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This paper is motivated by the following question: How to construct good approximation for the distribution

of the solution value to linear optimization problem, when the random objective coefficients follow a multi-

variate normal distribution? Using Stein’s Identity, we show that the least squares normal approximation of

the random optimal value can be computed by solving the persistency problem, first introduced by Bertsimas

et al. (2006). We further extend our method to construct a least squares quadratic estimator to improve the

accuracy of the approximation, in particular, to capture the skewness of the objective. Computational stud-

ies show that the new approach provides more accurate estimates of the distributions of project completion

times compared to existing methods.
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1. Introduction

One of the fundamental problems in project management is to identify the project completion time

when the activity durations are random. This problem is often represented by a directed acyclic

graph (DAG)1. Over the past few decades, various methods have been proposed to approximate

the distribution of project completion time (cf. Dodin (1985), Cox (1995), Yao & Chu (2007), etc.).

Unfortunately, to the best of our knowledge, most of the existing approaches are derived using ad

hoc heuristics or exploit specific problem features.

In this paper, we address the estimation of the project completion time, under the assumption

that the activity durations follow a multivariate normal distribution, and construct an estimator

for the random project completion time that is optimal among the family of normal distributions

under the L2-norm. In fact, our method applies to any general random mixed 0-1 LP problem

under objective uncertainty:

Z (c̃) :=max
x∈P

n∑
j=1

c̃jxj, (1)

where c̃= (c̃1, . . . , c̃n)
T is the random coefficient vector following a multivariate normal distribution

with mean vector µ and covariance matrix Σ, denoted as c̃∼N(µ,Σ), and P is the domain of the

feasible solutions (assumed to be bounded) defined by

P := {x∈Rn : aT
i x= bi, ∀i= 1, . . . ,m, xj ∈ {0,1} , ∀j ∈B ⊆ {1, . . . , n} , x≥ 0}.

In the project management problem, P characterizes the incidence vector of paths in the project

network, and c̃j is the random duration of activity j. We assume that P is nonempty and bounded

so that E [Z (c̃)] is finite. Throughout this paper, we use bold face letters to denote column vectors.

We use σj,k, j, k = 1, . . . , n, to denote the covariance between c̃j and c̃k, i.e., (j, k)−term of the

covariance matrix Σ. We also use σ2
j , j = 1, . . . , n, to denote the variance of c̃j, i.e., the jth diagonal

term of Σ.

There is by now a huge literature on finding the distribution of Z (c̃) for specific combinato-

rial optimization problems, including minimum assignment, spanning tree, and traveling salesman
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problem (cf. Aldous & Steele (2003)). These problems are notoriously hard, and often only partial

results (e.g., asymptotic results with independent and identically distributed (i.i.d.) random vari-

ables) are known. Finding the exact distribution for the general mixed 0-1 LP problem appears to

be intractable.

Back to the project management problem, under the Critical Path Method (CPM), which is often

used by the project management community, the random project completion time is estimated by

replacing c̃j with its expected value µj, i.e., Z (µ) is used to approximate the project completion

time. In the classical Program Evaluation and Review Technique (PERT), this is taken one step

further where the distribution of the project completion time is approximated by
∑n

j=1 βj c̃j =∑n

j=1 βj(c̃j −µj)+Z(µ), with

βj =


1, if arc j is on the longest path when solving Z(µ),

0, otherwise.

Here we impose the conventional assumption that Z(µ) has unique optimal solution. Due to the

simplicity of the approach, PERT has gained a lot of popularity, and the random project networks

are sometimes also called PERT networks. However, simply using the distribution of one critical

path to approximate the distribution of the project completion time (or longest path) suffers from

severe estimation errors. In particular, PERT has been widely criticized for significant underesti-

mation of the mean project completion time and overestimation of the variability of the project

completion time. This leads us to a natural estimation problem:

(P) min
α∈R,β∈Rn

E

(Z(c̃)−α−
n∑

j=1

βj(c̃j −µj)

)2
 ,

where α ∈ R, and β ∈ Rn are determined by minimizing the expected squared deviation of the

linear approximation from the true distribution. Problem (P) is the central question addressed by

this paper. We solve for the least squares normal approximation (or the best normal approximation

in L2-norm) to the random optimal objective value, as an affine function of the individual normally

distributed random coefficients. We also refer to this as the least squares linear estimator. We use
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these two terms interchangeably. We explicitly obtain the solution to this optimization problem,

and link it to the persistency problem.

Bertsimas et al. (2006) introduced the notion of the persistency of a binary decision variable

in Problem (1) as the probability that the variable is active (i.e., takes value of 1) in an optimal

solution to Problem (1). We generalize this concept to include continuous variables as follows:

Definition 1. The persistency of the decision variable xj in Problem (1) is defined as E[xj (c̃)],

where xj (c̃) denotes an optimal value of xj as a function of the random vector c̃. If xj is a binary

variable, E[xj (c̃)] =P(xj (c̃) = 1).

Remark 1. When c̃ is Lebesgue measurable with a non-vanishing density, the support of c̃ over

which Problem (1) has multiple optimal solutions has measure zero and x (c̃) is unique almost

surely2. In other situations, if there exist multiple optimal solutions over a support of strictly

positive measure, x (c̃) is defined to be an optimal solution randomly selected from the set of

optimal solutions at c̃.

In this paper, we assume that c̃ is non-degenerate, i.e., the covariance matrix Σ is symmetric

positive definite (denoted as Σ ≻ 0). Under the normality assumption, we are sure that x (c̃) is

unique almost surely. The notion of persistency generalizes “criticality index” in project networks

and “choice probability” in discrete choice models (cf. Bertsimas et al. (2006), Natarajan et al.

(2009), Mishra et al. (2012)). By persistency problem, we refer to the problem of estimating the

persistency values.

One critical drawback of the estimated distribution from solving Problem (P) is that it is

restricted to be normal, which is symmetric about the mean. However, in most circumstances, Z(c̃)

is skewed. PERT also suffers from a similar issue. To strengthen the approximation, we propose

to extend the estimator to include higher order terms on c̃. In particular, we also find a quadratic

estimator, Q(c̃), to the distribution of Z(c̃) of the following form:

Q(c̃) = α+
n∑

j=1

βj(c̃j −µj)+
n∑

j1=1

n∑
j2=j1

γj1,j2(c̃j1 −µj1)(c̃j2 −µj2),
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where α, βj and γj1,j2 are adjustable parameters. Interestingly, the least squares quadratic

estimator is also closely related to the persistency problem, and shares some common components

with the least squares linear estimator.

Outline of this paper: In the next section, we review the related literature. In Section 3, we

build our least squares linear approximation. The extension to least squares quadratic estimation is

developed in Section 4. In Section 5, we briefly review some ways to estimate persistency values, and

present the results from our computational studies. Finally, we provide some concluding remarks

and future research directions in Section 6.

2. Literature Review

Our problem of interest has a long history, and it is related to the classical “distribution problem

of stochastic linear programming” literature (cf. Ewbank et al. (1974), Prekopa (1966) and the

references therein). The distribution of the optimal value is often approximated by numerical

methods such as the Cartesian integration method (cf. Bereanu (1963)). These methods have

been studied under the general framework when the uncertain parameters may appear in the

objective, constraint matrix, or the right hand side of the LP problem. However, the total number

of random variables are very limited due to the numerical methods employed. In the case of project

management, finding the distribution of completion time in a PERT network is still an active area

of research with a rich literature (cf. Yao & Chu (2007) and the references therein). Most of the

work in this area has been focused on using some graphical approaches to reduce the size of the

graph and to reduce the complexity of estimating the distribution of the project completion time

(e.g., Dodin (1985)). Another line of research tries to find a good normal approximation to the

project completion time distribution using Central Limit Theorem and moment estimation methods

(e.g., Cox (1995)). We solve this problem and show that the best normal approximation to the

completion time distribution, under L2-norm, can be obtained by solving the related persistency

problem introduced by Bertsimas et al. (2006), and further studied in Natarajan et al. (2009).
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Brown et al. (1997) brought up the issue of persistence and persistent modeling in optimization

through a series of case studies. Although the idea of persistence conveyed in that paper is very

broad and different from the persistency defined above, these two concepts are closely related

through the issue of data uncertainty and robust optimization. The authors point out that from

the perspective of persistence, robust optimization seeks a baseline solution that will persist as best

as possible with a number of alternate forecast revisions. On the other hand, persistency describes

the degree of persistence of each individual decision variable in an optimization problem with data

uncertainty. Indeed, we can further generalize Definition 1 to the persistency of a feasible solution,

i.e., the probability that this feasible solution is optimal. However, this is beyond the scope of the

current paper.

