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Profiling Social Media Users with Selective

Self-Disclosure Behavior

Wei Gong

Abstract

Social media has become a popular platform for millions of users to share

activities and thoughts. Many applications are now tapping on social media

to disseminate information (e.g., news), to promote products (e.g., advertise-

ments), to manage customer relationship (e.g., customer feedback), and to

source for investment (e.g., crowdfunding). Many of these applications require

user profile knowledge to select the target social media users or to personalize

messages to users. Social media user profiling is a task of constructing user

profiles such as demographical labels, interests, and opinions, etc., using social

media data. Among the social media user profiling research works, many focus

on analyzing posted content. These works could run into the danger of non-

representative findings as users often withhold some information when posting

content on social media. This behavior is called selective self-disclosure.

The challenge of profiling users with selective self-disclosure behavior motivates

this dissertation, which consists of three pieces of research works.

The first work is that of profiling silent users in social media. Silent users

(or lurkers) are the users who choose not to disclose any information. In this

work, we examined 18 weeks of tweets generated by two Twitter communities

consisting of more than 110K and 114K users respectively. We find that there

are many lurkers in the two communities. We also show that by leveraging

lurkers’ neighbor content, we are able to profile their attributes with accuracy

comparable to that of profiling active users.

The second work is that of profiling users with selective topic disclosure.

Social media users may choose not to post some of their interested topics. As

a result, their posting and reading topics can be different. To better determine

and profile social media users’ topical interests, we conducted a user survey in



Twitter. In this survey, participants chose the topics they like to post (posting

topics) and the topics they like to read (reading topics). We observe that users’

posting topics differ from their reading topics significantly. We find that some

topics such as “Religion”, “Business” and “Politics” attract much more users

to read than to post. With the ground truth data obtained from the survey, we

show that predicting reading topics can be as accurate as predicting posting

topics using features derived from posted content, received content and social

networks.

The third work is that of profiling users with selective opinion disclosure.

In social media, users may not disclose their opinions on a specific issue i even

when they are interested in i. We call these users issue-specific silent users

or i-silent users. This work investigates the opinions of i-silent users. We

conducted an opinion survey on a set of users for two popular social media

platforms, Twitter and Facebook. We analyzed the survey results together

with their social media data. We find that more than half of our users who

are interested in issue i are i-silent users in Twitter. The same has been

observed for our Facebook users. The survey results also show that i-silent

users have opinion distribution different from the users who post about i.

With the ground truth user opinions from the survey, we show that predicting

i-silent users’ opinions can achieve reasonably good accuracy from user posted

content that is not related to issue i, and achieve better accuracy when we

utilize user opinions on other issues as features.
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Chapter 1

Introduction

Social media platforms such as Facebook and Twitter connect millions of users

with very large online social networks where they share content from daily

life to personal thoughts. The abundant user-generated content provides an

unprecedented resource for user profiling, which seeks to determine user at-

tributes such as their demographic attributes (e.g., age, gender and marital

status) [109, 87, 68, 82], interests [114, 80, 22], preferences [67, 66], opinions

[38], personalities [58, 43] and mental states [32, 33]. These user attributes

characterize who the users are, what they like and what they think, and as such

play a critical role in many applications such as viral marketing, recommen-

dation systems and targeted advertising [71, 31, 125, 65, 39, 116, 104, 128, 2].

For example, knowing that a user is a 25 years old female interested in fashion

allows a marketer to recommend her fashion magazines, fashion stores, and

brands for young females.

User profiling can be challenging when considering social media user be-

haviors. We use three user behaviors for illustration, namely, (i) organizations

as account owners, (ii) untruthfulness, and (iii) selective self-disclosure. Many

organizations nowadays maintain social media accounts to engage customers

and spread information [92, 77]. Content generated by these accounts and their

behavior would be quite different from those of normal user accounts. Profiling

1



human and organization accounts should therefore be treated differently. For

example, we are interested in profiling human’s personalities but organizations’

marketing strategies. Consequently, profiling organizations requires different

approaches.

Some users in social media do not post information truthfully [20, 93]. For

example, in China, there are paid users, known as water army, posting fictitious

articles, reviews, and comments in order to influence others’ opinions on some

social issues or products [20]. The content these paid users posted do not truly

reveal their profiles such as opinions. Again, the usual way of profiling users

based on content [129, 35, 94, 21, 58, 43] cannot be applied on them.

Social media users often select certain content to disclose. This behavior is

known as selective self-disclosure [127, 29]. Specifically, when posting content

in social media, users consciously or sub-consciously decide what content to

share, to whom the content is shared with, and self-censor when selecting and

crafting the content [8, 49, 29, 112]. As a result, the content users posted does

not completely reveal their profiles such as interests. In this dissertation, we

focus on profiling users with selective self-disclosure behavior.

Due to users’ selective self-disclosure behavior, profiling them becomes a

challenging task. In the extreme case, users may choose not to post any content

and behave as audience. They are known as lurkers, or silent users [115, 45].

For this group of users, it is impossible to profile them by considering only

their posted content. The immediate question is then how do we profile silent

users who do not post any content.

Even for the users who post content online (we call them active users),

they can still choose not to disclose some information. For instances, a user

interested in business may never post business related content, and another

user who never mentioned a mobile phone before may have some positive or

negative opinion on it. How do we know if a user is interested in a topic, if

she never posted that topic? How do we know a user’s opinion on a product,

2



Target Users Attributes to Profile

Silent users (who select not to
disclose content)

Marital status, religion, and politi-
cal orientation

Users with selective topic dis-
closure behavior

Posting topical interests and read-
ing topical interests

Users with selective opinion
disclosure behavior

Opinions

Table 1.1: Dissertation Overview.

an issue or an event, if she has not discussed it before?

To answer the aforementioned questions, this dissertation includes three

works (see overview in Table 1.1), with each work focusing on users with a

certain type of self-disclosure behavior and investigating how to profile certain

attributes of them when they choose not to disclose some information. In the

first work, we study silent users who choose not to disclose any information,

and profile their attributes including marital status, religion and political ori-

entation. In the second work, we study users with selective topic disclosure

behavior and profile their posting and reading topical interests. In the third

work, we study users with selective opinion disclosure behavior and profile

their opinions on some social issues in Singapore. The details of these three

works are introduced as follows.

1.1 Profiling Silent Users

In the first part of this dissertation, we study silent users (or called lurkers)

who have none or little posted content and prefer to consume content or per-

form other non-content-generating activities quietly. We call this the lurking

behavior which can be considered as a special case of selective self-disclosure

behavior. As active users account for most of the social media content, existing

social media research have focused on them but not the lurkers [50, 121, 87].

For example, when mining the topical interests and sentiments of users, one

often does not consider lurkers as they do not generate sufficient content. This

3



obviously leads to biased representation of topical interests and sentiments at

the user population level.

In many applications, it is very important to identify the lurkers, and their

demographic attributes, interests and opinions. Despite their online silence,

lurkers (like active users) are individuals with interests and preferences. They

pay attention to topics of interest to them and will seek for relevant content.

They have preferences that can potentially be expressed as ratings and reviews

on consumer products. They are also potential customers for targeted mar-

keting. It is possible for lurkers to have different demographic and opinion

distribution from active users. Failing to account for lurkers could therefore

lead to the misjudgment of overall population-level demographic attribute dis-

tribution, interests and opinions. For example, Gayo-Avello [40] pointed out

that one of the main reasons that has caused the low election prediction ac-

curacy using social media (i.e., Twitter) data is that “The silent majority is

a huge problem. Very little has been studied in this regard and this should be

another central part of future research”.

For the above reasons, we characterize silent users in Singapore and Indone-

sia Twitter communities and evaluate the accuracy of profiling their attributes

including marital status, religion and political orientation by utilizing the con-

tent generated from their neighbors. This part of our research is covered in

Chapter 3.

1.2 Profiling Users with Selective Topic Dis-

closure

In the second part of this dissertation, we study users’ topical interests. With

selective self-disclosure, users may not post some topics that they are interested

in (i.e., selective topic disclosure). In contrast, when users read content online,

because reading often does not generate any public data trace, users have less

4



worries about how other people perceive them when reading online content.

For example, a user interested in politics is likely to read political news and

discussion, but may choose not to post political content to avoid unwanted

disputes on some controversial issues. Therefore, we expect that users’ posting

topical interests (posting topics) can be different from reading topical interests

(reading topics).

A number of previous studies have focused on predicting users’ topic in-

terests [114, 80, 22]. While these studies contribute to the understanding of

general topic interests of users, they fail to distinguish between the posting

and reading topics. In our research, we postulate that reading topics are as

important as posting topics [46]. Posting topics are likely to capture only part

of all topic interests of the user. The user’s reading topics on the other hand

reveal the additional content she is likely to pay attention to. If the purpose

of user profiling is to discover topics that attract user attention, one should

focus on users’ reading topics. And if the purpose is to find topics that users

are likely to share, one should focus on users’ posting topics.

Given that user posting and reading topics can be different, we then aim to

address the following important research questions. That is: (a) How different

are users’ posting and reading topics? (b) Are there topics that are more likely

to be reading topics but not posting topics, and vice versa? (c) Is the difference

between user posting and reading topics related to user personality? (d) Can

we predict posting and reading topics accurately? and (e) Can we predict

lurkers’ reading topics accurately? This part of dissertation seeks to answer

the above questions by conducting a user survey and exploring methods that

profile user posting and reading topics separately. We present this work in

Chapter 4.
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1.3 Profiling Users with Selective Opinion Dis-

closure

In the third part of this dissertation, we focus on analyzing issue-specific silent

users’ opinions. Opinions of users are useful in many real world applications

[76]. Retailers are keen to know how well consumer think of new products and

in what product aspects. Political parties and analysts want to predict election

outcome based on public opinions. Universities also rely on public ratings on

their academic and research programs to secure good ranking. User opinion

insights are important to organizations and governments. They allow decision

makers to fine tune customer relationship services and government policies, and

help individuals make decisions (e.g., which products to buy, which movies to

watch or which politicians to vote).

With selective self-disclosure, users may choose not to disclose their opin-

ions in social media (i.e., selective opinion disclosure). A user may choose to

keep silent on an issue even when she is interested in it, or when she has opin-

ions on it. For example, a user may not share her opinion online because she

does not want to start an argument with others, she thinks the opinion is not

appropriate to share in public, or she is afraid that many of her friends have

different opinions [103, 49, 112].

User-generated content therefore includes opinions on an issue from only

those who post about the issue. When we conduct opinion analysis on this

content, we will likely derive a biased conclusion of what the public think

about the issue. The main question here is then how can we obtain opinions

on issues from a set of users who are interested in the issues but do not share

their opinions in social media. These users are the issue-specific silent users

or i-silent users [47]. For example, if a user is interested in issue “Healthcare

Cost” but never posts about it, she is then considered a Healthcare Cost-silent

user. We call the users who post about an issue the issue-specific active users
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or i-active users. It is important to note that i-silent users may still generate

content unrelated to issue i. Hence, they may not be overall silent users who

do not post anything or post only a little in a certain period time [115, 45].

On the other hand, an overall silent user is one who is i-silent for all issues.

This part of dissertation seeks to study to what extent i-silent users exist

for different issues and whether their opinion distribution is similar or different

from that of i-active users, and explore the methods that unravel the opinions

of i-silent users. We cover this work in Chapter 5.

1.4 Contributions

In the following, we summarize the contributions of this dissertation under two

main areas, namely (a) insights of selective self-disclosure behavior, and (b)

user profiling methods and evaluation.

Insights of selective self-disclosure behavior in social media.

1. In our first work, we show that there are a significant number of lurkers

in both Singapore and Indonesia Twitter communities. It shows that

many users choose not to disclose information or disclose only a little

information in social media. We derive several characteristics of lurkers in

Twitter: Compared with active users, lurkers have much fewer followers

and followees; Both active users and lurkers are more likely to connect

with active users than lurkers; Lurkers break silence mainly to share

information such as breaking news and updates of personal life.

2. In our second work, we show that the topics users like to post can be

significantly different from the topics users like to read in social media.

This finding verifies that social media users may choose to disclose only

a subset of their interested topics. We also find that less extravert and

less agreeable users are likely to have more differences in posting and

reading topics. Thus personality is one possible explanation for users
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posting and reading different topics. We also show that users appear to

be indiscriminative when posting topics about “Gaming” and “Music”.

However, for topics such as “Religion”, and “Politics”, many users in-

terested in reading them do not share them in Twitter. These findings

suggest that to measure the popularity of a tweet or an event, we need to

consider its topic. For example, if a tweet is about “Politics”, then the

number of users sharing it could possibly underestimate its popularity or

influence.

3. In our third work, we examine two popular social media platforms, Twit-

ter and Facebook, and conduct a survey to obtain users’ opinions on

seven social issues (Healthcare Cost, Retirement, Public Housing, Pub-

lic Transport, Jobs, Education, and Population Growth) and to collect

users’ personal social media data. Our study shows that more than half

of the users who are interested in issue i are i-silent users in both Twitter

and Facebook, confirming that people not posting an issue does not im-

ply that they do not have opinions on that issue. Hence, a large number

of i-silent users’ opinions will be overlooked if we consider i-active users’

posts only. We also find that i-silent and i-active users may hold differ-

ent opinion distributions. It suggests that to understand what the public

think about an issue i, it is necessary to take i-silent users’ opinions into

account.

User profiling methods and evaluation.

1. In our first work, we propose to use the content from lurkers one-hop

neighbors to profile lurkers. We demonstrate that profiling lurkers’ mari-

tal status, religion and political orientation can be as accurate as profiling

active users’. This result suggests that it is possible to infer other lurk-

ers’ latent attributes. This will also enable lurkers to enjoy personalized

applications including search, recommendation systems and advertising.
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2. In our second work, we profile posting and reading topics separately

using different topic ranking strategies including Popularity, Content and

Followee-expertise. We propose a model which learns to combine rankings

from multiple ranking strategies. Although the content a user has read

is not available, we demonstrate that we can still infer users’ reading

topics with promising performance. We also show that we can predict

lurkers’ reading topics using Followee-expertise with reasonable accuracy.

The prediction of posting and reading topics can be useful in different

practical scenarios. For example, users’ posting topics can be used to

predict whether they will share a topic specific event or speak up for a

topic specific issue in the future. Users’ reading topics can be used to

predict whether they will click an advertisement related to these topics.

3. In our third work, we profile opinions for i-silent users as well as i-

active users in Twitter and Facebook. We explore two types of features

for opinion prediction task: the sentiment features extracted from users’

content and the opinion features extracted from users’ predicted opinions

or ground truth opinions on other issues. We demonstrate the effective-

ness of these features and show that although predicting i-active users’

opinion yields better performance than that of i-silent users, it is still pos-

sible to predict i-silent users’ opinions by leveraging on their i-unrelated

content. We can achieve better performance if we make use of predicted

i-silent users’ opinions on other issues and achieve the best performance

if we acquire the ground truth i-silent users’ opinions on other issues.

To be able to predict i-silent users’ opinions will enable researchers to

infer the opinion distribution in population level, and also have a better

understanding of i-silent users.
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1.5 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we review

previous studies about selective self-disclosure behavior and user profiling. In

Chapter 3, we characterize and profile lurkers. In Chapter 4, we study the

difference between user posting and reading topics and profile user posting

and reading topics separately. In Chapter 5, we profile the opinions of issue-

specific silent users. Finally, we conclude this dissertation in Chapter 6.
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Chapter 2

Literature Review

In this chapter, we review previous works on selective self-disclosure and user

profiling in social media.

2.1 Selective Self-Disclosure

Self-disclosure, a process of sharing personal information with others, has been

studied extensively in psychology [127, 28, 36, 34]. It is a ‘cornerstone’ of

formating, developing and maintaining intimate social relationships [27], and

it has been viewed as “both a sign and a cause of a healthy personality” [55, 54].

Selective self-disclosure refers to people selecting certain part of themselves

to disclose. It happens both in face to face communication and in computer-

mediated communication (CMC) [53, 10]. As social media, a popular CMC

platform, attracts millions of users to share personal information and maintain

relationships, the study of self-disclosure has been extended to social media

[98, 105, 29].

