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a b s t r a c t 

Trust-aware recommender systems have attracted much attention recently due to the prevalence of social 

networks. However, most existing trust-based approaches are designed for the recommendation task of 

rating prediction . Only few trust-aware methods have attempted to recommend users an ordered list of 

interesting items, i.e., item recommendation . In this article, we propose three factored similarity models 

with the incorporation of social trust for item recommendation based on implicit user feedback. Specifi- 

cally, we introduce a matrix factorization technique to recover user preferences between rated items and 

unrated ones in the light of both user-user and item-item similarities. In addition, we claim that social 

trust relationships also have an important impact on a user’s preference for a specific item. Experimental 

results on three real-world data sets demonstrate that our approach achieves superior ranking perfor- 

mance to other counterparts. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

At the age of Web 2.0, information has been exponentially 

growing and challenging the capability of (e-commerce systems) 

discovering useful knowledge towards user preference. It is well- 

known as the information overload problem. By providing users 

with quality personalized recommendations, recommender sys- 

tems have become an essential component of many e-commerce 

applications. They learn user preference from their behaviors 

towards and interactions with different items. In particular, trust- 

aware recommender systems have attracted much attention in the 

literature due to the advent of online social networks. The under- 

lying assumption is that a user’s preferences can be influenced 

by the recommendations (or ratings) of her social friends, both 

explicitly and implicitly [1,5,12,22] . 

Two types of recommendation tasks have been well recognized 

in the field of recommender systems, namely rating prediction and 

top-N item recommendation (a.k.a, item ranking). The former task 

is to predict the rating value that a user is likely to give towards a 

certain unrated item, whereas the latter task is to suggest a list of 

ranked items (e.g., top-N items) that a user has not consumed but 

∗ Corresponding author. 

E-mail addresses: guogb@swc.neu.edu.cn , guoguibing@gmail.com (G. Guo), 
zhangj@ntu.edu.sg (J. Zhang), fdzhu@smu.edu.sg (F. Zhu), wangxw@mail.neu.edu.cn 
(X. Wang). 

most likely tends to like. Rating prediction requires the existence 

of users’ explicit ratings over a number of items. 1 In contrast, 

item recommendation especially based on implicit feedback (e.g., 

purchase, browse, click) is more pervasive in real-world situations. 

This task is also known as one-class collaborative filtering since 

only one class (positive feedback) is available. 2 Till now, many 

trust-based approaches have been proposed [1,5,24,25] and applied 

in different domains [15,21] , and demonstrated the effectiveness 

of social trust in enhancing the accuracy of recommendations. 

However, most of them are designed for rating prediction and only 

very few [25] are advised for item recommendation, a more nat- 

ural problem in many scenarios. In addition, we have empirically 

noted that the improvements achieved by the only few trust-based 

approaches (for item recommendation) are quite limited, and their 

trust-based assumptions may be invalid in some social networks. 

Therefore, the utility of social trust for item recommendation 

requires further understanding and investigation, indicating the 

motivation of our work. 

In this article, we propose a novel trust-based approach for 

the task of top-N item recommendation. Specifically, we introduce 

three factored similarity models based on a matrix factorization 

1 There are also some works in the literature that convert implicit feedback into 
explicit ratings, if no ratings are supported by e-commerce systems. 

2 We do not consider the case of multiple types of positive feedback in this arti- 
cle, but leave it as a part of our future work. 
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technique. We claim that the ranking score of an item (for a user) 

is not only influenced by the similarities with the other items she 

rated, but also influenced by the similarities with the other users 

who rated the item. Furthermore, we contend that a user’s social 

trust relationships will also have an important impact on the 

ranking score. Two variants of trust influence will be investigated 

in this article. The proposed approach, i.e., F actored user and 

item S imilarity model with social T rust (FST), considers all the 

three factors along with item biases. Experimental results on three 

real-world data sets (i.e., FilmTrust, Epinions, Ciao) show that our 

approach FST achieves better ranking performance than other 

counterparts. 

In summary, the main contributions of this article are: 

1. We propose a ranking-based recommendation model that 

formulates a user’s preference over an item based on both 

the influence of other users who rated the same item, and 

the influence of other items rated by the active user. That is, 

factored similarities are gained from both the perspectives of 

users and items rather than either one of them, which has not 

been investigated before. 

2. We extend the factored similarity models with the impact 

of social trust, and integrate their influence in a unified rec- 

ommendation model. Alternative approaches to model social 

trust are studied and compared in our work. Our work aims 

to resolve the problem of top-N item recommendation based 

on implicit feedback, which is different from many other trust- 

based methods for rating prediction based on explicit ratings. 

Top-N item recommendation in question is a more prevalent 

task than rating prediction. 

3. We conducted a series of experiments to verify the effective- 

ness of our approach along with the parameter sensitivity and 

comparison with other models. The results on three real-world 

data sets demonstrate that social trust has an important impact 

on items’ ranking scores, and thus improve the performance of 

top-N item recommendation. 

The rest of this article is organized as follows. 

Section 2 overviews related research in the literature. 

Section 3 then elaborates the proposed three factored similar- 

ity models with social trust. Experimental evaluation is con- 

ducted in Section 4 based on three real-world datasets. Finally, 

Section 5 concludes the present work and outlines future research. 