Over the past few years, a substream of research in the field of persistency estimation has yielded

a series of semidefinite programming (SDP) models based on the connection between the moment

cone and the semidefinite cone. A common feature of these models is that they only assume the

knowledge of moment information of the uncertainty rather than the exact form of the distribution.

Hence, they are also referred as distributionally robust stochastic programming (DRSP) models.

Bertsimas et al. (2006) introduced arguably the first computational approach to approximate

the persistency by solving a class of SDPs called Marginal Moment Model (MMM) under the

assumption that the random vector c̃ is described only through the marginal moments of each c̃j

and all the decision variables in Problem (1) are binary. Natarajan et al. (2009) extended MMM to

general mixed-integer LP problems, but their model formulation is based on the characterization

of the convex hull of the binary reformulation which is typically difficult to derive. Lasserre (2010)

studied the class of parametric polynomial optimization problems, which includes the mixed 0-

1 linear programming problem as a special case. The author described the uncertainty using a

combination of joint probability measure on the parameters and optimal solutions and marginal

probability measures on the parameters. A hierarchy of semidefinite relaxations was proposed to

solve the problem. However, the size of the semidefinite relaxation grows rapidly which makes
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solving the higher order semidefinite relaxations numerically challenging. Mishra et al. (2012)

presented a SDP model named Cross Moment Model (CMM) for c̃ described by both the marginal

and cross moments. The formulation of CMM is based on the extreme point enumeration of Problem

(1). Hence, the size of CMM becomes exponential for general LP problems. Inspired by a recent

application of conic optimization on mixed 0-1 LP problems due to Burer (2009), Natarajan et al.

(2011) developed a parsimonious but NP-hard conic optimization model to estimate the persistency

of a general mixed 0-1 LP problem when c̃ is described by both the marginal and cross moments.

They referred to their model as Completely Positive Cross Moment Model (CPCMM). In this

paper, we mainly exploit this model to estimate the persistency values. We will review it in more

details in Section 5.3.

A recent paper by Agrawal et al. (2012) investigated the loss incurred by ignoring correlations

in a DRSP model and proposed a new concept called price of correlations (POC). They showed

that POC is bounded from above for a certain class of cost functions, suggesting that the intuitive

approach of assuming independent distributions may actually work well for these problems. How-

ever, independence conditions can be extremely difficult to capture as well. One of the negative

results is given by Hagstrom (1988), who showed that computing the expected value of the longest

path in a directed acyclic graph is #P-complete when the arc lengths are restricted to taking two

possible values and independent of each other. Perhaps a DRSP model with correlation conditions

is more tractable. On the other hand, Agrawal et al. (2012) also show that for some cost functions,

POC can be particularly large, indicating the need of DRSP models to capture correlations. For-

tunately, CPCMM partially fills this gap, which in turns further strengthens our approximation

method.

In the literature of project management, there is only limited studies on sensitivity analysis with

correlated activity times. For example, Banerjee & Paul (2008) showed that in the case of a project

network with multivariate normal activity completion times and a covariance matrix characterized

by only nonnegative terms, the completion times of the project and activities are positively corre-

lated. To the best of our knowledge, none of the previous studies address the issues of correlated
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activities for the project management problem when approximating the distributions of the project

completion times. Our research contributes to fill this gap by assuming a general non-degenerate

multivariate normal distribution for the activity times when constructing the approximating dis-

tributions.

There is another version of the stochastic longest path problem from the engineering domain,

which has gained much research interest in recent years. The problem arises in analyzing signal

delay in the digital circuit design, and it is known as “Statistical Timing Analysis” (STA). For

a recent review on STA, please refer to Blaauw et al. (2008). The problem that STA tries to

address is to estimate the delay time distribution of sending a signal through a digital circuit with

various gates and connecting routes. There are many sources of uncertainty in delay times, and the

delay of the signals passing through a gate is usually modeled as a Gaussian random variable. The

whole problem can be cast into a stochastic longest path problem in a DAG, just like the project

management problem. Correlations in STA come from various reasons, e.g., sharing of common

physical parameters, or proximity in physical locations (a.k.a., spatial correlations), etc. There is

a growing literature in STA to model these correlations, e.g., Tsukiyama et al. (2001), Agrawal

et al. (2003), Le et al. (2004), Chang & Sapatnekar (2005), Zhan et al. (2005), Zhang et al. (2005),

Li et al. (2007), Khandewal & Srivastava (2007), Tang et al. (2012), etc. Commonly used methods

for STA are based on CPM, PERT and approximation methods developed by Clark (1961). They

are very similar to the approach adopted by Cox (1995) from project management literature (cf.

Blaauw et al. (2008)). Clark (1961) studied the moment estimation problem for the maximum

of a finite set of random variables following a multivariate normal distribution. The method is

iterative in the sense that max{c̃1, c̃2, c̃3} ∼=max{max{c̃1, c̃2}, c̃3}, where max{c̃1, c̃2} is assumed to

be normal. Clark (1961) presented a set of analytical expressions to compute the moment estimates

by taking into account of correlations among the set of random variables.

More recently, several researchers in this field have begun to look beyond the simple normality

assumption and tried to model the delay time at the gate as a quadratic function of normal
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random variables (cf. Zhang et al. (2005), Zhan et al. (2005), Khandewal & Srivastava (2007),

etc.). The key reason to extend to quadratic models is to capture the skewness in the delay time

distribution in the project management problem. Our approach is different from these works which

try to estimate the coefficients of the quadratic function through moment matching equalities and

topologically go through every node in the network applying approximation techniques on “sum”

and “max” operations. On the other hand, by linking the problem to Stein’s Identity, we can

explicitly characterize the expression of the least squares quadratic estimator. Besides the obvious

theoretical elegance, our method is indeed more accurate computationally, which we will illustrate

using examples in Section 5.

3. Least Squares Linear Estimator for the Distribution

As discussed in the introduction, our main idea is to approximate the distribution of Z (c̃) by a

normal distribution, W (c̃), with the following form:

W (c̃) = α+
n∑

j=1

βj (c̃j −µj) , (2)

where α and βj’s are adjustable parameters. Note that the linear estimator in Equation (2) has

also normal distribution. The objective is to choose α and βj’s such that the expected squared

deviation between W (c̃) and Z (c̃) is minimized. In particular, we aim to solve:

(P) min
α∈R,β∈Rn

E

(Z (c̃)−α−
n∑

j=1

βj (c̃j −µj)

)2
 ,

i.e., we want to find the least squares normal approximation to the distribution of Z(c̃). It turns

out that the solution to Problem (P) under the normality assumption of c̃ is related to the concept

of persistency in a straightforward manner as shown in the following theorem.

Theorem 1. When c̃∼N(µ,Σ) and Σ≻ 0, the unique solution to Problem (P) is

α∗ =E [Z(c̃)] , β∗
k =E [xk(c̃)] , k= 1, . . . , n.

The proof of Theorem 1 utilizes the following classical covariance identity due to Stein, and its

proof is enclosed in the online electronic companion to this paper for completeness.
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Lemma 1. [Stein’s Identity] Let the random vector c̃= (c̃1, . . . , c̃n)
T be multivariate normally dis-

tributed with mean vector µ and covariance matrix Σ. For any function h(c1, . . . , cn) :Rn →R such

that ∂h(c1, . . . , cn)/∂cj exists almost everywhere,∫ b

a

∂h (c1, ..., cn)

∂cj
dcj = h (c1, ...cj−1, b, cj+1, cn)−h (c1, ...cj−1, a, cj+1, cn) , ∀a, b∈R,

and E[|∂h(c̃)/∂cj|]<∞, ∀j = 1, . . . , n. Denote ∇h(c̃) = (∂h(c̃)/∂c1, . . . , ∂h(c̃)/∂cn)
T . Then

Cov(c̃, h(c̃)) =ΣE[∇h(c̃)].

Specifically,

Cov (c̃k, h(c̃1, . . . , c̃n)) =

n∑
j=1

Cov (c̃k, c̃j)E

[
∂

∂cj
h(c̃1, . . . , c̃n)

]
, ∀k= 1, . . . , n.

Proof of Theorem 1. It is obvious that Problem (P) is convex. Then the necessary and sufficient

optimality conditions of Problem (P) are

E

[
Z (c̃)−α∗ −

n∑
j=1

β∗
j (c̃j −µj)

]
= 0, and

E

[(
Z (c̃)−α∗ −

n∑
j=1

β∗
j (c̃j −µj)

)
(c̃k −µk)

]
= 0, ∀k= 1, . . . , n.

