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COMPRESS: A Comprehensive Framework of Trajectory
Compression in Road Networks

YUNHENG HAN and WEIWEI SUN, Fudan University & Shanghai Key Laboratory of Data Science
BAIHUA ZHENG, Singapore Management University

More and more advanced technologies become available to collect and integrate an unprecedented amount of data from mul-
tiple sources, including GPS trajectories about the traces of moving objects. Given the fact that GPS trajectories are vast in
size while the information carried by the trajectories could be redundant, we focus on trajectory compression in this paper. As
a systematic solution, we propose a comprehensive framework namely COMPRESS (Comprehensive Paralleled Road-
Network-Based Trajectory Compression) to compress GPS trajectory data in urban road network. In the pre-processing step,
COMPRESS decomposes trajectories into spatial paths and temporal sequences, with a thorough justification for trajec-
tory decomposition. In the compression step, COMPRESS performs spatial compression on spatial paths, and temporal
compression on temporal sequences in parallel. It introduces two alternative algorithms with different strengths for loss-
less spatial compression; and designs lossy but error-bounded algorithms for temporal compression. It also presents query
processing algorithms to support error-bounded location-based queries on compressed trajectories without full decompres-
sion. All algorithms under COMPRESS are efficient and have the time complexity of O(|T |), where |T | is the size of
the input trajectory T . We have also conducted a comprehensive experimental study to demonstrate the effectiveness of
COMPRESS, whose compression ratio is significantly better than related approaches.

Categories and Subject Descriptors: E.4 [Coding and Information Theory]: Data compaction and compression; H.2.8
[Database Management]: Database Applications—Spatial databases and GIS

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: GPS trajectory, road network, trajectory compression, map-matching, information en-
tropy, trajectory representation, entropy encoding, dictionary coder, stabbing polyline

ACM Reference Format:
Yunheng Han, Weiwei Sun and Baihua Zheng. 2016. COMPRESS: A Comprehensive Framework of Trajectory Com-
pression in Road Networks. ACM Trans. Datab. Syst. 0, 0, Article 0 ( 2016), 45 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
In the era of big data, quantities of data reach almost incomprehensible proportions. As we move
forward, we are going to have more and more huge data collections. Take the GPS trajectories
generated by moving objects in urban spaces as an example. According to the statistics released by
U.S. Department of Transportation, the motor vehicles in U.S. travelled 2.95 × 1012 miles in total
in 2011 [OHPI 2014]. If we assume the speed limit is 60 miles per hour, and a low GPS sampling
rate of 1/60 Hz, the motor vehicles in U.S. generated at least 53 TB GPS trajectory data in 2011.
Consequently, it is critical to reduce the size of trajectory data in order to alleviate the storage
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overhead and communication cost. On the other hand, many trajectories could be similar as their
movements are strictly bounded by the given road network and hence the information carried by
trajectories could be redundant. For example, the total length of the road network in U.S. is about
4.08 × 106 miles, as reported by the Central Intelligence Agency (CIA) in 2012, while the motor
vehicles in U.S. travelled in total 2.95 × 1012 miles in 2011. This means on average each road is
travelled over 723, 000 times within a year which further justifies the necessity of trajectory data
compression.

In this work, we focus on the trajectory compression issue. To be more specific, we model a
road network as a directed graph G = (V,E), where V is the vertex set and E is the edge set.
The weight on an edge e, deneoted as w(e), can be physical distance, travel time or other costs
according to different application context. A trajectory is the path that a moving object follows
through space as a function of time. Consequently, it contains both spatial information and temporal
information. Traditional approaches represent a trajectory T via a sequence of n triples in the form
of (〈x1, y1, t1〉, 〈x2, y2, t2〉, · · · , 〈xn, yn, tn〉), where (xi, yi) records the longitude and latitude of
a moving object at time stamp ti.1

As a solution, we propose a novel and efficient framework, namely COMPRESS (Comprehensive
Paralleled Road-Network-Based Trajectory Compression), as a systematic solution to compress the
trajectory data. The main objective of COMPRESS is to achieve a high compression ratio. In addi-
tion, we also consider the requirements of different applications and want to retain the utility of tra-
jectory data even in the compressed form. COMPRESS proposes a suite of compression algorithms
with different strengths to cater for the requirements of various applications. For example, Hybrid
Dictionary Compression algorithm can achieve a good compression ratio with reasonably high util-
ity; Labelling and Coding compression algorithm can guarantee a much higher compression ratio
with low utility; and Bounded Temporal Compression algorithm can adjust its compression ratio via
setting tolerant errors to different values with certain data utility.

In the rest of the article, we first present the architecture of COMPRESS framework in Section 2
and also list the main contributions of COMPRESS framework as compared with existing works.
We next present the trajectory decomposition, spatial compression, and temporal compression, the
three key tasks performed by COMPRESS in Section 3, Section 4, and Section 5 respectively. We
then list some applications that COMPRESS can support in Section 6. We report our experimental
study in Section 7, and review existing work in Section 8. Finally, we conclude this paper with some
directions for future work in Section 9.

2. OVERVIEW OF COMPRESS
Now we present the main components and basic operating principles of the COMPRESS frame-
work. As shown in Fig. 1, COMPRESS framework takes GPS trajectories as input and invokes Map
Matcher to map the raw trajectories to a given road network [Brakatsoulas et al. 2005; Lou et al.
2009; Newson and Krumm 2009; Song et al. 2012]. Map Matcher then clusters the GPS trajecto-
ries into two sets, one set of trajectories, denoted as Γm, that can be matched successfully to the
given road network and the other set of trajectories, denoted as Γu, that fails to be matched. Our
COMPRESS framework only manages matched trajectories preserved in Γm, while trajectories in
Γu have their own application base such as auto-recovering the road segments that are missing in
the road network [Wu et al. 2015; Shan et al. 2015]. We also want to highlight that how to match the
trajectory to maps is not the focus of this work, and we adopt an existing map matching algorithm
in our implementation. Note that map matching algorithms will be reviewed in Section 8.

Next, COMPRESS framework invokes Trajectory Decomposer to decompose each trajectory into
a spatial path and a temporal sequence. In view of the fact that trajectory data is a series of space
locations as a function of time, some data reduction algorithms apply space-time decomposition to

1Note that xi and yi are spherical coordinates instead of Cartesian coordinates, and the distance between sample points is
calculated by the spherical law of cosines. In our experiments, both xi and yi occupy 8 bytes, in the format of double-decision
decimal points, and ti occupies 4 bytes in the format of single-decision decimal point.
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Fig. 1: COMPRESS framework

trajectories, including not only GPS data [Song et al. 2014; Cao and Wolfson 2005], but also data
generated by other devices, e.g., data from particle accelerators [Arpaia et al. 2010]. Although we
are not the first one to decompose the GPS trajectories, we want to highlight that this is the first
work to explain the inefficiency of representing a trajectory in the format of 〈xi, yi, ti〉 sequence
theoretically from the perspective of trajectory compression, which provides a thorough justification
for trajectory decomposition.

After decomposing the trajectory data into spatial paths and temporal sequences, COMPRESS
framework invokes two separate compressors, i.e., spatial compressor and temporal compressor,
to compress them respectively. Note that the spatial compressor implements two core algorithms,
namely Hybrid Dictionary Compression (HDC) and Labelling and Coding (L&C). Both algorithms
can perform lossless compression on spatial paths with different strengths. HDC can preserve certain
key spatial properties of the original spatial paths even after compression. In other words, spatial
paths compressed by HDC can still support searches, and hence it is suitable for applications that
need to not only compress trajectory data but also perform queries, e.g., location-based service
applications. On the other hand, L&C can achieve a better compression rate but the compressed
data are not able to support any search unless the compressed data are de-compressed. Consequently,
L&C is ideal for data archive. The temporal compressor implements lossy compression algorithms
based on Computational Geometry, including Rigid Stabbing polyLine Compression (RSLC) and
Tube Stabbing polyLine Compression (TSLC). Both lossy algorithms ignore unnecessary points
instead of encoding them, so searches on compressed temporal sequences are exactly the same as
those on the original ones.

As a summary, our COMPRESS framework is still based on the trajectory decomposition, which
was initially proposed in [Song et al. 2014] as a new approach to represent a trajectory. COMPRESS
framework extends the initial study via not only proposing new spatial compression algorithms and
new temporal compression algorithms with better performance, but also justifying the advantages
of our trajectory decomposition framework via thorough theoretical analysis. To be more specific,
the major value-added extension over [Song et al. 2014] in COMPRESS framework is summarized
as follows.

— Although [Song et al. 2014] has already implemented trajectory decomposition, it lacks the the-
oretical support from information theory. In this paper, we analyze the inefficiency of traditional
GPS trajectory representation in terms of encoding in Section 3.1. It justifies the necessity of repre-
sentation transformation before compression and provides a theoretical basis for all the algorithms
developed.

— We propose two new algorithms to compress the spatial paths in Section 4, i.e., HDC based on dic-
tionary coding and L&C based on entropy coding. Both dictionary coding and entropy coding are
optimal algorithms that achieve the entropy limit, while the original algorithm proposed in [Song
et al. 2014] is heuristic but not optimal. HDC constructs a dictionary for not only compression
but also serving as an index for efficient query processing. L&C implements an optimal labelling
algorithm to achieve the highest compression ratio.

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2016.
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— Two error metrics, namely TSND and NSTD, were introduced in [Song et al. 2014] to bound errors
in time and distance dimensions respectively. However, the time compression algorithm proposed
in [Song et al. 2014] is a greedy algorithm but not optimal. Accordingly, we introduce a geometric
model for the problem of temporal compression and design a new temporal compression algorithm
in Section 5.3, namely TSLC, which is optimal in terms of compression ratio.

Besides three extensions mentioned above, the error-bounded query processing on partially de-
compressed data discussed in [Song et al. 2014] is still available after COMPRESS implements new
compression algorithms. Query processing on partially decompressed data is efficient in terms of
both storage cost and time cost, as compared with conventional methods. Finally, we conduct ex-
tensive experiments to compare the performance of COMPRESS and other existing methods and to
demonstrate the efficiency and effectiveness of COMPRESS framework.

3. TRAJECTORY REPRESENTATION
A trajectory is the path that a moving object follows through space as a function of time, and
most of, if not all, existing works present a trajectory via a sequence of n triples in the form of
〈x1, y1, t1〉, 〈x2, y2, t2〉, · · · , 〈xn, yn, tn〉. In the following, we first analyze the limitation of this
conventional representation in terms of compression ratio, and then present the proposed decompo-
sition approach.

3.1. Analysis on conventional representation
Compression ratio is a common metric to evaluate the effectiveness of compression algorithms,
which is defined in Definition 3.1. Here, compression ratio is the ratio of the size of original data
to the size of the compressed data. For example, if we compress a trajectory of 4KB data into a
compressed form of 2KB, the compression ratio is 4

2 = 2.

Definition 3.1 (Compression ratio). Given a trajectory T of size |T | and a compressed trajectory
T c of T with size |T c|, the compression ratio is |T ||T c| .

Data compression can be either lossless or lossy. Let’s first consider lossless compression on
original trajectory. If we use conventional algorithms such as Huffman coding [Huffman 1952] or
Lempel-Ziv coding [Lempel and Ziv 1977; 1978] to compress the trajectory in the original form,
we are only able to achieve a very low compression ratio. As the theoretical background of data
compression is provided by information theory, we analyse the problem from the perspective of in-
formation entropy [Shannon 1948]. We represent the trajectory as continuous random variables and
calculate its entropy, which shows the lower bound of the compressed trajectories’ size. As stated
in Theorem 3.2, both entropy coding and dictionary coding on original trajectories are ineffective.

An intuitive but informal explanation of Theorem 3.2 is that the frequency differences among
symbols become smaller as the precision increases, which makes Huffman coding perform similarly
as the sequential coding with a low compression ratio. Furthermore, Lempel-Ziv coding can hardly
find repeated patterns in trajectories of a high precision, thus its compression ratio is also low. In
fact, the compression ratio drops to nearly 1 on floating-point numbers with accuracy of 9 significant
decimal digits2, which will be shown in Section 7.

THEOREM 3.2. Both entropy coding and dictionary coding can only compress GPS trajectory
data with a compression ratio close to 1 as the precision of floating-point numbers tends to be
infinity.

PROOF. First we prove that entropy coding is inefficient on compressing trajectory data. Let X
be a continuous random variable and p(x) be the probability density function (PDF) ofX . To calcu-

2In our experimental studies, we represent both the longitude and latitude using a real number with accuracy of 9 significant
decimal digits.
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late entropy of X , we divide the sample space Ω = [a, b) of X into n equal segments of size ∆, as
shown in Fig. 2. Assume the interval [a, b) is divided into {[a = x0, x1), [x1, x2), · · · , [xn−1, xn =
b)}. Then, we have probability of xi ≤ x < xi+1 stated in Equation (1).

P (xi ≤ x < xi+1) =

∫ xi+1

xi

p(x)dx. (1)

Based on the mean-value theorem, there exists a value xmi
in each part that

p(xmi
)∆ =

∫ xi+1

xi

p(x)dx.

In other words, we can calculate entropy of the discrete random variable as

H∆(X) = −
n∑
i=0

p(xmi)∆ log(p(xmi)∆)

= −
n∑
i=0

(p(xmi) log p(xmi))∆− log ∆ = h∆(X)− log ∆.

If p(x) log p(x) is Riemannian integrable,

H(X) = lim
n→∞
(∆→0)

H∆(X) = lim
n→∞
(∆→0)

h∆(X)− lim
n→∞
(∆→0)

log ∆

= −
∫ b

a

p(x) log p(x)dx− lim
n→∞
(∆→0)

log ∆ = h(X)− lim
n→∞
(∆→0)

log ∆,

where h(X) is differential entropy of X .
Since n here is the precision of real numbers in practice, we have to use n unique symbols to

represent all n parts in the interval. In other words, we can represent an original real number with
dlog ne bits by a sequential coding. According to Shannon’s source coding theorem [Shannon 1948]
and the optimality of entropy encoding (e.g., Huffman coding and arithmetic coding), when n→∞,
we have

lim
n→∞

1

r
= lim

∆→0

H∆(X)

dlog ne
= lim
n→∞

h∆(X)− log ∆

dlog ne

= lim
n→∞

h∆(X)− log(b− a) + log n

dlog ne

= (h(X)− log(b− a)) lim
n→∞

1

dlog ne
+ lim
n→∞

log n

dlog ne
= 1.

Consequently, the compression ratio tends to be 1 as the precision tends to be infinity.
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The performance of other coding algorithms like LZW is bounded by joint entropy so the proof
is similar. Given any k, let p(x1, x2, · · · , xk) be the joint PDF of X1, X2, · · · , Xk. The average
coding length Lk is bounded according to Equation (2).

H(X1, X2, · · · , Xk)

k
≤ Lk <

H(X1, X2, · · · , Xk)

k
+

1

k
(2)

In other words, we have to use at least H(X1, X2, · · · , Xk) bits to encode k symbols.
Then we divide the sample space Ω = [a1, b1) × [a2, b2) × · · · × [ak, bk) into

nk equal parts of size
∏k
i=1 ∆i. Assume the interval [ai, bi) is divided into {[ai =

xi,0, xi,1), [xi,1, xi,2), · · · , [xi,n−1, xi,n = bi)}, then we have

P (x1,j1 ≤ x1 < x1,j1+1, x1,j2 ≤ x2 < x1,j2+1, · · · , xk,jk ≤ xk < xk,jk+1)

=

∫ x1,j1+1

x1,j1

∫ x2,j2+1

x2,j2

· · ·
∫ xk,jk+1

xk,jk

p(x1, x2, · · · , xk)dx1dx2 · · · dxk.

= p(xm1,j1
, xm2,j2

, · · · , xmk,jk
)

k∏
i=1

∆i.

