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A cluster identification framework illustrated
by a filtering model for earthquake
occurrences
ZHENGXIAO WU

Department of Statistics and Applied Probability, National University of Singapore.
E-mail: stawz@nus.edu.sg

A general dynamical cluster identification framework including both modeling and computation is devel-
oped. The earthquake declustering problem is studied to demonstrate how this framework applies.

A stochastic model is proposed for earthquake occurrences that considers the sequence of occurrences
as composed of two parts: earthquake clusters and single earthquakes. We suggest that earthquake clusters
contain a “mother quake” and her “offspring.” Applying the filtering techniques, we use the solution of
filtering equations as criteria for declustering. A procedure for calculating maximum likelihood estimations
(MLE’s) and the most likely cluster sequence is also presented.

Keywords: earthquakes; filtering; Kushner–Stratonovich equations; marked point process; Zakai equations

1. Introduction

Suppose one observes a series of events X1,X2, . . . ,Xn occurring at times τ1, τ2, . . . , τn. Each
event is either “normal” or “abnormal.” The objective is to identify those “abnormal” events.

One application of this problem is in epidemiology. For instance, the patients with Severe
Acute Respiratory Syndrome (SARS) have symptoms similar to those of common flu patients.
However since SARS is much more infectious than common flu, the SARS patients often appear
in clusters. Such statistical evidence enables us to identify the SARS patients by mathematical
tools. It provides a supplementary method to the costly medical test.

Another application is to collusion set detection. In a stock market, a group of traders forms a
collusion set if they heavily trade among themselves in order to manipulate the stock price. It is
of interest to catch this kind of malpractice as early as possible. Considering each trade record as
an event, it is intuitive that the malicious trading events tend to cluster. Assuming that a distance
measuring the dissimilarity between any two records is available, Palshikar and Apte tackle the
problem via graph clustering in [12]. They ignore the time stamp on the trade record so that a
point process is reduced to a graph. But the temporal information is lost in their method.

These examples motivated our filtering model. We model the observations as a mixture of two
independent marked point processes representing the “normal” and the “abnormal” events, re-
spectively. Each new “abnormal” event will change the intensity of the “abnormal” point process.
Typically the “abnormal” event increases the intensity for additional “abnormal” events in its
neighborhood. Our goal is to compute the conditional probability of each observed event be-
ing abnormal in real time. Employing filtering techniques, we derive versions of the Zakai and
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Kushner–Stratonovich equations. Under a Markov condition, a sequential algorithm is presented
to calculate the exact conditional probability that we are interested in.

Unfortunately, the data set for the two examples above is not available. We will present our
methodology in the context of the “earthquake declustering problem.” Even though there is no
agreement on the underlying mechanism of earthquake occurrence in the current seismology
literature, we want to emphasize that this example is mainly for the purpose of illustration. Our
framework is for general modeling and computation. It could be adapted for different data sets
in various areas.

It is well known that earthquakes often occur in clusters. The largest quake in a cluster is called
the main shock, those before it are called foreshocks, and those after it are called aftershocks. The
aftershocks in an earthquake swarm are relatively easy to predict. However, there are also many
earthquakes that strike without any foreshocks or aftershocks. As the authors stated in [8]: “To
forecast the location of the large earthquakes, it is necessary to analyze the background seismic-
ity, for which removal of temporal cluster members is considered to be of central importance.”

In this article, we propose a space–time point process model stemming from [14]. The ob-
served earthquakes are considered as a mixture of earthquake swarms (a swarm contains at
least two quakes) and single quakes. This could be considered as a special case of the “clus-
ter processes” ([2], Section 6.3): a cluster process is composed of clusters that contain only a
single point and clusters that have multiple points; in our model, we distinguish the single point
events (single quakes) as the “noise” and the multiple point events (earthquake swarms) as the
“signal.” The conditional probability that a quake is in a cluster becomes a natural criterion for
declustering. The filtering theory hence can be applied. We assume that, at most, one cluster is
active at a time. This assumption can be relaxed with increased computational complexity.

In the literature, inference for partially observed stochastic processes is often obtained by
using Markov chain Monte Carlo (MCMC) methods (see, e.g., [6]). A particle algorithm is also
proposed in [14]. Such approximation methods are more flexible, but they are time-consuming
and the approximation error is usually difficult to estimate. This paper deals with finding analytic
solutions for some cases.

The paper is organized as follows: Section 2 describes the generic model and the filtering
equations; Section 3 presents the computational procedure for the conditional expectation of
interest under the “mother quake” assumption (the first quake in a cluster triggers all the other
quakes in that cluster); Section 4 illustrates the numerical results for earthquakes in central and
western Japan; Section 5 summarizes the conclusions and describes future work; Appendix A
gives the algorithm that calculates the maximum likelihood estimators of the parameters and the
most likely cluster path; finally, the proofs are contained in Appendix B.

2. The generic model

2.1. Formulation of the model

Suppose observed information about a quake is represented by a mark in a space E. For example,
E could be R3, recording the earthquake’s magnitude and the epicenter’s location longitude and
latitude. We model observations as a marked point process O with marks in E. O is the mixture
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of two independent point processes N and C, which stand for the single quakes and earthquake
clusters, respectively. Hence letting O(A, t) denote the number of quakes characterized by values
in A (A is a subset of E) observed up to time t , we can write

O(A, t) = N(A, t) + C(A, t).

We assume that N is a Poisson process with intensity γ relative to a reference measure ν, hence
the single quake model is just a Poisson random measure on E × [0,∞) with mean measure
ν0(du × ds) = γ (u, s)ν(du)ds.

We model clusters to be randomly initiated and assume they eventually die out; we also assume
that there is at most one active cluster at a time as mentioned in Section 1. Let D be the process
that indicates whether a cluster is active or not. The process C adds a mark u at time s with
non-negative predictable intensity λ(u, s,Ds−, ηs−), where η is the configuration of both the
marks and occurrence times of all the previous cluster quakes. More precisely, if cluster quake
ci occurs at ti , then ηt = ∑

{i: ti≤t} δ(ci ,ti ), where δ(ci ,ti ) is the Dirac measure concentrated on the
point (ci, ti ). Therefore, η is a counting measure on E × [0,∞).

When D = 0, there is no active cluster and an intensity λ(u, s,0, ηs−) gives the rate at which
a new cluster is initiated by an event with mark u at time s. Once initiated, the cluster grows with
intensity λ(u, s,1, ηs−) until it dies out.

