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Abstract

This paper obtains the exact distribution of the maximum likelihood estimator
of structural break point in the Ornstein—Uhlenbeck process when a continuous
record is available. The exact distribution is asymmetric, tri-modal, dependent
on the initial condition. These three properties are also found in the finite sam-
ple distribution of the least squares (LS) estimator of structural break point in
autoregressive (AR) models. Motivated by these observations, the paper then de-
velops an in-fill asymptotic theory for the LS estimator of structural break point in
the AR(1) coeffi cient. The in-fill asymptotic distribution is also asymmetric, tri-
modal, dependent on the initial condition, and delivers excellent approximations
to the finite sample distribution. Unlike the long-span asymptotic theory, which
depends on the underlying AR root and hence is tailor-made but is only available
in a rather limited number of cases, the in-fill asymptotic theory is continuous
in the underlying roots. Monte Carlo studies show that the in-fill asymptotic
theory performs better than the long-span asymptotic theory for cases where the
long-span theory is available and performs very well for cases where no long-span
theory is available.
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1 Introduction

Autoregressive (AR) models with a structural break in the AR(1) coeffi cient have been

used extensively to describe economic time series; see for example Mankiw and Miron

(1986), Mankiw, Miron, and Weil (1987), Phillips, Wu, and Yu (2011) and Phillips and

Yu (2011). The structural break point is often linked to a significant economic event or

an important economic policy. Not surprisingly, making statistical inference about the

structural break point has received a great deal of attention from both econometricians

and empirical economists when they are confronted with economic time series.

Existing asymptotic theory assumes that the time spans, before and after the struc-

tural break point, both go to infinity; see Chong (2001), Pang, Zhang, and Chong (2014)

and Liang et al. (2017) for the development of these asymptotic distributions. Unfor-

tunately, the resulting long-span asymptotic theory makes statistical inference about

the structural break point very complicated for a number of reasons.

First, depending on the values of the AR(1) coeffi cients before and after the break

point, the process in each regime can have a stationary, or a mildly stationary, or a local-

to-unit, or a unit, or a mildly explosive, or an explosive root. The asymptotic theory

developed in the literature was tailor-made to accommodate different combinations of

two roots, but so far only covers a very small number of cases. In many empirically

interesting examples, including that considered in Phillips, Wu, and Yu (2011) and

Phillips and Yu (2011), no asymptotic theory is available.

Second, to aggravate the matter, the derived asymptotic distribution often does not

perform well in finite sample. It is discontinuous in the underlying AR(1) parameters.

In particular, the long-span asymptotic distribution and, sometimes even, the rate of

convergence depend on how one classifies the two AR roots, although no guidance is

given about the classification.1 Moreover, the long-span asymptotic distribution does

not depend on the initial condition. However, the finite sample distribution of break

point estimator is always continuous in the underlying AR parameters. That is, keeping

one of the AR parameters fixed, changing the value of the other AR parameter by a

small amount only leads to a small change in the finite sample distribution of break point

estimator. Furthermore, the finite sample distribution of break point estimator depends

on the initial condition. These two facts explain why the long-span asymptotic theory

can perform poorly in finite sample. Evidence from the simulations reported later

strongly suggests that in many empirically relevant cases the long-span asymptotic

1For example, if the AR(1) coeffi cient is 0.9, should it be classified as a stationary, or a mildly
stationary, or a local-to-unit root? Different classification leads to different asymptotic distribution.
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theory is inadequate.

The discontinuity in the long-span limiting distributions is also found in the AR(1)

model without break. In a recent attempt, Phillips and Magdalinos (2007) developed

the long-span limiting distributions when the root is moderately deviated from unity.

They show that the rate of convergence in their asymptotic theory provides a link

between stationary and local-to-unit-root autoregressions. However, the limiting distri-

bution itself remains discontinuous as the root passes through the unity.2

Interestingly, when a continuous record of observations is available, continuous time

models can provide the exact distribution of persistency parameter, as shown in Phillips

(1987a, 1987b). The exact distribution is continuous in the persistency parameter,

regardless of its sign and value. This feature motivated Phillips (1987a) and Perron

(1991) to establish the in-fill asymptotic distribution for the AR(1) parameter in discrete

time models. It also motivates Yu (2014) and Zhou and Yu (2016) to establish the in-

fill asymptotic distribution for the persistency parameter in continuous time models.

Not surprisingly, these in-fill asymptotic distributions are continuous in the underlying

parameters and dependent on the initial condition.

In this paper, we develop an in-fill asymptotic distribution of break point estimator

in time series models with a break in the AR(1) coeffi cient. The in-fill asymptotic

distribution is continuous in the two underlying AR parameters. Hence, it offers a
unified framework for making statistical inference about the break point. Moreover,

it depends explicitly on the initial condition. We make several contributions to the

literature on structural breaks.

First, we show that when there is a continuous record of observations for the

Ornstein—Uhlenbeck (OU) process with an unknown break point, we can derive the

exact distribution of maximum likelihood (ML) estimator of break point via the Gir-

sanov theorem. The exact distribution is applicable to all values for two persistency

parameters. It is continuous in two persistency parameters, regardless of their signs

and values, and is dependent on the initial condition.

Second, we show that the exact distribution is always asymmetric about the true

break point, regardless of the location of the true break point. Moreover, the distribu-

tion in general has three modes, one at the true value, two at the boundary points. The

asymmetry and the trimodality have also been reported in Jiang, Wang, and Yu (2016,

2This feature motivated Sims (1988) and Sims and Uhlig (1991) to use the Bayesian posterior
distribution to make statistical inference about the AR parameter although Phillips (1991) showed
that ignorance priors lead to the Bayesian posterior distributions which are much closer to the long-
span limiting distributions.
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JWY hereafter) in a model with a break in mean. However, our exact distribution

remains asymmetric even when the break is in the middle of the sample. This feature

is not shared by the exact distribution of JWY.

Third, motivated by the exact distributional theory, we propose an AR model with

a break in the AR coeffi cient and derive the in-fill asymptotic distribution for the

break point. Our model converges to the OU process with a break as the sampling

interval shrinks. To develop our in-fill theory, we do not need to restrict any of the AR

coeffi cients to be less than one, or equal to one, or greater than one. Furthermore, our

model enables us to compare the magnitude of the break size and the initial condition

with those assumed in the literature. The break size in our model has a smaller order

of magnitude than those in the literature while the initial condition has a larger order

than those in the literature. It is this smaller break size that allows us to develop a

new and unified asymptotic theory. It is this larger initial condition that brings the

prominence of the initial condition into the asymptotic distribution.

Fourth, we extend our limit theory to a more general time series model where the

AR(1) coeffi cient has a break but the error term is weakly dependent. The assumption

of an independent error term has been imposed in the literature to develop the long-

span asymptotic theory. Since the assumption can be too strong for empirical work, it

is important to relax the assumption.

Finally, we carry out extensive simulation studies, checking the performance of the

in-fill asymptotic distribution against the long-span counterpart developed in the lit-

erature for cases where the long-span theory is available. Our results show that our

unified in-fill asymptotic distribution always performs better than the long-span coun-

terpart although the later was tailor-made to accommodate different kinds of regime

shift. We also investigate the performance of the in-fill asymptotic distribution for cases

where the long-span theory is not available. Our results show that our in-fill asymptotic

distribution continues to perform well.

There are several drawbacks in our in-fill asymptotic theory, however. First, under

the in-fill asymptotic scheme, our estimator of break point is inconsistent. However,

our estimator is the same as that under the long-span scheme. Hence, our in-fill scheme

can be understood as a vehicle of obtaining a better approximation than the long-span

scheme. Second, the asymptotic distribution is not pivotal. Third, the distribution is

non-standard and the density function is not available analytically. Hence, simulations

are needed to obtain critical values, as in most of the long-span asymptotic distribu-

tions. Fourth, while the features of asymmetry and trimodality in the in-fill distribution

are shared by the finite sample distribution, they make the construction of confidence
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intervals more diffi cult.

The rest of the paper is organized as follows. Section 2 reviews the literature on

AR(1) models with a break. Special focus is paid to the assumptions about the two

AR(1) coeffi cients as well as to the assumptions about the break size. Section 3 develops

the exact distribution of the ML estimator of break point in the OU process with a break.

Section 4 develops the in-fill asymptotic theory for the LS estimator of the break point

in the AR(1) model with a break. Section 5 develops the in-fill asymptotic theory for

the LS estimator of the break point in a general time series model. In Section 6, we

provide simulation results and check the finite sample performance of the in-fill theory.

Section 7 concludes. Appendix A gives a detailed literature review and Appendix B

collects all the proofs of the theoretical result.

2 A Literature Review and Motivations

The literature on the structural break model is too extensive to review. Among the

contributions in the literature, Chong (2001), Pang, Zhang, and Chong (2014) and

Liang et al. (2017) focused on the AR(1) model with a break in the root. Under

different assumptions on the AR(1) coeffi cients, the long-span asymptotic theory has

been developed in these papers for the least squares (LS) estimator of the break point.

The model considered in these papers is

yt =

{
β1yt−1 + εt if t ≤ k0

β2yt−1 + εt if t > k0
, t = 1, 2, . . . , T, (1)

where T denotes the sample size, εt is a sequence of independent and identically distrib-

uted (i.i.d.) random variables. Let k denote the break point parameter with the true

value k0. The condition 1 ≤ k0 < T is assumed to ensure that one break happens. The

fractional break point parameter is defined as τ = k/T with the true value τ 0 = k0/T .

Clearly τ 0 ∈ (0, 1). The break size is captured by β2 − β1. The order of the initial

condition y0 will be assumed later.

