volumes (Easley,
O'Hara, and Srinivas (1998), Chan, Chung, and Fong (2002), Chakravarty, Gulen, and Mayhew (2004),
Cao, Chen, and Griffin (2005), Pan and Poteshman (2006), Ni, Pan, and Poteshman (2008)), some scholars
just count number of trades to construct " option buy pressures’ (Bollen and Whaley (2004) and Holowczak,
Simaan, and Wu (2006)). By counting number of trades, they presume that trades are equaly informative
across sizes and this method is likely to overstate the impact of small trades given the fact that option trade
size is skewed toward the right. If informed traders only trade these tiny size options, they must be very
patient to build a desirable position and this significantly increases the risk of failure if the information can
be revealed soon. Aggregating volumes gives more information weight to large trades with an underlying
assumption that the information content is linear to trade size. However, informed traders may split their
orders to disguise themselves among uninformed orders and they should avoid trading large size trades to
stay away from public attention. Anand and Chakravarty (2003) find that medium (small) size option trades
are used to achieve "stedlth trading” when trading volume is high (low). Ancther fact undermining the
informativeness of large tradesis that they can often be pre-negotiated. All researchersin thisliterature face
a tradeoff of assigning weights to trade size when they construct their empirical measure of option order

flows.
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In this paper, to answer the first question we propose a mechanism to aggregate option transactions
across al strikes and maturities on the same stock, and we test its effectiveness against four alternatives (one
pair, equal weighting, Greek-weighting, and price-scaled-Greek-weighting) in terms of their effectiveness
in extracting information about future stock price and volatility movements. To extract the information on
stock price movement, the first consideration is the stock price exposure. A call option has positive stock
price exposure and a put option has negative stock exposure. Accordingly, aggregations of buy and sell
orders on call and put options should take on opposite signs. A classic measure for the stock price exposure
isthe delta of the option, which measures how much the option price moves when the underlying stock price
moves by one dollar. The second consideration isleverage. Given limited capital and private information, an
investor would want to maximize its delta exposure per dollar spent on the contract. The delta of an option
scaled by the option’s value represents the stock risk exposure per dollar spent. Finally, the investor must
takes into account the different transaction costs on the options contract in terms of both bid-ask spreads and
market impacts. The options market liquidity concentrates on short-term near-the-money options. Although
the stock exposure per dollar spent is the highest for far out-of-the-money options, the high bid-ask spread
relative to the option value makes these contracts prohibitively expensive to trade. We combine al three
considerations to generate an aggregate net price buy pressure (PBP) for option contracts. We show that this

PBP measure generates significant predictions on future stock price movements.

We also propose an aggregate order flow measure that revealsthe information in the underlying volatility.
In this case, wefocus on the volatility risk exposure of each option contract instead of its delta exposure. We
combine the vega exposure with the leverage and liquidity concerns to generate an aggregate net volatility
buy pressure (VBP) for the option contracts. We find that this VBP measure predicts future stock volatility
as measured by equity option implied volatilities.

To address the second question on how to aggregate across trade size, we directly test the effectiveness
of four alternatives (number of trades, volume, log(volume), log(volume+1)) and find that log(volume)

outperforms the rest regardless of how we aggregate order flows across strikes and maturities.

We also examine the effect of avolumefilter on option contracts. Following Easley, O’ Hara, and Srinivas
(1998), many empirical works exclude inactive (usually deeply OTM) option contracts when measuring
option order flows. This treatment creates a potential problem as informed traders might trade these OTM
options for the great leverage they provide regardless of illiquidity and filtering may throw away valuable

information. Comparing the effects of filtered and unfiltered option order flows, we find mixing results of



the effect of filtering but generally the impact is not significant.