Under very mild conditions on the intensities (see [5]), the point processes can be written as
solutions of stochastic differential equations. In particular, we can write

O(A, t) = N(A, t) + C(A, t)

=
∫

A×[0,∞)×[0,t]
1[0,γ (u,s)](v)ξ1(du × dv × ds)

+
∫

A×[0,∞)×[0,t]
1[0,λ(u,s,Ds−,ηs−)](v)ξ2(du × dv × ds),

where ξ1 and ξ2 are independent copies of a Poisson random measure on E × [0,∞) × [0,∞)

with mean measure ν × 	 × 	, denoting Lebesgue measure by 	.
In this article, we define D as follows: D is equal to 1 once a cluster is initiated; D has a

probability p to die out (i.e., D = 0) whenever a new observation is added to the cluster; D is
independent of all previous history. Thus, for an arbitrary function f (Dt , ηt ),

f (Dt , ηt ) =
∫

E×[0,t]
1{Ds−=0}

[
f

(
1, ηs− + δ(u,s)

) − f (0, ηs−)
]

(2.1)
+ 1{Ds−=1}

[
f

(
1 − IC(E,s), ηs− + δ(u,s)

) − f (1, ηs−)
]
C(du × ds),

where the {Ik, k = 1,2, . . .} are independent Bernoulli random variables with parameter p that
are also independent of N and C. This follows by writing the right-hand side as a finite sum
where most terms cancel out.

In practice, f (Dt , ηt ) contains information about Dt and ηt . Statistical inferences can be
drawn if we are able to compute the conditional expectation of f based on the observations O .
The rest of the paper mostly deals with how to realize such a computation for arbitrary f .
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It is worth noting that our whole problem is essentially discrete and finite, hence the measur-
ability of functions is (and should be) of minor concern. As Dt is either 0 or 1, and ηt can only
take finitely many values as well (2n if there are n observations), thus the function domain of f

is finite. Therefore, all the functions are measurable.

2.2. The filtering equations

We derive the filtering equation for the conditional distribution of η given observations of O

using a reference measure approach. If (
, F ,Q) is a probability space and P is a second prob-
ability measure on F given by dP = LdQ, then for any sub-σ -algebra D ⊂ F and L1-random
variable Z,

EP [Z|D] = EQ[ZL|D]
EQ[L|D] .

We are going to use a reference probability measure Q under which the observations have a
relatively simple structure. In the following lemma, N and C are independent Poisson random
measures under Q. We first introduce a definition that is used in the lemma.

Definition 2.1. A Poisson process N is compatible with a filtration {Ft } if N is {Ft }-adapted
and N(t + ·) − N(t) is independent of {Ft } for every t ≥ 0.

Lemma 2.2. On (
, F ,Q), let N and C be independent Poisson random measures with mean
measures ν0(du × ds) = γ (u, s)ν(du)ds and ν1(du × ds) = λQ(u, s)ν(du)ds, respectively; let
D be a cadlag process independent of N . Assume all processes are compatible with {Ft }. L is
determined by solving

L(t) = 1 +
∫

E×[0,t]

(
λ(u, s,Ds−, ηs−)

λQ(u, s)
− 1

)
L(s−)[C(du × ds) − λQ(u, s)ν(du)ds] (2.2)

and assuming that L is a {Ft }-martingale. Let P satisfy dP|Ft
= L(t)dQ|Ft

. Then P is a prob-
ability measure and under P , for all A such that

∫ t

0

∫
A

λ(u, s,Ds, ηs)ν(du)ds < ∞ for each
t > 0,

C(A, t) −
∫

A×[0,t]
λ(u, s,Ds, ηs)ν(du)ds

is a local martingale and N is independent of C and is a Poisson random measure with mean
measure ν0.

Thus under P both N and C have the intensity described in Section 2.1. Hence Lemma 2.2
gives the form of the Radon–Nikodym derivative (or the likelihood) of P with respect to Q. Our
further computation then can be justified by the uniqueness of the martingale problem (see [9] or
[4], Chapter 4). The assumption that L is a {Ft }-martingale is very mild.
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Remark 2.3. The following condition is sufficient to ensure that (2.2) is a well-posed equation
and that L is a martingale.

(Condition 1) ν(E) < ∞, λQ(u, s) and
λ(u, s,Ds−, ηs−)

λQ(u, s)
are uniformly bounded.

The process D has finitely many jumps in bounded time intervals. Thus we can record the
history of the process D by a counting measure ht = ∑

{i: ti≤t} δ(Dti
,ti ); the sum is over those ti

when D takes jumps. Hence it represents a path that has value Dti in time interval [ti , ti+1). As
in (2.1), let f be an arbitrary function on the two counting measures (hs, ηs), and set

φ(f, s) = EQ[f (hs, ηs)L(s)|F O
s ], (2.3)

π(f, s) = EP [f (hs, ηs)|F O
s ] = EQ[f (hs, ηs)L(s)|F O

s ]
EQ[L(s)|F O

s ] = φ(f, s)

φ(1, s)
. (2.4)

Since ht contains all the information on Dt , we can write Dt = Dt(ht ). Further, we abuse the
notation a little and write λ(u, s,Ds−(hs−), ηs−) = λ(u, s, hs−, ηs−). We need this expression to
simplify the notation in the following theorem and in the application in Section 4.

Let α denote the indicator that specifies whether or not a cluster is currently active, that is,
α(hs, ηs) = 1{Ds=1} = Ds . Let q = 1 − p and

fnew = [1 − α(·, ·)]f (· + δ(1,s), · + δ(u,s)

)
(2.5)

+ α(·, ·)[pf
(· + δ(0,s), · + δ(u,s)

) + qf
(· + δ(1,s), · + δ(u,s)

)]
.

Theorem 2.4. For an arbitrary function f on (hs, ηs), let φ, π and fnew be defined as in equa-
tions (2.3)–(2.5). Then φ and π satisfy the stochastic integral equations

φ(f, t) = φ(f,0) −
∫

E×[0,t]
φ
(
f (·, ·)[λ(u, s, ·, ·) − λQ(u, s)], s)ν(du)ds

+
∫

E×[0,t]
φ

(
fnew

λ(u, s, ·, ·)
λQ(u, s)

− f (·, ·), s−
)

λQ(u, s)

λQ(u, s) + γ (u, s)
O(du × ds)

and

π(f, t) = π(f,0)

+
∫

E×[0,t]
π(fnewλ(u, s, ·, ·), s−) − π(λ(u, s, ·, ·), s−)π(f, s−)

π(λ(u, s, ·, ·) + γ (u, s), s−)
O(du × ds)

−
∫

E×[0,t]
{π(f (·, ·)λ(u, s, ·, ·), s) − π(f, s)π(λ(u, s, ·, ·), s)}ν(du)ds.