Previous studies have shown that social media users would decide what

content to post and to whom [8, 49, 29, 112]. For example, Hampton et

al. [49] conducted a survey on 1,801 adults asking them how they react to

an important public issue (“Edward Snowden’s 2013 revelations of widespread

government surveillance of Americans’ phone and email records”). They found
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that people are less willing to discuss this issue in social media than in person,

and that people are less likely to express their views online if they believe they

have views different from others.

Some studies [29, 112] showed that when selecting and crafting the content,

users may practice self-censorship. When censoring the content to be shared,

users may finally decide not to disclose this content. Das and Kramer [29]

examined 3.9 million Facebook users and found that 71% of users practise self-

censorship on what content to share. In a qualitative study, Sleeper et al. [112]

asked 18 Facebook users to report “all content they thought about sharing but

decided not to share”. The authors found that the reasons for self-censorship

and deciding not to share include: (a) not wanting to start or continue an

argument, (b) not wanting to offend others, (d) not wanting to bore others,

and (d) not wanting to post content that might be inconsistent with their self

images.

Lurking in Social Media. Lurking is a special case of selective self-disclosure

behavior. When a user lurks, she selects not to disclose anything or disclose

only a little information. Such a user is also known as a silent user or lurker. In

traditional printed news media, lurking is almost the only possible activity as

all news articles are written by professional journalists leaving very few selected

reader comments to appear in special news columns. Social media, in contrast,

depends largely on users to contribute and share content. A naive intuition

may consider lurking on social media not a desired user behavior. Without

enough users actively contributing content, the social media user community

may shrink. In practice, however, lurking is a very common behavior found

in many content providing sites [45, 83, 5, 11, 13]. Benevenuto el al. [11]

in their work on user behavior in online social networks (e.g., Myspace and

LinkedIn), concluded that browsing actions (i.e., lurking) constitute 92% of all

user actions. Only very few users contributed content. Nonnecke and Preece

[89] examined online discussion lists and showed 46% and 82% of users in
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health-support and software-support discussion lists respectively are lurkers.

Muller et al. [83] showed that 72.2% of users are lurkers in an enterprise file-

sharing service. All these studies conclude that lurking is a common behavior

among online users.

As lurkers make up a significant proportion of users in online communities,

several studies [90, 103, 63] have focused on the reasons for lurking. Preece

et al. [103] conducted interviews and reported reasons such as (i) no need

to post, (ii) personal privacy and safety concerns, (iii) shyness over public

posting, and (iv) poor system usability. No need to post appears to be the

top reason. In a survey conducted on a user-generated encyclopedia called

Everything2.com, Lampe et al. [63] reported that many users choose to lurk

because they are satisfied with “getting information”, as opposed to “sharing

information”. Antin and Cheshire [5] found that Wikipedia users choose to

lurk so as to learn enough about the site before they could actively contribute

content. Similar findings of de-lurking behavior were also reported in other

works [102, 107].

To summarize, with selective self-disclosure behavior, users only disclose

part or even none of their activities, emotions, interests and opinions when

posting in social media. As a result, it is challenging for researchers to have a

complete understanding of individual social media users and user communities.

2.2 User Profiling

A user’s profile is a description of the characteristics and preferences of the

user [61, 81, 64]. It tells who the user is, what she likes and what kind of

person she is. It can include the user’s gender, age, marital status, religion,

physical and mental conditions, interests, preferences, opinions, personalities,

personal values, credits and many others. User profiling refers to the task of

deriving user profiles by querying users or by performing predictions on the
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Attributes Representative Works
Demographic attributes Age [109, 87, 68]; Gender [109, 73, 25];

Location [109, 74, 64]; Religion [88, 122];
Ethnicity [19]; Education [122, 82]

Interests and preferences Topical interests [114, 80, 22, 130, 132, 129, 35];
Geo preferences [67, 66]

Opinions Political affiliation [70, 109, 26]; Topics [38]
Personalities Personalities [58, 43, 4, 7]; Personal values [21]
Mental states Depression [32, 33]

Table 2.1: Related works on user profiling with social media data.

observed user data.

Many real world applications require profile information of their users. For

example, doctors need patients’ age, gender and medical history, etc. for diag-

nosis and treatment. Police profile criminals in order to narrow down possible

suspects [120]. Banks decide whether to lend money to someone based on her

credit history. Web applications also create new demands for user profiles. For

example, video sharing websites and online shopping websites utilize user pro-

files to recommend videos and products respectively [71, 31, 2], social media

sites offer news suggestions based on users’ topical interests [99], and search

engines return personalized results [39, 116].

Surveys and interviews are the traditional methods to obtain user profiles,

but they involve much manual efforts, time and money. They are therefore not

suitable for millions of users on social media platforms. On the other hand, the

abundant data traces left by social media users create new opportunities for the

much more scalable automated user profiling approaches [109, 64, 92]. In Table

2.1, we summarize the representative works on profiling users in social media.

As shown in Table 2.1, social media data including user-generated content and

user connections can be used to infer user profiles from basic demographic

attributes such as age and gender to user personalities and depression states.

Due to the selective self-disclosure behavior, users do not fully disclose their

information or sometimes do not disclose their information at all. Profiling

such users can be challenging. For example, some users may be lurkers (i.e,
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never disclosed anything), and there is no content generated by them for user

profiling. Can we still profile such users? If a user does not post ‘Politics’, do

we know she is interested in Politics? If a user does not express her opinion on

the current health care system, do we know that she holds positive or negative

opinion on it? This dissertation aims to study lurker, users with selective topic

disclosure, and users with selective opinion disclosure. We focus on profiling

their demographic attributes, topical interests and opinions respectively. These

attributes fall into the first three categories in Table 2.1. In the following

three sections, we provide a more in-depth discussion on the related works on

profiling users’ demographic attributes, topical interests and opinions.

2.2.1 Demographic Attributes Profiling

Previous user profiling research has shown that users’ latent demographic at-

tributes can be inferred with reasonable accuracy based on user posted con-

tent and/or their social networks [109, 87]. For example, Liao et al. [68] and

Nguyen et al. [87] inferred Twitter users’ age based on their language use in

tweets. Both works found that the words users use are associated with their

age. Yang et al. [130] proposed a model to propagate item interests through

users’ friend links. Mislove et al. [82] utilized friend links to infer Facebook

users’ attributes such as their major. The authors proposed to detect commu-

nities in the networks, and then assign an identical attribute value to users in

the same community. Li et al. [64] proposed to use both user posted content

and social connections to profile user location.

Profiling lurkers’ attributes. Many of these user profiling works often leave

out the lurkers as they do not provide rich content features. Hence, we are not

able to ascertain the accuracy of attribute profiling for lurkers, and whether

the accuracy for lurkers and active users are very different.

Our proposed approach to profile lurkers is to utilize social links and neigh-

bors’ content [64, 131]. As shown in our data analysis, lurkers are likely to
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follow active users whose content are abundant. User profiling using neighbors’

content has been shown to perform well for active users only in previous studies

[131]. To the best of our knowledge, user profiling on lurkers and comparison

between the profiling accuracy of lurkers and that of active users have not been

studied earlier.

2.2.2 Topical Interests Discovery

To profile users’ topical interests from their social media content, researchers

often adopt supervised methods [114, 80, 22]. Michelson and Macskassy [80]

infer Twitter user topic interests from named-entities in their posted tweets.

The topics of these entities are then obtained through a knowledge base (i.e.,

Wikipedia). Unsupervised methods such as LDA [15] has been extended to

infer user topic interests in Twitter [132, 129, 35]. Xu et al. [129] proposed a

generative author-topic model extended from LDA. They assume that a tweet

is generated either from the author’s topic interests or from bursty events. Zhao

et al. [132] proposed TwitterLDA (T-LDA) to generate topic distributions for

Twitter users as well as topics for tweets. T-LDA assumes that every tweet

has only one topic, as it is very short.

Profiling users with selective topic disclosure. The aforementioned stud-

ies contributed to discovery of topic interests by using posted content only.

Nevertheless, they are good for inferring the topics that users disclose. How-

ever, due to users’ selective self-disclosure behavior, users may read their in-

terested topics but choose to post only part of their interested topics. In other

words, we need to separate the profiling of user posting topical interest from

that of reading topical interest. The existence of lurkers further add complex-

ity to this profiling task. To the best of our knowledge, there are no other

works addressing the above user profiling tasks so far.
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2.2.3 Opinion Mining

Opinion mining is a classical text mining task to identify and extract “what

people think” from textual content such as customer feedback emails, discus-

sion forums, reviews and other social media postings [95, 72]. Understanding

what people think using opinion mining is useful in product recommendation,

product design, customer relationship management, and political sensing [95].

For example, users may buy products after reading opinions in product reviews.

Companies improve product design and service delivery based on opinions in

customers’ feedback. Opinion mining has been intensively studied by the com-

putational linguistics research community. The main focus is to determine

whether a phrase, a sentence or a document is positive or negative, or to de-

termine a user’s view on certain issue, event or product [96, 30, 100, 126, 113].

Social media such as Twitter and Facebook has been a popular conduit

for opinion mining [94, 119, 24, 111, 9, 59]. For example, the number and

sentiments of related tweets can be used to predict overall election results

such as German Federal Election in 2009 [119], US Senate special Election in

Massachusetts 2010 [24], Dutch Senate Election in 2011 [110], Irish General

Election in 2011 [12] and French Presidential and Legislative Elections in 2012

[17]. Other examples include the prediction of stock market by analyzing public

mood and emotions in Twitter [16], movie box office prediction [6], and opinion

shift over time modeling [69]. Opinion mining on social media data has also

been used to predict individual users’ opinions such as political orientation

[70, 109, 26] and topics [38]. For example, Gao et al. [38] proposed a Matrix

Factorization based model to predict user attitude toward controversial topics

in social media.

Profiling users with selective opinion disclosure. All the aforementioned

studies have shown that social media content can be used to effectively deter-

mine users’ opinions. However, social media content is generated when users

choose to disclose their thoughts [56, 48]. Thus the opinions of issue-specific
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silent users are not taken into account. (Remember that issue-specific silent

users or i-silent users are the users who do not disclose their opinions on issue

i even they are interested in i.) As a result, one may obtain a biased opinion

profile of the entire user community [69, 40]. For example, Lin et al. [69] sug-

gested that because of the self-reporting (i.e., selective self-disclosure) nature

of social media, social media is a relatively poor tool for make population in-

ferences. Gayo-Avello [40] also pointed out that failure to consider silent users

has contributed to poor election prediction accuracy.

There are very little work focusing on i-silent users’ opinions. Two big

research questions linger around these users, namely: (a) Do the silent users

share the same opinions as the active users? and (b) How can one predict the

opinion of silent users? Mustafaraj et al. [84] compared the content generated

by Twitter users who post very often and other users who post only once during

the US Senate special Election in Massachusetts 2010. They found significant

difference between the two groups of users’ content. The result suggests that

users who post none or only little content may hold opinions very different from

very active users. It also suggests the importance of inferring i-silent users’

opinions. As i-silent users do not post any content on the issue, inferring their

opinions is challenging. To the best of our knowledge, our work is the first

addressing this problem.
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Chapter 3

Characterizing Silent Users in

Social Media Communities

3.1 Introduction

Silent users choose to disclose very little or no information. They are also

called the lurkers. Their behavior is called the lurking behavior, which is a

special case of selective self-disclosure behavior. In this work, we call the other

non-lurking users active users. As active users contribute most of the social

media content, most of the existing social media research has focused on them

but not the lurkers [50, 121, 87]. Just like active users, lurkers are individuals

with interests and preferences. Although they choose not to disclose much

information, they still pay attention to interesting topics and will seek for

relevant content. They have preferences that can potentially be expressed as

ratings and reviews on consumer products. They are also potential customers

for targeted marketing. It is possible for lurkers to have different demographic

and opinion distribution from active users. Failing to account for lurkers could

therefore lead to the misjudgement of overall population-level conclusions.

We therefore study lurkers with the following two research goals. Our first

goal is to define lurkers and characterize them in Twitter, which is chosen
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because it is where lurkers could most easily occur as a result of the ease of fol-

lowing others and, accordingly, the convenience of silent information consump-

tion. We focus on 110,907 Twitter users from a Singapore-based community

and 114,576 Twitter users from an Indonesia-based community. We examine

the proportion of lurkers in these two Twitter communities, lurkers’ social links

with others and the motivations that may cause them to break silence. We

identify the characteristics of lurkers by comparing them with active users.

This gives us new insights into the lurking behavior and lurker’s motivation of

using Twitter. Note that this analysis is only possible with the availability of

user tweets over a significant period of time as well as the follow relationships

among the users. Therefore, we crawled all tweets posted by the users from

the above two communities over 18 weeks and the follow links involving these

users.

We define a lurker on Twitter as a user who is silent most of the time,

i.e., he/she posts very few tweets during a given time interval. Using our

Twitter datasets, we find that there are many lurkers in both communities.

Compared with active users, lurkers have much fewer followers and followees.

Both active users and lurkers are more likely to connect with active users. By

sampling tweets and manually annotating them, we also found that a lurker

breaks silence mainly to share information such as breaking news and updates

of personal life.

Our second goal is to profile lurkers. Unlike many existing user profiling

works that exclude lurkers from their empirical studies due to their inadequate

content data [109, 87], we propose to utilize their neighbors’ (their one-hop

connected users) content to infer latent attributes including marital status,

religion, and political orientation. We invest significant efforts in human anno-

tation to obtain the ground truth labels. In our experiments, we compare the

user profiling accuracy of lurkers with that of active users. The results show

that using neighbors’ content, we can predict lurkers’ profile labels as accurate
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as active users’ profile labels. It suggests that even lurkers do not generate

much content, their profile attributes can still be uncovered from their neigh-

bors. Therefore, it is indeed possible to personalize services for lurkers.

Chapter Outline. The rest of this chapter is organized as follows. In Section

3.2, we characterize lurkers in the Singapore and Indonesia Twitter communi-

ties. In Section 3.3, we present the results of profiling lurker’s latent attributes.

In Section 3.4, we conclude this work by discussing the implications of our find-

ings, and pointing out the limitations and future works.

3.2 Characteristics of Lurkers in Twitter

In this section, we first describe the Twitter dataset used in this part of re-

search. Secondly, we define lurkers and examine the extent of lurking behavior

in our dataset. Thirdly, we study the difference between lurkers and active

users in terms of their social links. Finally, we examine the motivations be-

hind lurkers breaking silence.

3.2.1 Data

We focus on two communities in Twitter: a Singapore-based community and an

Indonesia-based community. We crawled these two communities using the fol-

lowing strategy. We started the crawling process with 69 and 123 popular seed

users from Singapore and Indonesia respectively. The seed users are known

political figures, political candidates, political parties and organizations, ac-

tivists, journalists and bloggers in Singapore/Indonesia. We then added users

who are one hop and two hops away from the seed users. They are the seed

users’ followers and followees and the followers and followees of the seed users’

followers and followees. Finally, we chose the users who declare Singapore (or

Indonesia) as their locations in the biography fields and share their tweets and

social links in the public domain. We then obtained 140,851 Singapore-based

21



users and 126,047 Indonesia-based users. This research requires a full set of

tweets generated by users during a target study period which is very different

from many other research projects that were performed on sampled tweet data.

We then crawled all their tweets generated during an 18-week period which

our analysis will focus on. For Singapore users, we crawled from April 28th

to August 31st, 2014. For Indonesia users, we crawled from June 16th to Oct

19th, 2014.

Removing churners. A limitation of the above dataset is that it may include

lots of users who already left Twitter. These users are known as churners [91].

Churners do not post, and can be wrongly considered as lurkers. Since we only

have limited access to Twitter users’ data (e.g., their tweets and connections),

it is impossible for us to know exactly who are the churners. To remove churners

from our dataset, we crawled all the tweets that are posted by the 140,851

Singapore-based users and 126,047 Indonesia-based users for another 3 months

after the 18-week period. If a user never posted during that 3 months, we

consider him/her as a churner and remove him/her from our dataset. In this

way, we make sure that the users we analyze are “alive” during the 18-week

period time. After this churner removal step, we finally obtained 110,907

Singapore-based users and 114,576 Indonesia-based users.