Hence, an optimal solution to (P), (α∗,β∗) should satisfy

α∗ =E [Z (c̃)] , and

E

[(
Z (c̃)−E [Z (c̃)]−

n∑
j=1

β∗
j (c̃j −µj)

)
(c̃k −µk)

]
= 0, ∀k= 1, . . . , n.

Rearranging the second set of conditions, we get

Cov (c̃k,Z (c̃)) =
n∑

j=1

β∗
jσj,k, ∀k= 1, . . . , n. (3)

Note that the function Z(c̃) is the finite maximum of linear functions and hence convex and

differentiable almost everywhere. Therefore, Z(c̃) satisfies the conditions for Stein’s identity. By

applying Stein’s Identity on c̃ and Z(c̃), we have

Cov (c̃k,Z(c̃)) =
n∑

j=1

σj,kE

[
∂Z(c̃)

∂cj

]
, ∀k= 1, . . . , n.
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Observe that ∀j = 1, . . . , n,

E

[
∂Z(c̃)

∂cj

]
= E

[
∂

∂cj

(
n∑

k=1

c̃kxk(c̃)

)]

= E

[
n∑

k=1

c̃k
∂xk(c̃)

∂cj
+xj(c̃)

]
= E [xj(c̃)] .

The last equality follows from our assumptions on c̃, i.e., normal and non-degenerate, so that for all

j, k = 1, . . . , n, ∂xk(c)/∂cj exists almost everywhere and equals to zero whenever it exists3. Thus,

we get β∗
j =E [xj(c̃)] , j = 1, . . . , n as one solution to Equation (3), which is also unique since Σ is

positive definite. Thus, the proof is complete. Q.E.D.

With Theorem 1, the problem of finding the least squares normal approximation to the distri-

bution of Z(c̃) is transformed into computing the persistency in Problem (1) as well as estimating

E[Z(c̃)]. From these results, we know that the mean of estimated distribution W (c̃) is the same

as the mean of Z(c̃). However, the variance of W (c̃) is governed by the persistency values, and it

is not necessarily equal to the variance of Z(c̃). Indeed, the variance of W (c̃) is a lower bound of

the variance of Z(c̃), i.e.,

V ar (W (c̃)) = V ar

(
n∑

j=1

E [xj (c̃)] c̃j

)
= (E [x (c̃)])

T
Σ(E [x (c̃)])

≤ V ar

(
n∑

j=1

xj (c̃) c̃j

)
= V ar (Z (c̃)) .

The inequality above is due to Cacoullos (1982), where equality holds if and only if E[xj(c̃)] is

constant for every j = 1, . . . , n. Note that although Cacoullos’ inequality,

V ar (g (c̃))≥ (E [∇g (c̃)])T Σ(E [∇g (c̃)]) ,

holds for any absolutely continuous real-valued function g (c̃) with finite variance, we still need

those properties of Z (c̃) and E [x (c̃)] as used in the proof of Theorem 1 to derive the above result.
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Though a lower bound, the variance of the least squares linear estimator can be significantly closer

to the true variance than those estimated from existing distribution approximation methods. We

will illustrate this using examples in Section 5.

Remark 2. Empirically, instead of using the observed persistency values to estimate the values

for β, we can also use Cov(c̃j,Z(c̃))/σ
2
j to estimate βj when c̃j’s are independent of each other (cf.

Equation (3)). This is exactly the formula used in linear regression. One such example is estimating

the beta coefficient of a risky asset under the capital asset pricing model (CAPM) in finance. This

approach comes in handy when only Z(c̃) is observed but not the optimal choices made, as is the

case in linear regression.

Remark 3. The normality assumption plays an important role in deriving the simple closed-form

expression for β∗. Stein’s identity transforms the complicated function E[c̃jZ(c̃)] into one that

involves only Z(c̃), in particular E[∂Z(c̃)/∂cj] = E[xj(c̃)]. When the normality assumption does

not hold, we can still derive a closed-form expression for β∗ using the well-known size-bias distri-

bution under a mild assumption that c̃ is nonnegative. This assumption is generally satisfied for

activity completion times in project management problems, and product prices in consumer choice

problems, etc. For j ∈ {1, . . . , n}, we say that c̃j = (c̃j1, . . . , c̃
j
n)

T has the c̃-size biased distribution

in the jth coordinate if E[c̃jf(c̃)] = µjE[f(c̃j)] for all functions f(·) for which the expectations

exist. The distribution function of c̃j can be characterized as cjdF (c)/µj, where F (c) is the joint

distribution function of c̃ (cf. Goldstein & Rinott (1996), Ross (2011)). Then it is straightfor-

ward to derive from Equation (3) that β∗ =Σ−1(µ ◦∆), where ◦ denotes Hadamard product, and

∆= (∆1, . . . ,∆n)
T = (E[Z(c̃1)]−E[Z(c̃)], . . . ,E[Z(c̃n)]−E[Z(c̃)])T .

Another way to look at the normality assumption is using Gram-Charlier Type A (GCA) series.

In general, the GCA series expands any probability density function (pdf), say ψ(x), in terms

of the differentiations of the Gaussian density ϕ(x) as a reference pdf. There are various deriva-

tions of multivariate GCA series, and a recent paper by Bhaveshkumar (2015) provides a simple

representation in terms of the Hermite polynomials as follows:

ψ (x) = ϕ (x)

[
1+

∞∑
i=3

αT
i Hi (x;0,Σ)

]
,
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where Hi (x;0,Σ)’s are multivariate Hermite polynomials defined by Holmquist (1996), and αi’s

are coefficient vectors involving higher order cumulants of ψ(x). This expansion assumes that the

first and second order cumulants are the same for ψ(x) and ϕ(x). If the higher order cumulants

of ψ(x) are near to zero, then the error of approximating ψ(x) using the Gaussian density ϕ(x) is

small. Consequently, the error of using Stein’s identity will be small.

4. Least Squares Quadratic Estimator for the Distribution

In the previous section, we show how to approximate the distribution of Z(c̃) using a linear esti-

mator W (c̃). By “linear”, we mean that W (c̃) is linear in c̃. As discussed in the introduction, to

address the problem of skewness in Z(c̃), we propose to extend our estimator to incorporate higher

order terms on c̃. The estimator we consider is denoted as Q(c̃) with the following form:

Q(c̃) = α+
n∑

j=1

βj(c̃j −µj)+
n∑

j1=1

n∑
j2=j1

γj1,j2(c̃j1 −µj1)(c̃j2 −µj2),

where α, βj’s and γj1,j2 ’s are adjustable parameters. Then the least squares quadratic estimation

problem can be formulated as:

(Q) min
α∈R,β∈Rn,Γ∈Rn×n

E
[(
Z(c̃)−α−

∑n

j=1 βj(c̃j −µj)

−
∑n

j1=1

∑n

j2=j1
γj1,j2(c̃j1 −µj1)(c̃j2 −µj2)

)2
]
,

where the matrix Γ is defined in such a way that makes our notation compact, Γj1,j2

.
= (1/2)γj1,j2 ,

for 1≤ j1 < j2 ≤ n, Γj1,j2

.
= (1/2)γj2,j1 , for 1≤ j2 < j1 ≤ n, and Γj1,j2

.
= γj1,j2 , for j1 = j2 = 1, . . . , n.

Following a similar approach as in Section 3, we can also derive the solution to Problem (Q).

Interestingly, adding the quadratic term does not affect the solution of β, which are still the

persistency values, as presented in the following theorem. Notation-wise, we use “•” to denote the

inner product of two matrices.

Theorem 2. When c̃ ∼N(µ,Σ), a solution (α∗,β∗,Γ∗) to Problem (Q) can be characterized as

follows:

α∗ =E [Z(c̃)]−Σ •Γ∗, β∗
k =E [xk(c̃)] , k= 1, . . . , n,
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and Γ∗ is symmetric and satisfies the following system of (n2 +n)/2 linear equations:

n∑
j1=1

n∑
j2=j1

γ∗
j1,j2

(σj1,k1σj2,k2 +σj1,k2σk1,j2)

=
n∑

j=1

(E [c̃k1xj (c̃)]−µk1E [xj (c̃)])σj,k2 , ∀1≤ k1 ≤ k2 ≤ n.

The proof of Theorem 2 is similar to that of Theorem 1. Hence, we omit it here but refer the

readers to appendix for the details.

From Theorem 2, the problem of finding the least squares quadratic estimator for the distribution

of Z(c̃) is again transformed into a persistency problem, i.e., estimating E[x(c̃)], E[c̃x(c̃)T ], and

E[Z(c̃)]. The additional requirement to estimate E[c̃x(c̃)T ], i.e., the interaction between random

coefficients and the optimal solution, can be interpreted as the increased difficulty of adding the

quadratic terms in the estimation. However, we shall see in Section 5 that E[c̃x(c̃)T ] can be obtained

as a by-product when we estimate the persistency using semidefinite programming methods.