Many studies investigate the information flow between the options market and the stock market, often
with conflicting findings. Early studies such as Manaster and Jr (1982) and Bhattacharya (1987) find that
the options market reveals information about the underlying security prices. Easley, O'Hara, and Srinivas
(1998) do not find the option prices are informative but they find option volumes are informative about
future stock prices although the signs are not as expected. Using the information share approach developed
by Hasbrouck (1995), Chan, Chung, and Fong (2002) and Chakravarty, Gulen, and Mayhew (2004) find
that the stock market leads the option market in price discovery. Holowczak, Simaan, and Wu (2006) find
that the statistical significance of price discovery varies with option trading intensity and sidedness. Using
a unique dataset, Pan and Poteshman (2006) find option call-put volume ratios predict future stock returns;
and Ni, Pan, and Poteshman (2008) find that daily dollar-vega weighted order flow predicts future realized
volatility.

Our work contributes to the literature by providing a systematic analysis on the aggregation of option
transactions across different strikes, maturities and sizes, an issue that has been largely ignored or avoided
in the literature. As we have argued earlier, one cannot possibly obtain robust results on the information
flow between the options market and the stock market without first resolving the aggregation issue. We
focus our analysis on the aggregation of option transactions, but the same mechanism can also be applied to
aggregations of option quotes. Our finding of significant relationship between option order flows and stock
market movement in high frequency public data also provides direct empirical evidence for information

trading on options market.

The rest of the paper is organized as follows. Section[2 gives details about our empirical measures of
option order flows. Section[3 describes the data we use. Section[4! gives the results of our comparison of

buy pressures. And section[5 concludes.

2. Empirical specifications of option order flows

In this section, we describe the different measures of option order flow we construct. There are three
main dimensions in our considerations. First, we want to aggregate across strikes and maturities to address

the leverage and liquidity effects and we propose five alternatives in this dimension. Second, we want to



aggregate across sizes and we propose four aternatives. Third, we want to extract information in option
trading of underlying price and volatility so we construct option price buy pressures and volatility buy
pressures respectively. Interacting al three dimensions, we have 40 different measures of option order
flows. Further implementing a volume filter, we double the measures except for those including one pair
because this method nests the volume filter aswill be explained in details later. We end up with 72 measures

described in the sections that follow.

2.1. Aggregate across strikes and maturities

We use five aternatives to aggregate information in option trading across strikes and maturities:

1. one_pair: Following Chan, Chung, and Fong (2002) and Holowczak, Simaan, and Wu (2006), our
first option order flow measure picks the most active calls and puts to represent al options out of liquidity
concerns. On each trading day in the sample, we form pairs of call and put at the same strike and maturity
and sort these pairs by the total number of trades. We then choose the most traded pair to construct option
order flows. These options are always close-to-money and near-maturity options and constitute 24% of the
total trades in our sample. We have aso tested using the most traded calls and puts separately instead of

sorting the volume by pairs and our results still hold.

To extract the price information from option trading, we construct a net price buy pressure, defined as

PBP_one_pair = Call_BP — Put_BP, (1)

where Call_BP and Put_BP denote the net buy pressures (buy-sell) of the most traded calls and puts, re-
spectively. As Easley, O’ Hara, and Srinivas (1998) argue, buying a call and selling a put has positive price
pressure on the underlying security while selling a call and buying a put has negative price pressure. Thus
our PBP_one_pair is expected to be positively correlated to the underlying price if option trading is infor-

mative.

To extract the volatility information, we construct a net volatility buy pressure, defined as

VBP_one_pair = Call _BP + Put_BP. 2

Since the volatility change has the same pricing impact on both calls and puts, we sum the net buy pressures



of calls and puts to predict underlying volatility. If the volatility increases, options generally become more
valuable. Thus we expect our VBP_one_pair to be positively correlated to underlying volatility if option
trading has volatility information.