The LS estimator of k takes the form of

k̂LS,T = arg min
k=1,...,T−1

{
S2k
}
, (2)

where

S2k =
k∑
t=1

(
yt − β̂1(k)yt−1

)2
+

T∑
t=k+1

(
yt − β̂2(k)yt−1

)2
,
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Table 1: The long-span asymptotic distributions of τ̂LS,T − τ 0 under different settings
of the AR roots before and after the break. W (u) is a two-sided Brownian motion,
whose definition and the meanings of other notations are introduced in Appendix A.

β1 β2 |β2 − β1| y0 rate limiting distribution

|β1| < 1 |β2| < 1 (T−0.5, T−ε) Op(1)
T (β2−β1)2
1−β21

arg max
u∈(−∞,∞)

{
W (u)− |u|2

}
|β1| < 1 1 (T−1, T−ε) Op(1) T (1− β1) arg max

u∈(−∞,∞)

{
W∗
a (u)
R1

− |u|2
}

1 |β2| < 1
(
T−0.75, T−0.5

)
Op(1) T 2(β2 − 1)2 arg max

u∈(−∞,∞)

{
W (u)
W3(τ0)

− |u|2
}

|β1| < 1 1± c
T (T−1, T−ε) op(

√
T ) T (β2 − β1) arg max

u∈(−∞,∞)

{
W∗
b (u)
R1

− |u|2
}

1± c
T |β2| < 1

(
T−0.75, T−0.5

)
op(
√
T ) T 2(β2 − β1)2 arg max

u∈(−∞,∞)

{
e−c(1−τ0)W (u)
G(W1,c,τ0)

− |u|2
}

1− c
Tα 1 (T−1, T−ε) op(T

α
2 ) cT

Tα arg max
u∈(−∞,∞)

{
W∗
c (u)
Rc

− |u|2
}

1 1− c
Tα

(
T−0.75, T−0.5

)
op(T

α
2 ) c2T 2

T 2α arg max
u∈(−∞,∞)

{
W (u)
W1(τ0)

− |u|2
}

with β̂1(k) =
∑k

t=1 ytyt−1/
∑k

t=1 y
2
t−1 and β̂2(k) =

∑T
t=k+1 ytyt−1/

∑T
t=k+1 y

2
t−1 being

the LS estimates of β1 and β2 for any fixed k. The corresponding estimator of τ is

τ̂LS,T = k̂LS,T/T.

As it is well-known in the literature, there are seven possible cases for the root of an

AR model, and the asymptotic properties of the AR model crucially depend on which

case its root is in. Let c > 0 be a positive constant, α ∈ (0, 1), and β denote the AR

root. When β is a constant and with modulus smaller than one (i.e. |β| < 1) the AR

model is a stationary process. When β = 1− c
Tα
, it becomes a mildly stationary process.

When β = 1 − c
T
, it is a left-side local-to-unity process. When β = 1, it is a random

walk. When β = 1 + c
T
, it is a right-side local-to-unity process. When β = 1 + c

Tα
, it is

a mildly explosive process. When β > 1 is a constant, it is an explosive process. Under

different settings of the AR roots before and after the break (β1 and β2, respectively),

Chong (2001), Pang, Zhang, and Chong (2014) and Liang et al. (2017) established the

consistency of τ̂LS,T and derived the long-span asymptotic distributions of τ̂LS,T − τ 0
as T →∞. In Table 1 we give a brief summary of the developed long-span asymptotic
distributions and the rate of convergence together with the assumptions on AR roots,

the order of break size and the initial value. Both the break size and the initial condition

are expressed in the power order to facilitate the comparison and discussion, where ε is

an arbitrarily small positive number. A detailed review of the long-span asymptotics is

in Appendix A.

Several observations can be made from Table 1 which motivates the paper. First,

except for the seven cases reported in Table 1, the long-span asymptotic theory remains
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unknown for many cases that are interesting from practical viewpoints. For example,

the AR process changes from a random walk to a mildly explosive process, a case widely

studied in the bubble testing literature. Other interesting cases include (1) |β1| < 1

and β2 = 1 ± c/Tα; (2) |β1| < 1 and β2 > 1; (3) β1 = 1 ± c/Tα and β2 < 1; (4)

β1 = 1 ± c1/T
α and β2 < 1 ± c2/T ; (5) β1 = 1 ± c1/T

α1 and β2 = 1 ± c2/T
α2 ; (6)

β1 = 1± c1/Tα1 and β2 > 1; (7) β1 = 1± c1/T and β2 = 1± c2/T ; (8) β1 = 1± c1/T
and β2 = 1 ± c2/Tα; (9) β1 = 1 ± c1/T and β2 = 1; (10) β1 = 1 ± c1/T and β2 > 1;

(11) β1 = 1 and β2 = 1± c1/T ; (12) β1 = 1 and β2 > 1; (13) β1 > 1 and |β2| < 1; (14)

β1 > 1 and β2 < 1 ± c/T ; (15) β1 > 1 and β2 < 1 ± c/Tα; (16) β1 > 1 and β2 = 1;

(17) β1 > 1 and β2 > 1; (18) β1 = 1 + c/Tα and β2 = 1, here c, c1 and c2 are positive

constants, and α, α1, α2 ∈ (0, 1).

Second, Table 1 shows that the long-span asymptotic theory is discontinuous in β1
and β2 when one of them passes the unity. Both the expression of limiting distribution

and the rate of convergence crucially depend on the distance and the direction of the

AR roots away from unity. On the other hand, the finite sample distribution is always

continuous in the underlying AR roots. This feature of discontinuity causes a great deal

of diffi culties in making statistical inference about the break point in practice. This is

because users typically do not know ex ante the values of β1 and β2. Consequently,

they do not have any clue about how far and in which direction β1 and β2 are away

from unity. Furthermore, even if the values of the AR roots on both sides of the break

are known ex ante, it is still unclear which asymptotic distribution reported in Table

1 should to used. For example, if it is known for sure that the AR root changes its

value from 0.5 to 0.9, should we use the large sample theory reported in the second

row of Table 1 where the AR(1) model changes from a stationary process to another

stationary process, or should we use the large sample theory reported in the fifth row

of Table 1 where the AR(1) model changes from a stationary process to a local-to-unity

process?

Third, all the long-span asymptotic distributions reported in Table 1 are invariant

to the value of initial condition y0. However, it is well-known in the nonstationary

time series literature that the finite sample distribution of the LS estimate of AR root

can be very sensitive to the value of y0; see, for example, Evans and Savin (1981) and

Perron (1991) for local-to-unity models, and Wang and Yu (2016) for mildly explosive

processes. Hence, it is reasonable to expect that the finite sample distribution of k̂LS,T
as defined in (1) should also depend on the value of y0, especially for the case when

the AR root on either side of the break is close to or mildly greater than one. The

simulation results that will be reported in Section 6 confirm this expectation.
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Fourth, the property of finite sample bias in the estimation of break point has not

been discussed in the literature with the only exception in LWY (2016). Given that

bias exists in the estimation of AR(1) coeffi cients, we expect the bias to exist in the

estimation of break point. In fact, there are two sources for the bias. The first one

lies in the asymmetry of the two time spans. As long as τ 0 6= 1/2, the time spans

and hence the numbers of observations are not equivalent in the two regimes. The

second source lies in the fact that the variance of the AR process changes after the

break happens. However, as shown by the red dashed line in Figure 1, the long-span

asymptotic distribution reported in the second row of Table 1 is symmetric about zero,

suggesting no bias in τ̂LS,T . The long-span asymptotic scheme requires the two time

spans diverge to infinity, and hence the asymmetry in the sample information in the

two regimes disappears in the limit.

Finally, except for the asymptotic distribution in the second row of Table 1 where

the density function was derived analytically in Yao (1987), the density function of

any other distribution in Table 1 does not have a closed-form expression. Simulation

methods are required to obtain the densities and quantiles. Unfortunately, the interval

to find the argmax is always (−∞,∞) in these distributions, rendering simulation

methods computationally expensive. This is because, to well approximate the true

argmax, one must numerically calculate the argmax over an suffi ciently wide interval

and choose a very fine grid, leading to a very large number of grid points and a high

computational cost.

Besides the five observations discussed above, it is also worthwhile to point out that

the developed long-span asymptotic distributions may not perform well in finite sample

in many empirically relevant cases. For example, consider the case where the AR root

switches from a stationary root to another. The blue line in Figure 1 plots the finite sam-

ple density of τ̂LS,T , centered at the true value and normalized by the convergence rate,

i.e., T (β2−β1)
2

1−β21
(τ̂LS,T − τ 0), when τ 0 = 1/2, T = 200, the AR root changes from β1 = 0.5

to β2 = 0.61. The finite sample distribution is obtained from simulated data with

100,000 replications. The red broken line in Figure 1 plots the density of the long-span

asymptotic distribution. In two aspects the finite sample distribution is notably differ-

ent from the long-span asymptotic distribution (arg max
u∈(−∞,∞)

{
W (u)− |u|

2

}
).3 First, the

finite sample distribution is asymmetric, indicating an upward bias in the estimate of

the break point, whereas the long-span asymptotic distribution is symmetric. Second,

the finite sample distribution has three modes with one at the origin and others at the

3See Yao (1987) and Bai (1994) for further properties about arg max
u∈(−∞,∞)

{
W (u)− |u|2

}
.
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Figure 1: The pdf of the finite sample distribution of T (β2−β1)2
1−β21

(τ̂LS,T − τ 0) when
T = 200, β1 = 0.5, β2 = 0.61, σ = 1 and τ 0 = 0.5 in Model (1) and the pdf of
arg max

u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
.

two boundary points of the support, whereas the long-span asymptotic distribution has

a unique mode. The trimodality has important implications for statistical inference.