In general, Γ∗ may not be unique due to the correlation structures. In all our numerical stud-

ies, we choose the least-norm solution (i.e., the solution with minimum Euclidean norm) for Γ∗

whenever it is not unique to reduce the impact of estimation errors4. The least-norm solutions

perform consistently well in all our numerical tests. Nevertheless, when c̃j’s are uncorrelated and

not degenerate, we do have a simple and unique solution.

Corollary 1. When c̃j’s are uncorrelated and each follows a normal distribution with σ2
j > 0,

there is a unique solution to Problem (Q) as follows:

α∗ = E [Z(c̃)]−Σ •Γ∗,

β∗
k = E [xk(c̃)] , k= 1, . . . , n,

γ∗
k1,k2

=
E [c̃k1xk2 (c̃)]−µk1E [xk2 (c̃)]

σ2
k1

, ∀1≤ k1 <k2 ≤ n,

γ∗
k,k =

E [c̃kxk (c̃)]−µkE [xk (c̃)]

2σ2
k

, ∀k= 1, . . . , n.

It would be interesting to know whether the least quadratic estimation is convex in c̃. Unfortu-

nately, Hertog et al. (2002) observed that the least squares quadratic approximation of a multi-

variate convex function in a finite set of points is not necessarily convex even though it is convex
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for a univariate convex function. Similarly for our problem, we cannot guarantee that the least

quadratic estimation is convex. It is however possible to enforce convexity through imposing a

positive semidefinite constraint on Γ, but the resulting problem will not exhibit a nice and explicit

characterization of the solution as the unconstrained version. From our numerical experiments, we

find that when the persistency values can be accurately estimated, the added positive semidefi-

nite constraint has very little impact on the accuracy of the approximating distributions, i.e., the

optimality gaps in term of the expected squared deviation (the objective function) are consistently

less than 1% from the cases without the positive semidefinite constraint on Γ. However, we do

observe some issues when the persistency parameters are not accurate, which can result in distorted

approximating distributions and even cause Problem (Q) to be non-convex numerically. Interest-

ingly, allowing the quadratic estimator to be non-convex help mitigate this problem significantly

through the analytical solution. The resulting approximating distributions could still perform very

well as we show in Section 5.3.

Before presenting the numerical analysis on the performance of our approximation methods, we

would like to illustrate the impact of having quadratic terms in the approximation scheme through

the following simple example.

Example 1. Let Z(c̃) =max{c̃1, c̃2, . . . , c̃n} be the maximum of n i.i.d. standard normal random

variables. Then Z(c̃) can be computed through the following linear optimization problem:

Z (c̃) = max
n∑

j=1

c̃jxj

s.t.
n∑

j=1

xj = 1

x≥ 0.

This problem can be regarded as a project management problem with n parallel activities.

By symmetry, we have E[xj(c̃)] = 1/n, for all j = 1,2, . . . , n. Then we can immediately obtain

our least squares linear approximation of Z(c̃) as follows:

W (c̃) =E [Z (c̃)]+
1

n

n∑
j=1

c̃j.
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It is obvious that W (c̃) is normally distributed with mean E[Z(c̃)] and variance 1/n.

To construct our least squares quadratic approximation, we need to find E[c̃ixj(c̃)], for all i, j =

1,2, . . . , n, which can be computed by using the law of total expectation and the property of

symmetry from the i.i.d. condition. When i= j, we have

E [c̃ixi (c̃)] =E [c̃i|c̃i =Z (c̃)]P (c̃i =Z (c̃)) =
1

n
E [Z (c̃)] , ∀i= 1,2, . . . , n.

When i ̸= j, by symmetry, E[c̃i|c̃j =Z(c̃)] must equal to each other for different i. Note that there

are (n− 1) such terms. Then from the the law of total expectation, we have

n∑
k=1

E [c̃k|c̃j =Z (c̃)] = E [c̃j|c̃j =Z (c̃)]+
∑
k ̸=j

E [c̃k|c̃j =Z (c̃)]

= E [Z (c̃)]+ (n− 1)E [c̃i|c̃j =Z (c̃)] , ∀i, j = 1,2, . . . , n, i ̸= j.

It is easy to see that
∑n

k=1E[c̃k|c̃j =Z(c̃)] = 0 using similar argument, so together with the above

equations, we get E[c̃i|c̃j =Z(c̃)] =−E[Z(c̃)]/(n− 1), and consequently,

E [c̃ixj (c̃)] =E [c̃i|c̃j =Z (c̃)]P (c̃j =Z (c̃)) =−E [Z (c̃)]

n(n− 1)
, ∀i, j = 1,2, . . . , n, i ̸= j.

Using Corollary 1, we obtain the quadratic estimator of Z(c̃) as follows:

Q (c̃) = E [Z (c̃)]−
n∑

j=1

E [Z (c̃)]

2n
+

1

n

n∑
j=1

c̃j +
n∑

j=1

E [Z (c̃)]

2n
c̃2j −

n−1∑
j1=1

n∑
j2=j1+1

E [Z (c̃)]

n(n− 1)
c̃j1 c̃j2

=
E [Z (c̃)]

2
+

1

n

n∑
j=1

c̃j +
E [Z (c̃)]

2n

n∑
j=1

c̃2j −
E [Z (c̃)]

n(n− 1)

n−1∑
j1=1

n∑
j2=j1+1

c̃j1 c̃j2 .

In the above expression,both the second and forth terms are symmetrically distributed around

zero, and the skewness is brought into the approximation only through the third term,
∑n

j=1 c̃
2
j ,

which follows a chi-squared distribution with n degrees of freedom.

It is interesting to observe that both linear and quadratic estimators require the calculation of

E[Z(c̃)] only. One can complete the approximations using various results in literature that compute

exactly or estimate the expectation of the maximum of finite i.i.d. normal random variables, e.g.,

Royston (1982).
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5. Computational Study

We divide the computational analysis in this section into two main parts. In the first part, we assess

the quality of our linear and quadratic estimations by assuming the availability of exact persistency

values. In the second part, we build approximating distributions based on the estimated persistency

values discussed in the previous section. For both parts, we mainly focus on the application in

project management problems, and the performance of our estimators are gauged against various

existing methods. All the computational studies in this section are conducted in the MATLAB

environment with the YALMIP interface (cf. Löfberg (2004)). Linear programming problems are

solved using CPLEX solver and semidefinite programming problems (used in estimating persistency

values) are solved using MOSEK solver.

5.1. Performance Measures

We evaluate the performance of the estimators obtained in this paper, against previous methods,

using the measure of expected square deviation (ESD), which is also the objective function we try to

minimize in obtaining our least square approximations. Unfortunately, some of the approximating

distributions derived using previous methods do not reside in the same probability space as Z(c̃),

which makes it impossible to compute the expected squared deviation from Z(c̃)5. Hence, we

have to resort to other measures to compare the performance of different approximation methods

including descriptive statistics, like mean, standard deviation, and skewness. In addition, we also

employ the following measure to quantify the distance between two distributions:

Squared-Norm Distance(F,G) = SND(F,G) :=

∫ 1

0

[
F−1 (y)−G−1 (y)

]2
dy

where F and G are the cumulative distribution functions of two distributions. Note that this is the

square of Wasserstein distance of order 2 (cf. Villani (2009), Mallows (1972)).

5.2. Computational Analysis With Exact Persistency Values

The purposes of this analysis are two fold. First, we would like to know how accurate the least

squares linear approximation can be and how the least squares quadratic approximation can
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improve the estimation accuracy. Using the exact persistency values, we rule out the impact of

errors from estimating persistency values, which might either increase or decrease the accuracy of

our least squares estimators and complicate the analysis. Second, the results from such analysis

serve as a benchmark for the following subsection where we discuss the approximations based on

estimated persistency values.

By “exact”, we mean the persistency values are computed from extensive simulation, i.e., sample

estimates of E[x(c̃)], E[c̃x(c̃)T ] and E[Z(c̃)]. For small project management problems, extensive

simulation is possible because their deterministic versions are solvable in polynomial time. We use

106 samples in our simulation to obtain the sample estimates of persistency values.

Example 2. The project network consists of four nodes and five arcs as shown in Figure 1. All

activities are independent and normally distributed with mean and variance both equal to one.