2. Related work 

Trust-aware recommendation methods can be broadly classified 

into two types: memory- and model-based approaches. Memory- 

based approaches aim to form the best nearest neighborhood 

from the whole user space based on user similarity or social trust. 

Then, the behaviors of nearest neighbors will be integrated to 

form recommendations. For example, Golbeck [2] proposes the 

TidalTrust to predict movie’s rating by aggregating the preferences 

of trust users, where user similarity is substituted by social trust. 

However, as a matter of fact, social trust is even more sparser 

than user ratings, and thus such a replacement may cause even 

severer data sparsity problem. Instead, Guo et al. [3] adopt social 

trust to enhance user similarity, and thus make use of both ratings 

and trust. Specifically, a user’s original preference vector will be 

complemented by those of her trusted neighbors. In this way, 

her preference can be better modeled and thus improve the rec- 

ommendation accuracy. However, researchers gradually recognize 

that memory-based approaches cannot function well given the 

requirements of large-scale data and real-time prediction. 

On the contrary, model-based approaches have attracted much 

attention due to the recommendation accuracy and capability of 

adapting to large-scale data. These approaches attempt to learn 

users’ behavior patterns from their historic data including not 

only their own past behaviors but also those of other (potentially 

associated) users. Many trust-aware recommendation models have 

been proposed to date. For example, Pham et al. [18] cluster 

users by social trust, and then make prediction by accumulating 

the ratings of similar users within the same cluster. Guo et al. 

[4] propose a multiview clustering approach for recommendations, 

aiming to resolve the low accuracy and coverage of traditional 

clustering-based recommendation methods. Specifically, similarity 

and trust are used iteratively to cluster users, and thus users in a 

cluster contain the information of nearest similar and trust neigh- 

bors. Recently, matrix factorization based models have become 

more and more popular due to their efficiency and effectiveness. 

In particular, Jamali and Ester [8] propose the SocialMF approach 

where an active user’s feature vector is affected by those of her 

trusted users and thus a prediction is further influenced. Similarly, 

Ma et al. [14] also contend that a user’s feature vector should 

be close to the average of her trusted users, but differ in that 

trust is used to regularize the generation of user and item feature 

vectors rather than rating prediction. Yang et al. [22] introduce 

the influence of trusters and trustees of an active user to the 

prediction of rating values, while Yao et al. [24] adopt similar 

idea to regularize the learning of a matrix factorization model. 

Fang et al. [1] decompose social trust into four fine-grained trust 

facets which are then integrated into a matrix factorization model 

for accurate rating prediction. Guo et al. [5] propose a TrustSVD 

model with the incorporation of both the explicit and implicit 

influence of social trust other than user ratings. These trust-based 

models are specifically designed for the recommendation task of 

rating prediction, whereas our focus in this article is to generate 

an ordered list of interesting items for active users, i.e., item 

recommendation. Although straightforward methods would be to 

order items by predicted ratings, Yang et al. [23] have empirically 

shown that the well-performing trust-based models for rating 

prediction perform poorly for top-N item recommendation. 

Although many studies have been conducted on the top-N 

recommender systems on the basis of implicit user feedback, 

very few have incorporated social trust relationships for item 

recommendation. Jamali and Ester [7] propose the TrustWalker 

method, which is possibly the first trust-based ranking method 

by adapting a nearest neighborhood approach (aiming for rating 

prediction) to item recommendation. However, this method has 

been demonstrated poor performance in the case of implicit 

feedback in [23] . A state-of-the-art approach for item recommen- 

dation is known as Bayesian personalized ranking (BPR) [20] . The 

underlying assumption is that a rated item for an active user is 

preferred to an unrated item. Other than the assumption on items, 

Krohn-Grimberghe et al. [11] impose a similar assumption on 

user connections and propose the multi-relational BPR (MR-BPR) 

for item recommendation. However, such an assumption may 

not be always true in real cases since users could be unaware 

of an item rather than dislike it. Pan and Chen [17] relax the 

assumption by constraining the rated items with the support of 

a group of other users, and thus propose the Group Bayesian 

Personalized Ranking (GBPR) approach. Zhao et al. [25] further 

distinguish the preference relationships that an item consumed by 

an active user is preferred to that consumed by her friends which 

is superior to the item consumed by other users. This approach is 

termed as SBPR, which to our best knowledge is the only available 

trust-based matrix factorization model for item recommendation. 

Nonetheless, the assumption of SBPR can be error-prone (or even 

invalid) in some situations, especially for users with only a few 

trusted users. Our work opts to better define an item’s ranking 

score for an active user by incorporating her trust connections, by 

which the preference relationships between a rated item and an 
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Fig. 1. Factored similarity models where FISM is a previous model and the others 
are the new models we propose. 

unrated one can be better revealed. In this way, we shade light on 

a new manner to design trust-based ranking models. 

3. Factored similarity models with trust 

To facilitate discussion, we introduce a number of notations. 