For example, the confidence interval may contain two or three disjoined intervals. The

asymmetry and trimodality in finite sample distribution can also be found in Figure

7(c) of Chong (2001).

The five concerns about the long-span asymptotic distributions reported in Table

1 and the large discrepancy between the long-span asymptotic distribution and the

finite sample distribution motivate us to introduce an alternative asymptotic theory to

approximate the finite sample distribution of break point.

3 A Continuous Time Model

In this section we study a continuous time OU process with a break in the drift function:

dx(t) = −
(
κ+ δ1[t>τ0]

)
x(t)dt+ σdB(t), (3)

where t ∈ [0, 1],4 1[t>τ0] is an indicator function, κ, δ and τ 0 are constants with τ 0 ∈ (0, 1)

being the break point and δ being the break size, the constant σ measures the noise

level, and B(t) denotes a standard Brownian motion. The initial condition is assumed

4A different length of time interval, such as [0, N ], may be assumed without qualitatively changing
the results derived in the present paper.
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to be x(0) = Op (1). The time span is τ 0 in the first regime while it is 1 − τ 0 in the
second regime.

We assume that a continuous record of observations, {x(t)} for t ∈ [0, 1], is available

and that all parameters except τ 0 are known. With a continuous record, a more com-

plicated assumption about the diffusion function, such as σ = σ(x(t)), will not cause

any change in the analysis developed below. This is because the diffusion function can

be estimated by the quadratic variation without estimation error.

There are four reasons for studying a continuous time model. First, it provides

a natural choice to study the effect of the difference in the two time spans. As is

well-known in the continuous time literature, properties of estimators of persistency

parameter depend crucially on the time span; see, for example, Tang and Chen (2009)

and Yu (2012). As a result, we expect properties of estimators of break point depend

crucially on the difference in the time spans. Second, as it becomes clear later, the exact

distribution of the ML estimator of the break point τ̂ML defined in (4) is a continuous

function of both persistency parameters. This property sheds light on how we will

address the discontinuity problem of the long-span asymptotic distributions reported

in Table 1. Third, explicit effect of the initial condition can be found in the exact

distribution of τ̂ML. Finally, the continuous time model provides a benchmark for us

to set up a discrete time AR model with a break in AR roots under which the in-fill

asymptotic scheme is considered.

For any τ ∈ (0, 1), the exact log-likelihood of Model (3) can be obtained via the

Girsanov Theorem as

logL(τ) = log
dPτ
dPB

=
1

σ2

{
−
∫ 1

0

(κ+ δ1[t>τ ])x(t)dx(t)− 1

2

∫ 1

0

(
κ+ δ1[t>τ ]

)2
x2(t)dt

}
,

where Pτ is the probability measure corresponding to Model (3) with τ 0 replaced by

τ , and PB is the probability measure corresponding to B(t). This leads to the ML

estimator of τ 0 as

τ̂ML = arg max
τ∈(0,1)

logL(τ). (4)

It is diffi cult to find the pdf and the cdf of τ̂ML by analytical methods or numerical

methods. To facilitate the approximation of the density function via simulations and to

better examine properties of the density, Theorem 3.1 gives an equivalent representation

of τ̂ML.

Theorem 3.1 Consider Model (3) with a continuous record being available. The ML
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estimator τ̂ML defined in (4) has the exact distribution as

τ̂ML
d
= arg max

τ∈(0,1)
δ

{[
J̃τ0(τ)

]2
− τ + (2κ+ δ)

∫ τ

0

[
J̃τ0(r)

]2
dr

}
, (5)

where J̃τ0(r), for r ∈ [0, 1], is a Gaussian process defined by

dJ̃τ0(r) = −
(
κ+ δ1[r>τ0]

)
J̃τ0(r)dt+ dB(r), (6)

with the initial condition J̃τ0(0) = x(0)/σ, and B(r) is a standard Brownian motion

which is the same as in (3).

Remark 3.1 The exact distribution given in (5) depends on κ and δ which describe the
drift function of the OU process in (3). As J̃τ0(r) is a continuous function of κ and δ,

the exact distribution given in (5) should also be continuous in κ and δ. While it would

be useful to have an analytical proof of continuity of the exact distribution in κ and

δ, without knowing the pdf of τ̂ML in closed-form, such a proof is not easy to obtain.

Moreover, the exact distribution explicitly depends on x(0)/σ through the process J̃τ0(r).

Remark 3.2 From the exact distribution (5), an alternative expression can be derived:

τ̂ML − τ 0

d
= arg max

u∈(−τ0,1−τ0)

{δ{[J̃τ0(τ 0 + u)
]2
− u− (2κ+ δ)

∫ τ0
τ0+u

[
J̃τ0(r)

]2
dr

}
for u ≤ 0

δ

{[
J̃τ0(τ 0 + u)

]2
− u+ (2κ+ δ)

∫ τ0+u
τ0

[
J̃τ0(r)

]2
dr

}
for u > 0

(7)

It is easier to understand why τ̂ML is asymmetrically distributed around the true value

τ 0 and the bias in τ̂ML from (7). One reason is that the interval (−τ 0, 1 − τ 0) is not
symmetric about zero as long as τ 0 6= 1/2. This asymmetry comes from the fact that the

two time spans are different in the model. The second reason is that the two objective

functions in the argmax are different in (7). The asymmetry in the objective functions

comes from the asymmetry of J̃τ0(r) before and after the break. The second reason

suggests that the bias in τ̂ML is still expected even when τ 0 = 1/2.

Remark 3.3 To understand why τ̂ML has three modes, denote

Z1(u) = δ

{[
J̃τ0(τ 0 + u)

]2
− u− (2κ+ δ)

∫ τ0

τ0+u

[
J̃τ0(r)

]2
dr

}
for u ≤ 0,

Z2(u) = δ

{[
J̃τ0(τ 0 + u)

]2
− u+ (2κ+ δ)

∫ τ0+u

τ0

[
J̃τ0(r)

]2
dr

}
for u > 0.
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It is easy to show that J̃τ0(τ 0 + u) ∼ N
(

0, 1−e
−2κ(τ0+u)

2κ

)
for u ∈ (−τ 0, 0] and that

J̃τ0(r) ∼ N
(

0, 1−e
−2κr

2κ

)
for r ∈ [τ 0 + u, τ 0] with u ∈ (−τ 0, 0]. Hence,

E (Z1(u)) = δ

{
1− e−2κ(τ0+u)

2κ
− u− (2κ+ δ)

∫ τ0

τ0+u

1− e−2κr
2κ

dr

}
= δ

{
1 + uδ

2κ
− e−2κτ0

2κ
− δe−2κτ0 (1− e−2κu)

(2κ)2

}
.

Taking the derivative of E (Z1(u)) with respect to u, we have

∂E (Z1(u))

∂u
=
δ2

2κ

(
1− e−2κ(τ0+u)

)
> 0 for u ∈ (−τ 0, 0],

suggesting that on average Z1(u) has the unique maximum at the origin. Similarly,

E (Z2(u)) has a supremum at the origin. This property is similar to that of E (W (u)− |u| /2),

as explained in JWY (2016). That the expectation of the objection function in (7) is

maximized at the origin explains why the origin is a mode in τ̂ML. If the interval to find

the argmax is (−∞,∞), we would not expect any other mode in τ̂ML, as in the long-

span asymptotic distributions. However, the interval for the argmax in (7) is bounded

with two boundary points, −τ 0 and 1 − τ 0. In an argument similar to that in JWY

(2016), there are two modes at the boundary points in the distribution of τ̂ML.

In Figure 2, we plot the density of τ̂ML − τ 0 given in (7) with κ = 138, δ = −20,

σ = 1, τ 0 = 0.3, 0.5, 0.7, respectively. The blue solid line corresponds to the density

when x(0) = 0.2, and the black broken line corresponds to the density when x(0) = 1.

The densities are obtained from 100,000 replications.

The simulation results in Figure 2 support the remarks made above. First, the

density is sensitive to x(0)/σ. Second, all the densities are asymmetric, indicating that

τ̂ML is a biased estimator even when τ 0 = 1/2. Moreover, as τ 0 varies, both the level

and the direction of asymmetry of density may change. Third, trimodality is found in

the density for all cases with 0(= τ̂ML − τ 0) being one mode and the two boundary

points being the other two.

4 A Discrete Time Model and In-fill Asymptotic
Distribution

Motivated by the findings in the continuous time model, in this section we propose

a discrete time model that is closely related to the continuous OU process (3). The
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Figure 2: Densities of τ̂ML − τ 0 given in Equation (7) when κ = 138, δ = −20, σ = 1
and τ 0 = 0.3, 0.5, 0.7, respectively. Solid lines are densities for x(0) = 0.2; broken lines
are densities for x(0) = 1.

discrete time model has the form of

xt =
(
β11[t≤k0] + β21[t>k0]

)
xt−1 +

√
hεt, εt

i.i.d.∼ (0, σ2), x0 = Op (1) (8)

where β1 = exp {−κ/T} and β2 = exp {−(κ+ δ)/T} are the AR roots before and after
the break, k0 denotes the break point, t = 1, ..., T with T being the sample size, and

h = 1/T .5 The fractional break point is defined as τ 0 = k0/T .