Figure 1 The project network example

The network in Example 2 is the “Wheatstone bridge” network from Lindsey (1972) and later

regarded as the “forbidden graph” by Dodin (1985) since it is the basic evidence of graph irre-

ducibility. Ord (1991) summarized the results for this graph documented in literature with nor-

mally distributed activity durations, and also provided the results from his discrete approximation

method with a parameter k indicating the number of discrete points used to approximate the

normal distribution. Indeed, the approximated distributions obtained by Ord (1991) should be

a discrete distribution. However, we extend his theory in computing the square norm distance

by assuming the final approximated distribution follows a normal distribution with the moments

derived from his original procedure. All these results are presented in Table 1, where T denotes the
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project completion time, and σ(T ) denotes its standard deviation, and sk(T ) denotes its skewness.

“Error on σ(T )” is computed as the absolute relative error against the simulation result. The new

result from our method is also presented in Table 1 under “LSN” and “LSQ”, where “LSN” stands

for “Least Squares Normal” and “LSQ” stands for “Least Squares Quadratic”. We conducted 106

simulation runs to estimate the persistency values.

Approximation Method E [T ] σ (T ) Error on σ(T ) sk (T ) ESD SND

106 simulation 3.516 1.39 - 0.28 - -

Numerical integration 3.483 1.47 5.76% 0 - 0.017

Ord (1991) k= 2 3.261 0.70 49.64% 0 - 0.543

k= 3 3.485 1.04 25.18% 0 - 0.128

k= 4 3.525 1.08 22.32% 0 - 0.101

k= 5 3.582 1.15 17.27% 0 - 0.068

k= 6 3.594 1.15 17.27% 0 - 0.069

Cox (1995) 3.639 1.69 21.58% 0 - 0.116

PERT 3.000 1.73 24.46% 0 0.973 0.395

LSN 3.515 1.27 8.63% 0 0.311 0.021

LSQ 3.515 1.36 2.16% 0.47 0.078 0.005

Table 1 Estimation results for Example 2 with simulated parameters for least squares approximating

distributions

From Table 1, we can see that except the numerical integration approach and our quadratic

estimator, the least squares linear estimation gives the best estimate for the standard deviation, in

terms of absolute relative error. Regardless of the high accuracy, the integration approach would be

too tedious to be applicable for even medium-size networks. This suggests that using persistency
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could be a promising way to estimate the variability in the project completion time. Recall in

our approximation model, the variance is solely determined by the persistency values (i.e., βj’s in

Equation(2)). Adding the quadratic terms not only helps capture the right direction of skewness,

but more interestingly, it significantly improves the estimation on variance. The added variability

comes from the quadratic components of the estimator, as the linear term in the least squares

quadratic estimation shares the same coefficients as the least squares linear estimator, i.e., persis-

tency. Overall, the least squares linear approximation is remarkably effective with extremely low

ESD and SND, and the least squares quadratic approximation even pushes the SND below the

numerical integration approach. Figure 2 plots the density and cumulative distribution functions of

PERT and our least squares estimations together with the simulation results. It is obvious from the

plots that both least square estimators fit closely with simulation results. With the right skewness

direction, the cumulative distribution function of the quadratic estimator almost overlaps with

that of simulation.
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Figure 2 Distributions for Example 2

Note that the numerical values of activity completion times and project completion time can

take negative values with a large probability in Example 2. It should be pointed out that these

values may not have a practical interpretation in the settings of a project management problem.

Nevertheless, the problem is still a valid longest path problem in an acyclic graph, which fits into

the framework of Problem (1) we consider in this paper.
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For Example 2, the skewness in the optimum distribution is not very strong. In order to better

demonstrate the impact of the quadratic estimator, we study a simple problem discussed by Zhan

et al. (2005) in the next example.

Example 3. Approximate the distribution of the maximum of two independent normal random

variables, N(0,0.52) and N(1,32). In this case, the persistency values can be accurately obtained

from integration.

The results are plotted in Figure 3, and the improvement from the quadratic estimator is obvious.

We can conclude that the advantage of adding quadratic terms is larger if the true distribution is

suspect to be very skewed.
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Figure 3 Distributions for Example 3

5.3. Approximating Persistency Values

The performance of our approximation methods hinge on the accuracy of the estimation on the

persistency values. In what follows, we will briefly review some estimation methods that we can

adopt in the numerical analysis.

In the literature, the problem of estimating the expected objective value of a stochastic opti-

mization problems has been studied for a long time. In case of the project management problem,

the search for the expected project completion time started half century ago (cf. Fulkerson (1962))
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and is still an active research topic (cf. Yao & Chu (2007)). In this section, two näıve methods

are used. For small networks, we use the classical estimation method proposed by Clark (1961),

which is the building block of most modern distribution approximation methods, especially for the

project management problem. However, we only use the original estimation methods from Clark

(1961) to estimate E[Z(c̃)] without considering any further extensions and refinements. For larger

networks, implementing Clark’s methods may require some programming effort, so we simply use

PERT to give a rough estimate of E[Z(c̃)], since it is a popular tool in practice.

On the other hand, although the concept of persistency has only been brought into the optimiza-

tion area since Bertsimas et al. (2006), it has long been studied under different guises such as the

criticality index in the project management area. The majority of the research work on estimating

criticality has been focusing on developing heuristics algorithms based on the topological properties

of the project networks, and the uncertainty is usually treated by discretization and/or stochastic

dominance considerations (cf. Dodin (1984), Dodin & Elmaghraby (1985), etc.). More advanced

method combines the strength of different approaches to obtain some hybrid method. For exam-

ple, Bowman (1995) utilized the geometric properties of the networks to reduce the computational

requirement of simulation. The common limitation of these methods is the lack of consideration of

correlations among different activity completion times. Besides these specific estimation methods

for the project management method, there is a series of generic conic programming based models

for persistency estimation as reviewed before (cf. Natarajan et al. (2009), Mishra et al. (2012),

Natarajan et al. (2011), Kong et al. (2013) etc.). By “generic” we mean that these methods work

on any optimization problems and do not exploit any specific problem structure like the network

flow in the project management problem. In what follows, we will review in more details the most

recent progress on the persistency estimation, i.e., CPCMM, mainly contributed by Natarajan

et al. (2011). We will make use of this model in the numerical studies.

Natarajan et al. (2011) consider the following stochastic optimization problem:

ZP := sup
c̃∼(µ,Σ)+

E [Z(c̃)] ,
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where c̃∼ (µ,Σ)+ means that the set of distributions of the random coefficient vector c̃ (assumed to

be nonempty) is defined by the nonnegative support Rn
+, finite mean vector µ and finite covariance

matrix Σ, i.e., c̃∈ {X̃ : E[X̃] =µ,E[X̃X̃T ] = Σ+µµT ,P(X̃ ≥ 0) = 1}. They proved that ZP can

be solved as the following convex conic optimization problem:

ZC =max
∑n

j=1 Yj,j

s.t. aT
i Xai − 2bia

T
i x+ b2i = 0, ∀i= 1, . . . ,m

Xj,j = xj, ∀j ∈B
1 µT xT

µ Σ+µµT Y T

x Y X


≽cp 0

(i.e., ZP = ZC) where the decision variables are x ∈ Rn, X ∈ Rn×n, and Y ∈ Rn×n. For a matrix

A ∈ Rn×n, A≽cp 0 means that A lies in the cone of completely positive matrices of dimension n

defined as

CPn :=
{
A∈Rn×n | ∃V ∈Rn×k

+ , such that A= V V T
}
.

The linear program over the convex cone of the completely positive matrices is called a completely

positive program (CPP), and ZC is a typical CPP. That is why this model is called Completely

Positive Cross Moment Model. Furthermore, they extended CPCMM by relaxing the nonnegative

support assumption on c̃, which makes CPCMM suitable for our case, because the support of a

multivariate normal distribution is the whole Euclidean space. The only change needed is to modify

the conic constraint. For ease of exposition, we still keep the basic CPCMM formulation for the

following illustration. The support extension can be uniformly applied through modifying the conic

constraint. A key reason that we choose this model is its ability to capture correlations among

random coefficients.

In the formulation of ZC , the variables x, Y and X attempt to encode the information xj =

E[xj(c̃)], Yi,j =E[c̃jxi(c̃)] andXi,j =E[xi(c̃)xj(c̃)] under the worst case distribution. Thus, through
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solving ZC , the optimal objective value gives the value of E[Z(c̃)], and the optimal value of x is

simply the persistency, also under the worst case distribution. In addition, the “by-product” of

solving CPCMM, Y , gives necessary information to construct the quadratic estimator, which is

obtained without any additional effort.

However, a key drawback of CPCMM is that it ignores the distributional information. Hence,

when c̃ is normally distributed, CPCMM only gives an upper bound on E[Z(c̃)] and an estimate of

the persistency and E[c̃jxi(c̃)]. A direct cure to this problem is to add some ellipsoidal constraints on

the probability mass of c̃ that are known for multivariate normal random variables, so that CPCMM

can be gradually refined to incorporate the distributional information. For an illustration of this

technique, please refer to Natarajan et al. (2010). In this paper, however, we do not implement

this method, because the persistency estimates from CPCMM are good enough for most examples

we will discuss later and we want to keep the focus of this paper on distribution approximation

rather than persistency estimation.