In Section 4, we will take f as the indicator functions that indicate the status of η, so that
π(f, t) gives us the conditional probability that an observation is in the cluster.
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3. Solutions of the filtering equation

Unlike the infinite-dimensional nonlinear filtering problem, the solution of which can only be
approximated, the function space in our problem allows a natural finite decomposition since we
have a finite function domain, that is, all the possible combinations of each observed event being
in a quake swarm or not. Thus the exact solution could be computed theoretically, but generally
the computational load increases exponentially as the number of observations increases. That is
not feasible for online updating.

In this section and also in Appendix A, we assume that when a cluster is active, the cluster is
assumed to be triggered by the first quake (mother quake); when no cluster is active, a new cluster
will be initiated randomly with an intensity ε. To be precise, suppose one observes ui at time τi .
Let yi = (ui, τi) and the set of observations by time t be O(t) = {y1, y2, . . . , yk : τk ≤ t < τk+1}.
Then we have

λ(u, t,Dt−, ηt−) = Dt−
k∑

i=1

λ(u, t, yi)θ0(yi) + (1 − Dt−)ε(u, t), (3.1)

where θ0(yi) = 1{yi is the mother quake in the currently active cluster} and θ0(yi) is defined as 0 if there
is no active cluster at that time. We suppose that the functional form of λ(u, t, yi) is known.
For the application in Section 4, λ(u, t, yi) is a Gaussian kernel (4.1) that does not depend on t .
Note that there is, at most, one θ0(yi) (i = 1,2, . . . , k) non-zero at any moment t . The simple
fact that θ0(yi)θ0(yj ) = 0 if i �= j makes finding an analytic solution possible (see the proof of
the following theorems). Formally, we can think of the intensity λ as a vector with component
λ(u, t, yi) at each “orthogonal” direction θ0(yi), i = 1,2, . . . , k. With the help of this kind of “or-
thogonal decomposition” of the function space, the problem can be reduced to be of polynomial
complexity.

For simplicity, we also assume that there is no cluster active at time 0. Define a(y, t) =∫
E

λ(u, t, y)ν(du) for y ∈ E and ε(t) = ∫
E

ε(u, t)ν(du). The following two theorems give the
algorithm to compute π(f, t), f is an arbitrary function of Ds and ηs . Recall that α(Ds, ηs) =
1{Ds=1} = Ds .

Theorem 3.1. For τk ≤ t < τk+1

π(θ0(yi)α, t) = π(θ0(yi)α, τk)e
− ∫ t

τk
a(yi ,s)−ε(s)ds

bk(t), (3.2)

where

bk(t) = 1∑k
j=1 π(θ0(yj )α, τk)e

− ∫ t
τk

a(yj ,s)−ε(s)ds + 1 − ∑k
j=1 π(θ0(yj )α, τk)
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and

π(θ0(yi)α, τk+1) = π(θ0(y)α, τk+1−)(γk+1 + qλk+1,i )

dk+1
, i < k + 1,

π(θ0(yk+1)α, τk+1) =
∑k

j=1(qλk+1,j − εk+1)π(θ0(yj )α, τk+1−) + εk+1

dk+1
,

where γk+1 = γ (yk+1, τk+1), λk+1,i = λ(yk+1, τk+1, yi), εk+1 = ε(yk+1, τk+1) and dk+1 =∑k
j=1(λk+1,j − εk+1)π(θ0(yj )α, τk+1−) + εk+1 + γk+1.

In Theorem 3.3, we can solve for π(θ0(yi)α, t) as the first step in our algorithm. The task of
computing π(f, t) for more general f is completed in the next theorem. Note that the solution
π(θ0(yi)α, t) is needed in (3.4).

Theorem 3.2. For τk ≤ t < τk+1,

π(θ0(yi)αf, t) = π(θ0(yi)αf, τk)e
− ∫ t

τk
a(yi ,s)−ε(s)ds

bk(t), (3.3)

π(f, t) satisfies

dπ(f, t)

dt
= −

∑
x∈Y(t)

π(θ0(x)αf, t)[a(x, t) − ε(t)]
(3.4)

+ π(f, t)
∑

x∈Y(τk)

π(θ0(x)α, t)[a(x, t) − ε(t)],

and

π(θ0(yi)αf, τk+1)

= π(θ0(y)αf, τk+1−)γk+1 + qλk+1,iπ(f (1, · + δyk+1)θ0(yj )α, τk+1−)

dk+1
, i < k + 1,

π(θ0(yk+1)αf, τk+1) = π(f (1, · + δyk+1)(1 − α), τk+1−)εk+1

dk+1
,

π(f, τk+1) = π(f, τk+1−)γk+1 + π(f (1, · + δyk+1)(1 − α)εk+1, τk+1−)

dk+1

+
∑k

j=1 λk+1,j π([pf (0, · + δyk+1) + qf (1, · + δyk+1)]θ0(yj )α, τk+1−)

dk+1
,

where f (0, · + δyk+1) = f (· + δ(0,τk+1), · + δyk+1), f (1, · + δyk+1) = f (· + δ(1,τk+1), · + δyk+1).

Combining Theorems 3.3 and 3.2, we can compute π(f, t) for an arbitrary f in real time.



364 Z. Wu

4. Application to an earthquake data set

We use the same data set as in [8]: the earthquakes in the period of 1926–1995 in the rectangular
area 34◦–39◦N and 131◦–140◦E with magnitudes greater than 4.0 and depths less than 100 km.

We take ν to be the uniform measure on the rectangular region, γ (u) = γ and λ(u,Dt , ηt ) =
1{Dt=1}

∑k
i=1 λ(u, yi)θ0(yi)+1{Dt=0}ε, where λ(u, yi) is proportional to a bivariate normal den-

sity:

λ(u, yi) = λ exp(−‖u − ui‖2/2d)/(2πd). (4.1)

For our mother quake model, the maximum likelihood estimations (MLE’s) are γ̂ = 0.1070,
λ̂ = 1.3274, ε̂ = 0.0126, d̂ = 0.0070, p̂ = 0.2035. The log-likelihood is log(L) = −21604.