3.2.2 Lurkers in Twitter

Definition of lurker. We say a user is lurking or a user is a lurker during a

time interval with duration d, if the number of tweets he/she posts in the time

interval is not more than a lurking threshold h. This definition caters to the

time duration covered by the observed data. By varying time interval duration

d and lurking threshold h, we can examine different degrees of posting behavior

(i.e., never post or post only a few tweets) over time.

Proportion of lurkers in Twitter communities. We empirically set d to

be one week (d = 1 week) and vary h from 0 to 2, and derive the proportion
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Figure 3.1: Proportion of lurkers with d = 1 week.

of lurkers in the two communities across different disjoint time intervals over

the 18 weeks. As shown in Figure 3.1(a), the proportion of lurkers in the

Singapore community is very stable albeit a very small increasing trend. Every

week, there are on average 24.4% of the users not posting any tweet (lurking

threshold h = 0), 31.8% of the users posting no more than 1 tweet (h = 1), and

36.9% of the users posting no more than 2 tweets (h = 2). On the other hand,

Figure 3.1(b) shows that the Indonesia community has smaller proportion of

lurkers (e.g., on average 14.4% when h = 0), but the proportion increases

steadily. Similar increasing trends are also observed when we use larger time

interval duration d as shown in Figure 3.2. This figure shows that larger d

has a smaller proportion of lurkers. Moreover, fewer users remain silent for

longer time interval in both Twitter communities. It also implies that users

may change their behavior from lurking to active between weeks.

Twitter users lurking behavior. To explain the above findings, we model

Twitter user behavior changes overtime in the following way. We use Lt (or At)

to denote a user is lurking (or active) at time interval t. We use xt = P (Lt+1|Lt)

to represent the probability that a user maintains lurking behavior from time

t to t+ 1. As a user who is lurking at t will either be lurking or active at t+ 1,

we therefore have 1 − xt = P (At+1|Lt). Similarly, we use yt = P (At+1|At) to

represent the probability that a user maintains active behavior from time t to
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Figure 3.2: Proportion of lurkers with h = 0.

t+ 1, and 1− yt = P (Lt+1|At) to represent the probability of a user active at

t but lurking at t+ 1.

Given a set of users U and their lurking and active behavior from time 1 to

T , i.e., D = 〈{U1
A, U

1
L}, . . . , {UT

A , U
T
L }〉 where U t

A and U t
L represents the set of

active users and the set of lurkers at t respectively, we can estimate xt and yt by

xt = P (Lt+1|Lt) =
|UtL∩U

t+1
L |

|UtL|
and yt = P (At+1|At) =

|UtA∩U
t+1
A |

|UtA|
. With the time

interval duration d as one week and h = 0, Figure 3.3 shows the probability

of maintaining lurking (xt = P (Lt+1|Lt)) and the probability of maintaining

active (yt = P (At+1|At)) from t = 1 to t = 17 in the two communities. We

also plot the trend line of xt and yt. Note that we have consistent findings

with different duration d and lurking threshold h settings.

The result suggests that generally lurkers are more likely to stay lurking

and active users are also more likely to stay active (i.e., xt > 1 − xt and

yt > 1− yt). There are users changing their behavior between weeks but with

a small probability (e.g., 1−xt < 0.5 and 1−yt < 0.1 in Indonesia community).

It is more likely for users go from lurking to active than from active to lurking

as 1 − xt > 1 − yt. This trend however may not continue forever for our two

Twitter communities. In both communities, the probability of user maintain-

ing lurking (x) has an increasing trend, and the probability of user maintaining

active (y) has a decreasing trend. Comparing the two communities, we see the
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Figure 3.3: Probability of maintaining lurking and maintaining active.

probability of user maintaining lurking (x) from Indonesia community has a

higher gradient (0.0001 for Singapore and 0.0056 for Indonesia), and the prob-

ability of user remaining active (y) from Indonesia also has a higher negative

gradient (-0.0006 for Singapore and -0.0024 for Indonesia). This explains that

we see the proportion of lurkers grows in both communities and the lurking

behavior in Indonesia Twitter community shows a clear increasing trend in

Figures 3.1 and 3.2.

In summary, we first observe there is a significant proportion of lurkers in

our two Twitter user communities. Secondly, more users prefer to maintain

their lurking or active behavior than to change their behavior. Finally, the

proportions of lurkers in both communities are growing with different trends.

3.2.3 Lurker’s Social Connections

A major difference between Twitter and other online community platforms

such as Wikipedia is the presence of social connections among Twitter users.

Lurkers in Twitter are therefore not entirely “invisible”, as they may follow

others or being followed by others. In Twitter, if user u follows another user

v, we say u is v’s follower, and v is u’s followee. If v also follows u, we say they

are friends with each other.

We first define the following social connection measures. User u’s in-

reciprocity ratio measures the proportion of u’s followers who are followed back
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by u (i.e., u’s friend count
u’s follower count

). User u’s out-reciprocity ratio measures the proportion

of u’s followees who follow back u (i.e., u’s friend count
u’s followee count

). User u’s lurker-follower

ratio, lurker-followee ratio, lurker-friend ratio measures the proportion of lurk-

ers among u’s followers, followees and friends respectively.

We then divide the two communities’ users into lurkers and active users

setting the time interval duration d as 18 weeks and h = 5. Thus we have

10,170 lurkers and 100,737 active users in the Singapore community, and 2,060

lurkers and 112,516 active users in the Indonesia community. We have tried

other time interval durations and lurking thresholds and they do not affect the

following findings.

Table 3.1 summarizes the lurkers and active users’ social connections using

different measures. The difference between lurkers and active users by every

measure is statistically significant (p < 0.05 using Two-Sample t-test). We

observe that lurkers are likely to have fewer followees and followers than active

users. This suggests that lurkers are less interested in following others, and

also are less attractive for others to follow. Despite this finding, lurkers have

reasonable number of followees (median:85 in Singapore and median:145 in

Indonesia) as they need to follow others to get information. We also notice that

lurkers have followers (median:42 in Singapore and median:60 in Indonesia)

although they do not post many tweets. One possible reason is that a lurker

is followed by the users who know him/her offline. Another possible reason is

that a lurker could be active before, and gained the followers during that time.

Reciprocity of social links is a very prevalent pattern in social networks.

Kwak et al. [62] showed that link reciprocity ratio in Twitter is expected to

be around 0.22. In other social networks (e.g., Flickr, Yahoo, etc.), the reci-

procity ratio is much higher. In Table 3.1, our results show that the out- and

in-reciprocity ratios are around 0.5 for the active users. These numbers are

reasonable as we consider only follow links among users from the same com-

munity (Singapore or Indonesia). The findings on reciprocity ratio of lurkers
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Singapore Indonesia
User Group Medium Mean Medium Mean

Followee count
Lurker 85 189.6 145 266.3

Active User 193 345.8 275 447.7

Follower count
Lurker 42 166.4 60 233.5

Active User 167 875.1 299 2400.8

Out-reciprocity ratio
Lurker 0.25 0.31 0.21 0.29

Active User 0.51 0.50 0.53 0.52

In-reciprocity ratio
Lurker 0.56 0.53 0.59 0.55

Active User 0.63 0.57 0.52 0.50

Lurker-followee ratio
Lurker 0.04 0.1 0 0.01

Active User 0.04 0.07 0 0.01

Lurker-follower ratio
Lurker 0 0.16 0 0.03

Active User 0.06 0.11 0 0.02

Lurker-friend ratio
Lurker 0 0.12 0 0.02

Active User 0.03 0.08 0 0.01

Table 3.1: Summary of social connections.

are on the other hand quite different.

The out-reciprocity ratio result shows it is much less likely for users to follow

back to a lurker than an active user because lurkers offer little information

and social interactions. For in-reciprocity, the Singapore lurkers are slightly

less likely to follow back to their followers than active users. Lurkers from

Indonesia community are slightly more likely to follow back. This result may

be caused some culture difference between the two communities in following

back behavior.

Finally, we also observe that the proportion of lurkers among both lurkers

and active users’ followers, followees and friends are very small. It reveals both

lurkers and active users prefer to connect with active users.

3.2.4 Lurker’s Motivations for Occasional Unlurking

Lurkers choose to remain silent and prefer to be an observer. However, al-

though very infrequently, lurkers may be triggered to break silence. What

drives a user who prefers silent to speak out? Are the motivations to speak

out different among the users with different activity levels (e.g., from lurkers,
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normal active users to very active users)?

There are several studies about the reasons for posting in general. Java et

al. [52] identified four reasons, namely (i) daily chatter (i.e., personal updates),

(ii) conversations (i.e., interacting with people), (iii) information/URLs shar-

ing, and (iv) news reporting. Naaman, Boase, and Lai [85] manually coded

400 tweets with nine category labels which include information sharing, self

promotion, me now (i.e., personal activities), opinions/complaints, statements

and random thoughts, and others. By analyzing 350 users and their posts

(for each user, they randomly selected 10 posts without replies for analysis),

they concluded that most users focus on personal updates. Alhadi, Staab, and

Gottron [3] conducted a survey of tweeting reasons on 1000 randomly selected

tweets using Amazons Mechanical Turk. They found that social interaction is

the top reason, followed by emotion (which covers personal updates and me

now in [85]).

Although the above studies identify the possible reasons for tweeting, they

did not study the reasons for lurkers breaking silence and whether these reasons

are any different from those of active users disclosing. We therefore would like

to fill this gap by examining the motivations for lurkers posting tweets which

may suggest new ways to encourage lurkers to generate more content. This

part of study focused on Singapore users only as many Indonesia users do not

write in English.

Motivations. Based on the theory of Use and Gratification (U&G) [97], we

know that people like to contribute to a media product because it gratifies

their needs. From this theory, Rafaeli et al. [108] derived three motivations

for using and contributing to Wikipedia, i.e., information seeking, information

sharing and entertainment.

In the case of Twitter, users can see it as a social platform and/or a media.

They therefore use Twitter to get information such as current news and friends’

updates, to interact with other Twitter accounts such as friends, celebrities and
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organizations, to share messages relating to personal activities or thoughts, to

share information such as breaking news and interesting videos, books and

games, etc., and to do advertisement. Among them, getting information is

likely the main motivation (or need) for lurkers using Twitter [63]. In order

to interact with people, share (personal or public) information, and perform

advertisement, one needs to de-lurk.

Motivations Resaons Description

Information
Sharing

News Share latest news, or trending
events

General Infor-
mation

Share alerts, knowledge, videos,
jokes and games, etc.

Personal Up-
date

Activity Update activities and status
Emotion Express emotions and feelings to-

wards self
Opinion Express opinions and feelings to-

wards other things
Thought Express random thoughts and

statements

Friend Interaction
Chat Chat with friends
Mention Mention friends to get their atten-

tion

Public Interaction
Request Queries or ask for feedback and

advice
Voice Chat with celebrities, organiza-

tions or customers.

Advertisement
Commercial re-
lated.

Post commercial related adver-
tisements and promotions

Non-commercial
related

Promote charitable institutions
and political organizations, etc.

Table 3.2: Motivations of sending tweets.

Manual motivation labeling. To carefully determine the motivations for

lurkers breaking silence, we first assign motivation labels to their tweets. For

example, consider a tweet about a conversation between the tweet author and

his/her friends “@<User Name> Yea, see you tomorrow! Good night!”. This

is motivated by the need for social interaction. The questions now are therefore

“what are the different motivation labels out there?” and “how these labels

can be assigned to the lurker and non-lurker’s tweets?”
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Even with the tweet content at hand, assigning motivations to tweets is not

an easy task. Nagarajan et al. [86] applied some simple heuristic rules to study

user engagement in communities. For example, they defined a rule to assign

conversational label to tweets that “made references to other Twitter users

utilizing the @user handle”. The heuristic rule is however not always correct.

For example, a tweet such as “I love @<Celebrity Name>. She is doing great in

the show!” suggests that the user shares self opinions or thoughts rather than

interacts with the celebrity. Therefore, most previous works [52, 85, 3, 118]

that attempt to understand user intentions in writing tweets have resorted to

manual effort to label tweets.

We manually assign motivations to tweets using a multiple-round approach

mentioned in [85]. We first randomly selected 100 tweets. Then two coders

(who are the author and another experienced social media researcher) inde-

pendently labeled them with a set of motivation labels while writing down the

reasons for choosing a certain motivation. Note that coders can assign mul-

tiple labels to one tweet. The two coders discussed and modified the set of

motivation labels and the reasons of choosing them. We performed the above

tasks three rounds (each round with a new set of 100 tweets) before finalizing

the motivation label set and a common interpretation of the labels.

We measure the agreement of two coders using Jaccard Coefficient which is

commonly used to measure similarity between two sets. Given a tweet i, if one

coder assigns a set of motivation labels A, and the other coder assigns another

set B, then the Jaccard Coefficient of this tweet is Ji = |A∩B|
|A∪B| . The agreement

of two coders for a set of tweets I is then the average Jaccard Coefficient

among all tweets, i.e., J =
∑
i∈I Ji
|I| . In the third round, the coders achieved

0.82 average Jaccard Coefficient. We believe this is a reasonable agreement

and therefore finalized the set of motivation labels as shown in Table 3.2.

The labels are information sharing, personal update, friend interaction, public

interaction and advertisement and are described in the table. In this table, we
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use ‘information sharing’ label for sharing information that are not personal

while ‘personal update’ label for sharing personal information.

We then recruited three coders (two of them are not authors of this work)

to label a new and much larger set of tweets from users of different activity

levels, namely, lurkers, normal-low active users, normal-high active users and

very active users. They post [1, 5], [6, 200], [201, 1000], and [1001,+∞] tweets

respectively within our observed 18 weeks.

We sampled tweets to be labeled from the same time period (July 14 to

July 27, 2014) in the following way. For users of each activity level, we first

randomly selected 400 of them who published at least one tweet during the

time period. Then for each user, we sampled one of his/her tweets. Among

the 1600 tweets we sampled, 307 tweets are not written in English and were

thus discarded. The agreements of every two out of three coders are 0.81, 0.83

and 0.81 respectively measured by average Jaccard Coefficient. We then use

majority vote to determine the final motivation label(s) for each tweet, i.e.,

a label is assigned to a tweet if this label is agreed by at least two coders.

We also discarded tweets (22 of them) that are assigned completely different

labels. We were left with 326, 339, 303, and 303 tweets for lurkers, normal-low

active users, normal-high active users and very active users respectively for

motivation analysis.

Results. For a user type U , the proportion of tweets triggered by motivation

label m is defined as No. of tweets from U with label m
Total No. of tweets from U

. As one tweet can have multiple

labels, the sum of the proportion of tweets triggered by different motivations is

greater than or equal to 1. Figure 3.4 shows the proportion of tweets assigned

with different labels for each user activity level.

The result shows that information sharing and personal update are the

top two motivations of speaking out across all user types. For lurkers and very

active users, information sharing label is assigned to more tweets than personal

update, whereas for normal-low and normal-high active users, personal update
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Figure 3.4: Proportion of tweets assigned with different motivation labels
among lurkers (Lurker), normal-low active users (N-low), normal-high active
users (N-high), and very active users (Very-A).

is assigned to slightly more tweets. Intuitively, a person is expected to have

limited personal matter to update and limited number of friends to interact

with. Tweets posted by very active users are therefore more likely motivated

by information sharing than other motivations. For lurkers, the result suggests

that lurkers are more likely to break silence when they encounter interesting

matters and breaking news compared with other motivations.

Other than information sharing and personal update, the friend interaction

label has been assigned to a significant proportion of tweets across all user

types. Compared with active users, lurkers have the lowest proportion of

tweets that are assigned with the friend interaction label. When users decide

to post tweet, the active users are more likely to interact with friends.