Another issue with CPCMM is that it is NP-hard to solve despite the fact that the completely

positive cone is closed, convex and pointed. Fortunately, there are various hierarchies of tractable

approximations for the completely positive cone, e.g., Bomze et al. (2000), Parrilo (2000) and Klerk

et al. (2002) etc. In the following computational study, we use a simple SDP approximation of the

completely positive constraint, i.e., A≽cp 0 is relaxed to A≽ 0 and A≥ 0, where A≽ 0 means that

A is positive semidefinite. Such relaxation is also called doubly nonnegative relaxation.

Despite all these numerical inaccuracies, we show that our approximation methods are still

practically attractive due to the use of persistency in the approximation and the flexibility of our

methods.

5.4. Computational Analysis with Estimated Persistency Values

Consider Example 2 again, and we will construct our least squares approximating distributions

using estimated persistency values. As discussed above, we implement the estimation scheme from

Clark (1961) to estimate the mean project completion time, i.e., the parameter α in our models.
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For persistency estimates, we solve the SDP relaxation of CPCMM reviewed in Section 5.3. The

results are summarized in Table 2, where we add a lower case letter “e” after “LSN” and “LSQ”

to indicate the results from estimated persistency parameters.

Approximation Method E [T ] σ (T ) Error on σ(T ) sk (T ) ESD SND

106 simulation 3.516 1.39 - 0.28 - -

Numerical integration 3.483 1.47 5.76% 0 - 0.017

Ord (1991) k= 2 3.261 0.70 49.64% 0 - 0.543

k= 3 3.485 1.04 25.18% 0 - 0.128

k= 4 3.525 1.08 22.32% 0 - 0.101

k= 5 3.582 1.15 17.27% 0 - 0.068

k= 6 3.594 1.15 17.27% 0 - 0.069

Cox (1995) 3.639 1.69 21.58% 0 - 0.116

PERT 3.000 1.73 24.46% 0 0.973 0.395

LSNe 3.518 1.26 8.80% 0 0.311 0.022

LSQe 3.519 1.44 3.76% 0.60 0.124 0.014

Table 2 Estimation results for Example 2 with estimated parameters for least squares approximating

distributions

From the table, we can see that when estimated parameters are used instead of the exact ones,

the distributions constructed from our least squares method still perform very well. For the least

squares linear approximation, the estimated variance only deteriorates a little bit, which highlights

the accuracy of persistency estimates from CPCMM and the power of using persistency in distri-

bution approximation. Although the estimation error on E[c̃x(c̃)T ] has some impact on the least

squares quadratic approximation, it still improves the performance from the least squares linear
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approximation. In particular, the variability estimate still outperforms the numerical integration

approach, and the SND is below the numerical integration approach and much better than any

other existing methods.

To further justify the performance of our models, we also test our least square estimations on a

series of random project networks of larger sizes, and compare the results with PERT. In this case,

we use PERT to estimate E[Z(c̃)], which will be used in calculating the optimal parameter α in

our least squares quadratic estimator. We drop the comparison on SND in this example, since all

the distributions here allow the computation of ESD from the true distribution of Z(c̃).

Example 4. Approximate the completion time distributions of the random projects generated by

the following algorithm:

Random Project Network Generation Algorithm

Step 1. Randomly set the number of nodes (m′) in the project network.

Step 2. Construct a zero adjacency matrix. Go through every matrix entry in the upper triangle

(above the diagonal), and replace 0 by 1 if an independent realization of a uniform random variable

U(0,1) is greater than s, where s ∈ [0,1]. s can be used to control the density of the graph.

More precisely, after this step, the random network will have an expected number of arcs E[n′] =

s ·m′(m′ − 1)/2, and each node will have s(m′ − 1) expected number of neighbours. We randomly

set s from 0.2 to 0.8 in our experiments.

Step 3. Remove all the isolated nodes in the network.

Step 4. Create an initial node s. For each node i without incoming arcs, add an arc s→ i.

Step 5. Create a terminal node t. For each node i without outgoing arcs, add an arc i→ t. After

this step, the structure of the network is fixed. Denote the final number of nodes as m and the

final number of arcs as n.

Step 6. For arc i, generate the random arc length with mean µi uniformly drawn between 1 and

10, and standard deviations uniformly drawn from 0 to 0.7µi
6.

Step 7. Randomly generate a correlation matrix for the activities using the MATLAB function

gallery(′randcorr′, n).
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The results for ten random networks are presented in Table 37. The sample size for all the sim-

ulations is 2× 104. From Table 3, it is clear that our findings observed in small example network

carry on to larger networks, and both least squares approximations demonstrate consistent supe-

rior performance. It is worthwhile to mention that the quadratic estimator consistently provides

very accurate estimation of the variability in project completion time. For quite a few cases, the

estimation errors are less than 1%.

The machine used to perform all the computation is an Acer personal computer, Veriton X6620G

with Intel R⃝ CoreTM i7-3770 CPU @ 3.40GHz, RAM 16GB, Microsoft Windows 7 Enterprise.

The computational times used by different methods for the ten instances reported in Table 3 are

summarized in Table 4 (rounded to seconds). Our approach has a clear advantage over simulation

in terms of computational effort, because it only requires to solve two optimization problems (one

for estimating E[Z(c̃)] and the other for estimating E[x(c̃)] and E[c̃x(c̃)T ]) and constructing the

approximating distributions is done through analytical equations.

Before we end this section, we present a final example on STA considering correlations between

delays. The example is taken from Tsukiyama et al. (2001). As we shall see later, the input values for

this example are quite extreme. However, our least squares approximation method can still provide

accurate approximations to the delay time distributions, which also demonstrates the robustness

of the new approach.

Example 5. Consider the digital circuit and its network representation as shown in Figure 4. All

the delay times (i.e., arc lengths) follow normal distributions. Arc (1,3) and (1,4) have distributions

of N(20,1.4), while Arc (2,3), (2,4), (3,5), and (4,5) follow N(10,0.7). Arc (1,2) is normally

distributed with mean µ12 and standard deviation σ12. Correlation exists only between Arc (3,5)

and Arc (4,5), and their correlation coefficient is denoted as ρ.

For this example, we directly use the mean delay estimates from Tsukiyama et al. (2001) as the

value of α for our least squares approximations. Tsukiyama et al. (2001) studied four scenarios of

different input parameter values, i.e., dµ12, σ12, and ρ. We report our approximation results under

different scenarios in Table 5.
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E [T ] σ (T )

Error on

sk (T ) ESD E [T ] σ (T )

Error on

sk (T ) ESD

σ (T ) σ (T )

m= 20, n= 29 m= 22, n= 41

SIMU 4.1392 0.2220 - 0.0605 - 3.5374 0.1942 - 0.3421 -

PERT 4.0185 0.2725 22.72% 0 0.0445 3.3992 0.2713 39.70% 0 0.0547

LSNe 4.0185 0.1968 11.34% 0 0.0229 3.3992 0.1572 19.05% 0 0.0296

LSQe 4.0197 0.2262 1.91% 0.5085 0.0183 3.3997 0.2040 5.06% 0.9225 0.0238

m= 10, n= 28 m= 22, n= 35

SIMU 4.2635 0.3561 - 0.1281 - 3.8964 0.1553 - 0.3447 -

PERT 4.1912 0.3986 11.93% 0 0.0171 3.7742 0.2102 35.35% 0 0.0378

LSNe 4.1912 0.3416 4.09% 0 0.0101 3.7742 0.1228 20.93% 0 0.0230

LSQe 4.1928 0.3540 0.60% 0.5213 0.0100 3.7744 0.1713 10.28% 0.7489 0.0207

m= 24, n= 44 m= 12, n= 37

SIMU 3.5860 0.2115 - 0.6954 - 5.0994 0.2843 - 0.1939 -

PERT 3.5031 0.2807 32.72% 0 0.0296 5.0289 0.3311 16.46% 0.0212

LSNe 3.5031 0.1847 12.63% 0 0.0176 5.0289 0.2664 6.30% 0.0130

LSQe 3.5034 0.2241 6.00% 1.2997 0.0136 5.0304 0.2932 3.13% 0.6096 0.0108

m= 8, n= 16 m= 9, n= 20

SIMU 3.5774 0.3298 - 0.2027 - 4.2892 0.1644 - 0.5189 -

PERT 3.5350 0.3682 11.65% 0 0.0105 4.2159 0.2082 26.66% 0 0.0196

LSNe 3.5350 0.3203 2.87% 0 0.0062 4.2159 0.1474 10.34% 0 0.0112

LSQe 3.5352 0.3317 0.59% 0.5817 0.0045 4.2174 0.1769 7.64% 1.0683 0.0078

m= 26, n= 42 m= 11, n= 33

SIMU 3.5276 0.2756 - 0.5382 - 5.1726 0.2911 - 0.0965 -

PERT 3.4938 0.3234 17.35% 0 0.0110 5.0934 0.3156 8.43% 0 0.0164

LSNe 3.4938 0.2531 8.19% 0 0.0073 5.0934 0.2712 6.85% 0 0.0105

LSQe 3.4925 0.2767 0.40% 1.2969 0.0071 5.0958 0.2913 0.08% 0.4413 0.0091

Table 3 Estimation results for random project networks in Example 4
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Instance 2× 104 Simulation LSNe LSQe