Let R = [ r u,i ] m ×n represent a binary matrix of user behaviors 

over a number of items, where r u,i =1 indicates that user u has 

consumed or rated item i (otherwise r u,i =0 ), and m, n refer to the 

number of users and items, respectively. For clarity, we preserve 

symbols u, v, w for users and i, j, k for items. Let T = [ t u, v ] m ×m 

represent the social trust network of users, where t u, v is the trust 

value that user u has towards user v . In general, only binary trust 

values are available, i.e., t u, v =1 if user u trusts user v and t u, v =0 

otherwise. Hence, in social rating networks the task of top-N item 

recommendation can be formalized as follows: giving a set of 

historical user behaviors (i.e., matrix R ) and a set of social trust 

relationships (i.e., matrix T ), for each user u , recommend her a 

small list ( N ) of ordered items from all the candidate items that 

she has not yet consumed or rated. 3 

3.1. Factored similarity models 

In this section, we will first review the factored item similarity 

model (FISM) proposed by Kabbur et al. [9] , inspired by which 

we then propose two new factored similarity models and their 

extensions with trust influence (see Fig. 1 ). 

3.1.1. FISM: Factored Item Similarity Model 

Kabbur et al. [9] propose the FISM model, a state-of-the-art 

method that performs better than other well-known models such 

as SLIM [16] and BPR [20] . It computes a ranking score ˆ r u,i for a 

user u towards item i by aggregating the item similarities with the 

other item j she rated in the past. An item similarity is learned 

as an inner product of two low-rank matrices X and Y , where 

X ∈ R n ×d and Y ∈ R n ×d , d � n indicates the number of latent 

features associated with an item. Hence, the similarity of items i 

and j is derived by x � 
j y i , where x j , y i represent the item-specific 

latent feature vectors for item j and item i , respectively. The 

ranking score for user u on an unrated item i is predicted by: 

ˆ r u,i = b i + | I u −i | −α
∑ 

j∈ I u −i 

x � j y i , 

where b i is the bias of item i , I u −i = I + u \{ i } is the set of items rated 

by user u (denoted by I + u ) except the current estimate item i if 

being rated, and α ∈ [0, 1] is a user specified parameter. Note 

3 An item already rated is of less interest to recommend in our case. 

that we omit user bias b u from the FISM model as it will be 

cancelled out during learning. The matrices X, Y can be learned by 

recovering item ranking relationships—a rated item i is preferred 

to an unrated item j for user u . The objective function to minimize 

is given by: 

J = 
1 

2 

∑ 

u 

∑ 

i ∈ I + u , j∈ I −u 
‖ (r u,i − r u, j ) − ( ̂ r u,i − ˆ r u, j ) ‖ 2 F 

+ 
λ

2 
(‖ X ‖ 2 F + ‖ Y ‖ 2 F + ‖ b‖ 2 F ) , 

where I −u is the set of items user u has not rated, ‖ · ‖ F is the 

Frobenius norm, and λ is a weight parameter for regularization 

terms to avoid over-fitting. Note that for simplicity, we adopt the 

same regularization parameter λ for all variables, which is also 

used throughout this article. Better performance may be achieved 

by assigning and tuning different parameters for all the variables. 

The merit of FISM is to generalize the item-based nearest 

neighborhood approach for item ranking into a matrix factoriza- 

tion model, which is generally more effective for model learning 

and item recommendation. The demerit of FISM is to ignore the 

perspective of users and not to take into account user similarity 

for item ranking. This directs the way how we can further improve 

the performance of item recommendation by additionally consid- 

ering user perspective and the correlations among users, which 

we will elaborate in next sections. 

3.1.2. FUSM: Factored User Similarity Model 

For a given rating matrix R , FISM computes a ranking score 

from the viewpoint of items, i.e., how strongly a target item is 

correlated with the items that a user has rated. Inspired by FISM, 

we can also yield a ranking score from the viewpoint of users, 

i.e., how strongly an active user is correlated with the users who 

have rated the target item. A higher score indicates that the user 

is more likely to prefer the target item as the like-minded users 

do. Based on this intuition, we propose a factored user similarity 

model (FUSM), where two users’ similarity is computed by an 

inner product of two low-rank matrices P ∈ R m ×d , Q ∈ R m ×d , and 

d � m is the number of latent factors that a user is associated 

with. Therefore, we define a user u ’s ranking score on a target 

item i as follows: 

ˆ r u,i = b i + | U i −u | −β
∑ 

v ∈ U i −u 

p � v q u , (1) 

where U i −u = U i \{ u } is the set of users who have rated item i (de- 

noted by U i ) except the current estimate user u if she has rated. 

The similarity of users u and v is computed by the inner product of 

p � v and q u , where p v , q u denote the user-specific feature vectors for 

users v and u , respectively. Similarly, we define β ≥ 0 as a parame- 

ter to consider the number of users involved, but we do not restrict 

β to the value range [0, 1] as α in FISM. When β = 0 , Eq. (1) turns 

to the voting of user similarity; when β = 1 , it becomes the aver- 

age of user similarities while another value often used in the liter- 

ature is β = 0 . 5 ; and when β > 1, the influence of the number of 

users may overweigh that of the sum of user similarities. 

3.1.3. FSM: ranking with both user and item similarities 

FISM and FUSM resolve the item ranking problem from the 

different perspectives of users and items, respectively. To gener- 

alize the application of factored similarity models into different 

scenarios, it is necessary to consider both perspectives of users 

and items. Hence, we propose a generic factored similarity model 

(FSM) where a ranking score for user u on item i is composed 

of three parts: (1) item bias b i ; (2) the similarity between user 

u and any other user v who also rated item i : p � v q u ; and (3) the 



20 G. Guo et al. / Knowledge-Based Systems 122 (2017) 17–25 

similarity between item i and any other item j rated by the same 

user u : x � 
j y i , given as follows: 

ˆ r u,i = b i + s | U i −u | −β
∑ 

v ∈ U i −u 

p � v q u + (1 − s ) | I u −i | −α
∑ 

j∈ I u −i 

x � j y i , 

where β , α ≥ 0 are the user-specified parameters, giving the flex- 

ibility to be adapted to various scenarios; and s ∈ [0, 1] denotes 

the importance of user similarity for ranking scores. 