We are interested in

θ(y)(·, ·) = 1{y is a quake in a cluster}

and

Dt(·, ·) = 1{a cluster is active at time t}.

We compute π(θ(yi)(·, ·), T ) for all observed yi according to Theorem 3.2, where T is the last
moment of the year 1995. The results are compared with [8], where the authors declustered the
observations by computing aftershock probabilities under an ETAS model. In Figure 1, plot (a) is
the histogram of the aftershock probabilities as presented in [8]. We denote their aftershock prob-
abilities as p1. Plot (b) shows the distribution of the conditional probabilities p2 in the mother
quake model. We are pleased to see that our stochastic models give relatively deterministic an-
swers. Around 95% of quakes have a probability of being in clusters that is either smaller than
0.1 or greater than 0.9, as can be seen in plot (b).

(a) (b)

Figure 1. Histograms of (a) aftershock probabilities under ETAS model and (b) conditional probabilities
to be in the cluster process in mother quake model.



A cluster identification framework 365

Figure 2. Histogram of p2 − p1.

Although both results have a bimodal shape, the one in [8] disagrees with our models for many
individual quakes. This can be seen from Figure 2. The histogram presents the difference of these
two probabilities.

It seems that the data set supports our model more. We plot the earthquake clusters in each
setting by removing quakes with a low probability of being in a cluster. The time-space plots
in Figure 3 have 1500 quakes. The vertical axis represents time (unit in days). It is quite clear
that the plots from our models have a stronger cluster pattern. The three-dimensional plots are
available from http://www.stat.nus.edu.sg/~stawz/ and can be rotated and viewed in different
perspectives.

We also can compute π(Dτi
(·, ·), T ) to see the status of the cluster at different times. Under

the mother quake assumption, Figure 4(a) gives us the conditional probability that the earthquake
cluster is active. The answer is again quite distinct. Figure 4(b) shows that most conditional
probabilities are either close to 0 or 1.

5. Discussion

Assumption (3.1) is just an example. Another earthquake model called the “domino” model is
given in [14], where we assume that the last quake triggers the next quake in the cluster. It turns
out that the mother quake model is more likely in our data set by comparing their likelihood.
Roughly speaking, as long as the conditional intensity λ modeling the cluster only depends on a

http://www.stat.nus.edu.sg/~stawz/
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(a)

(b)

Figure 3. Time–space plots of the 1500 likely clustered earthquakes under different models: (a) under
ETAS model; (b) under the mother quake model.

“small” portion of the history (in (3.1), it only depends on the last mother quake), we can adopt
an “orthogonal decomposition” and find an algorithm to find the analytic solution.

Thus assuming that, at most, one cluster is active at a time is not essential for our method.
This simplified assumption prevents the presentation from getting more messy. We can similarly
work out a decomposition if we assume that, at most, say, three clusters are active at a time.

Our filter separates the data set into the cluster quakes and the single quakes. Further data
analysis in [14] shows geophysical differences. In particular, the magnitude of the cluster quakes
is significantly different from the single quakes. The mother quakes are also significantly bigger
than the offspring quakes. Note that we did not incorporate the magnitudes of the earthquakes
into the model. This surprising finding further supports our model.

The application to seismology is only a special case of the filtering approach to abnormal clus-
ter identification proposed in [14]. Other possible applications include epidemiology, intrusion
detection in network security, criminology and quality control.



A cluster identification framework 367

(a)

(b)

Figure 4. Under the mother quake assumption: (a) the conditional probability that the cluster was alive vs.
time; (b) histogram of the conditional probability.

Appendix A: Likelihood and maximum likelihood estimators

A.1. Likelihood

Theorem A.1. Let ν be a finite measure and, on (
, F ,Q), let N and C be independent Poisson
random measures with mean measures ν(du)ds; let D satisfy (2.1). Assume all processes are
compatible with {Ft }. Define LN and LC by solving

LN(t) = 1 +
∫

E×[0,t]
[γ (u, s) − 1]LN(s−)[N(du × ds) − ν(du)ds], (A.1)

LC(t) = 1 +
∫

E×[0,t]
[λ(u, s,Ds−, ηs−) − 1]LC(s−)[C(du × ds) − ν(du)ds] (A.2)
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and assume that they are {Ft }-martingales. Let L = LNLC . L will also be an {Ft }-martingale.
Let P satisfy dP|Ft

= L(t)dQ|Ft
. Then P is a probability measure and under P , for all A such

that
∫ t

0

∫
A

λ(u, s,Ds, ηs)ν(du)ds < ∞ for each t > 0,

C(A, t) −
∫

A×[0,t]
λ(u, s,Ds, ηs)ν(du)ds

is a local martingale and N is independent of C and is a Poisson random measure with mean
measure γ (u, s)ν(du)ds.

Remark A.2. The L derived from the theorem is the likelihood of our observation, which is
the mixture of two processes. It is necessary to have it for the estimation of parameters. While
in Lemma 2.2, the simplified version (2.2) is sufficient for proving Theorem 2.4, since it only
concerns f (Dt , ηt ), which does not involve the process N . By applying L derived here, we
can prove a more general form of Theorem 2.4 so that we can have filtering equations about
f (Nt ,Dt , ηt ). We omit it because the notation gets worse and we do not use it in our application.

Our goal is to compute EQ[L|F O ], the likelihood in our model. We can first solve (A.1) and
(A.2):

LN(t) = exp

{∫
E×[0,t]

logγ (u, s)N(du × ds)

−
∫

E×[0,t]
[γ (u, s) − 1]ν(du)ds

}
,

LC(t) = exp

{∫
E×[0,t]

logλ(u, s,Ds−, ηs−)C(du × ds)

−
∫

E×[0,t]
[λ(u, s,Ds−, ηs−) − 1]ν(du)ds

}
.