2. equal_weighting: This is the most commonly used aggregation method in the literature (e.g. see
Easley, O’ Hara, and Srinivas (1998)). Equal weighting assumes the informed trader has no preference over
any particular contract thus options across different strikes and maturities are equally informative. We define

the equal weighted price buy pressure as
PBP_equal weighting = )’ Call_BPx t — Put_BPx 1, (3)
KT

where Call_BPx 1 and Put_BPx 1 are the net buy pressures of call and put options with strike price at K and
time to maturity at T. Similarly we define the equal weighted volatility buy pressure as

VBP_equal _weighting = " Call_BP 1 + Put_BPx T, (4)
KT

3. Greek_per_share: The derivatives of option prices to the underlying security price and volatility are
well known as delta and vega. Using the Greeks as weights in aggregation takes into account the option’s
exposure to underlying price and volatility. An option with a larger delta is more sensitive to the price
movement in the underlying security and would result in greater profit per share for an informed trader.
Consequently, one can expect options with large delta to be more informative. So we define delta weighted
price buy pressure as

PBP_delta_per_share =) delta;, (5)
i

where deltg is price implied Black and Scholes (1973) delta for each trade i. Calls and puts with the same
strike and maturity have opposite signs of delta. This mechanism gives more information weight to ITM
options which is consistent with the experimental finding that informed traders may favor I'TM options by

Jong, Koedijk, and Schnitzlein (2001). Similarly, we define vega weighted price buy pressure as
VBP_vega_per_share = )’ vega, (6)
i

where vega; is price implied Black-Scholes (1973) vega for each trade. Calls and puts with the same strike

and maturity have the same vega. And the vega weighting gives more weight to ATM options for large



volatility exposure. We label these two order flows as Greek per_ share weighted because the Greeks used
here are those of one option contract. Through out the paper we shall aways refer to delta and vega as
defined here unless otherwise specified. Bollen and Whaley (2004) use absolute delta weighted option
volumes to predict the shape of implied volatility. But in this paper we test the predictability of these

weighted order flows on the underlying market movement.

4. Greek per_dollar: Ni, Pan, and Poteshman (2008) use price-scaled vega-weighted option volume
to predict the realized volatility because the price-scaled vega can be thought as the return to the option

position. Following their method, we also construct a price scaled delta buy pressure as

PBP_delta_per_dollar — de'—?""‘, @
i i
and a price scaled vega buy pressure as
VBP_vega_per_dollar =’ %, (8)
i i

where p; is the price of option trade i. This weighting method considers the leverage effect of different
options and assigns more weight to OTM options because OTM options are usualy cheap. Chakravarty,
Gulen, and Mayhew (2004) find that OTM options have higher information share in price discovery than
ITM and ATM options. If it istrue that informed traders prefer OTM options, this weighting method should

outperform the rest.

5. HHW: While the Greek-weighting methods discussed above take into account the option exposure
and leverage effect, they do not include the liquidity effect. If an option contract is highly illiquid or has
thin market depth, it is difficult to realize a desirable profit from trading that contract alone and we would
expect such contracts to be less informative about the underlying market. Choosing the most traded options
as representatives goes to the other extreme asiit ignores the option exposure and leverage effect and focuses
only on liquidity. As an effort to combine all these considerations, we propose two aggregated measures of
the option order flow as an information index. To predict the underlying stock price movement, we propose

an aggregate net price buy pressure measure, defined as

PEP HHW = 3 Call_BPRy 1 — Put_BPx T
KT M

: n(dl)v (9)



2
where the summation is over all available strikes (K) and maturities (T), n(d) = ie—% denotes the stan-

Ne
% denoting the standardized variable in the

Black-Scholes formula that underlies the delta calculation, and M = max{1, T « 12} denotes the maturity

dard normal probability density functions with ¢, =

in months with a minimum truncated at one. The aggregate measure takes into consideration the delta ex-
posure, leverage, and liquidity. First, at the same strike and maturity, the weight is the same in magnitude
but opposite in sign for the call and put option contracts. One can regard this weighting as an analog to the
put-call parity condition. Since the difference between the forward values of the call and put contract at the
same strike and maturity is equal to the forward value of the underlying stock, absent from the effects of
volatility, we use this weighting on order flows to reflect the order flow on the underlying stock price move-
ment while minimizing the impact from volatility trades. Second, across different strikes, the aggregation
puts more weight on near the money options through the n(d;) weighting because near the money options
areusually moreliquid. Third, across different maturities, the option value scales approximately in the order
of v/T We divide the weight by maturity to further punish longer-term contracts for liquidity concerns. We
convert the maturity scaling in months and set the minimum to one month to avoid extreme weighting for

options at very short maturities. One month or shorter represents the nearest month option.