m= 20, n= 29 5533 7 8

m= 22, n= 41 5551 30 41

m= 10, n= 28 5502 7 8

m= 22, n= 35 5620 18 23

m= 24, n= 44 5334 40 51

m= 12, n= 37 5446 19 24

m= 8, n= 16 5434 2 3

m= 9, n= 20 5440 2 3

m= 26, n= 42 5572 34 43

m= 11, n= 33 5434 11 14

Table 4 CPU time (in seconds) used for computation in Example 4

Figure 4 The digital circuit and its network representation in Example 5

As mentioned above, the numerical values are extreme in this example. The coefficients of vari-

ation for all the delay times are larger than 14. Furthermore, with the normality assumption on

delay times, PERT is expected to provide excellent approximation results, and the impact of cor-

relations is minimal and hence difficult to capture. From Table 5, we find that despite the extreme

inputs, our least squares quadratic approximation still gives the best estimate on the variance of

circuit delay. Overall, both least squares approximations perform much better than PERT in terms

of lower ESD and SND. Although the numerical errors cause the least squares quadratic approxi-



Zheng et al.: Least Squares Distribution Approximation

30 Article submitted to Operations Research; manuscript no. OPRE-2013-07-401

Approximation Method E [T ] σ (T ) Error on σ(T ) sk (T ) ESD SND

µ12 = 10, σ12 = 0.7, ρ= 0.122

106 simulation 31.32 1.08 - 0.26 - -

PERT 30.00 1.21 12.28% 0 3.220 1.769

LSNe 31.34 0.86 20.74% 0 0.432 0.054

LSQe 31.34 1.18 8.93% 0.62 0.162 0.018

µ12 = 20, σ12 = 1.4, ρ= 0.800

106 simulation 40.43 1.66 - 0.01 - -

PERT 40.00 1.71 3.43% 0 0.585 0.191

LSNe 40.56 1.60 3.43% 0 0.124 0.020

LSQe 40.56 1.66 0.06% 0.26 0.073 0.026

µ12 = 40, σ12 = 2.8, ρ= 0.941

106 simulation 60.41 2.94 - 0.00 - -

PERT 60.00 2.97 0.96% 0 0.520 0.171

LSNe 60.57 2.91 0.96% 0 0.118 0.024

LSQe 60.57 2.94 0.07% 0.17 0.062 0.038

µ12 = 80, σ12 = 5.6, ρ= 0.980

106 simulation 100.40 5.67 - 0.00 - -

PERT 100.00 5.69 0.27% 0 0.500 0.158

LSNe 100.60 5.64 0.56% 0 0.132 0.041

LSQe 100.60 5.66 0.26% 0.18 0.122 0.097

Table 5 Estimation results for Example 5
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mation to have a higher SND than the least squares linear approximation, the order of ESD is still

consistent with our optimization scheme and the least squares quadratic approximation provides

the lowest ESD.

6. Conclusion

In this paper, we show that the distribution approximation problem under least squares frame-

work and normality assumption can be transformed into the related persistency problem. Vari-

ous applications and computational experiments are presented to demonstrate the advantages of

our approximation method, especially the benefits of introducing persistency into the distribu-

tion approximation problem. Better estimation on persistency values is then becoming critical and

hence worth more exploration, especially under the normality assumption.

The results in this paper can be developed further in several ways. In particular, with the

knowledge on the distribution of the optimal value, we can now conduct more in-depth risk analysis

or parameter calibration for the underlying stochastic mixed zero-one linear optimization problem.

We leave these and other related issues for future research.

Appendix. Proof of Theorem 2

Since Problem (Q) is convex, its necessary and sufficient optimality conditions are

E

[
Z(c̃)−α∗ −

n∑
j=1

β∗
j (c̃j −µj)−

n∑
j1=1

n∑
j2=j1

γ∗
j1,j2

(c̃j1 −µj1)(c̃j2 −µj2)

]
= 0,

E

[(
Z(c̃)−α∗ −

n∑
j=1

β∗
j (c̃j −µj)−

n∑
j1=1

n∑
j2=j1

γ∗
j1,j2

(c̃j1 −µj1)(c̃j2 −µj2)

)
(c̃k −µk)

]
= 0,

∀k= 1, . . . , n, and

E

[(
Z(c̃)−α∗ −

n∑
j=1

β∗
j (c̃j −µj)

−
n∑

j1=1

n∑
j2=j1

γ∗
j1,j2

(c̃j1 −µj1)(c̃j2 −µj2)

)
(c̃k1 −µk1) (c̃k2 −µk2)

]
= 0,

∀1≤ k1 ≤ k2 ≤ n.

Hence, an optimal solution (α∗,β∗,Γ∗) should satisfy

α∗ =E [Z(c̃)]−Σ •Γ∗,
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E

[(
Z(c̃)−α∗ −

n∑
j=1

β∗
j (c̃j −µj)

)
(c̃k −µk)

]
−E

[
n∑

j1=1

n∑
j2=j1

γ∗
j1,j2

(c̃j1 −µj1)(c̃j2 −µj2) (c̃k −µk)

]
= 0, ∀k= 1, . . . , n, and

E

[(
Z(c̃)−α∗ −

n∑
j=1

β∗
j (c̃j −µj)

)
(c̃k1 −µk1) (c̃k2 −µk2)

]
−E

[
n∑

j1=1

n∑
j2=j1

γ∗
j1,j2

(c̃j1 −µj1)(c̃j2 −µj2) (c̃k1 −µk1) (c̃k2 −µk2)

]
= 0, ∀1≤ k1 ≤ k2 ≤ n.

From Isserlis’ Theorem, if random variable (z̃1, . . . , z̃n) follows a zero mean multivariate normal

distribution, then

E

[
n∏

i=1

z̃i

]
=

{
0, if n is odd,∑∏

E [z̃iz̃j] , if n is even,

where
∑∏

means summing over all distinct ways of partitioning (z̃1, . . . , z̃n) into pairs (cf. Isserlis

(1918)). In particular, when n= 3,4,

E [z̃1z̃2z̃3] = 0, and

E [z̃1z̃2z̃3z̃4] =E [z̃1z̃2]E [z̃3z̃4] +E [z̃1z̃3]E [z̃2z̃4] +E [z̃1z̃4]E [z̃2z̃3] .

Applying Isserlis’ Theorem, we can reduce the optimality conditions into

α∗ =E [Z(c̃)]−Σ •Γ∗,

E

[(
Z(c̃)−α∗ −

n∑
j=1

β∗
j (c̃j −µj)

)
(c̃k −µk)

]
= 0, ∀k= 1, . . . , n, (4)

and

E [(Z(c̃)−α∗) (c̃k1 −µk1) (c̃k2 −µk2)]

−
n∑

j1=1

n∑
j2=j1

γ∗
j1,j2

(σj1,j2σk1,k2 +σj1,k1σj2,k2 +σj1,k2σk1,j2) = 0, ∀1≤ k1 ≤ k2 ≤ n.
(5)

Further simplifying Equation (4), we get

E [Z(c̃) (c̃k −µk)] =
n∑

j=1

β∗
jσj,k, ∀k= 1, . . . , n.

Since E [Z(c̃) (c̃k −µk)] =Cov (c̃k,Z(c̃)), we arrive at the same conditions as Equation (3) in The-

orem 1. Therefore, following the same argument, we have β∗
k = E [xk(c̃)] , k = 1, . . . , n, which is

unique if Σ is positive definite.