Across all user types, public interaction and advertisement motivate the

least proportion of tweets. Compare with active users, lurkers have the highest

proportion of tweets that are labeled as public interaction. These are tweets

for interacting with public figures, celebrities, or organizations which typically

do not lead to further conversations. When users post tweets, compared with

active users, lurkers are more likely to have conversations that do not enhance

their social connectivity. Similarity, we also find that lurkers are more likely

to post advertising tweets which again, typically do not enhance their social
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Date Top popular words from all
lurkers’ tweets

Top popular hashtags from all
users’ tweets

July 14th #singapore, team, deco, un-
zipped, hoodie, messi

#ger, #worldcup, #sosingaporean,
#cfcinbrazil, #cfc, #singapore

July 15th #glendaph, game, typhoon,
concert, ko, @abscbnnews

#cfc, #welcomediego, #notosofi-
tel, #boycottsofitelph, #singapore,
#freepalestine

July 16th sa, po, @youtube, pl,
@lovehindishows, #ger-
ald987xijtpxhunterhayes

#cfc, #cfclive, #notosofitelday3,
#boycottsofitelphday3, #singa-
pore, #notosofitelday4

July 17th #mh17, mh17, malaysia,
ukraine, airlines, plane

#mh17, #prayformh17,
#ukraine, #malaysiaairlines,
#singapore, #prayforgaza

July 18th #mh17, @youtube, mh17,
sa, recruiting, @9vska

#cfc, #mh17, #prayformh17,
#singapore, #malaysiaairlines,
#gaza

July 19th #mh17, inadh, mh17,
chance, installed, battery

#mtvhottest, #cfclive, #mh17,
#cfc, #zaynappreciationday, #sin-
gapore

July 20th #prayforgaza , god, stats,
@iam, #vaalutrailer, busi-
ness

#mtvhottest, #liamappreciation-
day, #twitterpurge, #mh17,
#sgxclusive, #singapore

Table 3.3: Top words from lurkers and top hashtags from all users. The words
and hastags are ordered according to the number of users adopting them.

connectivity.

Popular topics among lurkers. The above findings show a major reason

that lurkers break silence is to share something interesting and breaking. We

now look into the topics in tweets generated by lurkers in large scale. The

purpose is to have a deeper understanding of what events or topics that are

likely to motivate many lurkers to break silence. We compare the top popular

words (excluding the stop words) posted by all lurkers and top popular hash-

tags used by all users each day from July 14th to July 20th, 2014 (see Table

3.3). Hashtags (i.e., #some-keyword) on Twitter are used to mark topics in

tweets for categorization purposes. Very popular hashtags are often trending

topics. Therefore, the top popular hashtags used by all users are the topics

that draw the most interest.

During the period July 14th to July 20th, 2014, we observed that there are
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Marital status Religion Political orientation
User group Married Single Christian Muslim Opposition Ruling party

0-MAX (All Users) 1329 1556 403 258 5002 2481
[0, 5] (Lurkers) 331 268 70 29 1110 427

[6, 50] 361 310 94 31 1136 362
[51, 200] 302 284 108 38 1171 431

[201,MAX] 335 694 131 160 1585 1261

Table 3.4: Label distribution in our datasets.

three common topics (or events) popular among both lurkers and all users. We

marked them differently. The words in magenta also underlined are related to

World Cup 2014 which ended on July 14th Singapore time (July 13rd in Brazil

time). The words in blue and also boldfaced are related to a Malaysia airline

crash tragedy on July 17th. And the words in red (also marked with boxes)

are related to Gaza-Israel conflict 2014 which begins from July 8th. Hashtag

#singapore is popular among Singapore Twitter users. We do not discuss it

because it is often used for specifying the location of the events rather than

describing topics.

The results show that when a global event such as the World Cup closing or

Malaysia airline tragedy occurs, it becomes the top topic that triggers lurkers

to break silence. In a normal day such as July 15th and 16th, lurkers do not

follow general trends of hashtag adoption such as #cfc (the Chelsea football

club). Gaza-Israel conflict 2014 as an event started about one week earlier was

also popular among lurkers and other users, but in different dates. It suggests

that this event was still globally aware but no longer “breaking”.

3.3 Lurker Profiling

Another goal of this work is to profile lurkers and answer two questions: How

accurate are we able to profile lurkers? And are the performance of profiling

lurkers and active users very different? We choose to profile three attributes

including marital status, religion, and political orientation. In this Section, we

first describe the dataset used in each attribute profiling task. We then describe

the methods of profiling lurkers. Finally we show the profiling performance.
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3.3.1 Data

We use Singapore-based users with ground truth attribute labels in this part of

research. To derive the ground truth of users’ marital status and religion, we

define several keywords and phrases related to the respective attribute label

and use them to select the subsets of users for manual labeling [88]. For

example, married users are likely to mention “wife”, “husband”, “my son”,

and “my daughter”, while single users may mention “dating”, “girlfriend”,

“my gf”, “boyfriend”, and “in a relationship”. Christians are likely to mention

“jesus”, “christ”, “protestant”, “catholic”, and “church”, while Muslim users

may often mention “allah”, “muslim”, “islam”, and “mosque”. We selected

users whose biography field includes these keywords or phrases relevant to

the marital status and religion and then assigned the attribute labels after

manually reading the biographies. For religion attribute, we focus on profiling

Christians and Muslim users, as much fewer Singapore Twitter users of other

religions (e.g., Buddhists and Hindu, etc.) mention their religion beliefs in

their biography fields.

The above approach unfortunately does not work well when determining

the ground truth labels of users’ political orientation. This is because very

few Singapore Twitter users publicly declare their political orientation. We

therefore adopt a similar method that was first introduced in [51] in which

a few seed Twitter accounts owned by different political parties are used to

propagate political affiliation labels. These seed accounts either belong to the

Ruling party or the Opposition. If a user follows two or more seed political

accounts and they all belong to only one party, we label the user with the

respective political affiliation. Manual checks on a few labeled users verified

that these assigned labels are accurate. In this way, we obtained the ground

truth label of ruling party and opposition affiliated users.

Table 3.4 shows a summary of our datasets corresponding to the three

attributes to be profiled. We obtained 2885, 661, and 7483 users with marital
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status, religion, and political labels respectively. To evaluate the accuracy of

lurker profiling, we divide each set of labeled users into four groups according to

their activity levels, i.e., the number of tweets they post during the 18 weeks

from April 28, 2014 to August 31, 2014. For example, the lurker group is

represented by the users who post no more than 5 tweets during the 18 weeks.

We then have 331 married lurkers and 268 single lurkers.

As shown in Table 3.4, the distribution of users in different attribute classes

is different for users with different activity levels. In the marital status dataset,

among the most active users ([201, MAX]), there are much more single users

than married users, whereas among the less active users ([0, 5], [6, 50], and

[51, 200]), there are more married users. A similar situation also applies to the

religion dataset. In the political orientation dataset, although opposition users

are always the majority, they significantly outnumber the ruling party users in

the less active user groups. This implies that lurkers may have very different

profile composition compared with the active users.

3.3.2 Profiling Methods

We define four types of tweet content features to develop our profiling methods.

These include the content of tweets posted by (a) the user, (b) the user’s

followees, (c) the user’s followers and (d) the user’s friends respectively. For

lurkers, using their posted tweets is likely to give low accuracy. Our purpose

is to evaluate methods using the tweets from the lurker’s followees, followers

or friends can help improve the profiling performance for lurkers. We also

compare the accuracy of profiling lurkers against that of active users.

For each type of features, we apply Naive Bayes (NB) [75] and Support

Vector Machine (SVM) to learn classifiers. For SVM, we use LIBSVM package

[18] and TF-IDF of words in tweets as features. All the methods remove

stop words from the tweets before training. We use F-score of the minority

class to evaluate the profiling results since the datasets are skewed. In our

36



[0-MAX] [0-5] [6-50] [51-200][201-MAX]

F
-s

c
o

re

0

0.2

0.4

0.6

0.8
User's tweets
Followees' tweets
Followers' tweets
Friends' tweets
Random predictor

Figure 3.5: Marriage status prediction performance.
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Figure 3.6: Religion prediction performance.

experiment, we apply 5-fold cross validation to derive the average F-score. At

each round, we train a classifier, then apply this classifier to different activity

levels of the users in the testing set. In this way, we obtain the profiling

results for the users in [0, 5], . . . , [201,MAX] and [0,MAX] group. We use a

random predictor as baseline. The F-score for a random predictor is computed

as number of samples in the minority class
total number of samples

. The minority class is determined from the

training datasets. They are the married, Muslim and ruling party classes

for marital status, religion, and political orientation attributes respectively.

For our datasets, we find that NB can achieve comparable and often better

performance than SVM. Therefore, to ease of the comparison, we only show

the results using NB as the classification algorithm.
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Figure 3.7: Politic orientation prediction performance.

3.3.3 Profiling Results

Figures 3.5, 3.6 and 3.7 show the prediction results for marital status, reli-

gion and political orientation respectively. We summarize the main findings as

follows. First of all, as we expected, using users’ tweets to predict attributes

does not work well for the lurkers who do not post enough tweets (see perfor-

mance on lurker group [0, 5]). Especially in the prediction of marital status,

using users’ tweets (F-score = 0.46) performs much worse than the random

predictor (F-score = 0.55). However, we find using one-hop neighbors’ (i.e.,

followees, followers or friends) tweets can achieve significantly better perfor-

mance than using the random predictor and users’ tweets in predicting lurkers’

attributes. On the other hand, for active users who posted tweets in the range

of [6, 50], [51, 200] and [201,MAX], using users’ tweets and user neighbors’

tweets outperforms the random predictor significantly.

Secondly, we find the methods using followees’ tweets usually outperform

the methods using followers and friends’ tweets when predicting marital status

and political orientation. However, the methods that predict religion using

followers and friends’ tweets perform better than followees’ tweets. Previous

works often believe followees can better reveal a user’s attribute as users can

control who they follow but cannot control who follow them [131]. Our results

show it is not always the case and suggest that we should also make use of the

tweets generated by followers and mutual friends in the future.
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Last but not least, we find that inferring lurkers’ attributes is not always

harder than active users. In our results, we see that using followees’ tweets for

marital status, followers and friends’ tweets for religion, and followees’ tweets

for political status can achieve similar performance as profiling active users.

3.4 Discussion and Conclusion

In this section, we discuss our findings, the limitations of our work and the

future directions.

Lurkers should not be neglected. The problem of silent users has been

pointed out in a few previous works [84, 40, 69]. As a major function of

social media is making social connections, we believe that it is meaningful to

study the silent users in a community setting. From our analysis on Singapore

and Indonesia user communities, we find that lurkers make up a significant

proportion of users (see Figures 3.1 and 3.2). It suggests a large number of

lurkers can be easily overlooked when inferring opinion, interest, attitude or

preference at the population level by aggregating tweets. Furthermore, as the

size of lurker group is growing (see Figure 3.3), it is crucial for a social media

to keep lurkers interested in returning. In other words, a healthy social media

should be able to attract audience. Thus it is important to create a pleasant

and interesting space to draw lurkers’ attention continuously. For example, in

Google+ (plus.google.com), there are What’s Hot and Recommended messages

and people You may know in a user’s timeline. While existing research often

focuses on recommending content for active users [50, 121], it is also important

to do the same for lurkers.

Lurker profiling. To prevent misrepresentation of lurkers, we are compelled

to use features beyond user generated tweets to profile them. Our study shows

that they are still connected with many active users (see Table 3.1). We

demonstrate that it is possible to profile lurkers by leveraging the content
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generated by active users and the links between active users and lurkers. For

attributes ‘marital status’, ‘religion’, and ‘political orientation’, we are able

to profile lurkers with accuracy comparable to that of profiling active users.

This result suggests it is possible to infer other lurkers’ latent attributes and

the techniques introduced in this work can be adopted. This will also enable

lurkers to enjoy personalized services such as search, recommendation systems

and advertising.

Considering 1) the size of lurker population is significant and growing, and

2) lurkers are the potential customers and audience, we suggest that future

research could place more emphasis on understanding them so as to make

social media a more desired place to keep lurkers engaged and possibly to

make them active.

Limitations and future work. Our study has limitations which we hope

can be addressed in the future research. Firstly, we do not differentiate the

lurkers in different “lurking” levels. For example, some lurkers like to login

Twitter and spend a lot of time reading, but some do not. Distinguishing

them would be useful to the studies that aim to attract lurkers (i.e., audience)

for a social media. For example, we could examine the factors that contribute

to lurkers visiting Twitter often. Users’ invisible activities such as login data

and click history are needed in order to know users’ “lurking” levels. However,

collecting such data could lead to privacy concerns.

Secondly, our methods of profiling users’ latent attributes are rudimentary.

We infer lurkers attributes from the tweets generated by their one-hop neigh-

bors. Future work could consider the network features of users to improve the

lurker profiling accuracy.

Lastly, lurkers’ behavior can be further explored in other aspects. For

example, what makes a user become a lurker. Are lurkers born to be lurkers?

If no, what causes active users to become lurkers? What are the differences

between lurker and active user behavior outside of social media [124]?
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Chapter 4

Posting Topics Are Not Reading

Topics: On Discovering Posting

and Reading Topics in Social

Media

4.1 Introduction

Social media users make decisions about what content to post and read. As

posted content is often visible to others, users self-censor the content to avoid

inappropriate self-disclosure [29]. On the other hand, users have much more

privacy space with reading social media content. As a result, social media users

can show different topic interests when come to posting and reading content.

In other words, users have different posting and reading topics.

A number of previous studies have focused on predicting users’ topic in-

terests [114, 80, 22]. While these studies contribute to the understanding of

general topic interests of users, they do not distinguish between the posting

and reading topics. However, reading topics are as important as posting top-

ics [46]. Posting topics are likely to capture only part of all topic interests of
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the user. The user’s reading topics on the other hand reveal some additional

content she is likely to pay attention to. If we want to discover the topics that

attract user attention, we should focus on profiling users’ reading topics. If the

purpose is to discover topics that users are likely to share with others (in the

application of viral marketing, for example), one should focus on profiling the

posting topics. For these reasons, we study to what extent that Twitter users

posting topic interests are different from their reading topic interests. The

insights will help to clarify why we need to profile social media users’ posting

and reading topics separately.

To assess the difference and better profile social media users’ topic interests,

we formulate the following two research goals. The first goal is to empirically

study the posting and reading topics of Twitter users. In particular, we conduct

a user survey involving 95 participants who are requested to declare their

posting and reading topics. Our analysis of the survey data shows that the

topics users like to post can be significantly different from the topics they like

to read. There are some topics such as “Politics”, “Religion” and “Business”

that many users like to read them but do not like to post. We also show that

a user’s personality affects how different her posting and reading topics are.

The second goal of this work seeks to discover a user’s posting and reading

topics using historical content and following networks. We develop three dif-

ferent ranking strategies to rank user interested topics, namely: (a) Popularity

which ranks by topic popularity, (b) Content which ranks topics by users’ his-

torical posted content and user received content, and (c) Followee-Expertise

which ranks by topics that followees are well known for. We also propose a

model which combines rankings from different ranking strategies. These meth-

ods are evaluated using the ground truth data obtained from our survey. The

results show that the combined ranking achieves the best performance and

using popularity or followees’ expertise startegy performs significantly better

than the content strategy. We also demonstrate that although predicting lurk-
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ers’ reading topics is harder than predicting active users’, Followee-Expertise

is still able to predict lurkers’ reading topics with promising performance.

Chapter Outline. The rest of this chapter is organized as follows. In Section

4.2, we assess the difference between user posting and reading topics. In Section

4.3, we profile users’ posting and reading topics. In Section 4.4, we discuss and

conclude this work.

4.2 Posting and Reading Topic Interests

In order to assess the difference between Twitter users’ posting and reading

topics, and obtain the ground truth for evaluating the methods of inferring

users’ posting and reading topics, a user survey is required. In this section,

we first describe how to obtain a set of topics to focus in this work. Next, we

describe the study procedure of this survey. Finally, we analyze the survey

data and discuss the findings.

4.2.1 Topics in Tweets

We use the following method to obtain topics that are likely to cover all or

most of the topics for our survey participants. We first crawled the tweets

generated by a large number of users. We started our crawling process by

randomly selecting 434 seed users from Singapore. We then crawled all their

followees, who can be based anywhere. In this way, we obtained 93,312 users.

Among them, 81,171 users have public accounts. We crawled the latest 200

tweets or whatever available from each public user using Twitter API. Next,

we selected the tweets that are posted between Aug 25, 2014 and Nov 25, 2014,

discarding tweets that are not written in English, stop words in tweets, and

users with less than 10 tweets. Finally, we were left with 50,266 users and their

more than 6.2 million tweets.