If τ 0/h = Tτ 0 = k0 is an integer, the exact discretization of Model (3) over the

interval [0, 1] with the sampling interval h is given by

xth =
(
β11[th≤τ0] + β21[th>τ0]

)
x(t−1)h +

√√√√1− e−2(κ+δ1[th>τ0])h

2
(
κ+ δ1[th>τ0]

) εt, εt
i.i.d.∼ N(0, σ2), (9)

where t = 1, ..., T and x0 = x (0) = Op (1). The proposed discrete time model in (8) is

nearly the same as the exact discretization given in (9) with two small differences. First,

in Model (8) we relax the normality assumption on the errors. This generalization is

important as in many empirical applications, the normality assumption is too strong.

Second, the variances of the errors are different. However, since

1− exp {−2κh}
2κ

= h+O
(
h2
)
and

1− exp {−2(κ+ δ)h}
2(κ+ δ)

= h+O
(
h2
)
,

if h→ 0, the two sets of the variance are asymptotically the same.

5An implicit assumption we make here is that 1/h is an integer.
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The LS estimator of the break point in Model (8) takes the form of

k̂LS = arg min
k=1,··· ,T−1

k∑
t=1

(
xt − β̂1 (k)xt−1

)2
+

T∑
t=k+1

(
xt − β̂2 (k)xt−1

)2
(10)

where β̂1 (k) =
∑k

t=1 xtxt−1/
∑k

t=1 x
2
t−1 and β̂2 (k) =

∑T
t=k+1 xtxt−1/

∑T
t=k+1 x

2
t−1 are

LS estimates of β1 and β2, respectively. The LS estimator of the fractional break point

is defined as

τ̂LS = k̂LS/T . (11)

The connection between the proposed discrete time model (8) and the exact discrete

time model (9) and hence the continuous OU process (3) motivates us to study the in-

fill asymptotic theory. In particular, if we allow h→ 0 (which increases the sample size

T ), the discrete observations form a continuous record in the limit and the proposed

discrete time model (8) converges to the continuous OU process (3). Therefore, it is

expected that, the in-fill asymptotic distribution will converge to the exact distribution

developed under the assumption of a continuous record.

Before reporting the in-fill asymptotic distribution of τ̂LS, it is worth comparing the

proposed discrete time model (8) with the the discrete time models considered in the

literature. While the order of errors is Op

(√
h
)
in our model, it is Op (1) in the models

considered in the literature. To facilitate such a comparison, we divide both sides of

Model (8) by
√
h and denote yt = xt/

√
h. Then, we have, for t = 1, ..., T ,

yt =
(
β11[t≤k0] + β21[t>k0]

)
yt−1 + εt, εt

i.i.d.∼ (0, σ2) , y0 = x0/
√
h = Op

(
T 1/2

)
. (12)

Model (12) is almost the same as the model in (1) except for three important differences.

First, the initial condition of yt in (12) diverges at the rate of T 1/2 as T →∞, whereas
the initial condition in Model (1) is set to be op

(
T 1/2

)
as shown in Table 1. This

difference explains why the in-fill asymptotic distribution of τ̂LS explicitly depends on

the initial value x0.

Second, in Model (12), β1 = exp {−κ/T} → 1 and β2 = exp {−(κ+ δ)/T} → 1 as

T →∞. Whereas, for model in (1), β1 and β2 are allowed to be further away from one.
It looks as if the in-fill asymptotic theory for Model (12) only works for the case where

the AR roots in both regimes are in a small vicinity of unity. However, our simulation

results show that the in-fill theory works well even when β1 and\or β2 are distant from
unity in finite sample.

The third difference lies in the order of break size. The break size is β2−β1 = O (T−1)

in Model (12) while it is O (T−α) with 0 < α < 1 in Model (1); see Table 1. Clearly
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under the in-fill scheme we assume a smaller break size. Interestingly, in the context of

time series regression with a break in the slope coeffi cient, the break size is usually set to

O (T−α) with 0 < α < 1/2; see, for example, Bai (1994, 1997). Elliott and Müller (2007)

argued that such a break size may be empirically too large. They introduced a regression

model with the break size reducing to zero at the rate of O
(
T−1/2

)
. JWY (2016)

provided evidence that, when the break size is O
(
T−1/2

)
, the asymptotic distribution

is closer to the finite sample distribution. The present paper extends the argument of

Elliott and Müller to the AR models. The smaller break size is important to produce

asymmetry and trimodality in our asymptotic distribution and to explain why our

asymptotic distribution performs better than the asymptotic distributions summarized

in Table 1.

Theorem 4.1 Consider the discrete time model in (8). When T → ∞ with a fixed

τ 0, the in-fill asymptotic distribution of the estimator τ̂LS = k̂LS/T with k̂LS defined in

(10) is

τ̂LS ⇒ arg max
τ∈(0,1)

{[
J̃τ0(τ)

]2
−
[
J̃τ0(0)

]2
− τ
}2

∫ τ
0

[
J̃τ0(r)

]2
dr

+

{[
J̃τ0(1)

]2
−
[
J̃τ0(τ)

]2
− [1− τ ]

}2
∫ 1
τ

[
J̃τ0(r)

]2
dr

(13)

where J̃τ0(r), for r ∈ [0, 1], is the Gaussian process defined in (6) with the initial

condition J̃τ0(0) = x0/σ, and ⇒ denotes weak convergence.

Remark 4.1 When deriving the exact distribution for Model (3), we assumed that two
persistency parameters are known. In Model (8), both β1 and β2 are assumed unknown

and are estimated. That explains why the in-fill asymptotic distribution in (13) is

different from the exact distribution in (5). If β1 and β2 in (8) are known, then the

corresponding in-fill asymptotic distribution will be the same as the exact distribution

in (5).

Remark 4.2 Through the Gaussian process J̃τ0(r), the in-fill asymptotic distribution
given in (13) explicitly depends on the initial condition x0/σ. Moreover, it also depends

on the persistency parameters κ and δ. Since J̃τ0(r) is continuous in κ and δ, the in-fill

asymptotic distribution in (13) should also be continuous in κ and δ.

Remark 4.3 Let τ = τ 0 + u. An equivalent representation of the in-fill asymptotic
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distribution is:

τ̂LS − τ 0

⇒ arg max
u∈(−τ0,1−τ0)

{[
J̃τ0(τ)

]2
−
[
J̃τ0(0)

]2
− τ
}2

∫ τ
0

[
J̃τ0(r)

]2
dr

+

{[
J̃τ0(1)

]2
−
[
J̃τ0(τ)

]2
− [1− τ ]

}2
∫ 1
τ

[
J̃τ0(r)

]2
dr

.

As in the exact distribution, both the asymmetry in (−τ 0, 1− τ 0) and the asymmetry
in J̃τ0(r) at different sides of τ 0 contribute to the asymmetry of the in-fill asymptotic

distribution. Hence, the in-fill distribution is asymmetric for all τ 0 even when τ 0 = 1/2,

suggesting that τ̂LS is generally biased.

Remark 4.4 Although it is much harder to obtain the expectation of the objective func-
tion in this case, we still expect trimodality in τ̂LS − τ 0 for the same reason as before,
namely, the origin is the unique maximum of the expectation of the objective function

and the maximization is done over a finite interval (−τ 0, 1− τ 0), not the infinite in-
terval (−∞,∞). The conjecture of asymmetry and trimodality will be confirmed in

simulations, which also show that the in-fill asymptotic distribution performs very well

in approximating the finite sample distributions.

5 A General Model

In this section we extend the in-fill asymptotic theory to a general discrete-time model

with weakly dependent errors:

xt =
(
β11[t≤k0] + β21[t>k0]

)
xt−1 + ut, x0 = Op (1) , (14)

where β1 = exp {−κ/T}, β2 = exp {−(κ+ δ)/T}, T is the sample size, and

ut =

∞∑
j=0

cjet−j with et
i.i.d.∼

(
0, σ2h

)
and h = 1/T.

It is assumed that c0 = 1 and
∑∞

j=0 j |cj| < ∞. Define γ (j) ≡ E (utut−j) for j =

0,±1,±2, . . ., and C (1) ≡
∑∞

j=0 cj. Note that the long-run variance of ut goes to zero

as h→ 0:

λ2 ≡
∞∑

j=−∞
γ (j) = [C (1)]2 σ2h = O

(
T−1

)
→ 0, as T →∞.
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It is also clear that Model (14) reduces to Model (8) if cj = 0 for j ≥ 1. For this model,

no long-span asymptotic theory is available in the literature regardless of the value of

β1 and β2.

To estimate the break point, the LS estimator defined in (10) is used. Note that k̂LS
is also the LS estimator of the break point for the process yt = xt/

√
h which evolves as

yt =
(
β11[t≤k0] + β21[t>k0]

)
yt−1 + u∗t , with y0 = x0/

√
h = Op

(
T 1/2

)
, (15)

where

u∗t =
ut√
h

=
∞∑
j=0

cjεt−j and εt =
et√
h

i.i.d.∼
(
0, σ2

)
.

Define γ∗ (j) ≡ E
(
u∗tu

∗
t−j
)

= γ (j) /h for j = 0,±1,±2, . . .. The long-run variance of

u∗t is

(λ∗)2 ≡
∞∑

j=−∞
γ∗ (j) = λ2/h = [C (1)]2 σ2.

If cj = 0 for j ≥ 1, Model (15) will reduce to Model (12).

Theorem 5.1 Consider the general discrete-time model with weekly dependent errors
defined in (14). When T →∞ with a fixed τ 0 = k0/T , the in-fill asymptotic distribution

of τ̂LS = k̂LS/T with k̂LS defined in (10) is

τ̂LS ⇒ arg max
τ∈(0,1)

{[
J̃τ0(τ)

]2
−
[
J̃τ0(0)

]2
− φτ

}2
∫ τ
0

[
J̃τ0(r)

]2
dr

+

{[
J̃τ0(1)

]2
−
[
J̃τ0(τ)

]2
− φ [1− τ ]

}2
∫ 1
τ

[
J̃τ0(r)

]2
dr

(16)

where φ = γ∗ (0) / [C (1)σ]2 and J̃τ (r) is the Gaussian process defined in (6) with the

initial value J̃τ0(0) = x0/ [C (1)σ].