The entropy is calculated as

H∆(X1, X2, · · · , Xk)

=−
n∑

j1=0

n∑
j2=0

· · ·
n∑

jk=0

p(xm1,j1
, xm2,j2

, · · · , xmk,jk
)

k∏
i=1

∆i log(p(xm1,j1
, xm2,j2

, · · · , xmk,jk
)

k∏
i=1

∆i)

=− log

k∏
i=1

∆i −
n∑

j1=0

n∑
j2=0

· · ·
n∑

jk=0

p(xm1,j1
, xm2,j2

, · · · , xmk,jk
) log(p(xm1,j1

, xm2,j2
, · · · , xmk,jk

)

k∏
i=1

∆i

=−
k∑
i=0

log ∆i + h∆(X1, X2, · · · , Xk).

Assuming there are k real numbers and their precision is n, then at least H∆(X1, X2, · · · , Xk) bits
are needed to encode them. If p(x1, x2, · · · , xk) log p(x1, x2, · · · , xk) is Riemannian integrable,

H(X1, X2, · · · , Xk)

= lim
n→∞
(∆→0)

H∆(X1, X2, · · · , Xk) = lim
n→∞
(∆→0)

h∆(X1, X2, · · · , Xn)− lim
n→∞
(∆→0)

k∑
i=1

log ∆i

=−
∫ b1

a1

∫ b2

a2

· · ·
∫ bk

ak

p(x1, x2, · · · , xk) log p(x1, x2, · · · , xk)dx1dx2 · · · dxk − lim
n→∞
(∆→0)

k∑
i=1

log ∆i

=h(X1, X2, · · · , Xk)− lim
n→∞
(∆→0)

k∑
i=1

log ∆i,
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where h(X1, X2, · · · , Xk) is the joint differential entropy. Finally, the compression ratio r of dic-
tionary coding is calculated as

lim
n→∞

1

r
= lim

∆→0

H∆(X1, X2, · · · , Xk)

k × dlog ne
= lim
n→∞

−
∑k
i=0 log ∆i + h∆(X1, X2, · · · , Xk)

k × dlog ne

= lim
n→∞

−
∑k
i=1 log(bi − ai) +

∑k
i=1 log n+ h∆(X1, X2, · · · , Xk)

k × dlog ne

= lim
n→∞

1

dlog ne
× lim
n→∞

h∆(X1, X2, · · · , Xk)−
∑k
i=1 log(bi − ai)

k
+ lim
n→∞

log n

dlog ne

= 0×
h(X1, X2, · · · , Xk)−

∑k
i=1 log(bi − ai)

k
+ 1 = 1.

Lossy compression is able to achieve a very high compression ratio but it can hardly guarantee
the utility of data after compression. As will be discussed in Section 8, many lossy trajectory com-
pression algorithms actually remove certain sampled points from trajectories and hence compressed
trajectory data suffer from high deviation from original data. Consequently, if the error caused by
the compression is strictly bounded (e.g., tolerant error is small/zero and lossy compression is ap-
proximate/equivalent to lossless compression), the compression ratio of those lossy compression
algorithms could be very limited. Moreover, critical points like road junctions in trajectories cannot
be discarded in order to preserve the geometric shape, which also leads to low compression ratio.
The limitations of the existing lossy 2D compression algorithms have been reported in [Popa et al.
2015]. More details about lossless and lossy compression algorithms will be discussed in Section 8.

After careful analysis, we want to highlight that the ineffectiveness of trajectory compression
is caused by data representation, regardless of algorithms used. In fact, both Huffman coding and
Lempel-Ziv coding are optimal because their expected coding length achieves entropy (or entropy
rate) of information sources, where an information source is a sequence of random variables, or
a stochastic process. Information entropy that bounds the performance of data compression algo-
rithms is a measure of uncertainty involved in the outcome of a stochastic process. More precisely,
the more uncertainty the stochastic process involves, the more information the data contains, and
the more bits are needed to encode the data. Conventional representation is suitable for arbitrary 2D
trajectories. However, trajectories of moving objects in a road network capture the movements that
are strictly restricted by the underlying road network, and the uncertainty of a trajectory in the road
network is much smaller than that of an arbitrary one in a 2D plane. In other words, conventional
representation involves unnecessary uncertainty (i.e., unnecessary information) in the data. This ex-
plains the reason that compression ratio of trajectories in conventional representations is low though
the compression algorithm applied is optimal.

3.2. Trajectory decomposition
We apply dimensionality reduction to remove those unnecessary uncertainty in the data. Suppose
we reduce three-dimensional data 〈xi, yi, ti〉 to a lower dimensional form of (di, ti) or even one-
dimensional form of zi, then it is possible to raise basic compression ratio up to 3

2 = 1.5 or 3
1 = 3.

As we must construct a bijective mapping from the original form to the reduced form to make
compression lossless, it is very challenging to achieve one-dimensional reduction. Consequently,
we propose two-dimensional reduction to save some additional data.

The original triple 〈xi, yi, ti〉 tells that the moving object is located at position (xi, yi) at the time
stamp ti. Let (x1, y1) be the starting point of the trajectory, the distance di from the first point to
the ith point is definite if the position (xi, yi) of the ith point is known. If we know the distance di
a moving object has travelled from t1 to ti, the position (xi, yi) corresponding to the time stamp
ti is uncertain. Consequently, we record the spatial paths (e1, e2, · · · , em) passed by a trajectory

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 2016.



0:8 Y. Han et al.

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11
v12

e3

e15 e16

e6

e1 e2

e17

e4 e7e5

e8 e9 e10

e11 e12 e13 e14

Fig. 3: Sample Road Network G(V,E)

e3

e6

e13

e15 e16

t11 t12

t13

t14

∆11

∆12t21

∆13

∆21 ∆22

∆23

t22

t23

e8

e5
e2

T1

T2

v5

Fig. 4: Decomposition of Trajectory T

T to translate di back to (xi, yi), where (e1, e2, · · · , em) is a sequence of m edges in E that the
moving object passes by via trajectory T . It is much easier to compress a sequence of edges and
indeed we are able to compress (e1, e2, · · · , em) into a very small size. To be more specific, we
decompose a trajectory T into a spatial path and a temporal sequence, as defined in Definition 3.3
and Definition 3.4 respectively.

Definition 3.3 (Spatial path). A spatial path of a trajectory T is the edge sequence in the road
network G(V,E) that the trajectory passes by sequentially, denoted as SPT = (e1, e2, ..., em).

Definition 3.4 (Temporal sequence). A temporal sequence of a trajectory T is a sequence of
two-tuples (di, ti), where di is the distance travelled by the moving object from the start point until
the time stamp ti along trajectory T . T ST = ((d1, t1), (d2, t2), ..., (dn, tn)).

To illustrate the concept of trajectory decomposition, we plot a sample road network in Fig. 3. In
the sample road network, we have V = {v1, v2, · · · , v12} andE = {e1, e2, · · · , e17}. We also show
two sample trajectories T1 and T2 in Fig. 4, with hollow dots along the trajectories representing the
sampled GPS points. Take T1 as an example. According to original representation, T1 is represented
as (〈x11, y11, t11〉, 〈x12, y12, t12〉, 〈x13, y13, t13〉, 〈x14, y14, t14〉, 〈x15, y15, t15〉). Here, xi and yi
capture the x-coordinator and y-coordinator of a point in the road network respectively. According
to trajectory decomposition, T1 is decomposed into a spatial path SPT1

and a temporal sequence
T ST1

, with SPT1
= (e15, e16, e13, e6, e3), and T ST1

= ((0, t11), (w(e15) + ∆11, t12), (w(e15) +
w(e16), t13), (w(e15)+w(e16)+w(e13)+∆12, t14), (w(e15)+w(e16)+w(e13)+w(e6)+∆13, t15)).
Note that if a trajectory does not start from the starting vertex of an edge, the distance d1 associated
with starting time stamp t1 will be the distance from the starting point of the trajectory to the
starting vertex of the edge. Take trajectory T2 shown in Fig. 4 as another example. Its starting
point lies on the edge e8, having ∆21 distance from the starting vertex of e8 (i.e., v5). Its spatial
path SPT2 = (e8, e5, e2), and its temporal sequence T ST1 = ((∆21, t21), (w(e8) + ∆22, t22),
(w(e8) + w(e5) + ∆23, t23)).

After decomposing trajectories, a trajectory set is converted into a set of spatial paths and a set
of temporal sequences. We then use different algorithms to compress them separately, according to
their unique features. In COMPRESS framework, we apply lossless data compression algorithms to
spatial paths since they are sequences of integers which have relatively low entropy; meanwhile, we
use an error-bounded lossy data compression algorithm to compress temporal sequences because
compression of temporal sequences is more challenging. For a given trajectory T , as we can trans-
form it between the original form and the decomposed form with time complexity of O(|T |), it is
easy to recover original trajectories after decompression of spatial paths and temporal sequences.

4. SPATIAL COMPRESSION
In this section, we focus on spatial path compression that takes SPT in the form of (e1, e2, · · · , em)
as input. Obviously, we can treat each edge in SPT as an alphabet and regard SPT as a string. In
other words, we can employ existing lossless data compression algorithms to perform the compres-
sion. However, the alphabet size |Σ| of SPT equals the number of edges |E| that is much larger
than that of a normal alphabet set (e.g. English alphabet). For example, the California Road Network
released by Stanford Network Analysis Platform (SNAP) has over 2.7 millions edges. If we treat
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SPT as a string and simply invoke coding algorithms to compress it, according to Theorem 3.2,
the compression ratio will be very low when trajectories are in a road network with a large edge
set and frequency differences between edges are not very notable. Furthermore, edges in a spatial
path are not mutually independent. Consequently, entropy coding like Huffman coding is ineffective
when symbols are not independent and identically distributed; while dictionary coding has a better
compression capability because it can compress frequent sub-strings in the data. Since Huffman
coding is not suitable for spatial compression, the original spatial compression algorithm proposed
in [Song et al. 2014] that is based on heuristic Huffman coding and takes θ symbols (1 ≤ θ ≤ 3) as
a supersymbol could be further improved.

The above observation inspires us to think of other ways to compress spatial paths. In COM-
PRESS framework, we propose two new spatial compression algorithms catered for spatial path
compression, namely Hybrid Dictionary Compression (HDC) and Labelling and Coding (L&C).
HDC performs priming algorithms and then applies dictionary coding; L&C transforms the repre-
sentation of spatial paths then applies entropy coding. HDC preserves certain key spatial properties
of spatial paths and it supports efficient query operations on compressed trajectories; L&C can
achieve a higher compression ratio and it is useful for archiving data or building backup. In the
following, we explain these two algorithms in detail.

4.1. Hybrid Dictionary Compression
HDC takes a spatial path SPT = (e1, e2, ..., em) as an input, and performs lossless compression.
In the following, we first review LZW algorithm, one of the most commonly used dictionary coding
algorithms. LZW algorithm is ineffective on compressing spatial paths because the alphabet size
is large while the length of a typical spatial path is short. Therefore, we introduce two priming
methods, including Frequent Path Priming (FPP) and Shortest Path Priming (SPP) to build priming
dictionaries. Afterwards, HDC can compress spatial paths effectively via priming dictionaries.

4.1.1. Review of dictionary coding. Lempel and Ziv proposed two different versions of Lempel-
Ziv coding, namely LZ77 algorithm [Lempel and Ziv 1977] and LZ78 algorithm [Lempel and Ziv
1978] in 1977 and 1978 respectively. LZ77 algorithm maintains a sliding window as its dictionary;
and LZ78 algorithm builds a dictionary containing bijection between references and strings, usually
in the form of a tree. Then, Welch enhanced LZ78 in 1984, which is known as Lempel-Ziv-Welch
Algorithm (LZW) [Welch 1984]. Given an input string Sin, LZW performs compression in four
steps. In Step 1, it initializes the dictionary to contain all strings of length one via a trie [Knuth
1997]. In Step 2, it finds the longest string W in the dictionary that matches the current input Sin.
In Step 3, it outputs the index corresponding to W and removes W from Sin. In Step 4, it adds W
followed by the next symbol in the input Sin to the dictionary, i.e., adding a new node to Trie. It
goes to Step 2 again to repeat the above process until the ending of the input is reached.

a \0 b

root

21 0

∑={a, b}

(a) Initial Trie

a \0 b

root

01 2

b

a

b

a
3

4

5

6

∑={a, b, ab, aba, ba, abab}

(b) Final Trie

Fig. 5: Example Trie

S coded codeb
\0 0 00
a 1 01
b 2 10
ab 3 011
ba 4 100
aba 5 101
abab 6 110

Fig. 6: Symbols S ∈ Σ and their codes
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Table I: Compression of Sin = ababababa via LZW

input Sin current string W next symbol output binary output new entry in Σ |Σ|
ababababa a b a: 1 01 ab: 3 4
babababa b a b: 2 10 ba: 4 5
abababa ab a ab: 3 011 aba: 5 6
ababa aba b aba: 5 101 abab: 6 7

ba ba \0 ba: 4 100 7
\0 NULL \0: 0 000 7

To facilitate the understanding of LZW compression, we illustrate the main steps of compressing
a given string Sin = ababababa via LZW in Table I. If we assume the initial dictionary Σ = {a, b},
LZW will initialize a trie containing three nodes, for three strings of length one (i.e., a, b, \0), as
shown in Fig. 5(a). Note that the symbol \0 represents the end of strings. The number next to each
node, as depicted in Fig. 5(a), represents the code (in decimal format) corresponding to each symbol
in Σ. We list the codes, in both decimal format and binary format in Fig. 6. For example, for symbol
a ∈ Σ, its code is 1 in decimal and 01 in binary format; for symbol b ∈ Σ, its code is 2 in decimal and
10 in binary format. We want to highlight that the number of binary bits used to represent a decimal
code is dependent on the size of current Σ. For example, as |Σ| = 3 initially, two binary bits are
sufficient to code all the symbols currently captured by Σ. When the fifth symbol is introduced to Σ,
the algorithm will have to switch at that point from two binary bits to three binary bits to represent
all the codes, including those which were previously represented by only two binary bits.

After the initialization, LZW scans the input string Sin letter by letter. First, it finds a in Trie
which matches the prefix of Sin. It enrolls the binary code of a (i.e., 01) to the output. In addition, it
forms a new symbol ab based on a and its next symbol in Sin, inserts a new node corresponding to
ab to the Trie, and removes a from the input string. Accordingly, a new code (i.e., 3 in decimal) is
assigned to ab. Next, it finds b in Trie which matches the prefix of current Sin. It enrolls the binary
code of b (i.e., 10) to the output. Similarly, it also forms a new symbol ba based on b and its next
symbol in Sin, inserts a new node corresponding to ba to the Trie, and removes b from the input
string. Accordingly, a new code (i.e., 4 in decimal) is assigned to ba. Note that, as Σ = {a, b, ab, ba}
(and \0) reaches the size of five, binary codes in two-bits forms are not sufficient. That’s why the
next output (and following outputs as well) will use three bits. Then, it finds ab in Trie that matches
the prefix of current Sin. It enrolls the binary code of ab (i.e., 011) to the output. Again, it also forms
a new symbol aba based on ab and its next symbol a in Sin, inserts a new node corresponding to
aba to the Trie, and removes ab from the input string. Accordingly, a new code (i.e., 5 in decimal)
is assigned to aba. The process continues until the input string becomes empty. The final output is
01 10 011 101 100 000. It is obvious that LZW compresses the input string by scanning the string
once, so it has a linear time complexity O(|Sin|).

Each row in Table I corresponds to one step described above. The input string in the original form
contains 10 symbols including the end symbol \0 with each taking 2 bits; while the output string in
the compressed form occupies 16 bits. In other words, using LZW has saved (2 × 10 − 16) out of
20, achieving a compression ratio of 1.25.