Next, we adopt T-LDA [132] to learn topics from these tweets. Zhao et
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Topics Some related keywords

Arts art,artwork,@fineartamerica,artist
Adult Content adult,porn,sex,pornography
Books journal,book,poet,writer,author
Business, Finance business,economy,finance,market, growth,estate,
Cars f1,formula,driver,bmw,car
Deals chance,deals,contest,cashback,win
Education education,library,publish
Fitness, Health fitness,health,workout,gym,weight, training,treatment
Food,Cooking food,cook,recipe,restaurant,wine
Fashion, Style fashion,#nyfw,collection,beauty,style
Gaming game,xbox,ps4,gaming,dota,league
Jokes, Funny funny,joke,humor,lol,humour,fun
Music music,#mtvstars,concert,kpop,rock
Politics politics,immigration,election,congress
Personal-Activity eating,super,god,hell,moment,feeling, asleep,weather
Quotes quote,success,happiness,positive
Religion religion,lord,buddhism,islam,christain
Sports sports,football,basketball,nba,nfl
Technology, Science technology,tech,nasa,science,google, apple,ios,android
Twitter twitter,follower,unfollowed,gained
TV & Films tv,movie,trailer,plot,theater,imdb
Travel travel,tour,vacation,hotel,holiday
Video video,youtuber,youbube,viewer

Table 4.1: Topics and some related keywords.

al. [132] showed that T-LDA can uncover topics in tweets better than several

other LDA based methods. We call the topics generated by T-LDA the L-

topics. In T-LDA, each L-topic is represented as a word distribution. We

manually read the word distribution and then assigned a topic name to it.

For example, a L-topic with top words: collection, fashion, dress, wearing, and

makeup was assigned the topic name “Fashion”. We manually checked all the

L-topics generated with the number of L-topics K ′ = 20, 30, 40, 50 and 60.

Note that multiple L-topics may be assigned with the same topic name and

L-topics without clear topic may not be assigned with topic names. We finally

obtained the 23 topics used in our survey, i.e., Y = {y1, y2, . . . , yT} where

T = 23. For each topic yt ∈ Y , we manually selected a set of keywords γyt

from the top words in each of the L-topics that are assigned as yt. Table 4.1

shows the 23 topics and some related keywords.

44



4.2.2 Survey Procedure

In this survey, we collect the following information. First, participants provide

their Twitter accounts and Twitter usage pattern including how often they

tweet and how many tweets they read. Second, participants rate the topics

they tweet (or post) and the topics they read for each of the 23 topics we

have identified as the common topics in local social media. The possible topic

ratings are ‘like’, ‘somewhat like’, and ‘do not like’. We will describe how we

define this set of topics at the end of this section. Third, participants complete

an IPIP 50-item questionnaire 1 [44], which is a widely used measure for the

Five-Factor Model of personality. The Five-Factor Model is a broad classifi-

cation of personality traits [78]. It divides human personality into 5 factors:

(1) extraversion, which refers to the outgoing and sociability personality, (2)

agreeableness, which refers to the tendency to be compassionate and coopera-

tive towards others, (3) conscientiousness, which refers to the tendency to be

efficient and organized in personality, (4) neuroticism (or emotional stability),

which refers to the nervousness, anxiety, anger, depression prone personality,

and (5) openness to experience (or intellect/imagination), which refers to the

curiosity driven, adventurous, and sensitive to feeling personality. Using scor-

ing instructions2 for IPIP 50-item questionnaire, we can obtain participants’

personality score in each of the five factors. The participants’ personality scores

will be used to assess if the difference between posting and reading topics is

correlated with user personality.

Participants in the survey should have used Twitter for some time and have

some social connections. We thus require that all participants have their ac-

counts for at least 3 months and each participant at the point of survey follows

at least 10 other accounts and is followed by at least 5 other accounts. We

sent a recruitment email stating the above three criteria to all undergraduate

students of a Singapore’s public university. Previous research suggests that

1http://ipip.ori.org/New_IPIP-50-item-scale.htm
2http://ipip.ori.org/newScoringInstructions.htm
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Figure 4.1: The survey participants’ follower count and followee count distri-
bution

university students are suitable for studies involving the Internet because they

are more social media savvy [101]. We allow both lurkers and active users to

participate in this survey. We then obtained survey results from 95 Twitter

users including 49 protected accounts and 46 public accounts. All these partic-

ipants received 10 Singapore dollars incentive for completing the survey. They

comprise 33 males and 62 females with an average age of 21.6.

We then crawled all participants’ tweets from March 1st to March 30th,

2015, their followers and followees using Twitter API. For the participants

with public accounts, we can crawl their information directly. To collect the

information of protected accounts, we created a special Twitter account to

follow the protected accounts for a short time period. With this follower status,

we can then crawl the protected accounts’ tweets and social links. Figure 4.1

shows all the participants’ follower count and followee count distribution. More

than half of the participants have less than 200 followers and most of them have

less than 300 followees. These participants are therefore not the celebrities,

news media accounts, organizational accounts or advertisers. They are the

ordinary Twitter users whom we want to focus on in this work.
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Figure 4.2: Distribution of reading and posting frequency.

4.2.3 Survey Results and Findings

Twitter use. Figure 4.2 shows Twitter reading and posting frequency dis-

tribution among the 95 participants. In general, these participants read much

more than they tweet. Most participants read 30 to 100 tweets and post less

than 2 tweets per day. To verify the reliability of the survey data, we compare

the user declared post volume with the actual tweet data from March 1st to

March 30th, 2015. Figure 4.2(b) shows very similar distributions between sur-

vey data and tweet history data. Among the 95 users, 61 of them indicated the

same posting frequency found in their tweet data, 29 of them stated their post-

ing frequency bins slightly higher or lower than the actual posting frequency

bin (e.g., the actual daily posting frequency is (2, 5] while the participant de-

clared frequency is (0, 2] or (5, 10]), only 5 participants declared their posting

frequency bins with more than one-bin difference from the exact frequency

bins. It suggests that most of the participants provided information that tally

with their actual behavior in Twitter.

Difference between posting and reading topics.

Next, we examine the difference between user posting and reading topics

using our survey results. For clarity, we organize this analysis around four ques-

tions. The first question is: What are the popular posting and reading topics?

Figure 4.3 plots the posting and reading topics’ popularity among the partic-
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Figure 4.3: Popularity of posting and reading topics.

ipants. A posting (reading) topic’s popularity is the number of participants

who like to post (read) the topic. We observe that some topics are popular

(or unpopular) for both posting and reading. For example, “TV & Films”

and “Music” are among the popular topics, and “Cars” and “Gaming” are

among the unpopular topics for both posting and reading. Some topics have

significant popularity difference between posting and reading. For example, 48

participants like to read “Fitness” and only 28 participants like to post it. On

the other hand, 43 participants like to post “Quotes” and 36 participants like

to read it.

The second and third questions are: Do Twitter users like to post a topic

if they like to read it? And do Twitter users like to read a topic if they like to

post it? To answer them, we define the proportion of participants who like to

post a topic y given that they like to read it by P p
y =

|Upy∩Ury |
|Ury |

, where Up
y is the

set of participants who like to post topic y, and U r
y is the set of participants

who like to read topic y. Similarly, the proportion of participants who like to

read a topic y given that they like to post it is defined by P r
y =

|Upy∩Ury |
|Upy |

. Figures

4.4(a) and 4.4(b) show P p
y and P r

y respectively for the set of 23 topics.

Figure 4.4(a) shows that if a user likes to read a topic, on average, she

would post it with 0.6 probability as avgy(P
p
y ) = 0.6. In contrast, the average

probability of users liking to read topics which they like to post is significantly
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Figure 4.4: Proportion of users who like to post/read a topic out of those who
like to read/post the same topic.

higher, with avgy(P
r
y ) = 0.8 (see Figure 4.4(b)). In addition, P p

y varies largely

between topics compared to P r
y , as the standard deviations of P p

y and P r
y

are 0.16 and 0.08 respectively. Particularly, only 32% of users who like to

read “Business” also like to post it. Similarly, topics such as “Politics” and

“Religion” also have low P p
y (0.43 and 0.44). Topics such as “Gaming” and

“Music” have much higher P p
y (0.8 and 0.78). Such topics are more likely to be

shared if users like to read them. These results reveal that there exist a number

of topics that users are interested in reading but a significant proportion of

these users choose not to disclose them.

Our fourth question asks: how different are individual Twitter users’ post-

ing and reading topics? Suppose a user declares a set of posting topics πp

and a set of reading topics πr. We compute user posting and reading topic
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Figure 4.5: Distribution of the differences between user posting and reading
topics.

difference as d = 1− |π
p∩πr|
|πp∪πr| , where |π

p∩πr|
|πp∪πr| is the Jaccard coefficient of πp and

πr. Jaccard coefficient is commonly used to measure the similarity of two sets.

Hence d measures the difference between πp and πr. Both πp and πr can be

defined by either topics that are liked with at least the “Like” or “Somewhat

Like” rating.

Figure 4.5(a) shows the distribution of the differences between user’s “Like”

posting topics and reading topics. Figure 4.5(b) shows the distribution of the

differences between user’s “Like” and “Somewhat Like” posting topics and

reading topics. As the mean differences of 0.5 and 0.28 are significantly larger

than 0, we conclude that users have different topic interests in posting and

reading.

Personality and topic interests. A number of studies have shown that

users’ personality traits affect how they use social media [4, 7]. For example,

Amichai-Hamburger and Vinitzky [4] examined 237 Facebook users and found

that users who are more extravert are likely to have more Facebook friends,

neurotic users are more willing to share personally-identifying information, and

people who are more open are more expressive on their Facebook profile, etc..

These studies suggest that personality affects user posting behavior. In this

work, we hypothesize that a user’s personality is associated with (a) her topic

interests; and also (b) the difference between her posting and reading topics.

50



Jokes
Like Not Like

ex
tr

av
er

si
on

20

30

40

50

TV & Films
Like Not Like

ag
re

ea
bl

en
es

s

30

40

50

Music
Like Not Like

ag
re

ea
bl

en
es

s

30

40

50

Video
Like Not Like

ag
re

ea
bl

en
es

s

30

40

50

Food
Like Not Like

ag
re

ea
bl

en
es

s

30

40

50

Books
Like Not Like

op
en

ne
ss

20

30

40

Politics
Like Not Like

op
en

ne
ss

25

30

35

40

45

Figure 4.6: Personality and Posting behavior. Significance level is p < 0.01.
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Figure 4.7: Personality and Reading behavior. Significance level is p < 0.01.

To test the first hypothesis, we conduct a significance test for the difference

between the personality factor scores of users who like to read (or post) and

those of users who do not like to read (or post) for all personality factor-topic

combinations. This results in 5 (personality factors) × (23 (reading topics)

+23 (posting topics) ) = 230 significant tests. In Figure 4.6, we show those
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Figure 4.8: Personality and the differences between user posting and reading
topics. Significance level is p < 0.05.

test combinations with significant (p < 0.01) personality difference between

the users who like to post a certain topic and the users who do not like to

post the topic. We observe that users who like to post “Jokes,Funny” are

more extravert (i.e., outgoing and expressive), those who like to post “Video”,

“Music”, “TV & Films” and “Food,Cooking” are more agreeable (i.e., willing

to agree with others), and those who like to post “Books” and “Politics” are

more open to experience (i.e., curiosity driven, adventurous, and sensitive to

feeling personality). Similarly, in Figure 4.7, we observe that (1) users who

like to read “TV & Films”, “Jokes,Funny” and “Quotes” are more agreeable

than the users who do not like to read them, (2) users who like to read “Fash-

ion,Style” are less emotionally stable, and (3) users who like to read “Politics”

and “Religion” are more open to experience. The above findings suggest that

users’ personality are significantly related to several topics they like to post

and read.

We then study if users’ personality is correlated with their posting and

reading topic difference. We first separate all participants into two groups.

The 48 users in one group have larger posting and reading topic difference

than the 49 users in the other group. We then test whether these two groups

of users have different personality significantly. We find that two personal-

ity factors extraversion and agreeableness are negatively correlated with the
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posting and reading topic differences with significance level p < 0.05 (see Fig-

ure 4.8). It shows that less extravert and less agreeable users are likely to

have more differences in posting and reading topics. Users’ personality then

provides a possible explanation for the differences between users’ posting and

reading topics.

4.3 Posting and Reading Topics Profiling

Another goal of this work is to discover Twitter users’ posting and reading

topics. We consider this problem as a form of ranking problem. In other

words, to discover topic interests, we use ranking strategies to rank topics

and aim to give user interested topics higher ranks and uninterested topics

lower ranks. A ranking strategy takes certain information (e.g., content and

following network) of a user as input and outputs a topic ranking for her. We

define some notations first for later presentation. Let Y = {y1, y2, . . . , yT} be

the set of topics to be ranked. A ranking σ is a bijection from {y1, y2, . . . , yT}

to itself. We use σ(yt) to denote the rank given to topic yt, σ
−1(k) to denote

the topic at the k-th position, σ−1(1...k) to denote the set of topics until the

k-th position, and π to represent a set of ground truth posting or reading topics

according to which type of topic interests we want to predict.

To evaluate a ranking strategy on a set of testing users Utest, we adopt mean

average precision at position n (MAP@n) which is a common way to measure

rankings. In our case, n represents the number of top ranking topics chosen

as the predicted topics. For example, if n = 5, then we will use the top 5

topics in each user’s ranking as the predicted topics for that user. To calculate

MAP@n for Utest, we first calculate average precision at position n (ap@n) for

each user in Utest: ap@n =
∑n
k=1 P (k)

n
where P (k) represents the precision at the

cut-off k topics in the ranking, i.e., P (k) = |σ−1(1..k)∩π|
k

if σ−1(k) ∈ π, otherwise,

P (k) = 0. The MAP@n for Utest is the average of the average precision of each
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user, i.e., MAP@n =
∑
u∈Utest

apu@n

|Utest| .

The rest of this section is organized as follows. First, we present three dif-

ferent ranking strategies: Popularity, Content, and Followee-Expertise. Each

ranking strategy takes different information of a user for topic discovery. Next,

we propose a model that learns to combine rankings determined from different

strategies. Finally, we show the performance of discovering user posting and

reading topics.

4.3.1 Ranking Strategies

Popularity. Popularity ranks posting and reading topics according to their

popularity. We call the Popularity strategy Post-Popularity (Read-Popularity)

if we aim to discover posting topics (reading topics). The intuition of Popular-

ity is that users are likely to be interested in popular topics. The popularity

of each posting or reading topic is obtained from a set of training users Utrain.

Let π(u) be the set of ground truth topics for user u. For each topic y ∈ Y , we

obtain its popularity measured by the number of training users interested in

y, i.e., |{u|y ∈ π(u), u ∈ Utrain}|. We then rank the topics by popularity. With

Popularity ranking strategy, all users share the identical posting and reading

topic rankings.

Content. A user’s content can be tweets posted by herself or the tweets she

received from her followees. The posted tweets are the content she likes to

share. The received tweets include the content she likes to read. We therefore

actually have two ranking strategies based on posted content and received

content to infer a user’s posting and reading topics respectively. They are

called the Posted-Content and Received-Content strategies respectively. The

intuition of Content ranking strategy is that users are likely to be interested

in the topics that their posted or received content is associated with.

One main challenge in Content is to determine which part of the content

can be associated with which ground truth (posting or reading) topics in Y
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because the ground truth topics are directly declared by users without them

marking up topics in their content. We therefore devise Content to generate

user topic ranking as follows. We first obtain content from a set of users

including the users whose topic interests we aim to infer and their followees.

We then use T-LDA to generate all users’ topic distributions from their content.

To differentiate the topics learned by T-LDA from the topics to be ranked (Y ),

remember we call the former the L-topics X = {x1, x2, . . . , xK}.

Next, we map L-topics in X to topics in Y . For each topic yt ∈ Y , we have

defined a set of related keywords, i.e., γyt . Each L-topic xk ∈ X is represented

as a word distribution. We empirically use the top 30 words in the distribution

as xt’s keywords, i.e., γxk . We then find a topic ytk for xk such that they share

the most common keywords, i.e., ytk = arg maxyt |γxk ∩ γyt |. In this way, we

can map every L-topic xk to a topic ytk . It is possible to have multiple L-topics

mapped to one topic in Y .

Finally, with the mapping from X to Y , we determine user topic distri-

bution as follows. From T-LDA, each user is assigned a L-topic distribution,

i.e., 〈l1, l2, . . . , lK〉 where lk represents how likely the user is interested in xk.