Remark 5.1 Note that γ∗ (0) ≡ E
[
(u∗t )

2] =
∑∞

j=0 c
2
jσ
2. Therefore, φ =

∑∞
j=0 c

2
j/ [C (1)]2

which is independent of σ2. However, the in-fill asymptotic distribution given in (16)

explicitly depends on x0 and σ through the initial value of J̃τ0(0) = x0/ [C (1)σ]. More-

over, if cj = 0 for j ≥ 1, [C (1)]2 = c20 =
∑∞

j=0 c
2
j and φ = 1. Then, the in-fill asymptotic

distribution given in (16) becomes the same as the one given in (13) for the model with

i.i.d. errors.

Remark 5.2 With the same reasons, we expect the in-fill asymptotic distribution in
(16) to be asymmetric and trimodal.
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6 Monte Carlo Results

In this section, we first design seven Monte Carlo experiments to compare the perfor-

mance of our in-fill asymptotic distribution with the corresponding long-span asymp-

totic distribution developed in the literature. In each experiment, we plot densities of

the long-span distribution, our in-fill distribution, and the finite sample distribution.

The seven experiments are selected to ensure that all the available long-span asymptotic

distributions are covered.

In each experiment, data are generated from Model (12) with τ 0 = 0.3, 0.5, 0.7,

σ = 1, εt
i.i.d.∼ N(0, 1), T = 200 (i.e. h = 1/200) and different combination of κ and

δ. In all cases we set x0/σ = 1. All the pdfs are obtained by simulation with 100,000

replications. When we calculate the in-fill distribution and the long-span distribution,

the stochastic integrals are approximated over a very small grid size, namely 0.001. Let

β1 and β1 denote the AR(1) coeffi cients before and after the break.

In the first experiment, we set κ = 138 and δ = 55, implying β1 = 0.5 and β2 = 0.38.

In this experiment, we assume the AR(1) coeffi cient switches from a stationary root to

another stationary root. The corresponding long-span asymptotic distribution is given

in (17) in Appendix A. The three densities are plotted in the upper panel in Figure 3.

In the second experiment, we set κ = 21 and δ = −21, implying β1 = 0.9 and

β2 = 1. In this experiment, we assume the AR(1) coeffi cient switches from a stationary

root to a unit root. Hence, the corresponding long-span asymptotic distribution is the

one in (18). The three densities are plotted in the middle panel in Figure 3.

In the third experiment, we set κ = 0 and δ = 10, implying β1 = 1 and β2 = 0.95.

In this experiment, we assume the AR(1) coeffi cient switches from a unit root to a

stationary root. Hence, the corresponding long-span asymptotic distribution is the one

given in (19). The three densities are plotted in the lower panel in Figure 3.

In the fourth experiment, we set κ = 10 and δ = −9, implying β1 = 0.95 and

β2 = 0.995. In this experiment, we assume the AR(1) coeffi cient switches from a

stationary root to a local-to-unit-root. Hence, the corresponding long-span asymptotic

distribution is the one given in (20) where we set c = −1. The three densities are

plotted in the upper panel in Figure 4.

In the fifth experiment, we set κ = 1 and δ = 5, implying β1 = 0.995 and β2 = 0.97.

In this experiment, we assume the AR(1) coeffi cient switches from a local-to-unit-root

to a stationary root. Hence, the corresponding long-span asymptotic distribution is the

one given in (21) where we set c = −1. The three densities are plotted in the lower

panel in Figure 4.
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In the sixth experiment, we set κ = 10 and δ = −10, implying β1 = 0.95 and β2 = 1.

In this experiment, we assume the AR(1) coeffi cient switches from a mildly stationary

root to a unit root. Hence, the corresponding long-span asymptotic distribution is the

one given in (22) where we set c = −1 and kT = 20. The three densities are plotted in

the upper panel in Figure 5.

In the seventh experiment, we set κ = 0 and δ = 7, implying β1 = 1 and β2 = 0.96.

In this experiment, we assume the AR(1) coeffi cient switches from a unit root to a

mildly stationary root. Hence, the corresponding long-span asymptotic distribution is

the one given in (23) where we set kT = 30 and c = −1.2. The three densities are

plotted in the lower panel in Figure 5.

As discussed in Section 2, the long-span asymptotic distributions are unknown for

many other interesting cases. We then design two Monte Carlo experiments to check the

performance of our in-fill asymptotic distribution in cases where the long-span theory is

unavailable. In both experiments, we plot densities of our in-fill asymptotic distribution

and the finite sample distribution.

In the eighth experiment, we set κ = 0 and δ = −6, implying β1 = 1 and β2 = 1.03.

This case is important because it is related to the recent literature that estimates the

bubble origination date; see, for example, Phillips, Wu, and Yu (2011) and Phillips and

Yu (2011), and Phillips, Shi, and Yu (2015a, b). The two densities are plotted in the

upper panel in Figure 6.

In the ninth experiment, we set κ = −6 and δ = 12, implying β1 = 1.03 and

β2 = 0.97. This case is also empirically important because it is related to the recent

literature that estimates the bubble termination date; see, for example, Phillips and

Shi (2017). The two densities are plotted in the lower panel in Figure 6.

Several features are apparent in these figures. First, the finite sample distribution

is asymmetric about 0 even when τ 0 = 1/2. Second, the finite sample distribution has

trimodality. The origin is one of the three modes and the two boundary points are the

other two. Third and most importantly, the in-fill distribution given in Theorem 4.1

has trimodality and is asymmetric about zero, just like the finite sample distribution.

It always provides better approximations to the finite sample distribution than the

long-span distribution when the long-span theory is available (as apparent in Figures

3-5), despite that the sample size is reasonably large (T = 200). It continues to provide

accurate approximations to the finite sample distribution when the long-span theory is

not available, as apparent in Figure 6.

We now turn our attention to the first moment of alternative distributions and hence

the bias of τ̂LS. Since our in-fill distribution is closer to the finite sample distribution
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1−β21
(τ̂LS − τ 0) when β1 = 0.5, β2 = 0.38; the pdf of T (1 −

β1)(τ̂LS − τ 0) when β1 = 0.9, β2 = 1; and the pdf of T 2(β2 − 1)2(τ̂LS − τ 0) when
β1 = 1, β2 = 0.95, (the upper, middle and lower panel respectively), with x0/σ = 1 and
τ 0 = 0.3, 0.5, 0.7 (the left, middle and right panel respectively). Solid lines are finite
sample distributions when T = 200; dashed lines are in-fill densities from Theorem 4.1;
and broken lines are long-span limiting distributions.
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Figure 5: The pdf of cT
kT

(τ̂LS − τ 0) when β1 = 0.95, β2 = 1, c = 1, kT = 20, and the pdf

of c
2T 2

k2T
(τ̂LS − τ 0) when β1 = 1, β2 = 0.96, c = 1.2, kT = 30 (the upper and lower panel

respectively), with x0/σ = 1 and τ 0 = 0.3, 0.5, 0.7 (the left, middle and right panel
respectively). Solid lines are finite sample distributions when T = 200; dashed lines are
in-fill densities from Theorem 4.1; and broken lines are long-span limiting distributions.
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Figure 6: The pdf of (τ̂LS − τ 0) when β1 = 1, β2 = 1.03, and the pdf of (τ̂LS − τ 0)
when β1 = 1.03, β2 = 0.97 (the upper and lower panel respectively), with x0/σ = 1 and
τ 0 = 0.3, 0.5, 0.7 (the left, middle and right panel respectively). Solid lines are finite
sample distributions when T = 200; dashed lines are in-fill densities from Theorem 4.1.
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Table 2: The table shows the finite sample bias of τ̂LS, the bias implied by the in-fill
asymptotic distribution, and the bias implied by the long-span asymptotic distribution
when the AR(1) process switches from a stationary root to another stationary root with
different break sizes, x0/σ = 0.2 and T = 200. The number of replications is 10,000.

β1 β2
τ 0 0.5 0.45 0.55 0.61 0.74 0.83

0.3 Finite 0.2113 0.2675 0.2648 0.1792 0.1093
0.3 In-fill 0.2871 0.3261 0.2899 0.1590 0.0887
0.3 Long span 0 0 0 0 0
0.5 Finite 0.0146 0.0745 0.0933 0.0743 0.0491
0.5 In-fill 0.1004 0.1321 0.1235 0.0768 0.0501
0.5 Long span 0 0 0 0 0
0.7 Finite -0.1777 -0.1245 -0.0840 -0.0235 0.0029
0.7 In-fill -0.0793 -0.0621 -0.0435 0.0044 0.0200
0.7 Long span 0 0 0 0 0

than the long-span distribution, it is expected that the bias implied by the in-fill theory

should be closer to the true bias. To confirm this conjecture, we design an experiment

where the AR(1) coeffi cient switches from a stationary root (β1 = 0.5) to another

stationary root (β2 = 0.45, 0.55, 0.61, 0.74, or 0.83) with τ 0 = 0.3, 0.5, 0.7, x0/σ = 0.2,

T = 200. Table 2 reports the true bias, the bias implied by the in-fill distribution and

the bias implied by the long-span distribution. We may draw the following conclusions

from Table 2. First, the LS estimate suffers from severe bias problem in nearly all

cases. For example, when β1 = 0.5, β2 = 0.55, τ 0 = 0.3, the bias is 0.2675 which

is about 90% of the true value. Furthermore, the LS estimate is biased even when

τ 0 = 0.5. When β1 = 0.5, β2 = 0.61, τ 0 = 0.5 (the same design that gives rise to

Figure 1), the bias is 0.0933 which is about 20% of the true value. Second, there is no

bias according to the long-span distribution. This is not surprising because the long-

span distribution corresponds to arg max
u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
in this case. Hence, the

long-span distribution not only fails to approximate the finite sample distribution but

also fails to approximate the first moment. Third, the in-fill asymptotic distribution

can approximate the true bias well in all cases considered.