The decompression algorithm works by reading a value from the encoded input and outputting
the corresponding symbol from the initialized dictionary Σ. Note we only need to know the initial
dictionary (e.g., Σ = {a, b} in our example) but not the extended dictionary as additional symbols
can be re-constructed based on initial entries in Σ. Continue previous example, and we list the main
steps of decompressing 0110011101100000 via LZW in Table II. Initially, |Σ| = 3 and the binary
code is in the form of two bits. That explains why the first two rows in Table II read input as two-bit
code. After first two steps listed in first two rows, Σ = {a, b, ab, ba} and hence the algorithm starts
reading input as 3-bits codes. As the decompression algorithm is very similar as the compression
algorithm, its details are skipped here to avoid redundancy. Again, the decompression algorithm has
linear time complexity.
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Table II: Decompression of 0110011101100000 via LZW

input current code output new entry in Σ
0110011101100000 01 a ab: 3

10011101100000 10 b ba: 4
011101100000 011 ab aba: 5

101100000 101 aba abab: 6
100000 100 ba

000 000 \0

SPT1
(e8, e5, e2, e3)

SPT2
(e15, e12, e9, e10)

SPT3 (e12, e5, e2, e3)

Fig. 7: Training spatial path set Strain
before
training

Σ = {e1, e2, e3, e4, e5, e6, e7, e8, e9,
e10, e11, e12, e13, e14, e15, e16, e17}

after
training

Σ = {e1, e2, e3, e4, e5, e6, e7, e8, e9,
e10, e11, e12, e13, e14, e15, e16, e17,
e2e3, e5e2, e5e2e3, e8e5, e9e10, e12e5,
e12e9, e15e12}

Fig. 8: Content of dictionary

e2

root

20

2
... e5 e8 e9 e12 e15

5 8 9 12 15
... ... ... ......

e3 e2 e5 e10 e5 e9 e12

e3

25

19 18 23 24 22 21

Fig. 9: Training dictionary of Strain

4.1.2. Frequent Path Priming (FPP). Trajectories are not evenly distributed within the road net-
work and edges in a road network are not accessed uniformly. In other words, certain edge se-
quences are much more popular than others in terms of frequency. If we are able to locate popular
sub-spatial-paths, named frequent sub-spatial-paths (FSPs), we can use certain coding scheme to
compress them and to replace them in the trajectories with the corresponding codes.

Given a large set of trajectory data, the concept of FSP makes sense. Consequently, the compres-
sion based on FSP is not effective if the underlying dataset is small. In addition, we also assume
given the trajectories of all the moving objects (e.g., cars, buses) moving within a city for a duration
of several months, the dataset of one day should be similar as the dataset of another day. Under this
assumption, we can locate FSPs based on a subset of the complete trajectory dataset, which corre-
sponds to the training process in data mining. In the following, we explain how to use dictionary
coding like LZW to mine FSPs and to perform spatial path compression based on FSPs.

There are almost no repeated patterns in a single spatial path, so using LZW to compress a single
spatial path is ineffective. However, different spatial paths could share same patterns, and hence we
can compress a large number of spatial paths together to improve the compression ratio of LZW. If
we simply adopt LZW, we have to re-compress all spatial paths every time when a new trajectory
is added to our collection because trajectories are always sampled separately in practice. A simple
adoption of LZW might result in very expensive time complexity that we cannot afford, and we
need an effective algorithm to compress each single spatial path independently though compressing
spatial paths together improves the compression ratio. As a solution, we use Priming Lempel-Ziv-
Welch Algorithm (PLZW) to mine FSPs and then to compress spatial paths based on mined FSPs.

Consider the process of LZW algorithm, given an entry S in the dictionary, all prefixes of S must
have appeared at least once in the previous part of the input string. Furthermore, given a node ni
in the trie, the entry S represented by the node ni must have appeared at least (k + 1) times, with
k being the number of ni’s descendant nodes. During the process of compression, LZW algorithm
gradually adds new entries into the dictionary and we can regard all those entries in the trie as FSPs.
In order to mine FSPs, we start with an initial dictionary and use LZW algorithm to compress spatial
paths in the training data set one by one. Different from original LZW algorithm, we do not abandon
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the dictionary created by former spatial paths but extend the dictionary by compressing latter spatial
paths. Finally, we will create a large priming dictionary that contains enough FSPs. Thereafter, we
use compression algorithm based on the priming dictionary to compress the spatial paths of new
trajectories.

Different from LZW, algorithm PLZW constructs a priming dictionary from the training data set
and stores the dictionary for further compression and decompression. It shares the same compres-
sion and decompression process as LZW algorithm as we only replace the initial dictionary with
a dictionary that contains more entries. Whereas the training data is sufficiently large to generate
a priming dictionary with enough FSPs, we will not append any new entries to the dictionary dur-
ing the compression of real trajectories. In addition, we maintain an index (e.g. a balanced binary
search tree [Bayer 1972]) in each node of the trie to facilitate the search for the specific child nodes
efficiently during compression because the dictionary is large and so is the number of child nodes
of each node. The time complexity of algorithm PLZW is O(

∑
|Ti| log |E|) for training stage and

O(|T | log |E|) for compression stage, where |T | is the length of the new trajectory to compress and∑
|Ti| is the total length of trajectories in the training data set. Each trie node has at most |E| child

nodes, so the balanced search tree contains at most |E| elements. As compared with LZW, the com-
plexity of compression is multiplied by O(log |E|) as we need to search in indexes. The complexity
of decompression with PLZW is O(|T |) since we just follow the parent nodes until reaching the
root to recover the FSP from the reference to a trie node. The space complexity is also guaranteed
because the size of training dictionary will not exceed the size of training set.

Take spatial paths listed in Fig. 7 as an example training spatial path set, based on the road
network depicted in Fig. 3. Before the start of training stage, the dictionary contains 18 entries of
length 1, including 17 edges in the sample road network and \0, as listed in the first row of Fig. 8.
In the training stage, we compress three spatial paths one by one using PLZW algorithm. First, we
compress SPT1 and append three new entries {e8e5}, {e5e2} and {e2e3} to the dictionary. Next,
we compress SPT2 and append another three new entries {e15e12}, {e12e9} and {e9e10} to the
dictionary. Finally, we compress SPT3 and introduce two new entries. The dictionary after training
stage contains 18 + 8 (= 26) entries including \0, as listed in the second row of Fig. 8.

In the compression stage, PLZW compresses a given spatial path based on the dictionary con-
structed during training stage without changing the content of the dictionary. Take SPT4

=
(e15, e12, e5, e2, e3) as an example. PLZW will compress it by dividing it into three sub-paths with
each corresponding to an entry in the dictionary, i.e., e15e12 (decimal code: 21, binary code: 10101),
e5e2e3 (decimal code: 25, binary code: 11001) and \0 (decimal code: 0, binary code: 00000). SPT4

is encoded into 10101 11001 00000. SPT4 in the original form is a string of length 6 including
\0 and takes space of 6 × 5 bits; and SPT4 in the compressed form takes 15 bits. In other words,
algorithm PLZW achieves a compression ratio of 2 for SPT4 .

The larger the training data set we use, the more the FSPs PLZW can mine, which leads to a
better compression ratio, with additional storage cost to store the larger dictionary. We will study
the balance between the dictionary size and the compression ratio in our experiments.

4.1.3. Shortest Path Priming (SPP). Given a source start and a destination end, most of the time
we will take the shortest path from start to end, if all the edges share a similar traffic condition.
Shortest paths hence are frequent patterns that frequently appear in spatial paths. In [Song et al.
2014], we have already proposed Shortest Path Compression (SPC), which compresses the spatial
paths by skipping certain sub-paths.

We assume that all-pair shortest path information is available via a pre-processing of the road
network. This can be achieved by any of the well known shortest path algorithms, e.g., Dijkstra’s
algorithm [Dijkstra 1959]. If there are several shortest paths between a pair of edges, we only record
one of them to eliminate any ambiguity during compression. Assume SP (ei, ej) donates the short-
est path from edge ei to edge ej , and a dictionary Prev(ei, ej) is maintained for each pair of edges
which records the last edge (the edge right before ej) of SP (ei, ej). Take the partial road network
shown in the Fig. 10 as an example. Assume the number in the middle of each edge indicates the
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Fig. 10: Sample of shortest path priming

T SPT SPc
T

T1 (e15, e12, e9, e10) (e15, e10)
T2 (e15, e16, e13, e6, e3) (e15, e13, e3)
T3 (e11, e8, e5, e2, e3) (e11, e5, e3)
T4 (e11, e8, e9, e6, e3) (e11, e3)

Fig. 11: SPC of sample trajectories

network distance of the edge, then SP (e15, e7) = (e15, e12, e9, e10, e7), Prev(e15, e7) = e10,
Prev(e15, e10) = e9, Prev(e15, e9) = e12 and so on.

Different from frequent path priming, we do not have to represent shortest paths with certain
codes because the source and the destination of a shortest path themselves are enough to locate it
in the dictionary. The main idea is to skip the detailed sub-trajectory (ei, ei+1, ..., ej) if it matches
exactly the shortest path from ei to ej , i.e., replacing SP (ei, ej) with (ei, ej). We list the spatial
paths of four trajectories in Fig. 11. For SPT1

, (e15, e12, e9, e10) is exactly the shortest path from
e15 to e10, according to the partial road network depicted in Fig. 10. Consequently, we can use
two-edge tuple (e15, e10) to represent the original SPT1

. Similarly, for SPT2
, its sub-spatial-paths

(e13, e6, e3) and (e15, e16, e13) are the shortest path from e13 to e3 and that from e15 to e13, respec-
tively. Consequently, we can represent (e13, e6, e3) using a two-edge tuple (e13, e3) and represent
(e15, e16, e13) using (e15, e13). This explains why SPT2 is represented by (e15, e13, e3).

Obviously, there are multiple ways to implement SPC. The detailed implementation of SPC is
presented in [Song et al. 2014], which is a linear greedy algorithm that generates the path that
contains fewest edges. Although in practice people may not take the shortest path all the time,
many sub-sequences of a long trajectory are actually shortest paths. Consequently, SPC will always
achieve a medium compression ratio. Spatial compression in [Song et al. 2014] takes SPC as a
necessary part because it contributes a lot in terms of compression ratio, but we show that SPC is
only an alternative priming stage in HDC in the following.

4.1.4. Combination of SPP and FPP. SPP and FPP are not mutually exclusive and they can be
combined to achieve the advantages of both SPP and FPP. In other words, we can process the spatial
paths via SPC first and then by PLZW. To be more specific, we divide the original trajectory set into
two disjoint subsets, including a training set and a test set, where both subsets are compressed
via SPC first. Then, we mine FSPs from the training set and use those mined FSPs to compress
trajectories in the test set via PLZW. We perform SPC for each trajectory in the training dataset,
and then invoke PLZW in the second stage to mine FSPs. For the test set, we perform SPC and then
PLZW.

Given the fact that FPP is able to mine all FSPs including shortest paths via a sufficiently large
training set, SPP becomes optional in HDC. This finding suggests that there are two ways to imple-
ment HDC in practice, depending on whether SPP is used, as shown in Fig. 12. As it will be shown
in Section 7, the performance difference between two strategies (i.e., the one without SPP and the
other with SPP) becomes smaller when training set size grows. Considering the relatively expensive
time and space costs of SPP (i.e., O(V 2)), we suggest to adopt the strategy without SPP with a
large training set if the road network is extremely big and the pre-processing cost of SPP becomes
unaffordable. On the contrary, if road network is small (e.g. |V | = 60, 456 and |E| = 132, 207 in
the real dataset we use in the experimental study) and the size of the training data is not sufficiently
big, the strategy with SPP should be employed since the pre-processing is one-off.

Last but not least, we want to highlight that the dictionaries generated by SPP and FPP store
not only entries but also some useful additional information to support online LBS applications. In
other words, the dictionaries can serve as an index. More details will be discussed in applications
on compressed trajectories in Section 6.
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Fig. 12: Two strategies of HDC

4.2. Labelling and Coding
In addition to Hybrid Dictionary Compression (HDC) that can effectively compress spatial paths,
we propose Labelling and Coding (L&C) algorithm as an alternative. HDC is based on dictionary
coding because low relevance among edges results in ineffectiveness of entropy coding. Different
from HDC, L&C first labels every edge in the road networkG in the labelling stage, after which each
spatial path can be translated into a label sequence. The translation summarizes the relevance among
edges and thereafter labels are almost independent to each other. Then, in the coding stage, it invokes
an entropy coding algorithm to compress label sequences. Compared with HDC, L&C can achieve
an even higher compression ratio. However, the further reduced storage overhead comes with a loss
of spatial properties so that the compressed spatial paths cannot support any LBS application unless
fully de-compressed.

4.2.1. Labelling stage. In a road network G = (V,E), the max out-degree D =
maxvi∈V (dout(vi)) is small, where dout(v) denotes the out-degree of a vertex v. Given an edge
eij from vi to vj , the number of potential subsequent edges ejl from vj to vl in a spatial path is
equivalent to dout(vj) that is bounded by D. If we assign different labels to immediate successors
of every edge, we can simply locate the next edge in the spatial path if both the label and the previous
edge are known.

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

e3

e15 e16

e6

e1 e2

e17

e4 e7
e5

e8 e9 e10

e11 e12 e13 e14

1 1 1

1

1

1

1 1

1

2 2 2

2 2

2

22

Fig. 13: Example of edge labelling

T SPT label sequence
T1 (e8, e5, e2, e3) (e8, 2, 1, 1)
T2 (e15, e12, e9, e10) (e15, 2, 1, 1)
T3 (e12, e5, e2, e3) (e12, 2, 1, 1)

Fig. 14: Training spatial path set

Take our sample road network as an example, with labels for each edge shown in Fig. 13. Vertex
v6 has its out-degree as two, which means it has only two subsequent edges from v6, i.e., e9 labelled
by 1 and e5 labelled by 2. In other words, the sequence of (e8, 2) represents the path from e8 to e5.
Similarly, vertex v10 has its out-degree as two, with one subsequent edge e16 labelled by 1 and the
other subsequent edge e12 labelled by 2. Consequently, the sequence of (e15, 2) represents the path
from e16 to e12. We also list the label sequence of the spatial paths corresponding to three sample
trajectories in Fig. 14 as examples.

Let |SP| denote the length of spatial path SP . The bit length of SP , denoted as |SP|(2), can be
derived based on Equation (3), and the bit length of the labelled spatial path, denoted as |SPL|(2),
can be derived based on Equation (4). Given the fact that the max out-degree of G is much smaller
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than the size of the edge set (i.e., D � |E|), the storage cost is reduced significantly, as we can see
from Equation (3) and Equation (4).

|SP|(2) = |SP|dlog2(|E|)e (3)
|SPL|(2) = dlog2(|E|)e+ (|SP)| − 1)dlog2(D)e (4)

Even though the labelled spatial path has a much smaller size than the spatial path, we can further
compress the label sequence. Because labelling helps to reduce the size of the label sequence’s
alphabet to D, lossless data compression algorithms become effective, as stated in Theorem 3.2.
In addition, we can further improve the compression ratio of existing compression algorithms by
optimizing the label of the graph. Note the only requirement of our labelling algorithm is that out-
edges of any vertex should have different labels. In other words, there are lots of ways to label the
graph. In the following, we propose a labelling algorithm to construct optimal labels which allow
Huffman coding on the label sequence to achieve the highest compression ratio. Before we present
the labelling algorithm and prove its optimality, we first introduce some important definitions.

Definition 4.1 (Label of an edge). A label of an edge e is an integer L(e) that distinguishes the
edge e from other edges that share the same starting vertex as e.

Definition 4.2 (Label of a graph). A label of a graph G is a mapping LG from the edge set E to
an integer set L, where L = {1, 2, ..., D} and D = maxv∈V (dout(v)). All out-edges of a vertex v,
denoted as Ev ⊂ E, must have different labels, i.e.,∀v ∈ V , ∀ei, ej( 6= ei) ∈ Ev , L(ei) 6= L(ej).

Definition 4.3 (Label of a vertex). A label of a vertex v is a bijective mapping Lv from the out-
edge set Ev of v to an integer set L, where L = {1, 2, ..., dout(v)}.

Next, we present the Minimal Entropy Labelling (MEL) Algorithm to improve the label of the
graph. MEL takes the road network G and frequency of edges as an input and labels out-edges of
every vertex according to their frequency, e.g., label 1 for most frequent out-edge of e, label 2 for
second most frequent out-edge of e and so on. Similar as FPP, we use a large set of trajectory data as
a training set to count the frequency of edges. For example, vertex v10 has four out-edges e16, e12,
e19 and e23. Among the spatial paths of trajectories in our training set, 100 spatial paths pass e16,
700 spatial paths pass e12, 400 spatial paths pass e19, and 200 spatial paths pass e23. Consequently,
we have f(e16) = 100, f(e12) = 700, f(e19) = 400 and f(e23) = 200. MEL then labels these
four edges based on their frequencies, i.e., L(e12) = 1, L(e19) = 2, L(e23) = 3 and L(e16) = 4.