3.2. Ranking with social trust 

In a typical social rating network, active users not only con- 

sume or rate items but also connect with a number of users as 

social friends or trusted neighbors. Well-known examples include 

Ciao ( www.ciao.co.uk ) and Epinions ( www.epinions.com ) where 

a user can specify other users as trustworthy and add them to 

a trust list if their reviews on products are deemed valuable 

consistently. These systems are designed to originally support 

the concept of trust. We next proceed to show how social trust 

can be incorporated to enhance the factored similarity models 

(i.e., FISM, FUSM, FSM) we introduced in the previous section. 

Formally, assume that user u has specified a set of trusted users 

T u = { w | t u,w = 1 } , and our objective is to predict a ranking score on 

item i for user u . The ranking scores are then adopted to generate 

a list of top-N recommendation items for each active user. 

3.2.1. FIST: FISM with social trust 

The basic idea of FIST is that social trust will influence an item’s 

ranking score for active users. A real-life example is that a user 

may prefer to watch a movie suggested by her social friends rather 

than a movie without the suggestions of friends. By adding trust 

influence to FISM, the new ranking score for FIST is given by: 

ˆ r u,i = b i + | I u −i | −α
∑ 

j∈ I u −i 

x � j y i + | T u | −z 
∑ 

w ∈ T u 
p � w y i , 

where α, z ≥ 0 are parameters to consider the number of items 

and trusted users, respectively. For each trusted user w ∈ T u , the 

influence to the ranking score is modelled as the inner product 

of user w ’s feature vector and item i ’s feature vector, i.e., p � w y i . 

Hence, the overall trust influence is the summation of all trusted 

users’ influence weighted by the number of trusted users. 

3.2.2. FISTa: an alternative model 

An alternative way to measure trust influence (from the per- 

spective of items) is to follow the similar way as FISM. That is, 

we measure the similarity between an item rated by trusted users 

and the target item. Specifically, the new ranking score for the 

alternative model is given by: 

ˆ r u,i = b i + | I u −i | −α
∑ 

j∈ I u −i 

x � j y i + | I N T u −i | −γ
∑ 

k ∈ I N 
T u −i 

x � k y i , 

where α, γ ≥ 0 are parameters to consider the number of items 

rated by user u and u ’s trust users, respectively; I N 
T u −i denotes the 

set of top- N most popular items rated by the user u ’s trust users 

T u except the current estimate item i . Although on average a user 

may have only specified a small number of trust users, the number 

of items rated by these trusted users can be up to thousands. It 

may cause the following three issues if all items are used: (1) time 

complexity will increase exponentially and even be prohibitively 

expensive; (2) higher chance to include niche items (receiving few 

ratings only) that may deteriorate recommendation performance; 

(3) the effect of these items may overweigh the effect of items 

rated by user u herself. Therefore, we select the top- N most 

popular items upon which user u are more likely to act. 

Note that our empirical results, presented in the latter section, 

show that FIST outperforms FISTa in terms of the ranking accuracy. 

One possible explanation is that the manner in FIST measures trust 

influence (user’s effect on target items) more directly than that in 

FISTa (implicitly via the items rated by trusted users). Hence, we 

opt to select the manner of FIST to model trust influence for the 

subsequent models. 4 

3.2.3. FUST: FUSM with social trust 

Similarly, we obtain a new ranking prediction approach by 

incorporating the trust influence (from the perspective of users) 

into FUSM, given by: 

ˆ r u,i = b i + | U i −u | −β
∑ 

v ∈ U i −u 

p � v q u + | T u | −z 
∑ 

w ∈ T u 
y � i q w , 

where β , z ≥ 0 are parameters to consider the number of similar 

users and trusted users, respectively. For each trusted user w ∈ 

T u , the inner product y � 
i q w is treated as the amount of influence 

made by user w on the target item i . 

3.2.4. FST: FSM with social trust 

Lastly, we add similar trust influence (from both the per- 

spectives of users and items) to FSM and yield a new ranking 

prediction approach for FST, given by: 

ˆ r u,i = b i + s | U i −u | −β
∑ 

v ∈ U i −u 

p � v q u 

+ (1 − s ) | I u −i | −α
∑ 

j∈ I u −i 

x � j y i + | T u | −z 
∑ 

w ∈ T u 
p � w y i , (2) 

where α, β , z ≥ 0 are parameters for the number of rated items, 

similar users and trusted users, respectively; and s ∈ [0, 1] denotes 

the relative importance of user similarity. For each trusted user 

w ∈ T u , the inner product p � w y i is regarded as the amount of 

influence made by user w on the target item i . 

Till now, we have added similar types of trust influence to 

FISM, FUSM and FSM, and obtained new formulas for the ranking 

prediction. We are aware that other kinds of trust influence can 

be designed in the future, and possibly distinct ones for different 

factored similarity models. In present work, we adopt the similar 

trust influence (1) for the ease and fairness of model compar- 

ison; and (2) for the verification of trust value for top-N item 

recommendation other than rating prediction. 