Let

C(A, t) =
∫

A×[0,t]
ρO(E,s)(u)O(du × ds), (A.3)

where ρ is the indicator of whether the observation is a cluster point. Under reference measure
Q, ρ1, ρ2, . . . are i.i.d. Bernoulli(1/2), and

L(t) = LN(t)LC(t)

= exp

{∫
E×[0,t]

[(
1 − ρO(E,s)

)
logγ (u, s) + ρO(E,s) logλ(u, s,Ds−, ηs−)

]
O(du × ds)

−
∫

E×[0,t]
[λ(u, s,Ds−, ηs−) + γ (u, s) − 2]ν(du)ds

}
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∝ exp

{∫
E×[0,t]

[(
1 − ρO(E,s)

)
logγ (u, s) + ρO(E,s) logλ(u, s,Ds−, ηs−)

]
O(du × ds)

−
∫

E×[0,t]
(
λ(u, s,Ds−, ηs−) + γ (u, s)

)
ν(du)ds

}
.

We use “∝” since we ignore a constant, which has no impact on likelihood inference.
Recall γj = γ (yj , τj ), λj,i = λ(yj , τj , yi), εj = ε(yj , τj ). Let τ0 = 0 and suppose one ob-

serves ui at time τi , yi = (ui, τi).

L(τn) ∝ exp

{
−

∫
E×[0,τn]

γ (u, s)ν(du)ds

}
(A.4)

×
n∏

i=1

γ
1−ρi

i λ(ui, τi,Dτi−, ητi−)ρi exp

{
−

∫
E×[τi−1,τi ]

λ(u, s,Ds−, ηs−)ν(du)ds

}
.

Note that, conditional on observations O , all the possible partitions of O = C + N are equally
likely under Q. The conditional distribution of LNLC is completely determined by {ρi} and
{Ik}. {Ik} is independent of {ρi} since it is independent of N and C. Hence the computation of
EQ[L|F O ] is reduced to calculating the expectation of L({ρi}, {Ik}) with i.i.d. Bernoulli(1/2)
{ρi} and i.i.d. Bernoulli(p) {Ik}. This expectation can be expressed as a weighted sum over all
possible values of {ρi}, {Ik}.

We recall the special form of λ(u, t,Dt , ηt ):

λ(ui, τi,Dτi−, ητi−) = Dτi−
i−1∑
j=1

λi,j θ0i (yj ) + (1 − Dτi−)εi,

where θ0i (yj ) = 1{yj is the latest mother quake in the cluster at time τi−} and λi,j is defined as in Theo-
rem 3.3. Let Ei be the index of the latest mother quake at time τi−, then λ(ui, τi,Dτi−, ητi−) =
Dτi−λi,Ei

+ (1 − Dτi−)εi .
Assume no cluster is active at time 0, hence D0 = 0. Therefore,

L(τ1) ∝ γ
1−ρ1
1 ε

ρ1
1 exp

{
−

∫
E×[0,τ1]

[ε(u, s) + γ (u, s)]ν(du)ds

}
.

Sum over two terms corresponding to ρ1 = 0 and ρ1 = 1, respectively, and we have

EQ[L(τ1)|F O ] ∝ (ε1 + γ1)

2
exp

{
−

∫
E×[0,τ1]

[ε(u, s) + γ (u, s)]ν(du)ds

}
.

A.2. The forward algorithm and MLE

It is not practical to sum over all the terms by brute force since the number of terms increases
exponentially with respect to the number of observations. However, we can reduce the complex-
ity to O(n2) by computing exp{∫

E×[0,τn] γ (u, s)ν(du)ds}EQ[L(τn)|F O ] recursively. We recall
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that when a single quake is observed at time τi it has no impact on the cluster quakes Ei+1 = Ei

and Dτi
= Dτi−, while when a cluster quake is observed at time τi , there are two possible sce-

narios: The first case is Dτi− = 0, so the observation at time τi is a new mother quake Dτi
= 1

and Ei+1 = i. The second case is Dτi− = 1, so the observation is an offspring quake; hence,
Ei+1 = Ei . This observation kills the cluster with probability p. In other words, we look at a
Bernoulli(p) random variable Ii , which is independent of everything else. If Ii = 1, Dτi

= 1;
otherwise Dτi

= 0.
For 0 < i < j ,

EQ
[
L(τj )1{Dτj =0,Ej+1=i }|F O

]
= EQ

[
L(τj )1{Dτj =0,Ej+1=i }1{ρj =0}|F O

] + EQ
[
L(τj )1{Dτj =0,Ej+1=i }1{ρj =1}|F O

]
= EQ

[
L(τj )1{Dτj−1=0,Ej =i }1{ρj =0}|F O

] + EQ
[
L(τj )1{Dτj−1=1,Ej =i }1{ρj =1}1{Ij =1}|F O

]
= EQ

[
L(τj−1)γj exp

{
−

∫
E×[τj−1,τj ]

[ε(u, s) + γ (u, s)]ν(du)ds

}

× 1{Dτj−1=0,Ej =i }1{ρj =0}|F O

]
+ EQ

[
L(τj−1)λj,i exp

{
−

∫
E×[τj−1,τj ]

(
λ(u, s, yi) + γ (u, s)

)
ν(du)ds

}

× 1{Dτj−1=1,Ej =i }1{ρj =1}1{Ij =1}|F O

]
= γj exp

{
−

∫
E×[τj−1,τj ]

(
ε(u, s) + γ (u, s)

)
ν(du)ds

}
× EQ

[
L(τj−1)1D{τj−1=0,Ej =i }1{ρj =0}|F O

]
+ λj,i exp

{
−

∫
E×[τj−1,τj ]

(
λ(u, s, yi) + γ (u, s)

)
ν(du)ds

}
× EQ

[
L(τj−1)1{Dτj−1=1,Ej =i }1{ρj =1}1{Ij =1}|F O

]
= exp

{
−

∫
E×[τj−1,τj ]

γ (u, s)ν(du)ds

}

×
{
γj exp

[
−

∫
E×[τj−1,τj ]

ε(u, s)ν(du)ds

]
EQ

[
L(τj−1)1{Dτj−1=0,Ej =i }1{ρj =0}|F O

]
+ pλj,i exp

[
−

∫
E×[τj−1,τj ]

λ(u, s, yi)ν(du)ds

]

× EQ
[
L(τj−1)1{Dτj−1=1,Ej =i }1{ρj =1}|F O

]}
.
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The second equality utilizes the fact that the switch Ij is triggered only when a cluster point
is observed. The last equality uses the fact that Ij is an independent Bernoulli variable with
parameter p. Since ρj is an independent Bernoulli variable with parameter 1/2, we have:

exp

{∫
E×[τj−1,τj ]

γ (u, s)ν(du)ds

}
EQ

[
L(τj )1D{τj =0,Ej+1=i }|F O

]
= 1

2
γj exp

{
−

∫
E×[τj−1,τj ]

ε(u, s)ν(du)ds

}
EQ

[
L(τj−1)1D{τj−1=0,Ej =i }|F O

]
+ 1

2
pλj,i exp

{
−

∫
E×[τj−1,τj ]

λ(u, s, yi)ν(du)ds

}
EQ

[
L(τj−1)1{Dτj−1=1,Ej =i}|F O

]
.