Algorithm 1: Minimal Entropy Labelling (MEL) Algorithm
Input: A road network G = (V,E), and frequency f(e) of every edge in E
Output: A label of the road network G

1: for each vertex v in G do
2: Sort out-edges e of v by frequency f(e) in descending order;
3: currLabel← 1;
4: for each out-edge e ∈ Ev in sorted order do
5: L(e)← currLabel, currLabel← currLabel + 1;

Algorithm 1 lists the pseudo-code for MEL. It scans every vertex and sorts out-edges of each
vertex with the time complexity of O(|V |D logD). Though MEL itself is simple, it constructs a
label of the graph which is optimal for Huffman coding to compress label sequences. We will prove
the optimality of MEL in next subsection.
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4.2.2. Coding algorithm. After labelling the graph, we can generate labelled spatial paths and
then use a lossless data compression algorithm to compress them. Different compression algorithms
may require different labelling methods in order to achieve optimal compression ratio. In our L&C
algorithm, MEL is designed for entropy encoding so we use entropy encoding algorithms to com-
press label sequences in order to achieve optimality. Note that, all entropy encoding algorithms are
acceptable and here we illustrate the coding algorithm by Huffman coding just for convenience. In
experiments, we implement another entrypy encoding algorithm, i.e., arithmetic coding [Rissanen
1976], for comparison.

To compress the labelled spatial paths, we apply Huffman coding algorithm. Firstly, the algorithm
enrolls the head edge in the labelled spatial path into the result. It is obvious that the head edge
occupies log2 |E| bits in the result code. Then, the coding algorithm encodes following labels by
Huffman coding. We define frequency of the label l as the number of edges in E that are labelled
as l in Equation (5). For example, we have a labelled graph G of 100 edges, among which 40 are
labelled by 1, 30 labelled by 2, 20 labelled by 3 and 10 labelled by 4. Then, we have F (1) = 40,
F (2) = 30, F (3) = 20, and F (4) = 10.

F (l) = |{e ∈ E|L(e) = l}| (5)

3 4
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1

0

0

0 1

1

1
label frequency

1

2

3
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code

1

01

000

001

Fig. 15: Sample Huffman Tree for labels

Based on the frequencies F (l) of different labels, we build a Huffman tree by F (l) to replace
labels with Huffman codes. As depicted in Fig. 15, we have codeH(1) = 0, codeH(2) = 01,
codeH(3) = 000 and codeH(4) = 001. Given a labelled spatial path SPL = (e15, 1, 2, 2, 1), the
coding algorithm firstly enrolls head edge e15 into the result. As there are in total 17 edges in our
sample road network, each edge is represented by a 5-bits binary code. In other words, the result
code becomes 01111. By adding Huffman codes of labels into result, we get 01111 0 01 01 0.

Since we choose Huffman coding to compress SPL, we can assume that the data source is a
memoryless process. Let X be a discrete random variable to represent the data source, of which the
sample space Ω = L = {1, 2, ..., D}, we can calculate probability mass function p(x) as

p(x) =
F (x)∑D
i=1 F (i)

.

We define the entropy H(X) as the entropy H(LG) of the label of the graph. In the end of this
section, we prove that MEL constructs a label with the lowest entropy.

THEOREM 4.4 (OPTIMALITY OF MEL). MEL constructs a label of the graph LMG with the
lowest entropy.

PROOF. To facilitate the proof of the optimality of MEL, we define some symbols first. We
represent the mapping Lv as a permutation σv to show details of Lv . For example, the label of v
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will be represented as

σv =

(
e1 e2 · · · ed
l1 l2 · · · ld

)
.

The frequency of edges labelled by x and meanwhile not started from vertex v is defined as

gv(l) =
∑

Le=l∧st(e)6=v

f(e),

where st(e) represents the starting vertex of e. Thus, if the label of e is l with st(e) = v, gv(l) +
f(e) = F (l).

In the first part of our proof, we define a property of Lv named adjustability. Given any label
LG of the graph G, we can sort the labels of v according to Inequation (6) and sort the out-edges
of v according to Inequation (7). Then, we can give labels to out-edges of v according to these two
inequations.

gv(l1) ≥ gv(l2) ≥ ... ≥ gv(ld) (6)
f(e1) ≥ f(e2) ≥ ... ≥ f(ed) (7)

σNv =

(
e1 e2 · · · ed
l1 l2 · · · ld

)
σ′v =

(
e1 e2 · · · ed
m1 m2 · · · md

)
Further more, we call labels of vertexes like σNv nonadjustable labels. On the contrary, if a label σ′v
cannot satisfy either Inequation (6) or Inequation (7), it is adjustable. Take Fig. 16 and Fig. 17 as
an example. σAv is adjustable but σBv is non-adjustable:

e
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Fig. 16: Sample label LAv and LBv

i 1 2 3 4
gv(li) 30 50 20 35
f(ei) 4 12 10 1

Fig. 17: Sample gv(li) and f(ei)

σAv =

(
e1 e2 e3 e4

l1 l2 l3 l4

)
=

(
e2 e3 e1 e4

l2 l3 l1 l4

)
∼
(
f(e2) : 12 f(e3) : 10 f(e1) : 4 f(e4) : 1
gv(l2) : 50 gv(l3) : 20 gv(l1) : 30 gv(l4) : 35

)
;

σBv =

(
e4 e3 e2 e1

l3 l4 l2 l1

)
=

(
e2 e3 e1 e4

l2 l4 l1 l3

)
∼
(
f(e2) : 12 f(e3) : 10 f(e1) : 4 f(e4) : 1
gv(l2) : 50 gv(l4) : 35 gv(l1) : 30 gv(l3) : 20

)
.

We will construct a series of permutations from an arbitrary label σ′v to a non-adjustable label
σNv in order to show decrease of the entropy H(LG). To do this, initially we set σ′v as σ0

v . Next, we
swap l1 with the first element in σ0

v and we get σ1
v . Then, we swap l2 with the second element in σ1

v
to get σ2

v . Keep doing this and finally we get σkv = σNv which is non-adjustable. For example, given
a label of v, if

gv(l1) ≥ gv(l2) ≥ ... ≥ gv(ld)
f(e1) ≥ f(e2) ≥ ... ≥ f(ed)
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then we have

σ′v =σ0
v =

(
e1 e2 e3 e4 e5 e6

l6 l1 l5 l2 l4 l3

)
σ1
v =

(
e1 e2 e3 e4 e5 e6

l1 l6 l5 l2 l4 l3

)
σ2
v =

(
e1 e2 e3 e4 e5 e6

l1 l2 l5 l6 l4 l3

)

σ3
v =

(
e1 e2 e3 e4 e5 e6

l1 l2 l3 l6 l4 l5

)
σ4
v =

(
e1 e2 e3 e4 e5 e6

l1 l2 l3 l4 l6 l5

)
σNv =σ5

v =

(
e1 e2 e3 e4 e5 e6

l1 l2 l3 l4 l5 l6

)
Consider the ith step to estimate the change of entropy.

σiv =

(
e1 e2 · · · ei ei+1 · · · ej · · ·
l1 l2 · · · li x · · · li+1 · · ·

)
σi+1
v =

(
e1 e2 · · · ei ei+1 · · · ej · · ·
l1 l2 · · · li li+1 · · · x · · ·

)
Then, we can calculate frequency change of li+1 and x.

F i+1(li+1) = gv(li+1) + f(ei+1)

F i(li+1) = gv(li+1) + f(ej)

F i+1(x) = gv(x) + f(ej)

F i(x) = gv(x) + f(ei+1)

Since x ≥ i+ 1, it is clear that gv(li+1) ≥ gv(x) and f(ei+1) ≥ f(ej) according to Inequation (6)
and Inequation (7). Consequently, we have

F i+1(x) = gv(x) + f(ej) ≤ gv(li+1) + f(ej) = F i(li+1)

F i(li+1) = gv(li+1) + f(ej) ≤ gv(li+1) + f(ei+1) = F i+1(li+1)

F i+1(x) ≤ F i(li+1) ≤ F i+1(li+1) (8)

Meanwhile, the sum of F (x) and F (li+1) is fixed.

F i(li+1) + F i(x) = gv(li+1) + f(ei+1) + gv(x) + f(ej) = F i+1(x) + F i+1(li+1) (9)

Now we are able to estimate the change of entropy H(LG). Let X be a discrete random variable
of which the sample space Ω = {a, b}. If p(a) = x, we have H(X) = h(x) = x log x + (1 −
x) log(1− x). We plot the functional image in Fig. 18 to show the property of h(x). As it is shown
in the figure, if the sum of p(a) and p(b) is fixed, the greater the difference between p(a) and p(b)
is, the lower the entropy will be.

Note that p(x) = F (x)∑D
i=1 F (i)

and
∑D
i=1 F (i) is a constant, so we can replace F with p in Inequa-

tion (8) and Equation (9) to get Inequation (10) and Equation (11) and then infer Inequation (12)
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Fig. 18: Image of h(x)
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Fig. 19: Change of p(li+1) and p(x)

and Inequation (13), as shown in Fig. 19.

pi+1(x) ≤ pi(li+1) ≤ pi+1(li+1) (10)

pi(li+1) + pi(x) = pi+1(x) + pi+1(li+1) (11)

|pi(li+1)− pi(x)| ≤ |pi+1(li+1)− pi+1(x)| (12)

pi(x) log pi(x) + pi(li+1) log pi(li+1) ≥ pi+1(x) log pi+1(x) + pi+1(li+1) log pi+1(li+1)(13)

The entropy of the label of the graph is defined as

H(LiG) = −
d∑
j=1

pi(j) log pi(j). (14)

Since only terms p(x) log p(x) and p(li+1) log p(li+1) in Equation (14) change, we can infer that
H(LiG) ≥ H(Li+1

G ). Consequently, we have

H(L′G) = H(L0
G) ≥ H(L1

G) ≥ ... ≥ H(LkG) = H(LNG ). (15)

To sum up the first part, we prove that any adjustable label of a vertex L′v can be adjusted to a
non-adjustable label of the vertex LNv and the entropy of LNG does not exceed the entropy of L′G.

The second part of our proof will exclude the equal case in Inequation (15). According to Inequa-
tion (15), if H(L′G) = H(LNG ), we can infer that

H(L′G) = H(L0
G) = H(L1

G) = ... = H(LkG) = H(LNG ).

In addition, at any step in permutations, there must be

pi(x) log pi(x) + pi(li+1) log pi(li+1) = pi+1(x) log pi+1(x) + pi+1(li+1) log pi+1(li+1),

|pi(li+1)− pi(x)| = |pi+1(li+1)− pi+1(x)|.
Replacing p with F , we get

|F i(li+1)− F i(x)| = |F i+1(li+1)− F i+1(x)|,
F i+1(x) = F i(li+1) or F i(li+1) = F i+1(li+1).

Then, we can infer that

gv(li+1) = gv(x) or f(ei+1) = f(ej).

Next, we use mathematical induction to prove σ′v is non-adjustable. We assume that after some
swaps from σNv = σkv , we get

σi+1
v =

(
e1 e2 · · · ei ei+1 · · · ej · · ·
l1 l2 · · · li li+1 · · · x · · ·

)
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and it is non-adjustable:

gv(l1) ≥ gv(l2) ≥ · · · ≥ gv(li) ≥ gv(li+1) ≥ · · · ≥ gv(x) · · · ,
f(e1) ≥ f(e2) ≥ · · · ≥ f(ei) ≥ f(ei+1) ≥ · · · ≥ f(ej) · · · .

Note that the position of the mapping pair (ej , x) in the permutations may differ from that in the first
part of the proof because of the previous swaps. However, it still appears after the pair (ei+1, li+1).
If gv(li+1) = gv(x), we swap x and li+1 and get(

e1 e2 · · · ei ei+1 · · · ej · · ·
l1 l2 · · · li x · · · li+1 · · ·

)
= σiv

which satisfies

gv(l1) ≥ gv(l2) ≥ · · · ≥ gv(li) ≥ gv(x) = · · · = gv(li+1) · · · ,
f(e1) ≥ f(e2) ≥ · · · ≥ f(ei) ≥ f(ei+1) ≥ · · · ≥ f(ej) · · · .

In similar manner, if f(ei+1) = f(ej), we swap ej and ei+1 and get(
e1 e2 · · · ei ej · · · ei+1 · · ·
l1 l2 · · · li li+1 · · · x · · ·

)
=

(
e1 e2 · · · ei ei+1 · · · ej · · ·
l1 l2 · · · li x · · · li+1 · · ·

)
= σiv

which satisfies

gv(l1) ≥ gv(l2) ≥ · · · ≥ gv(li) ≥ gv(li+1) ≥ · · · ≥ gv(x) · · · ,
f(e1) ≥ f(e2) ≥ · · · ≥ f(ei) ≥ f(ei+1) = · · · = f(ej) · · · .

We keep doing this and finally have(
en1 en2 · · · end

lm1 lm2 · · · lmd

)
=

(
e1 e2 · · · ed
m1 m2 · · · md

)
= σ0

v =σ′v,

which is non-adjustable:

gv(lm1) ≥ gv(lm2) ≥ · · · ≥ gv(lmd
),

f(en1
) ≥ f(en2

) ≥ · · · ≥ f(end
).

Consequently, if there is a vertex whose label is adjustable, we can adjust it and strictly decrease the
entropy of the label of the whole graph.

In the third part, we prove that if there is no adjustable Lv in LG, LG is equivalent to the label
LMG constructed by MEL. Let LG be a label of the graph with frequency of labels sorted as

F (lm1
) ≥ F (lm2

) ≥ · · · ≥ F (lmD
).

Given a non-adjustable label Lv ,

σv =

(
e1 e2 · · · ed
l1 l2 · · · ld

)
,

since gv(l) + f(e) = F (l), it is clear that

gv(lm1
) + f(em1

) ≥ gv(lm2
) + f(em2

) ≥ · · · ≥ gv(lmd
) + f(emd

).

If gv(lmx) + f(emx) ≥ gv(lmy ) + f(emy ) and gv(lmx) < gv(lmy ), we can infer that f(emx) ≥
f(emy ). On the other hand, if gv(lmx) + f(emx) ≥ gv(lmy)) + f(emy ) but gv(lmx) ≥ gv(lmy ),
because Lv is non-adjustable, we can also infer that f(emx) ≥ f(emy ). Therefore, in Lv there must
be

gv(lm1) ≥ gv(lm2) ≥ · · · ≥ gv(lmd
),

f(em1
) ≥ f(em2

) ≥ · · · ≥ f(emd
).
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In other words, in each Lv we give lmi
to the edge with the ith greatest frequency. Because labels

of different orders in G are essentially equivalent, we infer that the non-adjustable label LG is
equivalent to LMG .

To draw a conclusion, given any adjustable label LG, we are able to adjust it and decrease the
entropy strictly until it is equivalent to LMG . Consequently, MEL constructs a label with the lowest
entropy.

Because of the optimality of MEL and Shannon’s source coding theorem, the coding algorithm
based on Huffman coding will achieve the minimal average code length. The coding algorithm
builds a Huffman tree on labels, so the time complexity of initialization is O(D logD). Both com-
pression and decompression have a time complexity ofO(|T |), which is exactly the time complexity
of Huffman coding. Different from HDC, L&C algorithm incurs a much smaller storage overhead
to store a Huffman tree and a label of the graph and hence it is ideal for archiving or transferring
data. Our L&C algorithm doesn’t take advantage of FSPs, but it involves no major principle and we
will explain this problem in our experiments.

5. TEMPORAL COMPRESSION
Temporal sequences are the other part of decomposed trajectories. In this section, we introduce a
lossy compression algorithm to compress temporal sequences. First, we present some preliminary
definitions. Next, we define the error metrics we use to bound the potential difference between the
information captured by the real temporal sequence and that captured by the compressed temporal
sequence. Then, we present the error-bounded temporal compression algorithm.