For each yt ∈ Y , we obtain the likelihood that the user is interested in yt by

summing up lk for xk’s that are mapped to yt, i.e., zt =
∑

tk=t
lk. Thus we

obtain a topic distribution 〈z1, z2, . . . , zT 〉 for this user. The Content ranking

strategy returns the topics according to their topic ordering in 〈z1, z2, . . . , zT 〉.

Followee-Expertise. A user’s choice of following other users can reveal her

reading topic interests. We particularly focus on followees who are well known

to be associated with topics. These users are known as topic experts [41]. For

example, if a Twitter account is well known to post content related to sports

events, then this account is an expert in topic “Sports”. The topic a user is

well known to be associated with is her topic expertise or expertise. When

a user has an expertise, it is likely to be followed by other users interested

in that expertise. For example, if a user likes sports, she may follow sports
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news accounts or stars whose expertise is “Sports”. Thus, the intuition behind

Followee-Expertise strategy is that a user is likely to be interested in reading

a topic if many of her followees have expertise in that topic [14].

We adopt a method proposed in [41] to obtain followees with expertise. This

method exploits the List feature of Twitter. In Twitter, users can create lists

to organize their followees. Each list has a name given by the user who created

this list. Some list names do not carry any meaning (e.g., “list #2”). Some

list names show the social relationships of the members (e.g., “family”). There

are also many list names that reveal the members’ expertise (e.g., “music”).

We therefore make use of list names to obtain followees with expertise.

First, we crawled the number of lists each followee is member of and the names

of the lists. The users who are member of only very few lists are usually not well

known and these lists are usually for social purpose. We therefore only included

those followees who appear in at least 10 lists. For our survey participants, we

obtained 15,395 followees. 8,601 of them are public users. Among the 8,601

followees, 43 percent of them appear in at least 10 lists. As Twitter API has

rate limits, we collected at most 1000 lists per followee. Next, for each followee,

we removed the stop words from the names of the lists she is member of and

chose at most 20 top frequent words that appear in the names. We use β(f) to

denote the chosen words for followee f .

Finally, to know f ’s expertise, we again utilize the keywords from each topic

in Y : f ’s expertise is y(f) ∈ Y if β(f) and y(f)’s related keyword set γy(f) share

the most number of words, i.e., y(f) = arg maxy |β(f) ∩ γy|. For example, for

account @latimessports, we obtained β(@latimessports) = {sports, news, media,

lakers, nfl, baseball, . . .}, and the topic expertise is “Sports”. For account

@SoVeryBritish, the top words are {funny, comedy, humor, humour, fun,

entertainment, . . .}, we then associate this account with “Jokes,Funny”. For

the current work, we assume each topic expert has one expertise. This as-

sumption can be easily extended to an expert having multiple expertise topics.
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For a user whose reading topics are to be predicted, we use the above

way to derive a set of her followees with expertise, i.e, F e. Each followee

f ∈ F e has an expertise y(f). Followee-Expertise ranks topic y ∈ Y in higher

position than y′ ∈ Y , if the number of followees with expertise y is larger

than the number of followees with expertise y′, i.e., |{f |y(f) = y, f ∈ F e}| >

|{f |y(f) = y′, f ∈ F e}|. For example, if a user follows 8 accounts with expertise

“Sports”, 4 accounts with “Politics” and 10 accounts with “Music”, then the

user’s reading topic ranking is “Music”, “Sports” and “Politics”.

4.3.2 Learning to Combine Rankings

The above three ranking strategies utilize users’ different information to infer

their topic ranking, it is possible that different ranking strategies can comple-

ment each other so as to achieve better performance. We therefore propose a

model that learns to combine rankings generated from multiple ranking strate-

gies.

We are given a set of training users Utrain that we wish to uncover their

topic interests (posting or reading). For each user, we have a collection of

rankings which are generated by different ranking strategies. We use σ
(u)
i to

represent the i-th ranking for user u. Remember that we use π(u) to denote

the set of ground truth topics for user u. We have two ranking strategies, i.e.,

Posted-Content and Post-Popularity, for ranking posting topics, and Received-

Content, Read-Popularity, and Followee-Expertise strategies for ranking read-

ing topics.

For the i-th ranking strategy, we define a set of parameters wi = {wi1,wi2,

. . . , wiT} where wit represents how important the topic at position t is in the

i-th ranking strategy and 0 < wit < 1. We then combine user u’s rankings as

follows: for each topic y ∈ Y , we obtain its overall (or combined) importance by

summing up the topic y’s importance in all ranking strategies, i.e.,
∑

iwiσ(u)
i (y)

where σ
(u)
i (y) represents the rank assigned to y by the i-th ranking for user u.
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We then can re-rank all the topics based on their overall importance, and get

a combined ranking φ(u) for user u.

A good combined ranking φ(u) should rank the topics from ground truth

topics π(u) in front positions. Thus the topics in π(u) should be much more

important than the other topics. This means we need

∑
y∈π(u)

∑
i wiσ(u)

i
(y)∑

y∈Y
∑
i wiσ(u)

i
(y)

to be

close to 1. In other words, we want the total importance of the user interested

topics (the numerator) is close to the total importance of all topics (the denom-

inator). We then can write our model as follows. We minimize the following

function:

F (w) =
1

2|Utrain|
∑

u∈Utrain

(1−

∑
y∈π(u)

∑
iwiσ(u)

i (y)∑
y∈Y

∑
iwiσ(u)

i (y)

)2 (4.1)

To simplify the representation, we can rewrite F (w) as:

F (w) =
1

2|Utrain|
∑

u∈Utrain

(1−
∑

i

∑
t a

(u)
it wit∑

i

∑
twit

)2 (4.2)

where a
(u)
it equals to 1 if there exists a topic y ∈ π(u) such that σ

(u)
i (y) = t.

Otherwise, a
(u)
it equals to 0.

In order to make sure wit falls in (0, 1), we transform it using logistic

function: wit = 1
1+e−θit

. Thus, instead of learning w, we learn θ. To avoid

overfitting, we add a regularization term to our objective function.

F (θ) =
1

2|Utrain|
∑

u∈Utrain

(1−
∑

i

∑
t a

(u)
it wit∑

i

∑
twit

)2

+
λ

2|Utrain|
∑
i

∑
t

θ2it (4.3)

where wit = 1
1+e−θit

and λ is a control of the fitting parameters θ. As F is

not convex, in order to improve the chances of finding a global minimum,

a common strategy is to use gradient descent with random restart, which

performs gradient descent many times with randomly chosen initial points,
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and selects the locally optimized point with the lowest F value. We write the

derivative of F of θjv:

∂

∂θjv
F (θ) =− 1

|Utrain|
∑

u∈Utrain

((1−
∑

i

∑
t a

(u)
it wit∑

i

∑
twit

)

a
(u)
jv

∑
i

∑
twit −

∑
i

∑
t a

(u)
it wit

(
∑

i

∑
twit)

2

e−θjv

(1 + e−θjv)2
) +

λ

|Utrain|
θjv (4.4)

The update rule is θjv := θjv − α ∂
∂θjv

F (θ), where α is the learning rate.

After we learn θ and then obtain parameter wi for each ranking strategy i, we

can get the combined ranking for user u by computing the overall importance

for each topic yt using
∑

iwiσ(u)
i (yt)

.

4.3.3 Results

We use the ground truth topics obtained from our survey to evaluate the

ranking strategies and the combining method. All the following results are the

average MAP by running experiments 10 times where each time we randomly

select half number of users for training and the remaining users for testing.

We empirically set λ = 0.1 and α = 20.

Posting topic discovery. We use 69 participants who posted no less than

5 tweets from March 1st to March 30th, 2015 for this part of evaluation, and

the remaining users are considered as lurkers who mainly focus on reading.

We apply Posted-Content and Post-Popularity to predict user posting topics.

Figure 4.9 shows the performance of these two ranking strategies and the per-

formance of the combined rankings. To determine the significance of results,

we use the randomly shuffled topics (i.e., the Random predictor) as baseline.

In the Figure, x-axis n represents the number of topics that are chosen as the

predicted topics. “Like” means that we use the topics that a user likes to post
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Figure 4.9: Results for posting topics.

as the ground truth topics (Figure 4.9(a)), and “Like and Somewhat Like”

means that we use the topics that a user selects “Like” or “Somewhat Like”

as the ground truth topics (Figure 4.9(b)).

We have consistent findings with different n values from Figure 4.9(a) and

Figure 4.9(b). We observe firstly that all our ranking strategies yield perfor-

mance significantly better than Random. Secondly, Post-Popularity performs

much better than Posted-Content. One possible reason is that inferring topics

from tweets is still a challenging problem as tweets are short and people use

many informal and idiosyncratic words in tweets [59]. The performance of

Post-Popularity shows that there are some “universal” posting topics such as

“TV & Films” and “Music”. Finally, the combined ranking method achieves

the best performance.

Reading topic discovery. We use all the survey participants in reading topic

discovery evaluation. Figure 4.10 shows the performance of Received-Content,
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Figure 4.10: Results for reading topics.

Read-Popularity and Followee-Expertise and the performance of their com-

bined rankings. We summarize our observations as follows. First, all our

ranking strategies perform significantly better than Random. Secondly, com-

pared with Read-Popularity and Followee-Expertise, Received-Content does

not predict user reading topics well. One possible reason is the difficulty of in-

ferring topics in tweets. Another possible reason is that Twitter users are only

interested in a subset of tweets they received. Thirdly, Followee-Expertise, an

unsupervised method, mostly performs better than Read-Popularity. Fourthly,

again, the combined ranking can achieve the best performance. Lastly, com-

paring Figures 4.9 and 4.10, we notice that reading topic discovery can achieve

comparable performance as posting topic discovery, which suggests that al-

though we do not have user reading behavior data traces, we can still predict

user reading topics with reasonable accuracy.

Reading topic discovery for lurkers. In order to see how well we can
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Figure 4.11: Reading topic prediction for lurkers and active users.

predict lurkers’ reading topics, we divide the testing users into lurker group

and active user group. The lurker group consists of the users who post less than

5 tweets from March 1st to March 30th, 2015 and the remaining users belong to

the active user group. Figure 4.11 shows the performance of predicting reading

topics for lurkers and active users. We set n = 5 and the ground truth topics

are the “Like” topics. Other settings have consistent findings. We first observe

that all our methods perform much better than Random for both lurker and

active user groups. Secondly, overall, predicting active users’ reading topics

is easier than predicting lurkers’. Thirdly, Read-Popularity does not perform

well for lurkers. It shows that compared with active users, lurkers are less

likely to pay attention to the popular reading topics. Lastly, we find that

Followee-Expertise performs best for the lurker group. Thus, using only this

unsupervised method, we can achieve promising prediction results for lurkers.

4.4 Discussion and Conclusion

Selective topic disclosure. One of the main contributions of this work is

to show that social media users’ posting topics are different from their reading

topics. This suggests that users are selective when choosing topics to disclose

(i.e., post). We also confirm that topics are different in attracting people to

post and read. For some topics, people like to both post and read, while for

some other topics, people prefer to only read. Users seem to have less concerns
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when posting topics such as “Personal Activities”, “Gaming” and “Music”.

However, for topics such as “Adult”, “Religion”, and “Politics”, many users

who are interested in reading them choose not to post them in Twitter. We

also find that less extravert and less agreeable users are likely to have more

differences in posting and reading topics. Users’ personalities then correlate

with the differences between users’ posting and reading topics.

Our findings also suggest that to measure the popularity of a tweet or

an event, we need to also consider its topic. For example, if a tweet is about

“Politics”, then the number of users sharing it could possibly underestimate its

popularity or influence. Furthermore, as many users do not post controversial

content, we need to keep in mind that users who express views or opinions in

social media on an issue might not be the majority. In other words, the voices

in social media are likely to be biased [40].

Posting and reading topic profiling. Our work also contributes to the

prediction of users’ posting and reading topics. We evaluate the prediction

performance using different ranking strategies. We demonstrate that using

popular topics or followees’ expertise topics performs much better than using

user posted content or received content. It is important to note that although

the content a user has read is not available, we can predict users’ reading

topics with promising performance. We also show that we can predict lurkers’

reading topics using the topic experts among their followees. The prediction

of posting and reading topics can be useful in different practical scenarios. For

example, users’ posting topics can be used to predict whether they will share

an event or speak up for an issue in the future. Users’ reading topics can be

used to predict whether they will click an advertisement.

Limitations and future work. We acknowledge that there are some limita-

tions in this work: participants in our survey are undergraduates with similar

ages, and our analysis is based on one social media platform. Nevertheless,

our main finding, i.e., social media users’ posting topics are different from

63



their reading topics or social media users practise selective topic disclosure, is

well-supported by previous studies and social psychology theory [49, 112, 29].

For example, users do not want to share “Adult”, because “users do not want

to post content that might be inconsistent with their self images”. Users do

not talk about “Religion” and “Politics” may be because “Users do not want

to start or continue an argument” [112]. In our future work, we could study

and compare the difference between posting and reading topics for a much

larger user community and in other platforms such as Facebook.
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Chapter 5

Opinion Mining for

Issue-Specific Silent Users

5.1 Introduction

Nowadays, millions of users share content in social media. This abundant user-

generated content provides an unprecedented resource for user opinion analysis.

These user opinions are useful feedback for improving customer relationship

services and government policies. They also help individuals make decisions on

which products to buy, which movies to watch and which politicians to vote.

While many users share their opinions in social media, many others choose

not to disclose theirs. With selective self-disclosure behavior, users can choose

to keep silent on an issue even when they have some opinions on it (selective

opinion disclosure). We call these users the issue-specific silent users or i-silent

users. For example, if a user is interested in “Healthcare Cost” issue but never

posts content related to it, we call her a Healthcare Cost-silent user. We call

the users who post content related to an issue the issue-specific active users

or i-active users. Note that i-silent users may still generate content unrelated

to issue i. Hence, they may not be the silent users we discussed in Chapter 3.

On the other hand, a silent user is one who is i-silent on all issues.
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In social media, one can observe opinions from issue-specific active users

only. When we conduct opinion analysis on issue related content, we will likely

overlook the opinions of i-silent users and derive an opinion distribution biased

by the i-active users. Therefore, in this work, we study the opinions of i-silent

users in social media with two research goals. The first goal is to examine to

what extent i-silent users exist for different issues and whether their opinion

distribution is similar or different from that of i-active users. Achieving this

goal is non trivial as ground truth opinions on issues are not in the observed

social media data.

To obtain users’ ground truth opinions, we conduct a user survey on a set

of Singapore users who use Twitter and/or Facebook. In this survey, partic-

ipants share their interests and opinions on seven social issues, and declare

whether they discuss the issues in Twitter and Facebook. The issues include

Healthcare Cost, Retirement, Public Housing, Public Transport, Jobs, Educa-

tion, and Population Growth. As these are long-standing hot button social

issues in Singapore, we expect the surveyed users to have opinions on them.

Short term issues (e.g., events, news) are not included as they normally do not

attract lasting public interests. Opinions on these short term issues are likely

to be confined to only very small number of users.

We have derived a number of interesting findings from our survey results.

We found that in both Twitter and Facebook, more than half of the users

who are interested in issue i are i-silent users across all issues. i-active users

are more likely to feel positive than i-silent users. These findings suggest

the number of i-silent users can be large and they are likely to have opinion

distribution different from that of i-active users. It is therefore necessary to

consider i-silent users when profiling opinions of a user population.

The second goal of this work is to predict the opinions of i-silent users

in Twitter and Facebook. Addressing this goal enables us to profile i-silent

users even when they have no posted content about the issue. This opens up
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new opportunities to engage the i-silent users in various applications includ-

ing product recommendation, personalized content filtering, and social media

marketing. We propose two types of features for the prediction: (a) sentiment

features extracted from users’ content, and (b) opinion features extracted from

users’ predicted opinions or ground truth opinions on other issues. We demon-

strate the effectiveness of our features and show that predicting i-silent users’

opinions can achieve reasonably good accuracy from user posted content that

is not related to issue i, and achieve better accuracy when we make use of user

opinions on other issues.

Chapter Outline. We organize the rest of this chapter as follows. In Section

5.2, we describe our opinion survey and show the survey results. In Section

5.3, we profile i-silent users’ opinions on the seven issues. Finally, we discuss

our findings and conclude this work in Section 5.4.