We ignore the constant factor 1/2 in the algorithm.
This raises our forward algorithm. Let lj (d, i) ∝ EQ[L(τj )1{Dτj =d,Ej+1=i} |F O ], where d =

0,1; j = 1,2, . . . ; i = 0, . . . , j − 1, j . (i = 0 indicates that there is no cluster point.)
l1(0,0) = γ1 exp{− ∫

E×[0,τ1] ε(u, s)ν(du)ds}, l1(1,0) = l1(0,1) = 0, l1(1,1) = ε1 ×
exp{− ∫

E×[0,τ1] ε(u, s)ν(du)ds}. Furthermore,

lj (0, i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
γj exp

{
−

∫
E×[τj−1,τj ]

ε(u, s)ν(du)ds

}
lj−1(0, i)

+ pλj,i exp

{
−

∫
E×[τj−1,τj ]

λ(u, s, yi)ν(du)ds

}
lj−1(1, i), 0 ≤ i < j,

0, i = j.

(A.5)

lj (1, i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

γj exp

{
−

∫
E×[τj−1,τj ]

λ(u, s, yi)ν(du)ds

}
lj−1(1, i)

+ lj−1(1, i)qλj,i exp

{
−

∫
E×[τj−1,τj ]

λ(u, s, yi)ν(du)ds

}
, 0 ≤ i < j,

j−1∑
k=0

lj−1(0, k)εj exp

{
−

∫
E×[τj−1,τj ]

ε(u, s)ν(du)ds

}
, i = j.

(A.6)

The likelihood until time τj is Lj = exp{− ∫
E×[0,τj ] γ (u, s)ν(du)ds}∑j

i=0

∑1
d=0 lj (d, i). Even

when there is a moderate number of observations, the scale of the likelihood often exceeds what
a computer can handle. Therefore, we compute the log(L) instead. The trick is normalizing lj at
each step, thus we have the forward algorithm:

1. Computing the normalizing constant: cj−1 = ∑j−1
i=0

∑1
d=0 lj−1(d, i).

2. Normalization: lj−1(d, i) = lj−1(d, i)/cj−1.
3. Updating lj (d, i) according to (A.5) and (A.6).
4. log(L) = ∑n

j=1 log(cj ) − ∫
E×[0,τn] γ (u, s)ν(du)ds.

From the discussion above, we can find the likelihood for any specific set of parameters. Looking
for the MLE hence is a standard optimization problem. It turns out that a non-derivative method
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works better in the example of this paper. In particular, we use the Nelder–Mead simplex method
to search for the MLE (see [11]).

The asymptotic confidence intervals for the parameters can be constructed. Observe that we
have a hidden Markov model (HMM), essentially. Hence the theorems of asymptotic normality of
the MLE for a general HMM should apply (see [1,3,10]). Consequently, there are corresponding
likelihood-ratio tests for the HMM as established in [7]. The asymptotic confidence intervals can
then be constructed by inverting the test statistics (see [14]).

A.3. The most likely cluster sequence

We borrow the Viterbi algorithm from HMM literature to compute the most likely cluster se-
quence in our setting.

Let l�j (d, i) be the maximum likelihood of all cluster sequences with Dτj
= d and yi as the

latest mother quake. As in Section A.1,

l�1(0,0) = γ1 exp

{
−

∫
E×[0,τ1]

ε(u, s)ν(du)ds

}
, l�1(1,0) = l�1(0,1) = 0,

l�1(1,1) = ε1 exp

{
−

∫
E×[0,τ1]

ε(u, s)ν(du)ds

}
,

l�j (0, i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γj exp

{
−

∫
E×[τj−1,τj ]

ε(u, s)ν(du)ds

}
l�j−1(0, i), i = 0,

max

{
pλj,i exp

[
−

∫
E×[τj−1,τj ]

λ(u, s, yi)ν(du)ds

]
l�j−1(1, i),

γj exp

[
−

∫
E×[τj−1,τj ]

ε(u, s)ν(du)ds

]
l�j−1(0, i)

}
, 1 ≤ i < j,

0, i = j.

(A.7)

l�j (1, i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i = 0

max

{
γj exp

{
−

∫
E×[τj−1,τj ]

λ(u, s, yi)ν(du)ds

}
l�j−1(1, i),

qλj,i exp

{
−

∫
E×[τj−1,τj ]

λ(u, s, yi)ν(du)ds

}
l�j−1(1, i)

}
, 1 ≤ i < j,

max

{
εj exp

{
−

∫
E×[τj−1,τj ]

ε(u, s)ν(du)ds

}
l�j−1(0, k);

k = 0,1, . . . , j − 1

}
, i = j.

(A.8)

So the procedure to find the most likely cluster sequence starts from the calculation of l�j (d, i),
using recursion in (A.7) and (A.8) while always keeping a record of the “winning sequence” in
the maximum finding operation. Finally the last state (d, i)� is found where

(d, i)� = arg max
d=0,1;0≤i≤n

l�n(d, i) (A.9)
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and, starting from this state, the sequence is recovered by backtracking. As before, normalization
is necessary in each step of the recursion to prevent them from degenerating to 0 or infinity.

Appendix B: Proofs

Proof of Lemma 2.2.
By Theorem III.20 of Protter [13]

M(A, t) = C(A, t) −
∫

A×[0,t]
λQ(u, s)ν(du)ds

−
∫

A×[0,t]
1

L(s)

(
λ(u, s,Ds−, ηs−)

λQ(u, s)
− 1

)
L(s−)C(du × ds)

= C(A, t) −
∫

A×[0,t]
λQ(u, s)ν(du)ds

−
∫

A×[0,t]
λ(u, s,Ds−, ηs−) − λQ(u, s)

λ(u, s,Ds−, ηs−)
C(du × ds)

is a local martingale, and hence∫
A×[0,t]

λ(u, s,Ds−, ηs−)

λQ(u, s)
M(du × ds) = C(A, t) −

∫
A×[0,t]

λ(u, s,Ds−, ηs−)ν(du)ds

is as well. �

Proof of Theorem 2.4. To simplify the notation, we use f (0, ηs− + δ(u,s)) to denote f (· +
δ(0,s), ηs− + δ(u,s)) and f (1, ηs− + δ(u,s)) to denote f (· + δ(1,s), ηs− + δ(u,s)).