In another experiment, we allow the model to switch from a unit root (β1 = 1) to an

explosive root (β2 = 1.01, 1.02, 1.03, 1.04, or 1.05) with τ 0 = 0.3, 0.5, 0.7, x0/σ = 0.2,

T = 200. In this case, the long-span asymptotic theory is not available. Table 3 reports

the true bias and the bias implied by the in-fill distribution. Some remarks can be made.
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Table 3: The table shows the finite sample bias of τ̂LS, the bias implied by the in-fill
asymptotic distribution, and the bias from the long-span asymptotic distribution when
the AR(1) process switches from a unit root to mildly explosive root with different
break sizes, x0/σ = 0.2 and T = 200. The number of replications is 10,000.

β1 β2
τ 0 1 1.01 1.02 1.03 1.04 1.05

0.3 Finite 0.2247 0.2445 0.2291 0.1751 0.1223
0.3 In-fill 0.2112 0.2355 0.2322 0.1817 0.1297
0.5 Finite 0.0213 0.0588 0.0648 0.0496 0.0369
0.5 In-fill 0.0102 0.0500 0.0660 0.0570 0.0416
0.7 Finite -0.1826 -0.1036 -0.0293 -0.0017 0.0095
0.7 In-fill -0.1940 -0.1158 -0.0349 -0.0008 0.0119

First, the LS estimate can suffer from a bias problem in this case. For example, when

β1 = 1, β2 = 1.02, τ 0 = 0.3, the bias is 0.2445 which is about 80% of the true value.

Given the importance of this estimator for bubble detection (see, for example, Phillips,

Wu, and Yu, 2011), the bias reported here must have serious empirical implications.

Second, the in-fill asymptotic distribution can approximate the true bias well in all

cases considered.

We now shift our attention to the impact of the initial condition. While the long-span

distribution is independent of the initial condition, both the finite sample distribution

and the in-fill distribution depend on the initial condition. We have already shown that

the in-fill distribution provides excellent approximations to the finite sample distribution

and that the bias implied by the in-fill distribution is very close to the true bias in all

cases. To examine the impact of the initial condition, we focus on the bias implied

by the in-fill distribution. In particular, we plot the bias function (i.e., E (τ̂LS) as

a function of τ 0) implied by the in-fill asymptotics for Model (12) and examine the

sensitivity of the function to the initial condition.

Figures 7-9 plot the bias function when x0 = 0.2, 0.4, 0.6, 0.8, 1 and σ = 1. Figure 7

corresponds to the case where β1 = 0.9, β1 = 1; Figure 8 to β1 = 1, β1 = 0.9; Figure

9 to β1 = 1, β1 = 1.03. Several conclusions can be drawn. First, the initial condition

can have a significant impact on the magnitude of bias. Specifically, when x0/σ gets

bigger, the bias becomes smaller generally. This result corroborates the result obtained

in Perron (1991, Figure 4) in the context of AR(1) model without break. Second, it

seems there exists a value of τ 0 (which depends on the values of β1 and β2), at which

the bias may not be zero but becomes invariant of the initial condition.
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Figure 7: Bias functions implied by the in-fill asymptotic distribution given in Theorem
4.1 when β1 = 0.9 and β2 = 1 with various initial conditions.
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Figure 8: Bias functions implied by the in-fill asymptotic distribution given in Theorem
4.1 when β1 = 1 and β2 = 0.9 with various initial conditions.
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Figure 9: Bias functions implied by the in-fill asymptotic distribution given in Theorem
4.1 when β1 = 1 and β2 = 1.03 with various initial conditions.

7 Conclusions

This paper is concerned about the large sample approximation to the finite sample

distribution in the estimation of structural break point in autoregressive models. Based

on the Girsanov theorem, we obtain the exact distribution of the ML estimator of

structural break point in the OU process when a continuous record is available. We

find that the exact distribution is asymmetric and trimodal. These two properties are

also found in the finite sample distribution of the LS estimator of structural break point

in AR models.

Unfortunately, the literature on the estimation of structural break point in AR

models has always focused on developing asymptotic theory by assuming the time spans

before and after the break go to infinity. We show that the long-span theory provides

poor approximation to the finite sample distribution in many empirically relevant cases.

Moreover, the long-span asymptotics developed in the literature are different, depending

on the distance and the direction from the unity for underlying AR(1) coeffi cients.

This discontinuity in the long-span asymptotic distributions makes it diffi cult to use in

practice. Furthermore, the existing limiting theory is developed for a few cases only,

leaving out some empirically interesting cases. Finally, the model considered in the

literature is quite restrictive as the errors are independent.

This paper provides a unified limiting theory for the break point estimate in the

AR(1) model with independent errors as well as the model with weakly dependent er-
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rors. It develops an in-fill asymptotic theory for the LS estimator of structural break

point. The developed in-fill asymptotic distribution is continuous in the underlying

persistency parameters, regardless of their signs and values. We also show that this

distribution is asymmetric and trimodal, and approximates the finite sample distribu-

tion better than the long-span distribution developed in the literature when the latter

is known and provides excellent approximations to the finite sample distribution when

the latter is unknown.

APPENDIX

A A detailed literature review

In the following, we review the main results on the long-span asymptotic distributions

developed in the literature. In some cases, the AR roots, β1 and β2, are assumed to

be functions of the sample size T . Then, we use β1T and β2T to replace β1 and β2
accordingly.

Chong (2001) first studied Model (1) with |β1| < 1 and |β2| < 1, where the AR(1) co-

effi cient switches from a stationary root to another stationary root. To derive the long-

span asymptotic distribution for the model with a small break size, Chong (2017) let β2
depend on T , denoted as β2T , and assumed that β2T−β1 → 0 with

√
T |β2T − β1| → ∞

as T →∞. Under the condition that y0 = Op (1), he derived the long-span asymptotic

distribution of τ̂LS,T as

T (β2T − β1)2

1− β21
(τ̂LS,T − τ 0)

d−→ arg max
u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
, (17)

where W (u) is a two-sided Brownian motion, defined as W (u) = B1(−u) if u ≤ 0 and

W (u) = B2(u) if u > 0, with B1 and B2 being two independent Brownian motions.

The pdf and the cdf for this limiting distribution have been derived in Yao (1987).

Chong (2001) then studied Model (1) with |β1| < 1 and β2 = 1. In this case, the

AR(1) model switches from a stationary root to a unit root. He let β1 = β1T , and

assumed that 1 − β1T → 0 with T (1− β1T ) → ∞ as T → ∞. In this case, he proved
that the the long-span asymptotic distribution of τ̂LS,T takes the form of

T (1− β1T )(τ̂LS,T − τ 0)
d−→ arg max

u∈(−∞,∞)

{
W ∗
a (u)

R1
− 1

2
|u|
}
, (18)

where W ∗
a (u) = W1(−u) if u ≤ 0 and
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W ∗
a (u) = −W2(u)−

∫ u

0

W2(s)

R1
dW2(s)−

∫ u

0

(
W2(s)

2R1
+ 1

)
W2(s)ds,

if u > 0 with W1(·) and W2(·) being two independent Brownian motions and R1 =∫∞
0

exp(−s)dW1(s).

Chong (2001) also studied Model (1) with β1 = 1 and |β2| < 1, where the AR

model switches from a unit root to a stationary root. Assuming that β2 = β2T with

the condition
√
T (1− β2T ) → 0 and T 3/4 (1− β2T ) → ∞ as T → ∞, he derived a

long-span asymptotic distribution of τ̂LS,T as

T 2(β2T − 1)2(τ̂LS,T − τ 0)
d−→ arg max

u∈(−∞,∞)

{
W (u)

W3(τ 0)
− 1

2
|u|
}
, (19)

whereW (u) is a two-sided Brownian motion andW3 is an independent standard Brown-

ian motion.

Pang, Zhang and Chong (2014) studied Model (1) with |β1T | < 1 and β2T = 1±c/T .
In this case the AR model switches from a stationary root to a local-to-unit-root. Under

the assumptions that y0 = op(
√
T ), |β2T − β1T | → 0 with T (β2T − β1T ) → ∞, they

derived an asymptotic distribution of τ̂LS,T as

T (β2T − β1)(τ̂LS,T − τ 0)
d−→ arg max

u∈(−∞,∞)

{
W ∗
b (u)

R1
− 1

2
|u|
}
, (20)

where W ∗
b (u) = W1(−u) if u ≤ 0 and

W ∗
b (u) = −I(W2, c, τ 0, u)−

∫ u

0

I(W2, c, τ 0, s)

R1
dI(W2, c, τ 0, s)

−
∫ u

0

(
I(W2, c, τ 0, s)

2R1
+ 1

)
I(W2, c, τ 0, s)ds,

if u > 0 with

I(W2, c, τ 0, s) = W2(τ 0 + s)−W2(τ 0)− c
∫ τ0+s

τ0

e−c(τ0+s−r) (W2(r)−W2(τ 0)) ds,

andW1 andW2 being two independent Brownian motions andR1 =
∫∞
0

exp(−s)dW1(s).