To predict stock volatility movements, we also propose an aggregate net vega buy pressure (VBP) mea

sure,

VBP HHW = ¥ Call_BPq 1 +Put B«
T VM

Here, since both call and put options have positive vega exposures, we use the same weight (both magnitude

n(dy). (10)

and sign) for the call and put options at the same strike and maturity. Furthermore, since the vega of the
option is proportional to the square root of maturity /T, it cancels with the /T scaling in the option value.
Hence, the denominator is+/M instead of M to punish long-dated options for liquidity concerns.

2.2. Aggregate across sizes
We consider four different ways to aggregate the information in trades of the same option contract with
different sizes.

1. number _of trades: Assuming option trades are equally informative regardless of their sizes, we can
simply count number of trades as Bollen and Whayley (2004) and Holoczak, Simaan, and Wu (2006) and

the option order flows are exactly as defined in the previous subsection. This aggregation will usually be

8



biased towards small trades in the sample.

2. volume: Assuming the information content in options trades is linear to the trade size, we can sum
volumes as Eadley, O’ Hara, and Srinivas (1998) and others. For each option order flow defined above, we
multiply each trade implied buy pressure with its size and sum up the products within a period of time to

obtain an observation. This aggregation will usually be biased towards large trades in the sample.

3. log(volume): The third method we use is multiplying natural logarithm of each trade size instead of
trade size. Using logarithm smoothes the distribution of size and there is amore important reason. By using
logarithm, we assume that the information content is concave to size and both volume and number of trades
will matter. For example, two trades of the same size N are as informative as one trade of size 2N under
volume summation. However, they will result in 2l ogN under this new aggregation method, which is greater
than the information content of asingle trade, log2N, if N is greater than or equal to 3. Asaresult, the larger
number of trades to accumulate abulk volume, the more informative the aggregated order flow will become.
We propose this logarithm weight because we think informed traders tend to avoid large trades and would
rather split their tentative order into small sizes to hide their intention. This method is supposed to combine

the effects of both number of trades and trade volume.

4. log(volumet1): A potential problem with log(volume) aggregation is that it completely ignores
those trades of only one contract. To address this concern, we use log(volume+1) to aggregate across size.

Conseguently this method will give more weight to small trades than log(volume) aggregation.

2.3. Volumefilter

So far we have five ways of aggregate across strikes and maturities, four ways to aggregate across sizes,
and two types of order flows to predict underlying return and volatility separately. Interacting all three
dimensions gives us 40 different option order flows. Now we turn to the last consideration, volume filter.
Most empirical works adopt a volume filter to exclude inactive option contracts. For example, Easley,
O'Hara, and Srinivas (1998) exclude those contracts with less than 50 trades a day; Bollen and Whaley
(2004) filter out deeply OTM and deeply ITM option contracts with extreme delta values; using the most
active options, Chan, Chung, and Fong (2002) and Holowczak, Simaan, and Wu (2006) explicitly apply an

extreme volume filter and only consider the highest volume put/call pairs.



There exist both theoretical (Easley, O'Hara, and Srinivas (1998)) and empirical (Chakravarty, Gulen,
and Mayhew (2004) evidence that OTM options might be preferred by informed traders. The volume filter
may discard valuable information in these infrequently traded OTM options with the benefit of less noise.
The overal effect is still unclear though. We thus construct option order flows with volume filter on and off
to seeif it has any impact. In this paper, we set the volume filter to 50 trades a day. Thisfilter has no impact
on those order flows constructed with one_ pair because one pair itself is an extreme filter. Asaresult, with
consideration of the volume filter we expand our option order flow set to 40 unfiltered and 32 filtered. Using

alternative filtering methods does not change our results qualitatively.