Noting that

[f,L]t =
∫

E×[0,t]
{
1{Ds−=0}

[
f

(
1, ηs− + δ(u,s)

) − f (hs−, ηs−)
]

+ 1{Ds−=1}
[
f

((
1 − IC(E,s)

)
Ds−, ηs− + δ(u,s)

) − f (hs−, ηs−)
]}

×
(

λ(u, s, ηs−)

λQ(u, s)
− 1

)
L(s−)C(du × ds),

f (ht , ηt )L(t) = f (h0, η0) +
∫ t

0
f (hs−, ηs−)dL(s)

+
∫ t

0
L(s−)df ◦ (h(s), η(s)) + [f,L]t
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= f (h0, η0) +
∫ t

0
f (hs−, ηs−)dL(s)

+
∫

E×[0,t]
{
1{Ds−=0}

[
f

(
1, ηs− + δ(u,s)

) − f (hs−, ηs−)
]

+ 1{Ds−=1}
[
f

(
1 − IC(E,s), ηs− + δ(u,s)

) − f (hs−, ηs−)
]}

× λ(u, s, ηs−)

λQ(u, s)
L(s−)C(du × ds)

= f (h0, η0) +
∫

E×[0,t]
f (hs−, ηs−)

[
λ(u, s, hs−, ηs−)

λQ(u, s)
− 1

]
L(s−)

× [C(du × ds) − λQ(u, s)ν(du)ds]

+
∫

E×[0,t]
{
1{Ds−=0}

[
f

(
1, ηs− + δ(u,s)

) − f (hs−, ηs−)
]

+ 1{Ds−=1}
[
f

((
1 − IC(E,s)

)
Ds−, ηs− + δ(u,s)

) − f (hs−, ηs−)
]}

× λ(u, s, hs−, ηs−)

λQ(u, s)
L(s−)C(du × ds)

= f (h0, η0) −
∫

E×[0,t]
f (hs, ηs)[λ(u, s, hs, ηs) − λQ(u, s)]L(s−)ν(du)ds

+
∫

E×[0,t]
{[

1{Ds−=0}f
(
1, ηs− + δ(u,s)

)
+ 1{Ds−=1}f

(
1 − IC(E,s), ηs− + δ(u,s)

)]λ(u, s, hs−, ηs−)

λQ(u, s)

− f (hs−, ηs−)
}
L(s−)ρO(E,s)(u)O(du × ds),

where

C(A, t) =
∫

A×[0,t]
ρO(E,s)(u)O(du × ds)

and under the reference measure, the {ρk(·), k = 1,2, . . .} are independent with Q{ρk(u) = 1} =
1 − Q{ρk(u) = 0} = λQ(u, s)/[λQ(u, s) + γ (u, s)] and are independent of O .

Averaging out the random variables that are independent of O under Q, the equation for the
unnormalized conditional distribution becomes

φ(f, t) = φ(f,0) −
∫

E×[0,t]
φ
(
f (·, ·)[λ(u, s, ·, ·) − λQ(u, s)], s)ν(du)ds

+
∫

E×[0,t]
φ

(
fnew

λ(u, s, ·, ·)
λQ(u, s)

− f (·, ·), s−
)

λQ(u, s)

λQ(u, s) + γ (u, s)
O(du × ds).
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Applying Itô’s formula,

π(f, t) = π(f,0)

+
∫

E×[0,t]
π(fnewλ(u, s, ·, ·), s−) − π(λ(u, s, ·, ·), s−)π(f, s−)

π(λ(u, s, ·, ·) + γ (u, s), s−)
O(du × ds)

−
∫

E×[0,t]
π

(
f (·, ·)λ(u, s, ·, ·), s) − π(f, s)π(λ(u, s, ·, ·), s)ν(du)ds. �

Proof of Theorem 3.3. We apply Theorem 2.4. For τk ≤ t < τk+1,

π(θ0(y)α, t) = π(θ0(y)α, τk) −
∫

E×[τk,t]
π(θ0(y)αλ(u, s,h, η), s)ν(du)ds

+
∫

E×[τk,t]
π(θ0(y)α, s)π(λ(u, s,h.η), s)ν(du)ds

= π(θ0(y)α, τk) −
∫

E×[τk,t]
π

( ∑
x∈O(s)

θ0(y)θ0(x)αλ(u, s, x), s

)
ν(du)ds

+
∫

E×[τk,t]
π(θ0(y)α, s)

×
[ ∑

x∈O(s)

π
(
θ0(x)α

(
λ(u, s, x) − ε(u, s)

)
, s

) + ε(u, s)

]
ν(du)ds

= π(θ0(y)α, τk) −
∫

[τk,t]

∑
x∈O(s)

π(θ0(y)θ0(x)α, s)

∫
E

λ(u, s, x)ν(du)ds

+
∫

[τk,t]
π(θ0(y)α, s)

×
[ ∑

x∈O(s)

π(θ0(x)α, s)

∫
E

λ(u, s, x) − ε(u, s)ν(du) + ε(s)

]
ds

= π(θ0(y)α, τk) −
∫

[τk,t]
π(θ0(y)α, s)a(y, s)1{y∈O(τk)} ds

+
∫

[τk,t]
π(θ0(y)α, s)

[ ∑
x∈Y(τk)

π(θ0(x)α, s)
(
a(x, s) − ε(s)

) + ε(s)

]
ds.