Consider a part of the first term in Equation (5),

E [Z(c̃) (c̃k1 −µk1) (c̃k2 −µk2)] = E [Z(c̃)c̃k1 c̃k2 ]−µk1E [Z(c̃)c̃k2 ]

−µk2E [Z(c̃)c̃k1 ] +µk1µk2E [Z(c̃)]

= E [Z(c̃)c̃k1 c̃k2 ]−E [Z(c̃)c̃k1 ]µk2

−µk1 (E [Z(c̃)c̃k2 ]−E [Z(c̃)]µk2)

= Cov (Z(c̃)c̃k1 , c̃k2)−µk1Cov (Z(c̃), c̃k2) .
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It is straightforward to apply Stein’s Identity on Cov (Z(c̃), c̃k2) as we have done before, i.e.,

Cov (Z(c̃), c̃k2) =

n∑
j=1

E [xj (c̃)]σj,k2 .

For the other term, Cov (Z(c̃)c̃k1 , c̃k2), we can also use Stein’s Identity,

Cov (Z(c̃)c̃k1 , c̃k2) =
n∑

j=1

E

[
∂Z(c̃)c̃k1
∂cj

]
Cov (c̃j, c̃k2)

=
n∑

j=1

E

[
c̃k1

∂Z(c̃)

∂cj
+Z(c̃)

∂c̃k1
∂cj

]
σj,k2

=
n∑

j=1

E [c̃k1xj (c̃)]σj,k2 +E [Z(c̃)]σk1,k2 ,

where the last equality follows from the same argument as in the proof of Theorem 1. Therefore,

E [(Z(c̃)−α∗) (c̃k1 −µk1) (c̃k2 −µk2)] = E [Z(c̃) (c̃k1 −µk1) (c̃k2 −µk2)]−α∗σk1,k2

=
n∑

j=1

E [c̃k1xj (c̃)]σj,k2 +E [Z(c̃)]σk1,k2

−µk1

n∑
j=1

E [xj (c̃)]σj,k2

− (E [Z(c̃)]−Σ •Γ∗)σk1,k2

=
n∑

j=1

(E [c̃k1xj (c̃)]−µk1E [xj (c̃)])σj,k2

+σk1,k2Σ •Γ∗.

Substituting this into Equation (5), we get a system of (n2 +n)/2 linear equations on Γ∗,

n∑
j=1

(E [c̃k1xj (c̃)]−µk1E [xj (c̃)])σj,k2 +σk1,k2Σ •Γ∗

−
n∑

j1=1

n∑
j2=j1

γ∗
j1,j2

(σj1,j2σk1,k2 +σj1,k1σj2,k2 +σj1,k2σk1,j2) = 0, ∀1≤ k1 ≤ k2 ≤ n,

which reduces to

n∑
j1=1

n∑
j2=j1

γ∗
j1,j2

(σj1,k1σj2,k2 +σj1,k2σk1,j2)

=
n∑

j=1

(E [c̃k1xj (c̃)]−µk1E [xj (c̃)])σj,k2 , ∀1≤ k1 ≤ k2 ≤ n.

Thus, we complete the proof.

Endnotes

1In this paper, we adopt the conventional activity-on-arc representation of the project network,

where arcs represent activities and nodes represent the milestones that indicate the starting or
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ending of the activities. The length of an arc is the duration of the activity represented by that

arc. The project completion time is simply the longest path in this network.

2Note that the feasible region of Problem (1) is a bounded polytope, so it has multiple optimal

solutions only when c̃ realized to be a normal vector of a facet of the polytope. Since the number

of facets is finite for a given polytope, the probability measure over all the normal vectors is zero.

For example, consider a polytope in R2, for any polytope, its normal vectors are just lines in R2.

If c̃ is continuous and spans the whole space of R2, the probability measure over all these lines is

zero, since the number of these lines is finite.

3Note that ∂xk(c̃)/∂cj is not defined when there are multiple optimal solutions to Problem (1),

but in other situations, xk(c̃) does not change with a small perturbation of cj. Please refer to the

footnote in Remark 1 for the detailed discussion on the probability measure over the set of c̃ that

leads to multiple optimal solutions. Precisely, we should write the derivation process in integral

form, i.e., expressing all the expectations in integral form. Then it will be clear that ∂xk(c̃)/∂cj

can only be integrated over the support of c̃ where it is defined, and hence only zero values remain

in the integration expression for E[c̃k∂xk(c̃)/∂cj].

4Theoretically, any Γ∗ obtained from solving the system of linear equations shown in Theorem

2 should produce the same expected squared deviation for the quadratic estimator. However, this

is not true numerically, because we do not solve the quadratic estimation problem exactly in our

numerical studies, i.e., the persistency values are all estimated, including E[x(c̃)], E[c̃x(c̃)T ], and

E[Z(c̃)]. Values of Γ∗ are then determined through solving the system of linear equations involving

these estimated persistency values. Therefore, estimation errors are unavoidable, and intuitively,

the errors will be exaggerated by choosing Γ∗ with larger norms. We have tested various randomized

solutions when Γ∗ is not unique, and found that other solutions generally give worse approximations

than the least-norm solution in all performance measures that we concern.

5This problem arises since the traditional approaches solely focus on the distribution (like tail

probabilities, etc.) but overlook the approximation error between the approximated completion
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time and the true completion time under a specific realization of the random activity durations.

For example, Cox (1995) assumed the project completion time to be normally distributed at first,

and then tried to estimate the moments of the completion time.

6Note that the random samples thus generated may not represent real life project manage-

ment problems, where the project activity durations are usually positive. Since the project activity

durations are assumed to follow normal distributions–which is consistent with many studies in the

literature–it is impossible to completely rule out negative realizations in our simulation. We would

like to emphasize that these randomly generated instances are still valid longest path problems,

and the results show that our approach is able to find better approximations to the distributions

of the longest paths. Nevertheless, one can always scale the means and variances so that the simu-

lated samples contain fewer negative realizations, which can better represent project management

problems.

7For this example, we have constructed and analyzed more than one hundred random networks,

and the results share the same pattern throughout the experiment. Hence, we only show ten

instances as a demonstration.
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Proof of Lemma 1

The proof is consolidated from Stein (1972), Stein (1981) and Liu (1994).

The first result is the univariate version of Stein’s Identity (cf. Stein (1972) and Stein (1981)).

Let c̃ follow a standard normal distribution, N (0,1), and ϕ (c) denote the standard normal

density with the derivative satisfying ϕ′ (c) = −cϕ (c). For any differentiable function h : R → R

such that E[|h′(c̃)|]<∞,

E [h′ (c̃)] =

∫ ∞

−∞
h′(c)ϕ (c)dc

=

∫ ∞

0

h′(c)

[∫ ∞

c

zϕ (z)dz

]
dc+

∫ 0

−∞
h′(c)

[∫ c

−∞
−zϕ (z)dz

]
dc

=

∫ ∞

0

zϕ (z)

[∫ z

0

h′(c)dc

]
dz−

∫ 0

−∞
zϕ (z)

[∫ 0

z

h′(c)dc

]
dz

=

(∫ ∞

0

+

∫ 0

−∞

)
[zϕ (z) [h(z)−h(0)]]dz

=

∫ ∞

−∞
zϕ (z)h(z)dz

= E [c̃h (c̃)] ,

where the third equality is justified by Fubini’s Theorem. Note that since E[c̃] = 0 and V ar(c̃) = 1,

the equality proved above is essentially

Cov (c̃, h (c̃)) = V ar(c̃)E [h′ (c̃)] . (EC.1)

Next, we present the generalization of the result to the multivariate case (cf. Stein (1981) and Liu

(1994)).

Let z̃ = (z̃1, . . . , z̃n)
T
, where z̃j’s are independent and identically distributed standard normal

random variables. From Equation (EC.1) it follows that for any function ĥ :Rn →R satisfying the

same conditions as h in the Theorem,

E
[
z̃jĥ (z̃)

∣∣∣ (z̃1, . . . , z̃j−1, z̃j+1, . . . , z̃n)
]
=E

[
∂ĥ (z̃)

∂zj

∣∣∣∣∣ (z̃2, . . . , z̃j−1, z̃j+1, . . . , z̃n)

]
, ∀j = 1, . . . , n.

Taking the expectation of both sides, we get

E
[
z̃1ĥ (z̃)

]
=E

[
∂ĥ (z̃)

∂z1

]
.
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Using a similar argument for the remaining random variables, we can show that

Cov
(
z̃, ĥ (z̃)

)
=E

[
∇ĥ (z̃)

]
.

Note that the random vector c̃ can be written as c̃= Σ1/2z̃ +µ. Consider ĥ (z̃) = h
(
Σ1/2z̃+µ

)
,

then ∇ĥ (z̃) =Σ1/2∇h (c̃). Hence,

Cov (c̃, h (c̃)) =Cov
(
Σ1/2z̃, ĥ (z̃)

)
=Σ1/2E

[
∇ĥ (z̃)

]
=ΣE [∇h (c̃)] .
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