5.2 i-Silent Users in Social Media

To study i-silent users in social media and to obtain their ground truth opin-

ions, we conduct a social media user survey. In this section, we describe the

survey procedure and present our findings.

5.2.1 Survey Procedure

The social media survey serves two purposes. It collects the ground truth

opinions of users on topical issues. It also allows us to gather complete social

media content of each users for opinion prediction. Since Twitter and Facebook

are the two popular social media platforms, we focus on their users so as to

allow us to compare the findings obtained from their users. We also confine

the users to be from Singapore who are expected to be familiar with the same

set of topical issues.

Our survey requires each Twitter participant to have created her Twitter
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account at least three months ago and have at least 10 followees and 5 fol-

lowers. Similarly, each Facebook participant is required to have created her

Facebook account at least three months ago and have at least 20 friends. This

ensures that the survey will not involve inexperienced users. We recruited the

participants from undergraduate students of three largest universities in Sin-

gapore by email and poster. The participants are also incentivized to invite

friends to join the survey. Each participant received at least 10 Singapore dol-

lars for completing the survey, inviting friends and sharing their social media

data. Both the survey itself and the survey methodology were approved by

the Institutional Review Board (IRB) of the authors’ university.

The survey has two parts. The first part establishes some basic informa-

tion and ground truth opinions about the users. The survey requires infor-

mation about the user’s gender and age. Each user also answers multiple

choice questions for each of the seven issues (Healthcare Cost, Retirement,

Public Housing, Public Transport, Jobs, Education, and Population Growth).

They are: (1) Is the user interested in the issue? (i.e., does she have opinion

on the issue?) (2) What is the user’s opinion on the issue ([0-3]negative/[4-

6]neutral/[7-10]positive)? (3) Does the user discuss this issue in Twitter if she

is a Twitter user, or in Facebook if she is a Facebook user? And (4) What is

her social media friends’ opinions on the issue according to her perception?

The second part of the survey collects a complete set of social media data

from the participants which includes both content and social connections. The

social connections are follower and followee links for Twitter users, and friend

links for Facebook users. We asked the Twitter users to provide their Twitter

screen names so as to crawl their Twitter data including tweets, social connec-

tions and their public followers and followees’ tweets using Twitter API. As

we also allow protected Twitter users to participate in our survey, for these

protected accounts, we created a special Twitter account to follow them for a

short time period so as to crawl their data.
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Figure 5.1: Twitter participants’ follower count and followee count distribution
and Facebook participants’ friend count distribution.

To obtain Facebook users’ data including friends and posts (i.e., statuses),

we directly ask participants to provide us their Facebook data archives. Each

Facebook archive includes almost all information in the user’s account and we

clearly stated this in the survey’s informed consent form. Unfortunately, these

archives exclude the friends’ posts.

The survey was conducted from Sep 14, 2015 to Nov 12, 2015. We finally

had 108 Twitter users and 74 Facebook users participated in the survey. Twit-

ter users comprise 75 females and 33 males with an average age of 21.0. Face-

book users comprise 48 females and 26 males with an average age of 21.3. Both

users groups share very similar gender and age distributions. Figures 5.1(a),

5.1(b) and 5.1(c) show the Twitter users’ follower count, followee count and

the Facebook users’ friend count distributions respectively. Our survey par-

ticipants do not have very large number of followers or friends, thus they are

“ordinary” users (not celebrities) whom we want to focus on in this research.

5.2.2 Survey Results and Findings

We analyze the survey results to answer the following questions:

1. To what extent do i-silent users exist in social media? Are females or

males more likely to be i-silent users?

2. Do i-silent users have opinions different from i-active users?
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Figure 5.2: The proportion of i-interested users who are silent on i.

3. Do i-silent users believe that they have the same or opposite opinions

with their friends? And how is it compared with i-active users’ and their

friends’ opinions? Homophily is often observed among connected users.

When a user’s friends hold opinions (or perceived opinions) different from

the user, it may prevent the user from expressing her opinion. We want

to see if the effect exists in our survey and can explain the silent behavior.

Existence of i-Silent Users. Firstly, we examine to what extent i-silent

users exist in social media for different issue i. Based on the survey results,

i-silent users in Twitter are the users who declare their interest in issue i, but

never post issue i content in Twitter. Similarly, i-silent users in Facebook are

defined similarly. Figures 5.2(a) and 5.2(b) show, for each issue i, the number

of i-silent users, the number of users who are interested in i (i.e., i-interested
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users), and the proportion of i-interested users who are silent on i in Twitter

and Facebook respectively.

We observe that a significant proportion of i-interested users are i-silent

users across all issues in both Twitter and Facebook. The proportion of i-

interested users who are silent is above 0.5 for all issues. It suggests that many

people do not speak up even when they are interested in an issue. We also

observe that different issues attract different amount of people’s interest. For

example, many more participants are interested in Public Transport, Jobs and

Education than Healthcare Cost and Retirement. This may be due to the

young participants (with average age less than 22) who may not worry about

healthcare and retirement. We may expect a different distribution for more

senior people.

Gender difference among i-silent users. To answer whether females or

males are more likely to be i-silent users, we compare the proportion of inter-

ested females who are i-silent users and likewise for the male users. Figure 5.3

shows that in Facebook, females are more likely to be silent on all issues than

males (see Figure 5.3(b)). This result is consistent with findings in [123] which

show that female users in Facebook share more personal topics (e.g., family

and personal health) while male users share more public topics (e.g., politics,

sports, etc.). On the other hand, females in Twitter are more likely to be silent

than males on healthcare, housing, jobs and population issues. For other three

issues, the females in Twitter are only marginally less silent than males.

i-Silent Users’ and i-Active Users’ Opinions. Next, we compare i-silent

users and i-active users’ opinions. i-active users are the users who are interested

in issue i and post content about it. To ensure the significance of our results, we

consider only the issues that have at least 20 i-silent users and 20 i-active users.

Figures 5.4(a) and 5.4(b) show the proportion of i-silent users feeling negative,

neutral and positive about issue i compared with the proportion of i-active

users feeling negative, neutral and positive about i in Twitter and Facebook
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Figure 5.3: The proportion of interested females (males) who are i-silent users.

respectively. In each figure, the i-silent and i-active users are denoted by ‘S’

and ‘A’ respectively.

We observe that firstly, the proportion of i-silent users being positive is

less than the proportion of i-active users being positive in both Twitter and

Facebook (see the green bars on the right). For example, in Twitter, 30.6%

of Public Transport-silent users are positive, and a larger proportion (37.5%)

of Public Transport-active users are positive. It implies that i-active users

are more likely to be positive. Secondly, the proportion of i-silent users being

neutral is greater than the proportion of i-active users being neutral across all

issues in both Twitter and Facebook (see the yellow bars in the middle), which

shows that i-silent users are more likely to be neutral. It suggests that users

who actively post about an issue are likely to have some positive or negative
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Figure 5.4: Comparison of i-silent users and i-active users’ opinions. (S repre-
sents i-silent users and A represents i-active users.)

opinion on it. Thirdly, the difference between the proportion of i-silent users

who are negative and the proportion of i-active users who are negative is not

consistent across the issues and platforms. The above findings show that i-

silent users are likely to have different opinion distribution from i-active users.

It is therefore important to predict i-silent users’ opinions separately from that

of i-active users.

i-Silent Users’ and Social Media Friends’ Opinions. Finally, we examine

if i-silent users believe that they have the same or opposite opinions with their

social media friends, and how it is compared with i-active users and their

friends’ opinions. We note that social media friends are not all real friends
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Figure 5.5: i-silent users and i-active users’ opinions with their friends’ opin-
ions. (S represents i-silent users and A represents i-active users.)

of a user. Nevertheless, in the context of social media content sharing, it is

reasonable to assume social media friends as an important social factor that

affects content sharing decision, i.e., silent or active. In this analysis, the

friends of a Twitter user refer to her followees from whom the user receives

content.

For each issue i, we compute the proportions of i-silent users who believe

having the same, moderate different and opposite opinions with their friends

respectively. Suppose a user u’s opinion on an issue is Ou, and she perceives

that her friends’ opinion is Of , then u believes that she has the same opinion

with her friends if Ou and Of are both negative, neutral or positive, has mod-
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erate different opinion with her friends if one of Ou and Of is neutral, and has

opposite opinion with her friends if one of Ou and Of is positive and the other

is negative. We also compute the similar proportions for i-active users. Again,

to ensure the significance of our results, we consider only the issues that have

at least 20 i-silent users and 20 i-active users. Figures 5.5(a) and 5.5(b) depict

the results among Twitter and Facebook participants respectively.

Firstly, we observe that both i-silent and i-active users believe some mod-

erate difference existing between them and their online friends (see the yellow

bars in the middle in Figure 5.5), but they are not likely to have opposite opin-

ions with their friends (see the magenta bars on the right). The probability

of users having opposite opinions with their social media friends is less than

0.13 for all issues in Twitter and Facebook. Thus, no matter users are silent or

active on an issue, they perceive that the opinion differences with their social

media friends are usually small.

Secondly, Figure 5.5(b) shows that compared with i-silent Facebook users,

larger proportion of i-active Facebook users believe their having the same opin-

ion with their online friends. For example, among Facebook users, 56.3% of

Public Transport-active users believe their having the same opinion with their

online friends, and the proportion is 39.3% for Public Transport-silent users.

This phenomenon could be explained by that users are more likely to speak up

when they believe their friends have similar opinions with them [49]. However,

we have different observation from Twitter users. Compared with i-silent Twit-

ter users, smaller proportion of i-active Twitter users perceive having the same

opinion with their online friends. For example, among Twitter users, 46.8% of

Public Transport-active users believe their having the same opinion with their

online friends, and the proportion is 50.0% for Public Transport-silent users.

The findings suggest that Facebook users are less interested to speak up when

they have different opinions from their online friends, whereas Twitter users

are more interested to speak up when they observe different opinions with their
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friends.

Why do i-silent users behave differently in the two platforms? A possible

explanation is that although in both Twitter and Facebook, users can form

connections and then get information from others, Facebook is used more as

a private account for maintaining social connections with real life friends and

family members [37]. People may not want to have arguments with their

real life friends and family members online (i.e., in Facebook). On the other

hand, Twitter is used more as an information channel where people connect

with one another to get information that interests them [62]. Twitter users

therefore have less personal connections with their friends, and thus more

likely to express their differing opinions than Facebook users. Another possible

explanation is that in general, our Facebook users have much more social

connections than our Twitter participants (see Figure 5.1). Facebook users

may want to be more “discreet” in sharing opinions with these friends.

To summarize, our survey results show that i-silent users exist across all

the seven issues in Twitter and Facebook, and female Facebook users are more

likely to be silent on these issues. We also show that in both Twitter and

Facebook, i-active users are more likely to be positive than i-silent users, and

both i-silent and i-active users think they do not have much opinion conflicts

with their social media friends.

5.3 Opinion Prediction

In this section, we predict opinions on the seven issues for i-silent users as well

as i-active users using their contributed social media posts. Figure 5.6 shows

the process we used for predicting user opinion on an issue i. First, we classify

posts into the posts that are related to i, i.e., i-related posts, and the posts

that are not related to i, i.e., i-unrelated posts. Second, we obtain the posts’

sentiments, i.e., positive, neutral, or negative. Next, we derive the features
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Figure 5.6: Opinion prediction process overview.

for opinion prediction based on user i-related posts’ sentiments and user i-

unrelated posts’ sentiments. Finally, we use the features to build a classifier

and obtain user opinion.

5.3.1 Issue Related and Unrelated Posts Classification

To separate posts to i-related and i-unrelated posts, a straightforward way is

to manually label a number of i-related posts and i-unrelated posts, and train

a classifier to find all i-related posts. However, as i-related posts are likely

to only constitute a very small proportion, directly labeling posts will incur

too much manual effort before we can assemble a reasonably sized i-related

posts. For this reason, we focus on identifying highly issue specific-keywords

(i.e., i-keywords) to distinguish i-related posts from other posts.

We obtained these keywords from a set of issue related news articles. In The

Straits Times (www.straitstimes.com, the most widely circulated Singapore

newspaper), news are categorized into local topical issues including five of our

seven selected issues. They are Education, Public Housing, Public Transport,

Healthcare Cost and Jobs1. We then crawled articles under these issues. By

searching on The Straits Times website, we found the sets of news articles

about the remaining two issues, Retirement and Population Growth2. All

the collected articles have URL with prefix www.straitstimes.com/singapore

to ensure that they are Singapore based. In this way, we collect at most 200

articles for each issue. We call the articles about issue i the i-articles.

1www.straitstimes.com/singapore/education (housing, transport, health, man-
power)

2www.straitstimes.com/search?searchkey=retirement (population+growth)
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From the i-articles, we extract discriminative phrases as keywords for issue

i. To compute the discriminative power of a phrase p (unigram or bigram) for

issue i denoted by d
(p)
i , we first define the relative frequency of p in i-articles,

i.e., f
(p)
i = number of i-articles containing p

number of i-articles
. We then define p’s relative frequency in

all articles, i.e., f (p) = number of articles containing p
number of articles

. The phrase p is discriminative

in issue i if its relative frequency in i-articles is significantly larger than its

relative frequency in all articles. Thus, we define the discriminative power

of p by the difference of p’s relative frequency in i-articles and all articles,

i.e., d
(p)
i = f

(p)
i − f (p). We subsequently rank the phrases according to their

d
(p)
i in descending order, choose the top 30 phrases, and manually remove

some duplicated phrases (for example, we remove ‘a school’ as we already have

‘school’ as a keyword for Education). Table 5.1 shows i-keyword examples for

the seven issues.

Issue Keywords

Healthcare Cost health, patients, hospital, medical, treatment, amp, mind
amp, disease, dr, body, blood, cancer, general hospital

Retirement retirement, cpf, savings, provident, provident fund, cen-
tral provident, fund, age, retire, payouts, income, cpf sav-
ings

Public Housing housing, housing board, flat, flats, hdb, unites, room, or-
der, resale, build, buyers, national development, property

Public Transport transport, bus, lta, smrt, commuters, mrt, services, sta-
tions, train, transit, trains, buses, cars, sbs, passengers

Jobs manpower, employers, companies, workers, skills, jobs,
work, employment, mom, employees, hiring, career, job

Education education, school, students, schools, student, learning,
parents, children, university, teachers, programmes, aca-
demic

Population Growth immigration, population, population growth, economic,
foreign, immigrants, foreigners, ageing, birth rate

Table 5.1: Some keywords for each issue.

We then obtain the candidate i-related posts by selecting those containing

any of the i-keywords. As our i-keywords are English words, the candidate i-

related posts are likely written in English. We therefore do not perform further

filtering to remove non-English posts. We call the set of candidate i-related
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posts Si. However, not all posts in Si are related to issue i. For example,

post ‘Let’s train harder!’ is not a Public Transport-related post although it

contains keyword ‘train’. Therefore, to further filter out the unrelated posts,

we manually labeled 1000 randomly selected posts in Si with ‘related’ and

‘unrelated’ labels, and then we use these labeled posts to build a Naive Bayes

classifier and classify all the posts in Si so as to get the final set of i-related

posts. We can achieve at least 0.82 F-score for i-related posts across all the

seven issues.

5.3.2 Sentiment Classification for Posts

To understand the sentiment of a post, we adopt the state-of-the-art Stanford

sentiment analysis system proposed by Socher et al. [113]. This system uses

a deep learning model, Recursive Neural Tensor Network (RNTN), trained on

Stanford sentiment treebank. The Stanford sentiment treebank is a dataset

with 11,844 sentences from movie reviews and each sentence is a fully labeled

parse tree. This dataset of trees (i.e., treebank) can be used to analyze the

compositional effects of sentiment.

Although this Stanford sentiment analysis system achieves good results on

movie reviews, it cannot be directly used on our problem. The first reason

is that the system is trained using labeled movie reviews which are written

in more formal way than posts in social media. Furthermore, the posts we

have are posted by Singapore users, who use some regional slangs that do not

appear in the Stanford sentiment treebank. For example, word ‘sian’ is used

to express how bored and frustrated a person feels. Another reason is that

the Stanford sentiment treebank does not include emojis (see Figure 5.7) and

many emoticons (e.g., -.-, :D, :P, ˆˆ)), which are frequently found in posts and

are useful for predicting sentiment [1]. Emojis are represented using unicode

[117]. For example, \U0001F60A is the unicode representation of a smile face.