We use the fact that α = ∑
x∈O(s) θ0(x)α to get the second equality. Thus, for i = 1, 2, . . . , k,

dπ(θ0(yi), t)

dt
=

{
−a(yi, t) + ε(s) +

k∑
j=1

[a(yj , t) − ε(s)]π(θ0(yj ), t)

}
π(θ0(yi), t), (B.1)
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(3.2 ) is the unique solution of this system of ordinary differential equations.
At time τk+1,

π(θ0(y)α, τk+1) = π(θ0(y)α, τk+1−)

+ π([1 − α(·, ·)][θ0(y)(1, · + δ(u,s))]λ(yk+1, τk+1, ·, ·), τk+1−)

dk+1

+ π(α(·, ·)q[(θ0(y)α)(1, · + δ(u,s))]λ(yk+1, τk+1, ·, ·), τk+1−)

dk+1

− π(λ(yk+1, τk+1, ·, ·), τk+1−)π(θ0(y)α, τk+1−)

dk+1

= π(θ0(y)α, τk+1−)γk+1

dk+1

+ π([1 − α(·, ·)][θ0(y)(1, · + δ(u,s))]λ(yk+1, τk+1, ·, ·), τk+1−)

dk+1

+ π(α(·, ·)q[(θ0(y)α)(1, · + δ(u,s))]λ(yk+1, τk+1, ·, ·), τk+1−)

dk+1
.

For i < k + 1,

π(θ0(yi)α, τk+1) = π(θ0(y)α, τk+1−)(γk+1 + qλk+1,i )

dk+1
.

For i = k + 1,

π(θ0(yk+1)α, τk+1) =
∑k

j=1(qλk+1,j − εk+1)π(θ0(yj )α, τk+1−) + εk+1

dk+1
. �

Proof of Theorem 3.2. For τk ≤ t < τk+1,

π(θ0(y)αf, t) = π(θ0(y)αf, τk) −
∫

E×[τk,t]
π(θ0(y)αf λ(u, s,h, η), s)ν(du)ds

+
∫

E×[τk,t]
π(θ0(y)αf, s)π(λ(u, s, h, η), s)ν(du)ds

= π(θ0(y)αf, τk) −
∫

E×[τk,t]
π

( ∑
x∈O(s)

θ0(y)θ0(x)αf λ(u, s, x), s

)
ν(du)ds

+
∫

E×[τk,t]
π(θ0(y)αf, s)

×
{ ∑

x∈O(s)

π
(
θ0(x)α[λ(u, s, x) − ε(u, s)], s) + ε(u, s)

}
ν(du)ds
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= π(θ0(y)αf, τk) −
∫

[τk,t]

∑
x∈O(s)

π(θ0(y)θ0(x)αf, s)

∫
E

λ(u, s, x)ν(du)ds

+
∫

[τk,t]
π(θ0(y)αf, s)

×
{ ∑

x∈O(s)

π(θ0(x)α, s)

∫
E

λ(u, s, x) − ε(u, s)ν(du) + ε(s)

}
ds

= π(θ0(y)αf, τk) −
∫

[τk,t]
π(θ0(y)αf, s)a(y, s)1{y∈O(τk)} ds

+
∫

[τk,t]
π(θ0(y)αf, s)

×
{ ∑

x∈Y(τk)

π(θ0(x)α, s)[a(x, s) − ε(s)] + ε(s)

}
ds.

Thus,

dπ(θ0(yi)αf, t)

dt

=
{

−a(yi, t) + ε(s) +
k∑

j=1

[a(yj , t) − ε(s)]π(θ0(yj ), t)

}
π(θ0(yi)αf, t), (B.2)

i = 1, 2, . . . , k

Comparing (B.2) and (B.1), we conclude:

π(θ0(y)αf, s) = π(θ0(y)α, s)π(θ0(y)αf, τk)

π(θ0(y)α, τk)

and (3.3) follows easily.

π(θ0(y)αf, τk+1) = π(θ0(y)αf, τk+1−) − π(λ(yk+1, τk+1, ·, ·), τk+1−)π(θ0(y)αf, τk+1−)

dk+1

+ π([1 − α(·, ·)][(θ0(y)f )(1, · + δ(u,s))]λ(yk+1, τk+1, ·, ·), τk+1−)

dk+1

+ π(α(·, ·)q[(θ0(y)f )(1, · + δ(u,s))]λ(yk+1, τk+1, ·, ·), τk+1−)

dk+1

= [1 − δyk+1(y)]π(θ0(y)αf, τk+1−)γk+1

dk+1
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+ [1 − δyk+1(y)]q ∑k
j=1 λk+1,j π(f (1, · + δyk+1)θ0(yj )α, τk+1−)

dk+1

+ δyk+1(y)π(f (1, · + δyk+1)(1 − α), τk+1−)εk+1

dk+1
,

π(f, τk+1−)

= π(f, τk) −
∫

E×[τk,τk+1]
π(f λ(u, s, h, η), s)ν(du)ds

+
∫

E×[τk,τk+1]
π(f, s)π(λ(u, s, h, η), s)ν(du)ds

= π(f, τk) −
∫

E×[τk,τk+1]
π

( ∑
x∈O(s)

θ0(x)αf λ(u, s, x) + (1 − α)ε(u, s)f, s

)
ν(du)ds

+
∫

E×[τk,τk+1]
π(f, s)

[ ∑
x∈O(s)

π(θ0(x)αλ(u, s, x), s) + (1 − α)ε(u, s)

]
ν(du)ds

= π(f, τk) −
∫

[τk,τk+1]

∑
x∈O(s)

π(θ0(x)αf, s)[a(x, s) − ε(s)]ds

+
∫

[τk,τk+1]
π(f, s)

∑
x∈O(τk)

π(θ0(x)α, s)[a(x, s) − ε(s)]ds,

where a(x, s) = ∫
E

λ(u, s, x)ν(du), ε(s) = ∫
E

ε(u, s)ν(du). Hence,

dπ(f, t)

dt
= −

∑
x∈Y(t)

π(θ0(x)αf, t)[a(x, t) − ε(s)]

+ π(f, t)

{ ∑
x∈Y(τk)

π(θ0(x)α, t)[a(x, t) − ε(s)]
}

,

π(f, τk+1) = π(f, τk+1−) − π(λ(yk+1, τk+1, ·, ·), τk+1−)π(αf, τk+1−)

dk + 1

+ π(fnewλ(yk+1, τk+1, ·, ·), τk+1−)

dk+1

= π(f, τk+1−)γk+1 + π(f (1, · + δyk+1)(1 − α)εk+1, τk+1−)

dk+1

+
∑k

j=1 λk+1,j π([pf (0, · + δyk+1) + qf (1, · + δyk+1)]θ0(yj )α, τk+1−)

dk+1
. �
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Proof of Theorem A.1. Apply Lemma 2.2 and note the independence of C and N . �
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