The variables of b, P, Q, X, Y can be learned by minimizing the 

following objective function: 

J = 
1 

2 

∑ 

u ∈ C 

∑ 

i ∈ I + u , j∈ I −u 
‖ (r u,i − r u, j ) − ( ̂ r u,i − ˆ r u, j ) ‖ 2 F 

+ 
λ

2 

(
‖ P ‖ 2 F + ‖ Q‖ 2 F + ‖ X ‖ 2 F + ‖ Y ‖ 2 F + ‖ b‖ 2 F 

)
, (3) 

where C is a set of all users, the same λ is used to reduce the 

model complexity for presentation, and we can easily specify 

different regularization parameters for each variable in the im- 

plementation. Note that Eq. (3) computes loss over all possible 

item pairs ( i, j ) of entries in i ∈ I + u and j ∈ I −u for item recom- 

mendation, whereas rating prediction attempts to minimize the 

errors between predictive and real ratings merely on I + u , i.e., ∑ 
u,i ‖ r u,i − ˆ r u,i ‖ 2 F . To reduce the computational cost, we randomly 

sample a number ρ of unrated items from I −u for each user u and 

item i ( ρ = 10 in our case). 

4 Other alternative approaches to model trust influence are also studied, e.g., trust 
as a weighting factor for rated items. Since they generally perform worse than the 
FIST and FISTa models, we omit them for the sake of clarity. 

http://www.ciao.co.uk
http://www.epinions.com
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3.3. Model comparison 

Fig. 1 illustrates the relationships among different models dis- 

cussed and introduced in this paper. Specifically, FIST is obtained 

by integrating trust influence to the FISM model, while FUST is 

similarly generated with the incorporation of trust influence based 

on the FUSM model. Finally, FST is the recommendation model 

that combines the merits of both the FIST and FUST models. To 

be specific, if we set s = 0 in Eq. (2) , FST will be degraded to 

FIST, while a value of s = 1 results in an equivalent model as 

FUST. When s ∈ (0, 1), FST can make the best use of both user 

and item correlations as well as social influence. As we stressed 

in Section 3.1.1 , it is important to provide more aspects of user 

preferences and to enhance model learning. In this regard, FST can 

produce better performance than FIST and FUST. The experimental 

results in Section 4 also confirm the superiority of the FST model. 

3.4. Model learning 

A popular technique to achieve an optimal solution to 

Eq. (3) is stochastic gradient descent (SGD). Algorithm 1 provides 

Algorithm 1: The learning algorithm of FST. 

Input : α, β, z, ρ, λ, η ( learning rate ) 

1 Initialize b, X, Y, P, Q with random values in (0 , 0 . 01) ; 

2 while J not converged do 

3 foreach u ∈ C do 

4 foreach i ∈ I + u do 

5 Z ← sample (ρ, I −u ) 
6 m ki ← 

∑ 
k ∈ I u −i 

x k , w ki ← | I u −i | −α

7 m v i ← 
∑ 

v ∈ U i −u 
p v , w v i ← | U i −u | −β

8 m t ← 
∑ 

w ∈ T u p w , w t ← | T u | −z 

9 g ← 0 , h ← 0 , l ← 0 

10 foreach j ∈ Z do 

11 m k j ← 
∑ 

k ∈ I u − j 
x k , w k j ← | I u − j | −α

12 m v j ← 
∑ 

v ∈ U j−u 
p v , w v j ← | U j−u | −β

13 compute ˆ r u,i , ̂  r u, j by Equation 2; 

14 r u, j ← 0 

15 e ← (r u,i − r u, j ) − ( ̂ r u,i − ˆ r u, j ) 

16 b i ← b i + η(e − λb i ) 

17 b j ← b j − η(e − λb j ) 

18 q u ← q u − η
(
e (w v j m v j − w v i m v i ) + λq u 

)
19 y i ← y i + η

(
e (w ki m ki + w t m t ) − λy i 

)
20 y j ← y j − η

(
e (w k j m k j + w t m t ) − λy j 

)
21 g ← g − ew ki q u 
22 h ← h + e (w k j y j − w ki y i ) 

23 l ← l + ew t (y j − y i ) 

24 foreach v ∈ U j−u do 

25 p v ← p v − η(ew v j q u − λp v ) 

26 foreach v ∈ U i −u do 

27 p v ← p v − η(g/ρ + λp v ) 

28 foreach k ∈ I u −i do 

29 x k ← x k − η(h/ρ + λx k ) 

30 foreach w ∈ T u do 

31 p w ← p w − η(l/ρ + λp w ) 

32 return b, P, Q, X, Y ; 

the detailed procedure and the gradient descent rules to update 

the variables of our approach FST. Specifically, all the variables 

Table 1 
Specification of the used data sets, where the density is computed by 
Density = #Ratings/(#Users × #Items). 

Data Set #Users #Items #Ratings #Trust Density 

Epinions 40 ,163 139 ,738 664 ,824 487 ,183 0 .01% 
Ciao 7 ,375 99 ,746 278 ,483 111 ,781 0 .04% 
FilmTrust 1 ,508 2 ,071 35 ,497 1 ,853 1 .14% 

are initialized with random small values in (0, 0.01) (line 1). For 

each iteration (lines 3-31), we randomly sample a set Z of negative 

examples with the sampling factor ρ (line 5) to train the model. 