5.1. Preliminary
A temporal sequence is in the form of ((d1, t1), (d2, t2), · · · , (dn, tn)), where di refers to the dis-
tance the moving object has travelled at the time stamp ti. If we strictly follow this statement, d1

corresponding to t1 will be always zero as t1 is the time stamp when the object is about to start
the journey. However, we want to highlight that d1 is not always zero as we use d1 to indicate the
distance from object’s initial position to the starting point of the first edge e1 in the corresponding
spatial path. This arrangement is to guarantee that even the spatial path only captures the edges that
a moving object passes sequentially within one journey, our new representation is still very general
and flexible which allows an object to start its journey from any point in the road network, not nec-
essarily from a node of the road network. Take trajectory T2 depicted in Fig. 4 as an example. The
object is initially located on edge e8, having distance ∆21 from the start node of e8. That explains
why d1 = ∆21. To be more precise, di in our temporal sequence refers to the distance an object has
travelled so far, plus d1. In the cases when d1 = 0, di refers to the real travel distance. Otherwise
(i.e., d1 > 0), it refers to the summation of travel distance and d1.

As mentioned before, the number of (di, ti) tuples in a temporal sequence T ST is the same as
the number of 〈xi, yi, ti〉 tuples in the original GPS trajectory T (i.e., |T ST | = |T |) and we can
transform easily between T ST and T based on the corresponding spatial path SPT . However, both
the GPS trajectory T and the temporal sequence T ST only capture certain information of a real
trajectory that is incomplete. More precisely, the sampled trajectory only records accurate positions
of the moving object at some specific time stamps and the trajectory between two continuous time
stamps is unknown. As a solution, we make an assumption that the moving object moves uniformly
in a short period (e.g., from ti to ti+1) and the trajectory between two time stamps is approximated
by linear interpolation. Formally, given a time stamp tx ∈ [ti, ti+1), its corresponding dx can be
calculated as di + (tx−ti)×(di+1−di)

ti+1−ti , which means we can define distance as a function of time as
stated in Definition 5.1.
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Definition 5.1 (Distance function). The distance function d(tx, T ST ) corresponding to a tem-
poral sequence T ST is a piecewise linear function, which is defined as

d(tx, T ST ) =

 di +
(tx − ti)× (di+1 − di)

ti+1 − ti
(ti < tx < ti+1)

di (tx = ti)

where (di, ti)s (1 ≤ i ≤ n) are tuples in the temporal sequence T ST .

To visualize the change of distance over time in a temporal sequence, we can plot all sampled
tuples (di, ti) in the time-distance graph and join contiguous tuples (di, ti) and (di+1, ti+1) by line
segments, as depicted in Fig. 20. Distance function d(tx, T ST ) actually returns the corresponding
position along distance dimension for a given time stamp.

d

t1 t2 t3 t4 t5 t6

d1

d2

d3

d4

d5 (d6)

ttx

d(tx, TS)

Fig. 20: Sample of a time-distance graph

Similarly, we can also introduce the function t(dx, T ST ) which returns all the time stamps when
the distance travelled is equivalent to a given input dx, as formally defined in Definition 5.2. As the
distance is nondecreasing and an object might remain in a position for sometime (e.g., cars stuck
in a traffic jam, and buses waiting in front of a traffic light), the return of t(dx, T ST ) might be
a duration rather than a single time stamp. Back to the time-distance graph depicted in Fig. 20,
t(d5, T ST ) will return all the time stamps within the duration of [t5, t6]. Both function d(tx, T ST )
and function t(dx, T ST ) will be useful for applications that need to query trajectory sets, such as
locating all the moving objects that pass a position p between 16:50 and 17:00 on April 01 2014.
Please refer to Section 6 for the set of essential queries that can be supported by COMPRESS.

Definition 5.2 (Time function). The time function t(dx, T ST ) corresponding to a temporal se-
quence T ST is a function that returns a set of time values tx such that t(dx, T ST ) = dx, i.e.,
t(dx, T ST ) = {tx ∈ [t0, tn]|d(tx, T ST ) = dx}.

5.2. Error metrics
Since the compression algorithm for temporal sequences is lossy, we must bound the inaccuracy that
could be caused during the compression. Many existing works [Cao and Wolfson 2005; Cao et al.
2006; Kellaris et al. 2013; Muckell et al. 2013] use the metric Time Synchronized Euclidean Distance
(TSED) to bound the error between the original trajectory and the compressed trajectory. Given two
trajectories T and T ′, TSED returns the maximum Euclidean distance between point 〈xi, yi, ti〉 in
original trajectory T and point 〈x′j , y′j , t′j〉 with ti = t′j in another trajectory T ′. Different from
existing works, we propose two new error metrics, namely Time Synchronized Network Distance
(TSND) and Network Synchronized Time Difference (NSTD), as formally defined in Definition 5.3
and Definition 5.4 respectively3.

3Definition 5.1 and Definition 5.3 are the same as the ones defined in [Song et al. 2014], and we still present them here for
readability. However, Definition 5.2 and Definition 5.4 are different from the ones in [Song et al. 2014] since we have revised
the definition to deal with the case that several time stamps share the same distance.
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Definition 5.3 (Time Synchronized Network Distance (TSND)). Given a temporal sequence
T ST and its compressed one T ScT , TSND measures the maximum difference between the distance
that the moving object travels via T ST and T ScT at any same time stamp.

TSND = maxtx∈[0,tmax](|d(tx, T ST )− d(tx, T ScT )|). (16)

Definition 5.4 (Network Synchronized Time Difference (NSTD)). Given a temporal sequence
T ST and its compressed one T ScT , NSTD measures the maximum difference between the time
that the moving object travels via T ST and T ScT through the same distance.

NSTD = maxdx∈[0,dmax](|tmin(dx, T ST )−tmin(dx, T ScT )|, |tmax(dx, T ST )−tmax(dx, T ScT )|),
(17)

where tmin(dx, T ST ) returns the minimum value of time in t(dx, T ST ), and tmax(dx, T ST ) re-
turns the maximum value of time in t(dx, T ST ).

To be more specific, TSND measures the maximum difference between two temporal sequences
along the time dimension, and NSTD measures the maximum difference between two temporal se-
quences along the distance dimension, as visualized in Fig. 21. As a temporal sequence is a polyline
in time-distance dimensions, the maximum distance between two temporal sequences along time or
distance dimension only appears at vertices of polylines. In other words, we can derive TSND and
NSTD in O(|T ST |) time.
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Fig. 21: Sample TSND and NSTD

In most cases, function t(dx, T ST ) only returns a single value and Equation (17) could be sim-
plified as NSTD = maxdx∈[0,dmax](|t(dx, T ST )− t(dx, T ScT )|), which is the definition we pre-
sented in [Song et al. 2014]. However, for an object that does not move within certain period of time,
t(dx, T ST ) actually returns a period instead of a single time stamp, e.g., t(d5, T ST ) for the tem-
poral sequence depicted in Fig. 20 returns a duration [t5, t6]. For a given dx, if t(dx, T ST ) and/or
t(dx, T ScT ) return a duration, we separate the comparison of the distance at the start time from that
of the distance at the end time, as visualized in Fig. 22. In brief, Definition 5.4 and Definition 5.2
are more rigorous than the ones defined in [Song et al. 2014].

We want to highlight that, given two temporal sequences, their TSND and NSTD are meaningful
only when those two temporal sequences are associated with the same spatial path, such as T ST
and T ScT . Given a spatial path, it is easy to prove that TSND between two temporal sequences is
always an upper bound of TSED between their GPS trajectories, as proved in [Song et al. 2014].
That means if the error measured by TSND is less than τ , then the error measured by TSED must
be less than τ . On the other hand, NSTD is as important as TSND because they measure the errors
caused by compression in different dimensions. A small NSTD does not guarantee a small TSND,
and vise versa. Later in Section 6, we will introduce several queries that can be efficiently pro-
cessed on compressed data, and the precision of query results is also bounded by TSND and NSTD.
Consequently, we need to consider both TSND and NSTD when designing our temporal sequence
compression algorithms to guarantee the query precision on the compressed trajectory. Both TSND
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Fig. 22: Special case of NSTD

and NSTD are special cases of Fréchet distance which measures the similarity between two curves
and Fréchet distance in road networks is introduced in [Fan et al. 2010].

5.3. Bounded temporal compression
After introducing metrics TSND and NSTD, we are now ready to present the lossy compression
algorithm for temporal sequence compression, with following two main targets. First, both TSND
and NSTD between the compressed temporal sequence and the original temporal sequence must
be bounded by the tolerant values specified by users/applications. Second, the compression ratio
should be as high as possible.

5.3.1. Rigid stabbing polyline compression. When we plot the original temporal sequence on the
time-distance graph, it is exactly a ployline stabbing all points from (d1, t1) to (dn, tn). For a given
TSND value τ , we can draw a series of n vertical line segments with length of 2τ centered at
each point, as depicted in Fig. 23. If we consider those n vertical line segments as objects, we can
reduce the temporal compression problem to a computational geometry problem namely stabbing
polyline problem [Guibas et al. 1991] in the time-distance plane, which tries to search for a polyline
containing minimum number of vertices passing through several objects in order. By reducing the
number of vertices used to represent the polyline, stabbing polyline problem can help to save the
storage overhead. As shown in Fig. 23, the original temporal sequence contains four points while its
stabbing polyine contains only three points with 1.33 compression ratio. If we consider both TSND
and NSTD, we formulate the stabbing polyline problem in our context in Definition 5.5.

Definition 5.5 (Stabbing polyline). A stabbing polyline is a polyline that intersects with all n
vertical line segments and n horizontal line segments centered at n vertices of the original polyline
on the time-distance graph.

However, we want to highlight that stabbing polyline defined in Definition 5.5 can only guarantee
the maximum difference between original polyline and a stabbing polyline along time dimension at
original sampled time stamps (e.g., t1, t2, t3, and t4 in Fig. 23) is bounded by a given TSND (i.e.,
τ in the graph), but the real TSND might be larger than the specified τ . For example, as shown in
Fig. 23, the difference between the original polyline and the stabbing polyline at time t′ is larger than
τ . If we choose the resulting vertices from the vertices of original polyline, the time and distance
differences at all time stamps (e.g., [t1, t4] in Fig. 23) are guaranteed. In order to differentiate the
polyline we look for from normal polylines, we introduce the concept of rigid stabbing polyline in
Definition 5.6.

Definition 5.6 (Rigid stabbing polyline). Given a temporal sequence T ST represented by a
polyline of n points in time-distance space and two error bounds τ and η, set S refers to n ver-
tical line segments of length 2τ and n horizontal line segments of length 2η, both centered at n
points of T ST . A stabbing polyline corresponding to 2n line segments of S is a rigid stabbing
polyline if all its vertices belong to the original n points of T ST .
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In [Song et al. 2014], we proposed a greedy algorithm searching for a rigid stabbing polyline
to compress a temporal sequence. Though the greedy algorithm only takes O(n) time, it cannot
generate an optimal rigid polyline containing fewest vertices. The optimal rigid stabbing polyline
can be computed via dynamic programming, which takes O(n2) time. Furthermore, the dynamic
programming algorithm is not optimal, because the vertices of optimal stabbing polyline may be
new vertices instead of input vertices. In the following, we are going to introduce Tube Stabbing
polyLine Compression (TSLC), a linear algorithm that computes the optimal stabbing polyline. We
want to highlight that RSLC is not used for temporal compression in COMPRESS, but rather for
comparison purpose in experiments to illustrate the performance advantage of TSLC. In Section 7,
we compare TSLC with the greedy RSLC to illustrate the efficiency of TSLC, and compare TSLC
with RSLC based on dynamic programming to show its effectiveness. More details of rigid stabbing
polyline compression are discussed in the online appendix [Han et al. 2016].

d

t

stabbing polyline

TSND (> )

rigid stabbing polyline

original polyline

d

tt1 t2 t3 t4 t1 t2 t3 t4t’

Fig. 23: Stabbing polyline and rigid stabbing polyline

5.3.2. Tube stabbing polyline compression. As mentioned before, rigid stabbing polyline is a vari-
ance of original stabbing polyline, which applies the restriction turn in objects to the original stab-
bing polyline problem. The stabbing polyline with no restriction does not satisfy the requirements
of TSND and NSTD, as “no restriction” is too weak to bound the error. On the other hand, “turn
in objects” is such a strong restriction that the algorithm may miss the optimal stabbing polyline,
as the optimal stabbing polyline that satisfies the requirements of TSND and NSTD and meanwhile
contains the minimum number of vertices does not necessarily pass the original vertices. In the fol-
lowing, we introduce another variance of stabbing polyline, which proposes the restriction namely
“tune in tube” that requires each vertex of the polyline to be in a region bounded by two consecutive
objects and their outer common tangents.

Again we plot the original temporal sequence in the form of a polyline in time-distance space. We
also plot vertical line segments with length of 2τ centered at each vertex. Then, by joining all the top
endpoints of consecutive vertical line segments and joining all the bottom endpoints of consecutive
vertical line segments, we can form a simple polygon namely TSND tube Pd that is centered at
original polyline, as formally defined in Definition 5.9 and visualized in Fig. 24. Obviously, TSND
between the tube stabbing polyline and the original polyline is bounded by τ if and only if the tube
stabbing polyline falls completely inside the TSND tube Pd. In this example, we also observe that
the rigid stabbing polyline contains three vertices, while the tube stabbing polyline only contains
two vertices.

Given a tolerant time error η, we can repeat previous process to obtain a simple polygon called
NSTD tube Pt, as defined in Definition 5.8. Given a polyline with corresponding error bounds τ and
η, we can form TSND tube Pd and NSTD tube Pt, and then a compositive tube P = Pt ∩ Pd. We
name a stabbing polyline that falls completely within the tube P tube stabbing polyline, as formally
defined in Definition 5.10. It is confirmed that given a polyline and a corresponding tube stabbing
polyline, their TSND and NSTD are bounded by τ and η respectively.
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Definition 5.7 (TSND tube). Given a temporal sequence ((d1, t1), (d2, t2), · · · , (dn, tn)) and a
tolerant TSND error τ , the corresponding TSND tube Pd is a polygon with 2n points, i.e., (d1 +
τ, t1), (d2 + τ, t2), · · · , (dn + τ, tn), (dn − τ, tn), (dn−1 − τ, tn−1), · · · , (d1 − τ, t1).

Definition 5.8 (NSTD tube). Given a temporal sequence ((d1, t1), (d2, t2), · · · , (dn, tn)) and a
tolerant NSTD error η, the corresponding NSTD tube Pt is a polygon with 2n points, i.e., (d1, t1 −
η), (d2, t2 − η), · · · , (dn, tn − η), (dn, tn + η), (dn−1, tn−1 + η), · · · , (d1, t1 + η).

Definition 5.9 (Compositive tube). Given a temporal sequence ((d1, t1), (d2, t2), · · · , (dn, tn)),
a tolerant TSND error τ and a tolerant NSTD error η, let Pd be the corresponding TSND tube and
Pt be the corresponding NSTD tube. Then, their intersection forms the compositive tube P , i.e.,
P = Pd ∩ Pt.

Definition 5.10 (Tube stabbing polyline). Given a temporal sequence ((d1, t1), (d2, t2), · · · ,
(dn, tn)), and its corresponding compositive tube P , a tube stabbing polyline is a polyline com-
pletely falling within the compositive tube, which links (d1, t1) to (dn, tn).

Both TSND tube and NSTD tube can be constructed within O(n) time, where n is the length
of the temporal sequence T S . Because both TSND tube and NSTD tube are monotone polygons,
it takes O(n) time to compute the intersection by a sweep line algorithm, which is introduced in
Chapter 2.4 of [de Berg et al. 2000]. After constructing the compositive tube, we connect (d1, t1) to
(dn, tn) with a polyline PT S completely falling inside the tube, to compress the temporal sequence
T S . As the polyline contains the fewest vertices, the compressed temporal sequence is optimal. In
the following, we explain how to locate the polyline PT S .

In computational geometry literature, a distance metric called link distance refers to the mini-
mum number of vertices of a polyline that connects two objects inside a region without crossing
the boundary. Minimum-link path problems are problems of finding polylines with minimum link
distance, which have been studied in [Suri 1990; Mitchell et al. 1992; Esther M. Arkin and Suri
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1995; Chiang and Tamassia 1997]. Algorithm WP [Suri 1990] can find a polyline with minimum
link distance between two edges of a simple polygon with n′ vertices in O(n′) time when the poly-
gon is triangulated. Polygon triangulation is to decompose a polygon into a set of non-intersecting
triangles, which can be done in O(n′) time [Bernard 1991], though the algorithm is very complex.
In the following, we will prove that the compositive tube is a monotone polygon which is easy to
triangulate in linear time.