3. Data

3.1. Data sources and sample selection

Our option data comes from the Option Price Reporting Authority (OPRA), which records every option
guote and trade message across al option exchanges in the United States. The underlying security price

data comes from NY SE Trade and Quote (TAQ) database.

We pick the option ticker "QQQQ", an ETF of NASDAQ 100 index traded in al major exchanges in
the United States, because QQQQ is the most actively traded ticker in options market (Holowczak, Simaan,
and Wu (2006)). The high trading volume facilitates our high frequency research so that we can examine
the effect of option buy pressures in shorter windows than the traditional 5 minute interval. Our sample
covers 231 trading days from February 1st to December 29th in 2006. There are 1,572,865 trades in our
raw sample. From this raw sample, we exclude data errors and options that expire within 10 calendar days
because these close-to-maturity options can exhibit abnormal trading behaviors. Options quotes depend on
underlying spot prices. In absence of continuous trading of the underlying security, option quotes become
lessreliable. Therefore, we exclude al off-hour trades. To control the options opening rotation effect, we
also exclude trades recorded by OPRA within fifteen minutes after market opening and five minutes before
market closing. Our final sample contains trades recorded by OPRA between 9:45:00 am and 3:54:59 pm
EST only. These treatments reduce the sample size to 1,107,061 trades in al, and 4,792 trades daily on
average. The average trade size is 70 lots but the median is only 5 lots. This clearly shows that in this

sample number of trades is dominated by small trades while volume is dominated by large trades.
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According to Table 1, unlike equity options which usually have most trades on at-the-money (ATM)
options, QQQQ has 41.26% of trades on out-of-the-money (OTM) options and a slightly lower proportion
of 36.69% on ATM options. The proportions in Table 1 are computed with number of trades only. Table
1 also shows that the magjority (79.91%) of trades are short term options expiring in two months. Breaking
down the sample into call and put option groups, we find that for QQQQ, puts are traded more often than
calls and aso at larger sizes. OTM options account for 42.88% in al puts traded, larger than that of calls
(39.40%) and ATM options account for 34.02% in puts, less than that of calls (39.76%). The difference
may reflect the use of QQQQ options as hedging devices. Both call and put groups constitute most of near-
maturity trades. One concern regarding our choice of the underlying security is that information trading
is less likely to occur for an ETF and related options because of less information asymmetry. While it is
true that the macro variables driving the ETF's price and volatility are more transparent than single stock
fundamentals, there can be as much if not more liquidity information in trading the ETF which dictates
the movement of the underlying price and volatility in the near future ranging from a few seconds to afew
hours. Also using QQQQ should make it more difficult for us to detect any effect of option order flows if
information trading is less possible. Any significant result from our study will thus not be shadowed by the
choice of this underlying security.

[Table[d] about here.]

3.2. Tradesigning

OPRA does not have a flag on whether the non-market maker party in a trade is the buyer or the seller.
In order to determine the option order flows, we follow Lee and Ready (1991) to classify trades into three
categories. buyer-initiated, seller-initiated and unclassified. The signing algorithm is as follows: if atrade
price is above the last effective mid quote, it is classified as buyer-initiated; if a trade price is below the
mid quote, it is classified as seller-initiated; if a trade price falls exactly on the mid quote and is higher
than the last different trade price, it is classified as buyer-initiated; if atrade price falls exactly on the mid
quote and is lower than the last different trade price, it is classified as seller-initiated; everything else is
unclassified. With this signing algorithm, we are able to classify most trades, leaving only 0.86% in the
unclassified category. These trades normally occur in market opens when there are no valid quotes or last
different prices. We discard these unclassified trades because there is no reason to expect that our results are

driven by this treatment.
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Unlike Lee and Ready (1991), however, we examine the last (t-0) effective quotes on the same exchange
rather than the five-second proceeding (t-5) quotes. Thereporting lag is unnecessary for OPRA data because
we find that the proportion of trade-through trades (with the price outside the quote bounds) increases in the
time lag of quotes used and using t-0 has the largest proportion of trades right on the bid or the ask. We have
also checked OPRA National Best Bid and Offer (NBBO) and find NBBO underperforms t-0 quotes from

the same exchange. This data feature shows that OPRA is efficient in recording option trades and quotes.