The variables are updated according to the SGD rules (lines 16-31). 

This process is repeated until the loss value has converged or the 

maximum number of iterations has been reached. Lastly, all the 

learned variables will be returned as output (line 32). Since the 

other algorithms to train FUSM, FSM, FIST, FISTa and FUST basically 

follow similar procedures, we omit the details for simplicity. Note 

that the complexity and scalability of our algorithms will be 

deferred later and discussed in Section 4.5 . 

4. Evaluation and results 

In this section, we will conduct a series of experiments on 

three real-world data sets to investigate: (1) the usefulness and 

sensitivity of parameters α, β , z, s in Eq. (2) ; and (2) the effective- 

ness of our approaches in comparison with other counterparts in 

terms of precision. 

4.1. Experimental setup 

4.1.1. Data sets 

Three real-world data sets are used in our experiments, namely 

Epinions, 5 Ciao 6 and FilmTrust. 7 Both Epinions and Ciao are review 

sharing websites where users can write textual reviews and issue 

numerical ratings on a variety of products; and FilmTrust is a 

movie sharing website where users share movie ratings with 

their friends. All these data sets include both user-item ratings 

and user-user social trust connections. With the built-in support 

of the concept of social trust, these datasets are often used as 

benchmarks for many trust-aware recommender systems. The 

specification of the three data sets is illustrated in Table 1 . All the 

positive rating values are preprocessed and binarized to 1 (and 0 if 

otherwise), indicating that a user has consumed or rated a specific 

item (i.e., implicit feedback). The table shows that all the data sets 

are very sparse and distinct in nature. 

4.1.2. Comparison methods 

The following methods (11 in total) are used for comparison 

which are designed for top-N item recommendation based on 

implicit feedback. The approaches include: 

• MostPop is the baseline approach that computes the ranking 

score of an item by its popularity, i.e., how many times the 

item is rated or consumed by other users; 

• BPR is proposed by Rendle et al. [20] in which the pairwise as- 

sumption is adopted for item ranking. BPR is a state-of-the-art 

method for top-N item recommendation. 

• GBPR is proposed by Pan and Chen [17] in which the BPR 

assumption is relaxed by the group preference; 

• SBPR is proposed by Zhao et al. [25] in which social con- 

nections are used to strengthen the BPR assumption. Since 

5 http://www.trustlet.org/extended _ epinions.html 
6 http://www.cse.msu.edu/ ∼tangjili/trust.html 
7 http://www.librec.net/datasets.html 

http://www.trustlet.org/extended_epinions.html
http://www.cse.msu.edu/~tangjili/trust.html
http://www.librec.net/datasets.html
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Fig. 2. The effect of parameters α, β , z on our approach FST in terms of precision at 5 (i.e., P@5) 

SBPR performs better than MR-BPR [11] , we will not compare 

with the latter method. Given that GBPR and SBPR incorporate 

additional information to improve recommendation as our 

approach does, it is necessary to compare with them. 

• FISM is proposed by Kabbur et al. [9] in which a ranking score 

is composed of item similarities. Since our approaches are 

inspired by FISM, it is necessary to study if our approaches can 

(and to what extent) reach improvements by integrating social 

trust. 

• FUSM, FSM, FIST, FISTa, FUST, FST are a set of our approaches, 

where FST is our highly suggested approach. 

Since we target the recommendation task of top-N item recom- 

mendation, we opt not to compare with other trust-based models 

for rating prediction (e.g., RSTE [13] , SoReg [14] , FM [19] ). For other 

ranking-based models, we skip the ones that work better with 

explicit ratings, including Trust-CF [7] , WRMF [6] and SLIM [16] . 

Our work is suitable for the case of implicit feedback. 

4.1.3. Evaluation metrics 

The 5-fold cross validation approach is adopted. That is, a data 

set is randomly split into five folds, and for each iteration, four 

of which are used as the training set and the rest as the test set. 

The average results of five executions are reported as the final 

performance. We adopt two popular ranking metrics to evaluate 

recommendation performance, namely precision and F1-measure 

at N (i.e., P@N, F1@N), where the cutoff N is chosen in {5, 10}, i.e., 

the number of recommended items. 

P@N = 
1 

| U ′ | 
∑ 

u ∈ U ′ 

| R N (u ) ∩ I ′ u | 
N 

, 

R@N = 
1 

| U ′ | 
∑ 

u ∈ U ′ 

| R N (u ) ∩ I ′ u | 
| I ′ u | , 

F1@N = 
2 ·P@N ·R@N 

P@N + R@N 

where I ′ u is the set of items rated by user u, U ′ is the set of users 

in the test set, and R@N denotes the measurement of recall at 

N. F1-measure represents a trade-off between ranking precision 

and recall. Higher values of P@N and F1@N indicate better top-N 

recommendation performance. 8 Note that evaluation metrics like 

mean absolute error (MAE) and root mean square error (RMSE) 

are not applicable in this work as they are used for the task of 

rating prediction, which is a distinct recommendation task from 

top-N item recommendation. 

8 We have also considered other ranking metrics, such as NDCG, MRR and MAP. 
However, they generally vary less significantly than precision and F1-measure, and 
thus are not present in this article. 