Algorithm WP partitions the simple polygon into several regions in which the points have a
constant link distance from the source, and the partition lines between regions are called windows.
Take Fig. 26 as an example. Given a source edge a, the polygon is partitioned into four smaller
polygons by three windows, within each the points share a constant link distance dL from the source.
The algorithm first computes a region called visibility polygon PV (a) containing all points inside
the polygon that are visible from a. Each edge of visibility polygon PV (a) is either on the boundary
or a window. Then, we discard PV (a) and recursively compute visibility polygon PV (e) for those
window edges e of PV (a), until the destination edge b is reached. The computation of PV (e) costs
O(ke) time where ke is the number of triangles intersected by PV (e), since we need to visit at most
ke triangles to determine the visible region. Because a triangle in the polygon intersects at most
three regions in the polygon while there are O(n′) triangles, as introduced in Chapter 3 of [de Berg
et al. 2000], so the total time complexity is linear. The link distance between edge a and edge b is 4,
i.e., at least 4 edges are needed to connect a and b, and an example polyline with 4 edges is plotted
in the figure for illustration purpose. Algorithm WP can also find the minimum-link path between
vertices by regarding them as edges (with two overlapping vertices each).

Though the minimum-link path problem in a simple polygon has been solved, the algorithm
WP cannot directly compute minimum tube stabbing polyline because there may be two edges
intersecting with each other in the compositive tube, when some time stamps share the same value
of distance (e.g., (ti, di) and (ti+1, di+1) with di = di+1) or one of the tolerant errors η and τ is
zero. The following theorem proves that the two cases mentioned above are the only scenarios that
edge overlapping actually occurs.

THEOREM 5.11. The compositive tube is a simple polygon — moreover, a strictly monotone
polygon — if both tolerant errors are not zero and distance is a strictly increasing function of time.

PROOF. Please refer to the online appendix [Han et al. 2016].

It is easy to deal with the case that τ = 0 or η = 0 since the stabbing polyline and the original
one have exactly the same shape. In the following, we only focus on the case where τ · η > 0 and
the edges’ overlapping is the result of the same values of distance at some time stamps, thus the
overlapping edges are horizontal line segments. As shown in Fig. 27, a three-stage algorithm can be
performed to construct a minimum stabbing polyline in a compositive tube. First, a compositive tube
Pd is divided into several simple polygons according to the overlapping edges. Take the tube in the
figure as an example, 〈(di, ta), (di, tc)〉 and 〈(di, tb), (di, td)〉 are two overlapping edges of Pd, and
Pd is divided into S1 and S2. Second, we compute the minimum-link path in each simple polygon.
In Fig. 27, the path in S1 links e1 = (d1, t1) to eab = 〈(di, ta), (di, tb)〉, while the path in S2 links
ecd = 〈(di, tc), (di, td)〉 to en = (dn, tn). Finally, the horizontal line 〈(di, ta), (di, td)〉 forces the
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path to go through it, so (di, tx) is linked to (di, tz) and 〈(d1, t1), (dx, tx), (di, ty), (di, tz), (dn, tn)〉
forms the minimum stabbing polyline.
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Fig. 27: Division of compositive tube

It is easy to triangulate monotone polygons in O(n′) time, so the compositive tube is favorable
for the algorithm WP to process. To draw a conclusion, TSLC compresses the temporal sequence
in O(n) time and generates the minimum stabbing polyline, i.e., a compressed temporal sequence
with the smallest size. However, algorithm WP is much more complicated than greedy algorithms.
We will compare the efficiency and effectiveness of RSLC and TSLC in our experimental study.

6. APPLICATIONS ON COMPRESSED TRAJECTORIES
The main purpose of trajectory compression is to reduce the storage overhead of trajectory data.
Consequently, whether the compressed trajectories can support efficient queries is not our main fo-
cus. However, it is still desirable that some queries can be processed on trajectories that are not fully
decompressed. The effectivity of queries on compressed trajectories is ensured by error-boundness
of COMPRESS. More precisely, given the tolerant error of TSND τ and that of NSTD η, the error
of every point in the decompressed trajectory is less than τ and η, so the time and distance errors of
query results are bounded too. There are mainly four query processing approaches based on different
data forms, and they are different in space and time performance, as summarized in Table III.

— Query processing on original data, denoted as Original. This naive approach is simply searching
in original data to process queries. It is ordinary and does not incur any additional space or time
cost. We consider the naive approach as a benchmark when evaluating the performance of other
approaches.

— Query processing on original data with indexes, denoted as Indexed. The conventional method of
query processing is creating indexes (e.g., a B-tree [Bayer and McCreight 1972]) on the original
trajectories to speed up the query processing. However, this approach stores both original data and
additional indexes so it runs counter to the purpose of reducing the storage space.

— Query processing on fully decompressed data, denoted as Full. This approach is to store all the tra-
jectories in their compressed form and to process queries on the fully-decompressed trajectories.
It saves the space but costs more processing time.

— Query processing on partially decompressed data, denoted as Partial. The last approach stores
compressed trajectories so the storage space is reduced. When processing queries, we take the
dictionary generated by the compression algorithm as an index, and partially decompress the tra-
jectory data. The approach saves the space and costs less time than that on fully decompressed
data.
Because query processing on original data, indexed data and fully decompressed data is straight-

forward, we skip the explanation of these algorithms but report their performance via experimen-
tal studies in Section 7. In this section, we introduce two basic queries, namely position query
where(T, ti) and time query when(T, xi, yi), that are building blocks of many common queries
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Table III: Four query processing approaches

Original Indexed Full Partial
Space cost high highest low low
Time cost high lowest highest low

used by LBS applications [Cao et al. 2006]. Afterwards, we discuss data utility and how it affects
the performance of compression and query algorithms.

6.1. Position query
The position query where(T, ti) returns the location (xi, yi) of the moving object at a given
time stamp ti ∈ [t1, tn] along the trajectory T . Given an original trajectory T that is
represented by its spatial path SPT = (e1, e2, · · · , em) and temporal sequence T ST =
((d1, t1), (d2, t2), · · · , (dn, tn)), the query where(T, ti) on original data first searches T ST for
di corresponding to ti based on distance function d(ti, T ST ); and then searches SPT to locate
(xi, yi) on a certain edge ej based on travel distance di. Consequently, query where(T, ti) on orig-
inal trajectory on average scans m

2 edges in spatial path and n
2 tuples in temporal sequence.

Now we explain how to perform querywhere(T, ti) on compressed trajectory T c. It is still a two-
stage process, first locating d′i in T ScT and then locating (x′i, y

′
i) in SPcT . As compressed temporal

sequence T ScT shares the same format as original temporal sequence T ST , the first stage also scans
|T Sc

T |
2 tuples in temporal sequence on average. Here, |T ScT | refers to the total number of tuples in

T ScT . If we assume our temporal compression algorithm can reach a compression ratio of β (i.e.,
|T ST |
|T Sc

T |
= β), the first stage scans n

2β tuples of compressed temporal sequence on average.
As for the second-stage search on compressed spatial paths, it will not be supported automatically

as our compressed spatial paths are in a very different format from their original form. Recall that
our spatial compression HDC invokes SPC and PLZW4 to perform compression, with the help
of two data structures Prev(ei, ej) and trie. In the following, we explain how to embed distance
information in these two data structures in order to support the search on compressed spatial paths
based on a given di.

Given a compressed spatial path T ScT that is in the format of binary code, we first need to de-
compress T ScT into frequent paths captured by the trie. To avoid fully de-compressing T ScT , we
store additional distance information, denoted as dist(ni), corresponding to each node ni in trie.
To be more specific, dist(ni) captures the shortest distance from the edge captured by the root
node to the edge captured by node ni, bypassing all the edges captured by the nodes in between
node ni and the root node. In other words, let n′i be the parent node of node ni in trie, dist(ni)
is the summation of dist(n′i) and the shortest distance from the edge corresponding to node ni
and the edge corresponding to node n′i, i.e.,dist(ni) = dist(n′i) + |SP (edge(ni), edge(n

′
i))|5.

Take trie depicted in Fig. 9 as an example. dist(20) will be set to the shortest distance from e2

to e3 and dist(25) will be set to the shortest distance from e5 to e2 and then to e3. Then, we can
start de-compression (w.r.t. PLZW) process which is incremental. Whenever we recover a symbol
corresponding to a node n from T ScT , we check whether the accumulative distance

∑
dist(ni) of

all the recovered symbols has already exceeded di. Assume we recover nodes n1, n2, · · · , nx, with∑
1≤j<x dist(nj) < di and

∑
1≤j≤x dist(nj) ≥ di, we are certain that the travel distance di must

correspond to some point along the edges captured by FSP nx.
Given one FSP corresponding to a Trie node nx, we can recover the edge sequence (i.e., the

sequence of edges corresponding to the path from the root node to node nx). However, we want
to highlight that our PLZW takes the output of SPC as inputs, e.g., two consecutive edges corre-
sponding to one FSP might not be adjacent to each other. We need to recover the shortest path
corresponding to each pair of consecutive edges corresponding to nx, with the help of Prev(ei, ej).

4HDC without SPC can support the second-stage search in a similar which has been skipped for space saving.
5edge(ni) refers to the edge captured by the trie node ni.
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Fig. 28: Average number of FSPs

Consequently, we need to store the distance information corresponding to Prev(ei, ej) as well.
Again, the de-compression w.r.t. SPC is also incremental and it can be terminated when the accu-
mulative travel distance (i.e.,

∑
1≤j≤x dist(nj) and the total distance of recovered shortest paths

corresponding to nx) exceeds di.
Suppose that the compression ratio of HDC is α = α1α2 where α1 and α2 are the compression

ratio of SPC and PLZW respectively, and K is the total number of nodes in the trie and |E| is
number of edges in the road network. As shown in Fig. 28, the final length L2 of the compressed
trajectory is

L2 = x · log2K =
m

α
· log2 |E|,

so the average number x of FSPs in a spatial path that need to be de-compressed can be estimated
as

x =
m
α1
· log2 |E|

α2 · log2K
=
cm

α
,

with c = logK |E|. Similarly, the average number of edges that a FSP contains is calculated as

y =
m

α1 · x
=
α2

c
.

Consequently, where(T, t0) visits cm
2α trie nodes, α2

2c edges and n
2β tuples of compressed temporal

sequence on average. In our experiments, we have |E| < K < |E|2, so c is a constant with 0.5 <
c < 1. Given the fact that α1 > 1, α2 > 1, β > 1 and 0.5 < c < 1, the query time is reduced as
cm
2α < m

2 , n
2β <

n
2 , and α2

2c is a constant.

6.2. Time query
The time query when(T, xi, yi) returns the time stamp ti at which the moving object is at the
position (xi, yi). Given an original trajectory T , when(T, xi, yi) needs to first locate (xi, yi) to an
edge in the spatial path SPT , and then to compute the distance di that the moving object travels
along T until the input point. Then, it searches the temporal sequence T ST for the time stamp ti
to fit the distance di, based on time function t(di, T ST ). In total, it scans m

2 edges in SPT and n
2

tuples in T ST on average.
To avoid fully decompressing the compressed trajectory to support time query, we again need

to embed certain information in the two main data structures, i.e., the trie and Prev(ej , el). For
each trie node ni, we keep the Minimum Bounding Rectangle (MBR), denoted as MBR(ni), that
bounds the sequence of edges corresponding to ni. For each entry Prev(ej , el), we also keep MBR
MBR(ej , el) that bounds the shortest path from ej to el.
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While scanning the references in the compressed trajectory, when(T, xi, yi) first checks whether
point (xi, yi) is inside MBR(nj). If the answer is no, it is certain that point (xi, yi) does not fall
along any edge of the frequent spatial path corresponding to trie node nj . Otherwise, we restore
the reference and scan the frequent spatial path edge by edge to check whether the point is in
MBR(ej , ej+1). If so, we restore and scan the shortest path between ej and ej+1 to check if the
point indeed falls on certain edge. This process may repeat several times because MBR(ej , ej+1)
is usually larger than the sub-spatial-path, i.e., a point falling inside MBR(ej , ej+1) might not be
located at any edge along the shortest path from ej to ej+1. Once we locate the point (xi, yi) to
an edge, we can obtain the distance d′i travelled by the object from the starting point of the journey
until point (xi, yi). Accordingly, we can search the compressed temporal sequence for t′i. To sum up,
when(T, xi, yi) visits cm

2α trie nodes, α2

2c edges and n
2β tuples in the temporal sequence on average.

Based on two basic queries introduced above, many other common queries can be designed by
maintaining different kinds of information in the dictionary of HDC. For example, the range query
range(T, ti, tj , R) returns if a trajectory T passes a region R during the time period between ti and
tj . Given an original trajectory T , the range query first locates di and dj for ti and tj in the temporal
sequence. Then, it searches the spatial path for the part between di and dj and scans the sub-spatial-
path to check if there is a line segment intersecting R. The range query also can be processed on
partially decompressed trajectories. First, it locates d′i and d′j in compressed temporal sequence. As
we maintain MBRs in the dictionary, we scan the spatial path and check if the MBR intersects R
before recovering the original spatial path. Given a random interval [ti, tj ], we have to go through
the trajectory until reaching tj . The time cost is similar to that of the position query but it scans 2

3

part of the spatial path and the temporal sequence on average, so range(T, ti, tj , R) visits 2cm
3α trie

nodes, 2α2

3c edges and 2n
3β tuples.

For all queries mentioned above, the process over compressed trajectories demonstrates certain
non-negligible advantages, as compared with the process over original trajectories. Though the gain
in terms of performance relies on auxiliary structures carrying additional information which actually
cause additional computation cost and storage overhead, their construction can be pre-processed and
the cost is shared by all trajectories including those generated in the future. All these auxiliary
structures can be used for a relatively long duration unless the road network structure changes
and/or the movement patterns of the underlying trajectories change significantly. Compared with
the large number of trajectories generated daily and the long time period of collection we have to
maintain, the extra storage cost incurred by these auxiliary structures can be well-justified. On the
other hand, the conventional approach on the original trajectories has to maintain an index for each
trajectory to speed up the query processing, which cannot reduce the space cost by compressing
trajectories but spend additional space in storing the indexes. We will compare all four approaches
in the experimental study to show their performance in time and space.

6.3. Discussion on data utility
As a summary, we have presented different compression algorithms in Section 4 and Section 5.
Those compression algorithms have different strengths in terms of compression effectiveness or
query efficiency. As compression effectiveness can be evaluated by compression ratio, we only
explain how to evaluate the utility of compressed data (i.e., query efficiency of different compression
algorithms) in the following, mainly from two perspectives, i.e., precision and readability. On the
one hand, the precision of compressed data is measured by error metrics (e.g., TSND and NSTD). If
the deviation of the compressed data from original data is low, the precision of compressed data is
high. On the other hand, readability is relevant to the query algorithm designed for compressed data.
If the query algorithm can easily extract certain information from encoded data, then the readability
is high. Lossless compression does not cause any information loss, so the compressed data have
highest precision. However, lossless compression needs to encode the data so it is hard to preserve
the readability. On the contrary, lossy compression skips unnecessary data so the readability is still
high while its precision could be low.
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As summarized in Table IV, data utility directly affects performance of query processing. Utility
of lossless compressed data mainly depends on readability since the precision does not change. Take
spatial compression as an example. HDC is an one-stage encoder that encodes frequent sub-spatial-
paths as references in the dictionary; while L&C performs two-stage encoding, which first encodes
edges to labels then encodes labels by entropy coding. There is a bijection between frequent sub-
paths and references in the dictionaries but it is hard to recover sub-paths from sub-label-sequences.
Further encoding decreases the readability so it brings not only a higher compression ratio but
also difficulty in processing queries on compressed data. In the case of lossy compression, the
readability is usually high but precision becomes the main constraint. For example, data compressed
by BTC shares the same form as original temporal sequences, so the query algorithms still remain
applicable. The higher the compression ratio BTC achieves, the higher the query efficiency it gains
on compressed data, which is different from lossless compression.