We acknowledge that our signing algorithm is not perfect. But the errors in trade classification will bias
against any significant findings. Thus we are comfortable with the current signing algorithm. Table 1 shows
that the overall sample is slightly imbalanced with 51.81% of trades are initiated by buyers. Calls are more
balanced with 49.38% buy trades. Puts are more imbalanced with 54.51% buy trades.

3.3. Frequency

We conduct our research at different frequencies but mainly report results from arelatively short time win-
dow of one minute. Information spreads fast between integrated markets (underlying market and option
market in this case). Therefore, the impact of option buy pressure is not likely to last long and a long
observation window may not be sensitive enough to capture the impact of information trading. A short
observation window can increase the underlying price sensitivity to the option buy pressure and potentially
the statistical significance of the correlations. However, it may reduce the economic significance on the
other hand as short term price and volatility changes can betiny. Also it tends to creates more uninformative
observations with 0 trades because the arrival of tradesisnot continuous. Thereis clearly atradeoff between
along observation window and a short one. Given the ETF nature of our underlying security, we are more
concerned about liquidity based information trading in options market. We choose relatively short win-
dows because it is more risky to trade on liquidity information in long horizons. Also under normal market
conditions, liquidity shocks can be easily absorbed in price discovery. Therefore, we construct one minute
non-overlapping option buy pressures as our main sample rather than the traditional five minute interval
observations. We have tried aternative frequencies ranging from five seconds to half an hour and found that

these alternatives do not alter our conclusion about the effectiveness of different aggregation methods tested.

12



3.4. Main variables

We calculate returns and volatilities of the underlying security QQQQ as our dependent variables. Prewhiten-
ing returns are calculated asthe difference between log mid quotes of the National Best Bid and Ask (NBBO)
at the beginning and the end of each one minute interval during trading hours. Table 2 reports that the mean
of this raw return is -0.0063 basis points (bp). Bid ask bounce of the underlying price can cloud our find-
ings. Following Easley, O’ Hara, and Srinivas (1998), we use MA (1) process to remove the autocorrelation
of the returns for each trading day and we call the residuals from this model excess returns. The mean of
one minute excess return is -0.0022 bp in our sample with standard deviation of 4.5157 bp. Asaproxy for
market volatility, we calculate the standard deviation of second by second returns within each one-minute
observation window and normalize it to annual volatility assuming price follows alog normal process. Table
2 reports that the mean of this annualized volatility is only 3.03%. We find using other volatility measures
such as (high-low)/average and option implied volatility does not change our results qualitatively.

[Table[2 about here.]

Table 2 also reports the mean and standard deviation of each option order flow we construct in section 2.
We use three month implied volatility from Bloomberg database and assume 0 interest rate and dividend rate
to compute the B-S Greeks. The mean price buy pressures are generally negative and the mean volatility buy
pressures are all positive although none is statistically different from 0. One thing to noticeis that unfiltered
option order flows are always stronger than the filtered except for HHW. volume. We apply Augmented
Dickey-Fuller (1979) test for all variables with lags of 20. Not surprisingly, the p-values are all less than
0.001, strongly rejecting the null hypothesis of non-stationary time series.

4. Static comparison

4.1. Pricebuy pressures

Aninformed trader can trade options to profit from directional movement of the underlying security price.
If our price buy pressures are correctly constructed, they are supposed to be positively correlated with the
excess returns. Moreover, we want to test the effectiveness among the different price buy pressures. Table 3

reports our main results.
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Eadley, O'Hara, and Srinivas (1998) find option volumes are informative about stock prices. However,
they find a significantly negative coefficient of the contemporaneous five-minute option volume instead of
the hypothesized positive one. Contradicting their result, we find that all contemporaneous correlations are
significantly positive as expected in our sample as shown in Panel A of table 3, supporting the hypothesis of
information trading in options market.

[Table[3 about here.]