4.1.4. Parameter settings 

Parameter settings in our experiments are either obtained by 

empirical results or suggested by literature works. Specifically, 

the number of latent factors is set to d = 10 , the same setting 

as Yang et al. [23] and Zhao et al. [25] . For GBPR, we fix the size 

of group users to 5 and adjust the parameter ρ ∈ [0, 1] which 

is the tradeoff between group and individual preferences. For 

SBPR, there are no additional parameters to tune with. For all the 

BPR-based approaches, we employ a uniform sampling strategy 

to select unrated items for model learning, as suggested by Zhao 

et al. [25] . For all the factored similarity models, the values of 

parameters α, β , z are searched in a small set of typical values, 

i.e., {0.5, 1, 2}, and the sampling factor ρ (see Algorithm 1 ) is fixed 

by 10 since Kabbur et al. [9] suggest that a small value in the 

range [3, 15] will suffice for FISM. Regarding FISTa, we select the 

top 20 most popular items rated by trust users, i.e., N = 20 . For all 

the matrix factorization-based approaches, we employ grid search 

in {0.0 0 0 0 01, 0.0 0 0 01, 0.0 0 01, 0.01, 0.1} to find out the optimal 

settings for regularization parameters λ. 

4.2. Effect of parameters α, β , z 

The three parameters control the impact of item similarities, 

user similarities and social influence on the ranking prediction 

(see Eq. (2) ). Some of these parameters are also used in other ap- 

proaches FIST, FISTa, FUST and FSM. To save space, we focus on 

the effect of these parameters on our approach FST across all the 

data sets. Specifically, in the experiments we tune the values of 

each parameter in a small set: {0.5, 1, 2} while fixing the values 

of parameter s to be 0.5. The results are illustrated in Figs. 2 and 

3 in terms of P@5 and P@10 respectively, where the x -axis accom- 

modates three rows of settings corresponding to the values of pa- 

rameters α, β and z , respectively. A number of observations can be 

noted from the results. The most straightforward one is that differ- 

ent groups of settings ( α, β , z ) produce distinct results, and thus it 

is necessary to tune a proper combination for them. The best re- 

sults are often observed when β = 2 and α, z < 2. It indicates that 

the impact of item similarities and trust influence should be more 

weighted while that of user similarities should be less counted for 

top-N item recommendation. Note that even better performance 

can be achieved if not restricting α, β , z in the small set {0.5, 1, 2}. 

4.3. Effect of parameters 

Parameter s in Eq. (2) controls the impact of similar users on 

the ranking prediction. We adopt the best values of parameters 

α, β , z reported by the previous subsection when the number of 

latent factors is fixed at 10, and then vary the values of parameter 

s in the range of [0, 1] with step 0.1. The results are illustrated in 

Fig. 4 , where the best values for Epinions, Ciao and FilmTrust are 
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Fig. 3. The effect of parameters α, β , z on our approach FST in terms of precision at 10 (i.e., P@10) 

Fig. 4. The effect of parameter s on our approach FST in terms of precision at 5 (i.e., P@5) 

Table 2 
The experimental results on three data sets in terms of precision , where the best performance of the first five approaches is highlighted in bold as 
well as that of our approaches for a clearer comparison. Note that the values in parentheses indicate the scale of the corresponding values. 

Data Set d MostPop BPR GBPR SBPR FISM FUSM FSM FIST FISTa FUST FST 

Epinions 5 0 .1169 0 .09263 0 .09353 0 .05892 0 .1147 0 .1134 0 .1173 0 .1175 0 .1170 0 .1171 0 .1179 
( ×10 −1 ) 10 0 .09171 0 .07690 0 .07560 0 .05529 0 .09102 0 .08979 0 .09173 0 .09183 0 .09182 0 .08979 0 .09187 
Ciao 5 0 .2677 0 .1855 0 .2228 0 .1206 0 .2704 0 .2656 0 .2670 0 .2706 0 .2680 0 .2703 0 .2741 
( ×10 −1 ) 10 0 .2142 0 .1671 0 .1827 0 .1007 0 .2141 0 .2137 0 .2139 0 .2142 0 .2144 0 .2169 0 .2174 
FilmTrust 5 0 .4170 0 .4147 0 .4124 0 .4058 0 .4171 0 .4179 0 .4180 0 .4174 0 .4181 0 .4182 0 .4191 

10 0 .3503 0 .3494 0 .3470 0 .3433 0 .3503 0 .3510 0 .3503 0 .3503 0 .3510 0 .3510 0 .3514 

Table 3 
The experimental results on three data sets in terms of F1-measure , i.e., the balance between precision and recall, where the values in 
parentheses indicate the scale of the corresponding values. 

Data Set d MostPop BPR GBPR SBPR FISM FUSM FSM FIST FISTa FUST FST 

Epinions 5 0 .1298 0 .1100 0 .1103 0 .0651 0 .1307 0 .1290 0 .1298 0 .1304 0 .1299 0 .1299 0 .1330 
( ×10 −1 ) 10 0 .1305 0 .1134 0 .1111 0 .07830 0 .1315 0 .1287 0 .1303 0 .1304 0 .1305 0 .1304 0 .1328 
Ciao 5 0 .2436 0 .1729 0 .2063 0 .08536 0 .2495 0 .2418 0 .2437 0 .2487 0 .2458 0 .2488 0 .2523 
( ×10 −1 ) 10 0 .2662 0 .2116 0 .2292 0 .1070 0 .2687 0 .2664 0 .2663 0 .2676 0 .2680 0 .2719 0 .2720 
FilmTrust 5 0 .4095 0 .4095 0 .4051 0 .3972 0 .4087 0 .4087 0 .4093 0 .4099 0 .4094 0 .4092 0 .4099 

10 0 .4518 0 .4505 0 .4458 0 .4416 0 .4516 0 .4516 0 .4507 0 .4517 0 .4523 0 .4521 0 .4521 

0.3, 0.1 and 0.8, respectively. A straightforward conclusion is that 

similar users may have distinct impacts on different applications. 