Pang, Zhang and Chong (2014) also studied Model (1) with β1T = 1 + c/T and

β2T < 1. In this case the AR model switches from a local-to-unit-root to a stationary

root. Under the assumptions that y0 = op

(√
T
)
,
√
T (β2T − β1T )→ 0 with T 3/4(β2T −

β1T )→∞, they proved that τ̂LS,T has the long-span asymptotic distribution as

T 2(β2 − β1T )2(τ̂LS,T − τ 0)
d−→ arg max

u∈(−∞,∞)

{
W (u)

exp (c(1− τ 0))G(W1, c, τ 0)
− 1

2
|u|
}
,

(21)
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where W (u) is a two-sided Brownian motion and

G(W1, c, τ 0) = exp (−c(1− τ 0))W1(τ 0)− c
∫ τ0

0

exp (−c(1− s))W1(s)ds.

Liang et al. (2017) studied Model (1) with β1T = 1 − c/Tα and β2 = 1 where c is

a positive constant and α ∈ (0, 1).6 In this case the AR model switches from a mildly

stationary root to a unit root. Under the assumptions that y0 = op(
√
Tα), they derived

a long-span asymptotic distribution of τ̂LS,T as

cT

Tα
(τ̂LS,T − τ 0)

d−→ arg max
u∈(−∞,∞)

{
W ∗
c (u)

Rc

− 1

2
|u|
}
, (22)

where W ∗
c (u) = W1(−u) when u ≤ 0, and when u > 0

W ∗
c (u) = −W2(u)−

∫ u

0

W2(s)

Rc

dW2(s)−
∫ u

0

(
W2(s)

2Rc

+ 1

)
W2(s)ds,

withW1 andW2 being two independent Brownian motions andRc =
√
c
∫∞
0

exp(−cs)dW1(s).

Liang et al. (2017) also studied Model (1) with β1 = 1 and β2T = 1 − c/Tα. In

this case the AR model switches from a unit root to a mildly stationary root. Under

the assumptions that y0 = op(
√
Tα),

√
T/Tα → 0 and T 3/4/Tα → ∞ as T → ∞, they

derived a long-span asymptotic distribution of τ̂LS,T as

c2T 2

T 2α
(τ̂LS,T − τ 0)

d−→ arg max
u∈(−∞,∞)

{
W (u)

W1(τ 0)
− 1

2
|u|
}
, (23)

where W (u) is a two-sided Brownian motion and W1(·) is an independent standard
Brownian motion.

B Proofs

Lemma B.1 Consider the process yt defined in (12) with the dynamics

yt =
(
β11[t≤k0] + β21[t>k0]

)
yt−1 + εt, εt

i.i.d.∼
(
0, σ2

)
, y0 = x0/

√
h.

When T = 1/h→∞ with a fixed τ 0 = k0/T , for any τ ∈ [0, 1],

(a) T−1
∑bTτc

t=1 yt−1εt ⇒ σ2
∫ τ
0
J̃τ0(r)dB (r) ;

(b) T−2
∑bTτc

t=1 y2t−1 ⇒ σ2
∫ τ
0

[
J̃τ0(r)

]2
dr;

6Following Phillips and Magdalinos (2007), Liang et al. (2017) used kT instead of Tα with the
assumption that kT →∞ and kT /T → 0.
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(c)
[
J̃τ0(τ)

]2
−
[
J̃τ0(0)

]2
= 2

∫ τ
0
J̃τ0(r)dB(r)− 2

∫ τ
0

(
κ+ δ1[r>τ0]

) [
J̃τ0(r)

]2
dr + τ ;

(d)
[
J̃τ0(1)

]2
−
[
J̃τ0(τ)

]2
= 2

∫ 1
τ
J̃τ0(r)dB(r)−2

∫ 1
τ

(
κ+ δ1[r>τ0]

) [
J̃τ0(r)

]2
dr+(1− τ) ,

where bTτc denotes the integer part of Tτ , J̃τ0(r) for r ∈ [0, 1] is a Gaussian process

generated by dJ̃τ0(r) = −
(
κ+ δ1[r>τ0]

)
J̃τ0(r)dr+ dB(r) with the initial value J̃τ0(0) =

x0/σ, and B(r) is a standard Brownian motion.

Lemma B.2 Consider the process yt defined in (15) with the dynamics

yt =
(
β11[t≤k0] + β21[t>k0]

)
yt−1 + u∗t , y0 = x0/

√
h

where

u∗t =

∞∑
j=0

cjεt−j, εt
i.i.d.∼

(
0, σ2

)
, c0 = 1 and

∞∑
j=0

j |cj| <∞.

Define γ∗ (j) ≡ E
(
u∗tu

∗
t−j
)
for j = 0,±1,±2, . . .and C (1) =

∑∞
j=0 cj. When T =

1/h→∞ with a fixed τ 0 = k0/T , for any τ ∈ [0, 1],

(a) T−2
∑bTτc

t=1 y2t−1 ⇒ [C (1)σ]2
∫ τ
0

[
J̃τ0(r)

]2
dr;

(b) T−1
∑bTτc

t=1 yt−1u
∗
t ⇒ [C (1)σ]2

∫ τ
0
J̃τ0(r)dB (r) + (τ/2)

{
[C (1)σ]2 − γ∗ (0)

}
;

where bTτc denotes the integer part of Tτ , J̃τ0(r) for r ∈ [0, 1] is a Gaussian process

generated by dJ̃τ0(r) = −
(
κ+ δ1[r>τ0]

)
J̃τ0(r)dr+ dB(r) with the initial value J̃τ0(0) =

x0/ [C (1)σ], and B(r) is a standard Brownian motion.

Proof of Lemma B.1: When τ ≤ τ 0, the process yt for t = 1, 2, . . . , bTτc has no
break. Then, the results in (a) and (b) can be obtained straightforwardly by using the

large sample theory for local-to-unity process; see, for example, Perron (1991). When

τ > τ 0, the AR root of yt changes from β1 to β2 at the point t = k0 = Tτ 0. We can

apply the large sample theory for local-to-unity process separately on different sides of

the break to get the result in (a) as

T−1
bTτc∑
t=1

yt−1εt = T−1
bTτ0c∑
t=1

yt−1εt + T−1
bTτc∑

t=bTτ0c+1

yt−1εt

⇒ σ2
{∫ τ0

0

J̃τ0(r)dB (r) +

∫ τ

τ0

J̃τ0(r)dB (r)

}
= σ2

∫ τ

0

J̃τ0(r)dB (r) .

Similarly, the result in (b) for τ > τ 0 can be obtained.

The results in (c) and (d) can be derived directly from the diffusion function

d
[
J̃τ0(r)

]2
= 2J̃τ0(r)dJ̃τ0(r) + dr

= 2J̃τ0(r)dB(r)− 2
(
κ+ δ1[r>τ0]

) [
J̃τ0(r)

]2
dr + dr,

29



where the first equation comes from Itô’s lemma.

Proof of Lemma B.2: When τ ≤ τ 0, the process yt for t = 1, 2, . . . , bTτc has no
break. Then, (a) and (b) are just extensions of the results in Phillips (1987b) from the

case where x0 = 0 to the case where x0 6= 0. These extensions can be done easily by

using the approach proposed in Perron (1991).

When τ > τ 0, the AR root of yt changes from β1 to β2 at the point t = Tτ 0. Then,

the method to prove Lemma B.1 can be used again to get (a) and (b) in this lemma.

Proof of Theorem 3.1: Note that

τ̂ML = arg max
τ∈(0,1)

{logL(τ)}

= arg max
τ∈(0,1)

1

σ2

{
−
∫ 1

0

(κ+ δ1[t>τ ])x(t)dx(t)− 1

2

∫ 1

0

(
κ+ δ1[t>τ ]

)2
[x(t)]2 dt

}
= arg max

τ∈(0,1)

1

σ2

{
−
∫ 1

0

δ1[t>τ ]x(t)dx(t)− 1

2

∫ 1

0

(
2κδ + δ2

)
1[t>τ ] [x(t)]2 dt

}
= arg max

τ∈(0,1)
− δ

σ2

{∫ 1

τ

x(t)dx(t) +
1

2

∫ 1

τ

(2κ+ δ) [x(t)]2 dt

}
= arg max

τ∈(0,1)
− δ

σ2

{∫ 1

τ

x(t)dx(t)− 1

2

∫ τ

0

(2κ+ δ) [x(t)]2 dt

}
where the third equation is obtained by deleting the terms independent of the choice of

τ but appearing in the second equation. Applying Itô’s lemma to the diffusion process

x(t) defined in (3) leads to

d [x(t)]2 = 2x(t)dx(t) + σ2dt.

Hence, ∫ 1

τ

x(t)dx(t) =
1

2

∫ 1

τ

d [x(t)]2 − 1

2

∫ 1

τ

σ2dt

=
1

2

(
[x(1)]2 − [x(τ)]2

)
− 1

2
σ2 (1− τ) .

We then have

τ̂ML = arg max
τ∈(0,1)

− δ

σ2

{
1

2

(
[x(1)]2 − [x(τ)]2

)
− 1

2
σ2 (1− τ)− 2κ+ δ

2

∫ τ

0

[x(t)]2 dt

}
= arg max

τ∈(0,1)
− δ

σ2

{
− [x(τ)]2 + σ2τ − (2κ+ δ)

∫ τ

0

[x(t)]2 dt

}
= arg max

τ∈(0,1)
δ

{[
J̃τ0(τ)

]2
− τ + (2κ+ δ)

∫ τ

0

[
J̃τ0(t)

]2
dt

}
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where the second equation is obtained by deleting the terms independent of the choice

of τ but appearing in the first equation, and the third equation comes form the rela-

tionship of J̃τ0(t) = x(t)/σ2 which can be obtained from the definitions of J̃τ0(t) and

x(t) as in (6) and (3), respectively.