The second result emerging from Panel A of table 3isthat using log(volume) aggregation always outper-
forms the rest regardless of what method is used to aggregate across strikes and maturities. Log(volume+1)
always comes next. Between number of trades and volume, number of trades has twice to three times larger
coefficients than volume except for one pair. The coefficients are very close for number of trades and vol-
ume aggregation with this extreme volume filter active. The result does suggest that empirical studies of

option order flows need a good balance between number of trades and volume and log(volume) works well.

Among the aggregation methods across strikes and maturities, delta per. share always outperforms the
rest with equal_weighting and our HHW measure are closely tied in the second place. The differences
between these three are small. Delta_per_dollar comes after with a larger gap and one pair always has
the smallest coefficient. A surprising result is the underperformance of delta per. dollar to delta per share
because the former is expected to capture the leverage effect which should be one of the main reasons
for information trading in options market. One possible explanation is that delta per. dollar aggregation
overstates the effect of penny trades of deeply OTM options and ignores the liquidity effect which isequally

important.

Finally we examine the filtering effect in Panel A of table 3. Apparently filtering volumes does not im-
prove the contemporaneous correlations and actually in most cases it weakens the correlations instead. The
single largest contemporaneous correlation belongs to unfiltered log(volume) and delta per share weighted
price buy pressure (0.4112). Also using unfiltered dataand log(volume) weighting across sizes, equal weighting

and HHW also generate strong contemporaneous correlations of 0.3962 and 0.3883, respectively.

To show the results are not driven by our choice of one minute observation window, we do the same
analysis for different observation lengths ranging from 5 seconds to 15 minutes. The contemporaneous
correlations are plotted in figure 1. Generally we see that the contemporaneous correlations increase in

the observation length and the main results from Panel A of table 3 holds in different observation lengths,
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i.e. delta_per_share and log(volume) always outperform the other aggregation methods in their categories.
Figure 1 also shows that different aggregation methods across strikes and maturities converge to a great
extent under log(volume) aggregation except for one pair. It seemsthe contemporaneous correlation is more

sensitive to the aggregation method across sizes than the aggregation method across strikes and maturities.

[Figure 1 about here]

Now let us turn to the predictability of our price buy pressures. Panel B of table 3 reports the correla-
tions of the excess underlying returns and one period lagged price buy pressures. Comparing the aggregation
methods across sizes first, we can see that number of trades is not informative about future returns. Within
the rest three methods, volume seems to lead the race. Among the aggregation methods across strikes
and maturities, HHW always comes in the first place with equal_weighting and delta per. share following
up closely. One surprising result is filtering dlightly improves predictability of price buy pressures and
delta_per_share does not well predict future excess return although it has strong contemporaneous correla-

tion with excess returns. Figure 2 plots the correlations in different observation lengths.

[Figure 2 about here]

What can we say about the effectiveness of these price buy pressures then? Despite some contradicting
results of contemporaneous and forward looking correlations, some results are pretty informative. First of
al, equal _weighting, delta_per_share, and HHW are better aggregation methods across strikes and maturities
than one_pair and delta_per_dollar, suggesting the liquidity effect needs to be considered together with
leverage and price exposure of the options. Within these three methods, however, it is hard to say which
one always outperforms. Second, volume filter does not have much impact on the effectiveness of price
buy pressures. It weakens the contemporaneous signals but improves the forecasting ability slightly. Third,
among aggregation methods across sizes, log(volume) works best in contemporaneous correlations and

volume weighting excels in forecasting.

4.2. Volatility buy pressures

Private information about market volatility is also profitable by trading options and we expect the volatility

buy pressures constructed in section 2 to be positively correlated to underlying volatilities. Table 4 reports
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the correlations.

[Table[ about here.]

Panel A of table 4 reports the contemporaneous correlations between volatility buy pressures and un-
derlying volatilities. Similarly to the results of price buy pressures, log(volume) outperforms the other
aggregation methods across sizes. Unlike for price buy pressures, however, the volume filter improves the
contemporaneous correlations a lot. Unfiltered HHW outperforms the rest of unfiltered volatility buy pres-
sures among aggregations across strikes and maturities. But oncefiltered, vega per. share catches up quickly.
Figure 3 plots the correlations in different observation lengths and it is clear that the order of effectiveness

is persistent.