We may also conclude that trust are more important in trust 

networks than in trust-alike networks [5] . In summary, the best 

performance can be achieved when a proper portion of similar 

users and trust users is adopted in our approach. 

4.4. Comparison with other methods 

Tables 2 and 3 present the recommendation performance of 

all the comparison methods across the three data sets in terms 

of P@N and F1@N, respectively. The best performance of the first 

five methods is bolded as well as that of our approaches for 

comparison purposes. Generally, our approach FST obtains the best 

performance in comparison with all the other methods. 

First, the most basic, non-personalized approach MostPop 

is able to achieve comparable, or in some cases even the best 

(bolded) results among all the baselines. It may imply that users 

tend to consume popular items to some extent. 

Second, BPR-based approaches do not present good perfor- 

mance even compared with the MostPop approach. Zhao et al. 

[25] also reported that MostPop outperformed BPR in three (out of 
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four) social rating networks, whereas Pan and Chen [17] obtained 

the opposite results in four different data sets without social con- 

nections. One indication drawn from these reported results is the 

necessity to revisit the assumption of the BPR method. That is, to 

what extent a rated item will be preferred to an unrated one, and 

how it differs in different kinds of data sets. This may help explain 

why SBPR fails to work in our tested data sets whereas Zhao et al. 

[25] claimed a success in their experiments. We attribute it to the 

ill-fitness of their assumption in our data sets. 

Third, purely factored similarity models (namely FISM, FUSM 

and FSM) generally perform better than BPR-based approaches, 

indicating their usefulness for item recommendation. Specifically, 

FISM by Kabbur et al. [9] achieves better performance than other 

baselines. Although factored user similarity model (i.e., FUSM) 

works worse than FISM, combining both user similarities and item 

similarities (i.e., FSM) can help gain better ranking precision. 

Lastly, social trust is noted to impose important influence on 

the ranking performance by comparing the performance of method 

pairs (FISM, FIST), (FUSM, FUST) and (FSM, FST). Among the two 

different manners to model trust influence, FIST works more 

reliably and effectively than FISTa in that the former approach 

consistently outperforms FISM whereas the latter does not. This 

may be due to the fact that FIST models trust influence explicitly 

by the inner products of user and item vectors whereas FISTa does 

implicitly via the items rated by trusted users. Most importantly 

and consistently, our approach FST achieves the best performance 

in comparison with all the other approaches. Although the relative 

improvements are small, it may be explained by the fact that the 

parameters α, β , z are only tuned in a small set. Koren [10] has 

also justified that even relatively small improvements may lead to 

big difference in practice. 

4.5. Complexity and scalability 

The computational time of our model FST is mainly taken 

in two phases: (1) model training where the gradients and up- 

date rules are computed for all the variables (see lines 16-31, 

Algorithm 1 ). For each iteration, the overall computational cost in 

Algorithm 1 is around O ( nb ), where n is the number of ratings in 

the training set and b is the average number of users rating an 

item. (2) model test where we compute all the ranking scores for 

a large volume of candidate items, and identify the user set U i −u , 

item sets I u −i , I T u −i and trust set T u for each ranking score ˆ r u,i (see 

Eq. (2) ). To resolve these two issues, Kabbur et al. [9] make the 

following suggestion: (1) parallelizing the computation of gradi- 

ents and the update rules of SGD (for training); (2) thresholding 

the computed ranking score to speedup ranking items (for test). 

In addition, we find that caching techniques are useful to help 

efficiently (and repeatedly) retrieve (the same) user or item sets, 

and thus greatly reduce the test time. By doing so, our approaches 

can be scaled up to larger data sets. Specifically, our experiments 

are run on a server with 32 Genuine Intel(R) CPUs (2.6 GHz), 256G 

memory. For each execution, the average time for FST on FilmTrust, 

Ciao and Epinions is around 5, 20 and 47 min, respectively. 

5. Conclusion and future work 

This article proposed three factored similarity models with the 

incorporation of social trust influence for item recommendation 

based on implicit user feedback. Both user-user similarities and 

item-item similarities were factored from the proposed matrix fac- 

torization models. In addition, we also incorporated the influence 

of social trust when estimating a ranking score for an active user 

on a target item. We conducted experiments on three real-world 

data sets, and demonstrated that our approach performed the best 

in comparison with other counterparts. Further, the impact of item 

similarities and trust influence should be more weighted than that 

of user similarities in order to achieve the best performance. 

For future work, we intend to incorporate more types of 

trust influence to the proposed factored similarity models, and 

investigate the impact of trust on the assumption of Bayesian 

personalized ranking. In addition, it is also interesting to consider 

the influence of distrust, which may be distinct from social trust. 
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