To sum up, data utility is important if queries on compressed data are concerned. Data utility of
lossless compressed data is very different from that of lossy compressed data, in terms of both preci-
sion and readability. In COMPRESS framework, algorithms with different properties are proposed,
in order to cater for requirements from various applications.

Table IV: Effects on data utility

Type of Com. Algo. Precision Readability Effects on Performance Example
lossless high low high compression ratio L&C

high high query efficiency HDC
lossy low high query efficiency

high high compression ratio BTC
high

7. EXPERIMENTS
In this section, we conduct extensive experiments to verify the previous proved theorems, to test
the effectiveness and efficiency of various algorithms proposed, and to compare our COMPRESS
framework against other existing methods on trajectory compression. The experiments are based on
real trajectory data from one of the largest taxi companies in Shanghai.6 All trajectories are sampled
regularly by GPS stored in taxis. The road network of Shanghai is extracted from OpenStreetMap,
which contains 60, 456 vertices and 132, 207 edges. All the algorithms are implemented with C and
run on a computer with Intel Core i7-6820HK CPU@3.50 GHz and 32 GB memory.

The effectiveness of compression algorithms is measured by compression ratio while the effi-
ciency of the algorithms is evaluated by the time taken. In our experiments, we apply different
algorithms to real taxi trajectories and report their compression ratios as well as time complexities
for comparison. In addition to algorithms proposed in COMPRESS framework, we also implement
our prior framework PRESS [Song et al. 2014], and another three state-of-the-art approaches for
trajectory compression in road networks, including Non-material [Cao and Wolfson 2005], Map-
matched Trajectory Compression (MMTC) [Kellaris et al. 2013] and Spatial Temporal Compression
(STC) [Popa et al. 2015], as the representatives of existing approaches. Please refer to Section 8 for
the detailed review of these existing works.

6Though the raw dataset is not allowed to be published according to the terms and conditions, we have published spatial paths
and temporal sequences as the sample data on GitHub [Han et al. 2016], which is sufficient for replicating core compression
algorithms proposed in the paper.
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7.1. Direct Lossless Compression
Theorem 3.2 indicates that lossless compression algorithms are ineffective on trajectory data with
high precision. However, the theorem does not unequivocally show how compression ratio de-
creases when precision gets higher. In this set of experiments, we simply use Huffman coding
and Lempel-Ziv coding to encode original trajectories to demonstrate the inefficiency of applying
lossless compression algorithms on high-precision trajectories represented as 〈xi, yi, ti〉 sequences.
First, we truncate every floating-point number in trajectories according to the precision given. For
instance, given the precision 6, a number with six significant digits is considered to be accurate
(e.g., 31.263319 is truncated to 31.2633). Then, we represent same truncated numbers by a unique
integer. The translation is necessary because both Huffman coding and Lempel-Ziv coding take in-
teger sequences as input. Note that three dimensions (i.e., x, y and t) are encoded separately because
their probability distributions are different. Finally, three integer sequences are passed to encoding
algorithms and the corresponding compression ratio is recorded.

As shown in Fig. 297, the compression ratio decreases to 1.3 when the number of significant
decimal digits reaches 9. Since we need at least 9 decimal digits to guarantee the accuracy of tra-
jectories, conventional lossless compression algorithms are not suitable for the GPS trajectories.
In addition, Fig. 29 shows that Huffman coding is not as effective as Lempel-Ziv coding because
Huffman coding is a symbol-by-symbol encoder that does not consider the relationship between
symbols.
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Fig. 29: Compression on original trajectory data

7.2. Hybrid Dictionary Compression (HDC)
HDC performs Shortest Path Priming (SPP) and Frequent Path Priming (FPP) to mine frequent
patterns and then compresses the spatial paths.8 SPP stores a two-dimensional array, in which every
row stores a shortest path tree of a source vertex by storing the precursor vertices of each vertex
on the tree. It takes O(|V |2 log |V |+ |V ||E|) time by applying Dijkstra’s algorithm to each vertex,
while the table occupiesO(|V |2) space. In our experiment, given a road network containing 60, 456
vertices and 132, 207 edges, it takes 30.9 minutes to construct the dictionary and 13.2 seconds to
load the dictionary to the memory. The dictionary occupies 6.80 GB of storage space on the hard
disk.

FPP stores frequent patterns via a tree structure, whose size depends on the number of nodes (i.e.
references) it contains. FPP takes O(

∑
|Ti| log |E|) time to mine frequent patterns from a training

7Only results of at least 4 significant digits are presented in Fig. 29 for better readability, since Theorem 3.2 applies to
floating-point data with high precision.
8For convenience, we represent combination of SPP and FPP by SFPP in short, and we simply represent “HDC with FPP”
and “HDC with both SPP and FPP” by FPP and SFPP respectively.
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Fig. 30: Performance of HDC vs. training set size

dataset, where the training set contains
∑
|Ti| edges. As shown in Fig. 30(a) and Fig. 30(b), the

larger the training set is, the longer the training time and the higher the storage costs incurred by
FPP. When a training set containing 6× 108 edges is used, FPP and SFPP cost 151 MB and 98 MB
to store dictionaries respectively. Furthermore, SFPP takes less time and smaller space because data
processed by SPP contains fewer edges. As Fig. 30(c) shows, compression time and decompression
time of HDC do not vary much as training set size grows. Note that the subscript c (d) next to
FPP/SFPP in Fig. 30(c) indicates compression (decompression). This is because the compression
time complexity of PLZW is O(|T | log |E|) while that of decompression is O(|T |) (here the test set
contains 5 × 107 edges). Compared with FPP, SFPP takes less time in compression but a bit more
time in decompression.

Both FPP and SFPP are effective in terms of compression ratio, which is shown in Fig. 30(d). The
compression ratio does not always increase as the size of training set increases because more bits are
needed to encode references when dictionary size grows. When training set contains 6× 108 edges,
the compression ratio of FPP and SFPP are 12.6 and 15.9 respectively, where the difference is not
significant. However, the gap between FPP and SFPP is wide when training set is relatively small.
For example, given a training set of 106 edges, the compression ratios of FPP and SFPP are 3.7 and
10.3, respectively. As a summary, SFPP is more effective than pure FPP in terms of compressing
trajectories. Consequently, if the additional cost of SPP does not cause any concern, HDC with
both SPP and FPP (i.e., SFPP) is preferred. However, when the road network becomes very big,
the construction cost of the shortest path trees and the storage overhead of dictionary might not
be negligible. In this case, HDC without SPP (i.e., only FPP) could be an alternative. Fortunately,
as long as the training set contains sufficient edges, HDC with only FPP can also achieve a good
compression ratio. In the following, we adopt HDC with SFPP as its default implementation, with
a training set containing 108 edges.
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7.3. Labeling and Coding (L&C) Compression
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Fig. 31: Performance of L&C

L&C first transforms spatial paths into label sequences, and then applies an entropy coding algo-
rithm. The entropy of label sequence should be as small as possible, since it bounds the performance
of the later entropy coding algorithm. In Fig. 31(a), we compare the optimal label and the ordered
label in terms of entropy, where Hordered = 1.46 and Hoptimal = 0.99. The optimal label is gen-
erated by MEL algorithm while the ordered label is generated by assigning a label to each edge
according to edges’ input orders. Then, we apply optimal label generated by training dataset to the
test dataset, and we observe that the difference of frequency distribution between two sets is very
small. In fact, the entropy of the label sequence on the training set is 1.00, and that on the test set is
0.99.

Given an alphabet Σ = {a, b, c} with equal probabilities of 1
3 , a fixed-length code may be

C = {00, 01, 11} and its average code length is 2.000 bits per symbol. Meanwhile, Huffman cod-
ing (H = {0, 10, 11}) achieves 1.667 bits per symbol. Moreover, the average code length will be
log2 3 = 1.585 for arithmetic coding. Arithmetic coding sometimes approaches the entropy more
than Huffman coding does, because Huffman coding can only assign k bits to a symbol where k has
to be an integer. For example, given an alphabet containing two symbols whose probabilities are 0.1
and 0.9, Huffman coding will assign 1 bit to each symbol, achieving no compression. We compare
arithmetic coding with Huffman coding in our experiment. As shown in Fig. 31(a), arithmetic cod-
ing has a better coding effectiveness than Huffman coding on both data sets. The average code length
of arithmetic coding is 1.00 while that of Huffman coding is 1.30 on the test set. Consequently, we
suggest to adopt arithmetic coding to improve compression effectiveness.

As shown in Fig. 31(b) and Fig. 33(a), L&C not only achieves a higher compression ratio than
HDC but also takes less time in compression and decompression. In addition, L&C only takes 49
KB to store the optimal label, which is far more less than the storage overhead of HDC.

7.4. Bounded Temporal Compression
COMPRESS framework proposes two methods to compress temporal sequences within given toler-
ant error bounds, i.e., Rigid Stabbing polyLine Compression (RSLC)9 and Tube Stabbing polyLine
Compression (TSLC). Fig. 32 shows the compression ratio of TSLC, RSLC(DP) and RSLC re-
spectively, in which TSLC has the highest compression ratio and RSLC(DP) is more effective than
greedy RSLC. Each dot in the figure records a range within which the compression ratio of the cor-
responding compression algorithm under specific TSND and NSTD settings falls. The darker the

9Although we introduce two different implementations of RSLC, including dynamic programming approach and a greedy
approach, denoted as RSLC(DP) and RSLC(greedy) respectively. When the context is clear, notation RSLC refers to RSLC
based on greedy algorithm if not specially mentioned.
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Fig. 32: Performance of TSLC, RSLC and RSLC(DP)

dot is, the higher the compression ratio (or improvement ratio reported in Fig. 32(d)) is. Note that
our algorithms still can achieve a compression ratio of 2.84 even if the error bounds are set to zero,
because some points in temporal sequences are collinear (i.e., an object travels at a uniform speed).
We further compare the performance of different temporal compression algorithms via improvement
ratio which is defined as the ratio of one compression ratio to another compression ratio. Fig. 32(d)
shows the improvement ratio of TSLC over RSLC (DP), where TSLC on average is about 1.2 times
more effective than RSLC (DP).

Further more, given a fixed TSND, the compression ratio grows rapidly first and then increases at
a very slow speed when NSTD gets larger. On the other hand, the compression ratio rises smoothly
when NSTD is fixed and TSND increases its value. This is because the average speed of the moving
object is about 5m/s instead of 1m/s (i.e., 1s of NSTD is approximately equivalent to 5m of TSND),
which means TSND is tighter in practice when both two error bounds are used.

Both greedy RSLC and TSLC are linear algorithms but RSLC(DP) has a time complexity of
O(n2). As Fig. 33(b) shows, RSLC(DP) takes much more time than TSLC and greedy RSLC, for
compressing the training set which contains 108 temporal tuples. As compared with greedy RSLC,
TSLC is relatively more time-consuming because polygons contain more edges when error bounds
are small. However, the edges of polygons will not exceed 4n + 4, so the efficiency of TSLC is
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guaranteed. On the other hand, greedy RSLC always runs fast since it just scans n points in the
temporal sequence.
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Fig. 33: Efficiency of COMPRESS

7.5. Summary of COMPRESS
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Fig. 34: Compression ratio of COMPRESS

After presenting the performance of spatial compression and temporal compression, we are ready
to present the overall performance of COMPRESS. In terms of spatial compression, both HDC and
L&C are recommendable because they have different advantages and can meet different application
needs. In terms of temporal compression, we adopt TSLC as it outperforms RSLC consistently. We
then report the overall compression ratio of COMPRESS in Fig. 34, where COMPRESS under L&C
and TSLC is more effective than that under HDC and TSLC. In addition to the compression ratio,
we also consider the time efficiency. COMPRESS is a linear algorithm but its running time also
depends on some variable factors. As shown in Fig. 33, COMPRESS under L&C and TSLC is more
efficient than that under HDC and TSLC because L&C is more efficient than HDC. In addition,
the running time increases as the error bounds decrease, because TSLC takes more time if the error
bounds are small.
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Fig. 35: Comparison of existing works (test set size: 108 sample points)

Compared with existing algorithms for trajectory compression including PRESS, Non-material,
MMTC and STC, COMPRESS is much more effective, as reported in Fig. 35(a). Note that STC is
bounded by only TSND, while both MMTC and Non-material are bounded by TSED. Consequently,
the x-axis in Fig. 35(a) is named as error, which means TSND for COMPRESS, PRESS and STC
but TSED for MMTC and Non-material. Since TSND is a tighter bound than TSED, COMPRESS,
PRESS and STC definitely will achieve a even higher compression ratio, as compared with the
performance reported in Fig. 35(a) if we replace TSND with TSED.

In addition to the effectiveness of different compression algorithms, we also report their efficiency
in terms of total time taken in Fig. 35(b). Among six methods considered, offline MMTC is the most
time-consuming. For example, when compressing the testing trajectory set, offline MMTC costs 3.3
hours so it is not plotted in the figure for better readability. As shown in Fig. 35(b), COMPRESS
takes more time than other algorithms (except offline MMTC), because TSLC has a larger constant
factor than other algorithms. However, taking into account that our test set contains 108 sample
points, the average execution time on single trajectory is still acceptable. More information about
those existing algorithms will be discussed in Section 8.

7.6. Query processing
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Fig. 36: Query processing efficiency of over Partial and Indexed over that of Original

In order to compare the performance of different methods for processing queries, we randomly
generate 3× 106 queries on test data set and then process these queries based on different methods.
The efficiency of query processing on partially decompressed data, denoted as Partial, is compared
with that on original data, denoted as Original, and that on indexed data, denoted as Indexed. Note
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that we do not include the query processing on fully decompressed data in our comparison as it is
very inefficient, taking even longer time than Original. We take query processing on the original data
as a benchmark, and report the performance ratio of other methods, including Partial and Indexed,
that is defined as the ratio of their running time to the running time of Original.

The performance ratios of Partial and Indexed to that of Original for position query and time
query are plotted in Fig. 36(a) and Fig. 36(b), respectively. Note that the label Partial actually refers
to COMPRESS as COMPRESS allows us to process location-based queries via partially decom-
pressing the data. For Indexed, a query on a trajectory of length |T | takes O(log |T |) time because
we build balanced search trees on all trajectories to support efficient query processing. As Indexed
always returns the accurate result, its deviations are always zero. In other words, the efficiency of
Indexed is fixed and it cannot be improved even though we increase the error bounds to larger val-
ues. On the other hand, queries on Partial becomes more efficient when the error bounds increase.
As observed from experiments, query processing on Partial is more efficient than that on Indexed
when the deviation is greater than 200m in position queries and when the deviation is greater than
30s in time queries.

8. RELATED WORK
In this section, we review existing work related to trajectory compression, including commonly
used lossless data compression algorithms, lossy compression algorithms on trajectory data and
other specific algorithms designed for road-network-based trajectory data.

8.1. Universal lossless compression
In information theory and computer science, data compression is the method that encodes informa-
tion into a new form with fewer bits. Data compression can be either lossless or lossy according to
features of data. Lossless compression reduces bits by mining statistical redundancy of data, so it
does not lose any information during the compression and we can completely recover the data after
decompression. On the other hand, lossy compression finds unnecessary data and removes them
directly, so information may be lost during the compression. Though lossy compression may cause
information loss, it can achieve a higher compression ratio than lossless compression does.

There are different kinds of lossless data compression algorithms, mainly classified into two
types, namely the entropy encoding and the dictionary encoding. Entropy encoding algorithms (e.g.,
Huffman coding, Shannon coding [Shannon 1948] and arithmetic coding) take possibility distribu-
tion of symbols as an input and are symbol-by-symbol coders which treat the data source as a
stream of unrelated symbols. Consequently, entropy encoding may not achieve a high compression
ratio on semantic data with many repeated patterns. However, dictionary coders (e.g., Lempel-Ziv
algorithms) search repeated patterns in data and replace them with references of patterns in the data
structure to compress data. They are optimal and are the most popular lossless data compression
algorithms [Cover and Thomas 2006], which have been widely used in text and image compression.