[Figure 3 about here]

We examine the predictability of volatility buy pressuresin Panel B of table 4. Volatility buy pressures
show a consistent pattern of predictability with contemporaneous relationships. Log(volume) and HHW
outperform the other aggregation methods in each category and the single biggest coefficient belongs to
unfiltered HHW log(volume). Figure 4 plots the predictability of volatility buy pressuresin different obser-
vation lengths and there is a clear pattern that log(volume) with either vega per. share or HHW should be

favored.

[Figure 4 about here]

5. Conclusion

Our analysis above generally shows that the aggregation method of option order flowsis not atrivial ques-
tion in order to extract the information about the underlying market. We summarize our findings from
the static comparison as follows: 1) aggregate option order flows are informative about both underlying
returns and volatilities, i.e. price buy pressures positively predict underlying returns and volatility buy
pressures positively predict underlying volatilities; 2) log(volume) weighting generally outperforms the
other aggregation methods across sizes and only loses to volume weighting in predicting future returns; 3)
Greek_per_share, equal_weighting and HHW generate more informative option buy pressures than one pair

and Greek_per_dollar ; 4) trading activity filter has less impact on the effectiveness of price buy pressures
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than of volatility buy pressures. Which aggregation method to choose depends on the specific empirical
guestion.
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Table 1

Data Description

The sample includes all option trades with underlying ticker 'QQQQ’ between 9:30:00 am or after 4:00:00
pm EST from 02/01/2006 to 12/29/2006 recorded by the Option Price Reporting Authority (OPRA) with
maturity over 10 calendar days. Percentages are computed with number of trades. abs(delta) is the absolute
value of Black-Scholes (1973) model implied delta computed with O interest rate and dividend rate. Near-
maturity options are those expiring within 60 calendar days. The trades are classified into buy, sell, and
unclassified categories with Lee and Ready (1991) method.

Statistics All options Cdls Puts
Number of trades 1,107,061 515,359 591,702
Mean daily number of trades 4,792 2,231 2,561
Mean trade size 70 56 73
Std trade size 690 724 658
Median trade size 5 5 6
Mean daily volume 311,246 124,147 187,100

Percentage of near-the-money

0.375 <— abs(delta) <— 0.625 36.69 39.76 34.02
Percentage of out-of-the-money

abs(delta) < 0.375 41.26 39.40 42.88
Percentage of near-maturity 79.91 80.22 79.64
Percentage of buy 52.12 49.38 54,51
Percentage of unclassified 0.86 1.02 0.73
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Figurel
Contempor aneous correlations between PBP and excessreturns over different observation lengths
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This figure plots the contemporaneous correlations between net option price buy pressures and underlying
excess returns. The observation window ranges from 5 seconds to 15 minutes. The price buy pressures are
calculated using filtered data (exclude options with less than 50 contracts on each day).

24



Figure2

Forecasting excess returns over different observation length
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This figure plots the correlations between underlying excess returns and one-period lagged net option price
buy pressures. The observation window ranges from 5 seconds to 15 minutes. The price buy pressures are
calculated using filtered data (exclude options with less than 50 contracts on each day).
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Figure3
Contempor aneous correlations between VBP and volatilities over different observation lengths
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Thisfigure plots the contemporaneous correl ations between net option volatility buy pressures and underly-
ing volatilities. The observation window ranges from 5 seconds to 15 minutes. The price buy pressures are
calculated using filtered data (exclude options with less than 50 contracts on each day).
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Figure4

Forecasting volatilities over different observation length
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This figure plots the correlations between underlying volatilities and one-period lagged net option price
buy pressures. The observation window ranges from 5 seconds to 15 minutes. The price buy pressures are

calculated using filtered data (exclude options with less than 50 contracts on each day).
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