Proof of Theorem 4.1: First note that k̂LS defined in (10) can be identically repre-
sented as

k̂LS = arg min
k=1,··· ,T−1

S (k) , with S (k) =

k∑
t=1

(
yt − β̂1 (k) yt−1

)2
+

T∑
t=k+1

(
yt − β̂2 (k) yt−1

)2
where β̂1 (k) =

∑k
t=1 ytyt−1/

∑k
t=1 y

2
t−1, β̂2 (k) =

∑T
t=k+1 ytyt−1/

∑T
t=k+1 y

2
t−1, and yt =

xt/
√
h is defined in (12). Define the T × 2 matrix Y (k) =

[
Y1 (k) Y2 (k)

]
with

Y1 (k) =
[
y0 · · · yk−1 0 · · · 0

]′
and Y2 (k) =

[
0 · · · 0 yk · · · yT−1

]′
. Let

Y =
[
y1 · · · yT

]′
. Then, standard linear regression algebra gives an identical repre-

sentation of the sum of squared residuals:

S (k) = Y ′MY with M = I−Y1 (k) [Y ′1 (k)Y1 (k)]
−1
Y ′1 (k)−Y2 (k) [Y ′2 (k)Y2 (k)]

−1
Y ′2 (k) ,

where I is an T × T identity matrix. From equation (12), we have

yt = β1yt−1 + (β2 − β1) 1[t>k0]yt−1 + εt = β1yt−1 + ηt

where ηt ≡ (β2 − β1) 1[t>k0]yt−1+εt. Let Y− =
[
y0 · · · yT−1

]′
and η =

[
η1 · · · ηT

]′
.

We then have

Y = Y−β1 + η.

Therefore,

S (k) = Y ′MY = Y ′M ′MY = (Y−β1 + η)′M ′M (Y−β1 + η) = η′Mη

= η′η − η′Y1 (k) [Y ′1 (k)Y1 (k)]
−1
Y ′1 (k) η − η′Y2 (k) [Y ′2 (k)Y2 (k)]

−1
Y ′2 (k) η

where the second equation is from M ′M = M and the fourth equation is because

MY− = 0T×1. Note that

η′η =

k0∑
t=1

η2t +
T∑

t=k0+1

η2t =

k0∑
t=1

ε2t +
T∑

t=k0+1

[(β2 − β1) yt−1 + εt]
2 ,

which is independent of the choice of k, and

η′Y1 (k) [Y ′1 (k)Y1 (k)]
−1
Y ′1 (k) η =

(∑k
t=1 yt−1ηt

)2
∑k

t=1 y
2
t−1

η′Y2 (k) [Y ′2 (k)Y2 (k)]
−1
Y ′2 (k) η =

(∑T
t=k+1 yt−1ηt

)2
∑T

t=k+1 y
2
t−1

.
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Hence,

k̂LS = arg min
k=1,··· ,T−1

S (k) = arg max
k=1,··· ,T−1


(∑k

t=1 yt−1ηt

)2
∑k

t=1 y
2
t−1

+

(∑T
t=k+1 yt−1ηt

)2
∑T

t=k+1 y
2
t−1

 .

(24)

The same transformation method has been used in Elliott and Müller (2007) for a

general linear time series regression with a single break.

Note that

τ̂LS = k̂LS/T = arg max
τ∈(0,1)


(∑bTτc

t=1 yt−1ηt

)2
∑bTτc

t=1 y2t−1
+

(∑T
t=bTτc+1 yt−1ηt

)2
∑T

t=bTτc+1 y
2
t−1

 .

When τ ≤ τ 0, we have

T−1
bTτc∑
t=1

yt−1ηt = T−1
bTτc∑
t=1

yt−1εt ⇒ σ2
∫ τ

0

J̃τ0(r)dB (r)

and

1

T

T∑
t=bTτc+1

yt−1ηt =
1

T

 bTτ0c∑
t=bTτc+1

yt−1ηt +
T∑

t=bTτ0c+1

yt−1ηt


=

1

T

 bTτ0c∑
t=bTτc+1

yt−1εt + (β2 − β1)
T∑

t=bTτ0c+1

y2t−1 +
T∑

t=bTτ0c+1

yt−1εt


=

1

T

T∑
t=bTτc+1

yt−1εt + T (β2 − β1)
1

T 2

T∑
t=bTτ0c+1

y2t−1

⇒ σ2
∫ 1

τ

J̃τ0(r)dB (r)− δσ2
∫ 1

τ0

[
J̃τ0(r)

]2
dr

where the limiting results are obtained from (a) and (b) in Lemma B.1 straightforwardly,

from which we can also get

T−2
bTτc∑
t=1

y2t−1 ⇒ σ2
∫ τ

0

[
J̃τ0(r)

]2
dr and T−2

T∑
t=bTτc+1

y2t−1 ⇒ σ2
∫ 1

τ

[
J̃τ0(r)

]2
dr.

Denoting Ψ (τ) =
(∑bTτc

t=1 yt−1ηt

)2
/
∑bTτc

t=1 y2t−1 +
(∑T

t=bTτc+1 yt−1ηt

)2
/
∑T

t=bTτc+1 y
2
t−1,

we then have

Ψ (τ)⇒ σ2


(∫ τ

0
J̃τ0(r)dB (r)

)2
∫ τ
0

[
J̃τ0(r)

]2
dr

+

(∫ 1
τ
J̃τ0(r)dB (r)− δ

∫ 1
τ0

[
J̃τ0(r)

]2
dr

)2
∫ 1
τ

[
J̃τ0(r)

]2
dr

 .
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Based on the results of (c) and (d) in Lemma B.1, we have(∫ τ
0
J̃τ0(r)dB (r)

)2
∫ τ
0

[
J̃τ0(r)

]2
dr

=

([
J̃τ0(τ)

]2
−
[
J̃τ0(0)

]2
− τ + 2κ

∫ τ
0

[
J̃τ0(r)

]2
dr

)2
4
∫ τ
0

[
J̃τ0(r)

]2
dr

=

([
J̃τ0(τ)

]2
−
[
J̃τ0(0)

]2
− τ
)2

4
∫ τ
0

[
J̃τ0(r)

]2
dr

+ κ2
∫ τ

0

[
J̃τ0(r)

]2
dr

+κ

([
J̃τ0(τ)

]2
−
[
J̃τ0(0)

]2
− τ
)

and (∫ 1
τ
J̃τ0(r)dB (r)− δ

∫ 1
τ0

[
J̃τ0(r)

]2
dr

)2
∫ 1
τ

[
J̃τ0(r)

]2
dr

=

([
J̃τ0(1)

]2
−
[
J̃τ0(τ)

]2
− (1− τ) + 2κ

∫ 1
τ

[
J̃τ0(r)

]2
dr

)2
4
∫ 1
τ

[
J̃τ0(r)

]2
dr

=

([
J̃τ0(1)

]2
−
[
J̃τ0(τ)

]2
− (1− τ)

)2
4
∫ 1
τ

[
J̃τ0(r)

]2
dr

+ κ2
∫ 1

τ

[
J̃τ0(r)

]2
dr

+κ

([
J̃τ0(1)

]2
−
[
J̃τ0(τ)

]2
− (1− τ)

)
As a result,

Ψ (τ)

σ2
⇒

([
J̃τ0(τ)

]2
−
[
J̃τ0(0)

]2
− τ
)2

4
∫ τ
0

[
J̃τ0(r)

]2
dr

+

([
J̃τ0(1)

]2
−
[
J̃τ0(τ)

]2
− (1− τ)

)2
4
∫ 1
τ

[
J̃τ0(r)

]2
dr

+κ2
∫ 1

0

[
J̃τ0(r)

]2
dr + κ

([
J̃τ0(1)

]2
−
[
J̃τ0(0)

]2
− 1

)
.

Following the same procedure above, when τ > τ 0, it can be proved that

Ψ (τ)

σ2
⇒

([
J̃τ0(τ)

]2
−
[
J̃τ0(0)

]2
− τ
)2

4
∫ τ
0

[
J̃τ0(r)

]2
dr

+

([
J̃τ0(1)

]2
−
[
J̃τ0(τ)

]2
− (1− τ)

)2
4
∫ 1
τ

[
J̃τ0(r)

]2
dr

+κ2
∫ 1

0

[
J̃τ0(r)

]2
dr + κ

([
J̃τ0(1)

]2
−
[
J̃τ0(0)

]2
− 1

)
.
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Therefore, deleting the common terms shared by the limit of Ψ (τ) when τ > τ 0 and

τ ≤ τ 0 which are independent of the choice of τ leads to the final in-fill asymptotic

distribution of τ̂LS as

τ̂LS = arg max
τ∈(0,1)

Ψ (τ)

⇒ arg max
τ∈(0,1)

[[
J̃τ0(τ)

]2
−
[
J̃τ0(0)

]2
− τ
]2

∫ τ
0

[
J̃τ0(r)

]2
dr

+

[[
J̃τ0(1)

]2
−
[
J̃τ0(τ)

]2
− [1− τ ]

]2
∫ 1
τ

[
J̃τ0(r)

]2
dr

.

Proof of Theorem 5.1: With the use of the in-fill asymptotics given in Lemma B.2,
the same procedure for the proof of Theorem 4.1 will lead to the result in Theorem 5.1.

The details are omitted here.
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