Both Huffman coding (a representative of entropy encoding) and Lempel-Ziv coding (a represen-
tative of dictionary encoding) are proved to be effective by studies in information theory. According
to Shannon’s source coding theorem, n independent and identically distributed random variables
each with entropy H cannot be compressed into fewer than nH bits. The average coding length
of Huffman coding achieves this entropy limit, where H(X) ≤ L(X) < H(X) + 1. Arithmetic
coding encodes the whole message into a number and its average coding length converges towards
the entropy when length of the message goes to infinity. Consequently, both Huffman coding and
arithmetic coding are optimal, though Huffman coding may need n more bits than arithmetic cod-
ing does to encode n symbols. Meanwhile, the compression ratio of Lempel-Ziv coding achieves
the entropy rate of an ergodic source, which also shows its asymptotic optimality. In our work, we
perform lossless compression based on those mentioned algorithms since they are optimal and the
most representative algorithms.

Although these lossless compression algorithms have been widely used in many applications,
they might not be able to outperform certain special methods proposed to compress specific data.
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Lossless compression algorithms benefit from priming models [Witten et al. 2001] built on prelim-
inary prepared text when compressing a huge mass of data, as PLZW algorithm does in Section 4.
By analyzing and mining features of data, we transform the representation of data in such a way
that becomes easier for existing algorithms to compress. This transformation strategy includes well-
known Burrows-Wheeler transform [Burrows and Wheeler 1994] in text compression, and trajectory
decomposition and labelling algorithm in our COMPRESS framework.

8.2. Lossy compression for trajectory data
Lossy compression is useful if information loss is tolerated to achieve a higher compression ratio
while the utility of the original data is partially preserved. Take temporal compression as an example.
Compressed temporal sequences are in the same format as original temporal sequences, so it is
convenient for other applications to process queries on compressed data.

Because it is hard to compress trajectory data by conventional lossless methods, algorithms based
on line simplification are proposed. Line simplification is to approximate a polyline using another
one containing fewer vertices, so it can be used to compress Euclidean space trajectories. The uni-
form sampling algorithm is simple and efficient but not error-bounded, as it just keeps every kth
points but discards others. The Ramer-Douglas-Peucker (RDP) [Douglas and Peucker 1973] al-
gorithm recursively selects point that causes the biggest error as a split point, until the trajectory
satisfies the error requirement. However, RDP is very expensive as the time complexity of original
RDP is O(n2) and that of improved implementations is O(n log n). Moreover, RDP is not optimal
which means it does not generate a polyline with minimum number of vertices.

The problem of approximating ordered objects by the polygonal chain with the minimum number
of line segments has been studied in [Guibas et al. 1991], where three restrictions including “no re-
striction”, “turn in tubes” and “turn in objects” are introduced to classify variations of the problem.
In trajectory compression, the objects are disks centered at sampled points and the radius of the
disks is the tolerant error. Furthermore, the tube is a region bounded by two consecutive disks and
their outer common tangents. Representative algorithms to solve the minimum stabbing polyline
problem include a greedy approach and a dynamic programming approach. The former is a linear
greedy algorithm which may not minimize the size of the polyline and hence not an ideal algorithm
for trajectory compression; while the latter takes O(n2) time. In computational geometry literature,
polyline simplification under “no restriction” and “turn in tubes” is called weak polyline simplifi-
cation, while that under “turn in objects” is called strong polyline simplification. Strong polyline
simplification only removes vertices from original polyline, but weak polyline simplification may
involve new vertices. For instance, RDP algorithm is strong polyline simplification since the result
polyline is a subset of the input polyline. Weak polyline simplification only takesO(n) time to com-
pute a minimal approximate polyline but strong polyline simplification has not been solved, even
when the polyline is monotone. In [Varadarajan 1996], an algorithm that takes O(n4/3+ε) time is
proposed to find a minimal polyline to approximate a monotone polyline; In [Agarwal et al. 2005],
a linear time algorithm is presented to compute an approximate polyline whose error is at most ε
and the size is at most κ(ε/2, n), where κ(ε, n) donates the size of the optimal polyline, given a
polyline containing n vertices and an error bound ε.

In our COMPRESS framework, temporal compression is also reduced to the stabbing polyline
problem. Our solution RSLC corresponds to the restriction “turn in objects” (strong polyline sim-
plification) while TSLC corresponds to “turn in tubes” (weak polyline simplification). Window-
Partition algorithm proposed in [Suri 1990] is a linear algorithm searching for minimum-link path
between two edges (or two vertices) in a simple polygon. Since the tube here can be divided into
simple polygons, it only takes O(n) to construct a minimum tube stabbing polyline by the divide
and conquer approach. We use the TSLC to compress the temporal sequences and it is proved by
our experimental study to be both efficient and effective.

A trajectory is a path that a moving object follows through space as a continuous function of time
describing an object’s motion, but in practice we can only obtain location samples at discrete time
instants, and how object moves between sample points is not represented in the database. In COM-
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PRESS, we consider GPS trajectory in road networks, and assume that vehicles move with a fixed
speed between two sample points, which leads to polyline simplification stated above. Different ap-
proximation methods are applied if the moving objects accelerate in short periods (e.g., in particle
accelerators). For example, an algorithm to approximate an open polygonal curve with a minimum
number of circular arcs and biarcs is proposed in [Drysdale et al. 2008]; while a method based
on piecewise Chebyshev approximation is developed in [Hagita et al. 2014] to compress particle
trajectory data, where velocity varies a lot in short periods.

[Cao et al. 2006] is the first work to discuss error-bounded query processing on lossy compressed
trajectory data, which focuses on trajectories in 2D/3D spaces. In that work, authors reduce the size
of trajectories by polyline simplification algorithms. In total four distance functions are defined,
including two dimensional Euclidean distance E2, three dimensional Euclidean distance E3, three
dimensional time uniform distance Eu and time distance Et. Afterwards, spatial-temporal queries
including where(T, t), when(T, x, y) and range(T, t1, t2, R) are introduced. They analyze the re-
lationship called soundness between distance functions and spatio-temporal queries. For example,
though the Euclidean distance between original trajectories and compressed ones is guaranteed after
compression, results of where(T, t) on compressed trajectories are not bounded by the Euclidean
distance, so E2 or E3 is not sound for where(T, t). In COMPRESS, we extend the technique to
trajectory in road networks, where TSND is sound for where(T, t) and range(T, t1, t2, R) and
NSTD is sound for when(T, x, y). Different from completely lossy compression proposed in [Cao
et al. 2006], COMPRESS includes lossless spatial compression, which makes it hard to query en-
coded spatial paths. Consequently, we design HDC as well as query processing algorithms on partial
decompressed data to overcome the difficulty, and the error-bounded queries are still supported.

[Muckell et al. 2013] introduces a framework to evaluate the lossy trajectory compression algo-
rithms, where both accuracy metrics and performance metrics are used. In [Muckell et al. 2013],
TSED is considered as a representative accuracy metric while temporal metrics include compres-
sion ratio and compression time. The benchmark framework is designed for those lossy compression
algorithms that directly discard unnecessary points and produce a subset of input trajectory as an
output trajectory and hence not applicable to COMPRESS since COMPRESS is partially lossy as
both trajectory decomposition and spatial compression are lossless. However, the metrics discussed
in [Muckell et al. 2013] are still considered in our experiments, including both accuracy metrics
(TSND and NSTD) and performance metrics (compression ratio and compression time).

8.3. Trajectory compression in road networks
Trajectory data in urban spaces is restricted by road networks, i.e., the trajectories have to fall on
road segments. Consequently, it is natural to use map-matching algorithms to filter the GPS sensor
errors and to map GPS trajectories onto the road network. There are many existing map-matching
algorithms [Brakatsoulas et al. 2005; Lou et al. 2009; Newson and Krumm 2009; Song et al. 2012].
They take trajectory data as well as the road network as an input and return the trajectories as
sequences of road segments. Our COMPRESS framework first projects the trajectory onto the road
network via existing mapmatching algorithms and then invokes compression algorithms to compress
the trajectory. Here, we review four representatives of trajectory compression in road networks,
including our prior framework PRESS [Song et al. 2014], Non-material [Cao and Wolfson 2005],
MMTC [Kellaris et al. 2013] and STC [Popa et al. 2015].

Our prior framework PRESS first decomposes the trajectory into a spatial path and a temporal
sequence, and then compresses the spatial path and the temporal sequence separately. The spatial
compression algorithm first applies shortest path compression and then uses Huffman coding to en-
code sub-spatial-paths containing no more than θ (e.g., θ = 3 in the experiments) edges; and its tem-
poral compression is an error-bounded algorithm, which is similar to the greedy approach in RSLC.
COMPRESS framework shares some similarities as PRESS. However, we want to highlight that
COMPRESS framework brings significant enhancements to PRESS framework in following three
aspects. First, COMPRESS framework studies the limitations of the conventional representation
of trajectory data in terms of compression and proves the advantages of trajectory decomposition
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formally. Second, the spatial compressor in COMPRESS framework implements two new spatial
compression algorithms with both outperforming the algorithm used in PRESS. Third, the tem-
poral compressor implements a new algorithm TSLC, which is an optimal algorithm for bounded
temporal compression.

Non-material does not take advantage of map-matching algorithm but it introduces a novel al-
gorithm for “adjusting” the trajectory to fit the road network to generate road-snapped trajectory.
Thereafter, it “non-materializes” the road-snapped trajectory and separates temporal information
from the spatial information10, which is similar to the decomposition stage in COMPRESS. The
“non-materialize” stage in Non-material inspires us to study the limitation of original representation
and to explain the reason why we decompose trajectory data. However, our COMPRESS frame-
work outperforms Non-material in following several aspects. First, Non-material does not compress
the spatial information, while COMPRESS implements HDC and L&C, two effective compression
algorithms, to compress spatial paths. Second, Non-material only uses TSED metric when com-
pressing temporal information so it cannot guarantee time difference between a trajectory and its
compressed form; while COMPRESS considers both TSND and NSTD to ensure that the deviations
of the compressed trajectory from the original one in both time dimension and distance dimension
are bounded. Last but not least, Non-material simply reduces the temporal compression to stabbing
polyline problem defined in Definition 5.5, which can only guarantee the error at original sampled
time stamps. On the other hand, both RSLC and TSLC in COMPRESS guarantee the error metrics
bounded over the whole time and distance range, as mentioned in Section 5.

MMTC is another algorithm that focuses on trajectory compression in road networks. It combines
map-matching algorithms together with lossy trajectory compression algorithms. Moreover, a spe-
cific evaluation function called trajectory similarity is introduced to guarantee that the compressed
trajectory is similar to the original one. MMTC assumes that all sample points in map-matched tra-
jectories should be exactly projected to the vertices of road-network.11 Based on this assumption,
MMTC replaces parts of trajectory with the shortest paths to reduce the storage cost, since points
are all vertices of the road-network and shortest paths between them can be computed. The lossy
compression algorithms in MMTC include an online algorithm and an offline algorithm, both of
which replace certain sub-paths by shortest paths if the shortest paths contain fewer vertices. The
offline algorithm computes all shortest paths between every two points and takes O(n2 log n) time,
while the online algorithm only computes shortest paths between every continuous r points and
takes O(rn log r) time, where r is a predefined threshold. Offline MMTC is time-consuming while
online MMTC is not as effective as offline MMTC in terms of compression ratio. The assumption
that points are projected to vertices leads to the deviation from original map-matched trajectory,
because most points in map-matched trajectories are projected to edges instead of vertices, as Fig. 4
shows. Furthermore, the shortest path could be quite different from the original sub-trajectory. In
other words, the compression ratio of offline MMTC is limited if the error is bounded.

STC is the last algorithm that is included in the experimental study as a competitor of our frame-
work. Firstly, that work analyses the limitation of existing lossy compression algorithms and con-
siders data model related to the network space instead of 2D space. In network model, the location
of a moving object is represented by 〈rid, pos〉, where rid is a road identifier and pos ∈ [0, 1] is
the relative location on the road (pos = 0 for the start point while pos = 1 for the end point).
Then the authors present their generalized data model of in-network trajectories, which eliminates
the unnecessary time information in the trajectory representation. Afterwards, STC compresses tra-
jectories through two algorithms, including a network partitioning algorithm and a strong polyline
simplification algorithm. The network partitioning algorithm partitions the graph into longer roads,

10See Definition 3 in [Cao and Wolfson 2005]:“A non-materialized trajectory T is a function from time to map locations
represented as a sequence of tuples (〈p1, l1, t1〉, · · · 〈pm, lm, tm〉), where each pi is a street in P , li is a real number that
indicates T ’s location at time ti in pi’s linear reference coordinate.”
11See Definition 3 in [Kellaris et al. 2013]: “A trajectory T is considered to be map-matched to a network map G = (V,E)
if all the 〈x, y〉 coordinates of its tuples belong to V and they are connected to each adjacent through an edge of E.”
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after which a trajectory may traverse fewer roads so the storage is reduced. In order to apply the
polyline simplification algorithm, STC transforms the generalized trajectory into the sequence of all
time-stamped locations, i.e., a series of 〈rid, pos, t〉, which is similar to non-materialized trajecto-
ries introduced in [Cao and Wolfson 2005]. The error metric used in STC is TSND and the strong
polyline simplification algorithm is the optimal line algorithm introduced in [Imai and Iri 1988],
which takes O(n log n) time.

STC is similar to COMPRESS in many aspects but there are still some differences. First, GPS
locations are usually reported in the form of 〈x, y〉 instead of 〈rid, pos〉, where x and y are latitude
and longitude respectively. STC assumes that all sample points are right on the edges but COM-
PRESS can deal with deviation from road network on the basis of map-matching algorithms, so
COMPRESS is more suitable for trajectory compression in real transport networks. Second, the re-
duction of spatial information via network partition is limited. Each generalized unit computed by
STC contains at least one road identifier12, so the compression ratio of road segments will not ex-
ceed compression ratio of the 〈rid, pos, t〉 sequence, which is at most 7.8 in our experiments. While
spatial compression algorithms in COMPRESS can achieve a compression ratio higher than 16.
Third, STC applies strong polyline simplification, whose effectiveness is equivalent to RSLC(DP).
As shown in Section 7, TSLC is more effective than RSLC so COMPRESS also does better in
temporal compression. Finally, COMPRESS implements not only TSND but also NSTD, based on
which position and time queries can be efficiently processed.

9. CONCLUSION
In this paper, we propose a comprehensive framework called COMPRESS to reduce the size of tra-
jectory data in road networks. First, we prove that lossless compression on original trajectory can
hardly reduce the size of data, especially under high precision. Then, we introduce a simple decom-
position method to separate spatial data from temporal data, which transforms the representation
and makes it easier to design compression algorithms. Afterwards, several specific algorithms are
designed according to different data properties. We want to highlight that COMPRESS optimizes
these specific algorithms and hence it is able to achieve a much better compression ratio. Last but not
least, COMPRESS is also able to support error-bounded queries on partially decompressed data. A
comprehensive experimental study has been performed to evaluate the efficiency and effectiveness
of COMPRESS framework.

Data compression is a fundamental problem in information theory and computer science. Many
universal compression algorithms like Huffman coding and Lempel-Ziv coding have been proposed
during last century. These algorithms are optimal and have a sound theoretical basis in information
theory. However, it is ineffective to apply them on different kinds of data without any pretreatment,
so transformation before compression is necessary. Consequently, we wonder if there is any better
strategy to improve the representation of trajectory data. Moreover, we extract compressible infor-
mation (i.e., spatial paths) in our trajectory decomposition algorithm. It is interesting to investigate
whether this extraction strategy is suitable for other kinds of data.

COMPRESS framework not only reduces the size of data, but also tries to retain the utility of
data so that the error-bounded queries can be processed efficiently on partially decompressed data.
Compressing and indexing are usually contrary to each other but in HDC we combine them together,
which leads to low storage cost and high processing efficiency. In Section 6, we have evaluated
data utility from two perspectives including precision and readability. Data precision is defined in
Section 5, but we find it difficult to define data readability. Consequently, clearly defining data utility
and efficiently processing queries on lossless/lossy compressed data are also interesting research
directions.

12In the best case, the trajectory compressed by STC is contained by a single road, so each unit just has only one road
identifier.
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