For the aforementioned reasons, we create our own sentiment treebank by
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Figure 5.7: Emoji examples in Twitter.

manually labeling 5,291 randomly selected issue related posts. We use post

“Train is not so crowded. \U0001F60A ˆˆ” as an example to explain how we

label posts. This post contains emoji \U0001F60A and emoticon ˆˆ. First,

we encode emojis and emoticons3 using unique codes. For example, we replace

\U0001F60A to code ‘U0001F60A’ and ˆˆ to code ‘emoticon0001’. The up-

dated post is thus “Train is not so crowded. U0001F60A emoticon0001”. Next,

we use the Stanford Parser [57] to generate a parse tree for the updated post.

The Stanford Parser considers our unique codes as noun words in the parse

tree. We then replace the unique codes in the parse tree to the corresponding

emojis and emoticons before the tree is manually assigned sentiment labels.

Figure 5.8 shows the fully labeled parse tree for our example post. Note that

each node in the parse tree is assigned one of the sentiment labels from very

negative to very positive (−−, −, 0, +, ++). To label a node, we consider

only the part of the sentence covered by the subtree rooted at the node. For

example, to label the first node on the third level, we examine the phrase “is

not so crowded.” and assign a neutral label. Our labeling tool is built based

on Stanford sentiment treebank labeling tool4.

Our labeled posts include 1,421 negative (labeled as −− or −), 3,408 neu-

tral (labeled as 0), and 462 positive (labeled as + or ++) posts. Less than

10% of our issue related posts are positive. This is in stark contrast with

the surveyed user opinions in Figure 5.4 where we observe more positive users

than negative users. It shows that although people may express many negative

posts about an issue, their overall opinions on the issue can still be positive.

For example, a user posting many times about crowded train may still feels

3The emoticons and emojis are found at: https://en.wikipedia.org/wiki/List_of_
emoticons

4http://nlp.stanford.edu:8080/sentiment/labeling.html
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Figure 5.9: Classification results (weighted f-score) for issue related posts.

positive about the overall Public Transport service in Singapore.

We then train a RNTN model on our post sentiment treebank (Post TB)

and compare with the same model trained on the Stanford sentiment treebank

(Sta TB) and Naive Bayes (NB, which considers emojis and emoticons). We

evaluate the three models using weighted f-score (i.e., sum of f-score of each

sentiment class weighted by the proportion of posts of each class) and the

results are obtained using 5-fold cross validation. According to Figure 5.9,

Post TB outperforms Stanford TB and NB by 26% and 7% respectively. We

subsequently use Post TB to predict sentiments of social media posts.

Sentiment of words. When labeling parse trees, we need to label sentiments

of all individual words (including English words, emojis and emoticons) which

appear as leaf nodes of the trees. A word may appear multiple times during the
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labeling process. From our post sentiment Treebank, we obtain the sentiment

of a word by taking the majority vote of its sentiment labels. In total, we

obtain 662 positive words, 905 negative words and 10,763 neutral words which

will be used in deriving sentiment features for user opinion prediction.

5.3.3 Features for Opinion Prediction

With our extracted i-related posts, the post sentiment classifier and the sen-

timent of words, we extract two types of features for predicting opinion on

issue i: (a) sentiment features extracted from posts, and (b) opinion features

extracted from user opinions on other issues.

Sentiment features (SF). To construct sentiment features of a user, we use

her statuses if she is a Facebook user, or her tweets and all her public followers’

and followees’ tweets if she is a Twitter user. Given a set of posts P (P can

be statuses, or tweets), we define three sets of features for predicting user’s

opinion on issue i. Let Pi be the set of i-related posts, W be the set of words

in all posts, Wi be the set of words in Pi, P
+ be the positive posts in P , P 0

be the neutral posts in P , P− be the negative posts in P , W+ be the positive

words in W , W 0 be the neutral words in W , and W− be the negative words in

W . If a word never appeared in our sentiment treebank, we consider it neutral.

The first set of features are: the proportion of i-related posts that are

positive, neutral, and negative, i.e.,
|P+
i |
|Pi| ,

|P 0
i |
|Pi| , and

|P−i |
|Pi| , and the proportion

of words that are positive, neutral, and negative in i-related posts, i.e.,
|W+

i |
|Wi| ,

|W 0
i |

|Wi| , and
|W−i |
|Wi| . These features indicate if the user posts some positive, neutral,

or negative content about the issue.

The second set of features are: the proportion of all posts that are positive,

neutral and negative, i.e., |P
+|
|P | , |P

0|
|P | ,

|P−|
|P | , and the proportion of words that are

positive, neutral, and negative in all posts, i.e., |W
+|

|W | , |W
0|

|W | ,
|W−|
|W | . This set of

features tells if the user posts some positive, neutral, or negative content in

general.
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Hea. Ret. Hou. Tra. Job. Edu. Pop.
Negative 6 8 14 23 6 10 17
Neutral 26 19 36 41 52 29 30
Positive 20 9 21 33 31 58 17
i-silent 42 29 52 49 60 58 44
i-active 10 7 19 48 29 39 20

Table 5.2: Class distribution for issues from Twitter users.

The third set of features are: the features from the first set divide by the

features from the second set, i.e.,
|P+
i |
|Pi| /

|P+|
|P | ,

|P 0
i |
|Pi| /

|P 0|
|P | ,

|P−i |
|Pi| /

|P−|
|P | ,

|W+
i |
|Wi| /

|W+|
|W | ,

|W 0
i |

|Wi| /
|W 0|
|W | and

|W−i |
|Wi| /

|W−|
|W | . This set of features tells if the user is more positive,

neutral, or negative when posting about the issue than when posting general

content.

For i-silent users, the first and the third feature sets will have feature value

0, as they do not have i-related posts.

Opinion features (OF). We consider the user’s opinions on other issues as

the second type of features for opinion prediction. The intuition is that: (a)

the user may have certain sentiment bias on all issues. For example, some users

are more likely to be negative, but some are more likely to be positive; (b) the

user’s opinion on an issue may be correlated with or similar as her opinion

on some other issue. For the above reasons, we attempt to predict the user’s

opinion on a target issue by making use of her opinions on other issues. To

extract the opinion features, we consider two cases. The first case is when we

have already acquired a user’s ground truth opinions on other issues. This case

could happen in some real applications. For instance, one may want to predict

a user’s interests by knowing her other interests, to predict a user’s interests

by knowing her gender, or to predict a user’s age by knowing her interests.

Another case is that we do not have the user’s ground truth opinions on other

issues. This case may be more common. For the first case, we directly use a

user’s ground truth opinions on other issues as features. For the second case,

we first predict the user’s opinions on other issues using only sentiment features

from the content. We then use the predicted results as opinion features.
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Hea. Ret. Hou. Tra. Job. Edu. Pop.
Negative 5 8 12 14 3 8 9
Neutral 24 20 24 31 36 22 29
Positive 16 9 16 22 25 38 10
i-silent 28 26 32 34 36 35 31
i-active 17 11 20 33 28 33 17

Table 5.3: Class distribution for issues from Facebook users.

5.3.4 Opinion Prediction Results

With the above features, we train a SVM classifier to predict user opinion in

Twitter and another classifier for Facebook. In our evaluation, we use 1000

posts (or less if the user does not post this number of posts) from each Twitter

user or Facebook user. For a Twitter user, we also use at most 1000 tweets from

each public followee or follower of the user. Tables 5.2 and 5.3 show the class

distribution and the number of i-silent and i-active users for the seven issues

for Twitter and Facebook users respectively. As the number of negative users

in all issues are usually very small, to ensure the significance of our results, we

show f-score for positive class with at least 20 users. The f-score is obtained

with 5-fold cross validation. Again, we consider the issues that have at least

20 i-silent users and 20 i-active users. Finally, only Public Transport, Jobs,

and Education issues meet our criteria in both Twitter and Facebook.

Tables 5.4 and 5.5 show the opinion prediction results for Twitter and

Facebook users respectively. The baseline methods are a random predictor

and a SVM classifier using unigrams from users’ posts. Our methods include:

(a) the sentiment features (SF) from user content, (b) the sentiment features

from users’ posts and opinion features (OF) from predicted user opinions on

other issues, and (c) the sentiment features from users’ posts plus the opinion

features from ground truth user opinions on other issues. For Twitter users,

there are three kinds of user content, namely: (a1) users’ tweets, (a2) user

public followees’ tweets, and (a3) user public followers’ tweets. For Facebook

users, user content refers to Facebook statuses of the users.

We summarize our findings as follows. Firstly, for both Twitter and Face-
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Random Unigrams-
user
tweets

SF-user
tweets

SF-
followee
tweets

SF-
follower
tweets

SF-user
tweets
+ OF-
predicted
opinion

SF-user
tweets
+ OF-
ground
truth
opinion

Public
Transport

All
users

0.34 0.43 0.51 0.49 0.50 0.51 0.54

i-silent
users

0.31 0.34 0.45 0.40 0.42 0.46 0.50

i-active
users

0.38 0.45 0.52 0.51 0.54 0.56 0.58

Jobs
All
users

0.35 0.38 0.50 0.51 0.50 0.52 0.55

i-silent
users

0.33 0.41 0.49 0.51 0.52 0.50 0.53

i-active
users

0.38 0.31 0.50 0.51 0.47 0.52 0.61

Education
All
users

0.60 0.66 0.74 0.71 0.66 0.74 0.75

i-silent
users

0.55 0.61 0.72 0.67 0.64 0.71 0.71

i-active
users

0.67 0.68 0.75 0.76 0.69 0.77 0.80

Table 5.4: Opinion prediction results (f-score for postive class) using SVM for
Twitter users

Random Unigram-
user
statuses

SF-user
statuses

SF-user sta-
tuses + OF-
predicted
opinion

SF-user sta-
tuses + OF-
ground truth
opinion

Public
Transport

All
users

0.33 0.33 0.48 0.49 0.69

i-silent
users

0.26 0.18 0.41 0.41 0.42

i-active
users

0.39 0.38 0.53 0.55 0.82

Jobs
All
users

0.39 0.45 0.46 0.55 0.69

i-silent
users

0.36 0.34 0.40 0.52 0.61

i-active
users

0.43 0.54 0.54 0.60 0.74

Education
All
users

0.56 0.63 0.70 0.72 0.72

i-silent
users

0.51 0.53 0.68 0.68 0.71

i-active
users

0.61 0.70 0.73 0.75 0.74

Table 5.5: Opinion prediction results (f-score for postive class) using SVM for
Facebook users.

book users, all our methods outperform the baseline methods significantly for

both i-silent users and i-active users. It suggests that considering the sentiment
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of posts and words can achieve better performance than considering the words

alone. Secondly, for both Twitter and Facebook users, the prediction accuracy

of i-active users’ opinions is better than that of i-silent users. This findings

is expected as i-active users contribute posts about issue i. Thirdly, we can

predict i-silent users’ opinions with reasonable accuracy although they do not

post i-related posts. It implies that i-silent users’ i-unrelated tweets can be

used to predict their opinions on i. Fourthly, the sentiment features from user

tweets, user followers’ tweets and user followees’ tweets yield similar perfor-

mance. The findings imply that to predict a overall silent user’s opinions, we

may consider her neighbors’ posts. Finally, combining the sentiment features

and the opinion features from predicted user opinions on other issues usually

yields better performance than using the sentiment features only, and further-

more, combining the sentiment features and the opinion features from ground

truth user opinions on other issues achieves the best performance. It suggests

that a user’s opinions on other issues can help predict the user’s opinion on

this issue.

5.4 Discussion and Conclusion

Selective opinion disclosure. The main contributions of this work is to

study the existence of issue-specific silent users and their opinions. We focus

on two popular social media platforms, Twitter and Facebook, and conduct a

survey to obtain users’ opinions on seven different topical issues (Healthcare

Cost, Retirement, Public Housing, Public Transport, Jobs, Education, and

Population Growth) and to collect users’ personal social media data. To our

best knowledge, similar study was not conducted before. Our study has found

that more than half of the users who are interested in issue i are i-silent users

in both Twitter and Facebook, suggesting that users practise selective self-

disclosure on opinions. It also suggests that when users not posting about an
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issue i does not imply that they are not interested in i. Hence, a large number

of i-silent users’ opinions will be overlooked if we only consider i-active users’

posts only.

We also find that for the selected issues, i-active users are more likely to

be positive than i-silent users. This finding suggests that i-silent and i-active

users are likely to hold different opinion distributions. Thus, to profile the

public opinion about an issue i, it is important to take i-silent users’ opinions

into account.

Opinion mining for i-silent users. Our work also contributes to the opinion

prediction for i-silent users as well as i-active users in Twitter and Facebook.

Opinion prediction for social media users is a challenging task, as we notice

that people may give negative feedback about an issue but at the same time

feeling overall positive about the issue. In other words, people may express

unhappiness about one aspect of an issue but still feel positive for most other

aspects.

We explore two types of features for opinion prediction task: the sentiment

features extracted from users’ content and the opinion features extracted from

users’ predicted opinions or ground truth opinions on other issues. We demon-

strate the effectiveness of these features and show that although predicting

i-active users’ opinion yield better performance than that of i-silent users, it is

still possible to predict i-silent users’ opinions by leveraging on their i-unrelated

content. We can have better performance if we make use of predicted i-silent

users’ opinions on other issues and achieve the best performance if we acquire

the ground truth i-silent users’ opinions on other issues. To be able to predict

i-silent users’ opinions will enable researchers to infer the opinion distribution

in population level, and also have a better understanding of i-silent users.

Limitations and future work. As the first attempt to study issue-specific

silent users, this work has been confined to a small user community and the

survey conducted can be affected by selection bias. We therefore plan to study
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the opinions of issue-specific silent users for a much larger user community.

Nevertheless, the possible selection bias does not prevent us drawing the con-

clusion that there is a significant proportion of i-silent users in social media or

social media users practise selective opinion disclosure, since users self-censor

when they talk publicly [29].

More research is clearly required to improve the accuracy of opinion pre-

diction, particularly for the silent users. It is also interesting to find out the

reasons for users to stay silent on an issue and for them to post after staying

silent for some time. We can also consider other more controversial issues (such

as abortion, affirmative action, gun control, etc.) in other country/region in

the future work.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, we study and profile social media users with selective self-

disclosure behavior. With this behavior, users may choose not to post anything

(i.e., lurking), not to post topics they are interested in (i.e., selective topic

disclosure), or not to post opinions on their interested issues (i.e., selective

opinion disclosure).

In Chapter 3, we focus our research on social media users’ lurking behavior.

We find that there are a significant number of lurkers in social media communi-

ties, suggesting many users do not want to disclose their information in social

media at all. We also show that profiling lurkers’ attributes can be as accurate

as profiling active users. We emphasize that it is important to study lurkers in

social media as they constitute a significant proportion of online social media

user group, and it is possible to profile lurkers although they do not speak out.

In Chapter 4, we focus our research on social media users’ selective topic

disclosure behavior. We find that users post and read different topics, suggest-

ing that users may not disclose some of their interested topics. We find that

there are some topics such as “Politics” and “Religion” which many users who

like to read do not like to post. We also explore the performance of predicting
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user posting and reading topics. We emphasize that to better understand a

user’s topic interests, we should consider both her posting and reading behav-

ior.

In Chapter 5, we focus our research on social media users’ selective opinion

disclosure behavior. We find that more than half of the users who are interested

in issue i are i-silent users in both Twitter and Facebook. It suggests that users

may choose not to disclose all their opinions. We demonstrate that although

predicting i-active users’ opinion yields better performance than that of i-silent

users, it is still possible to predict i-silent users’ opinions by leveraging on their

content that is not related to issue i. We can achieve better performance if

we make use of predicted i-silent users’ opinions on other issues and achieve

the best performance if we acquire the ground truth i-silent users’ opinions on

other issues.

To summarize, in this dissertation, we study selective self-disclosure, a

theory from social psychology, in the context of social media. We obtain inter-

esting insights about social media users’ selective self-disclosure behavior by

analyzing both survey data and online user traces data. We also start works on

user profiling that specifically concerns the selective self-disclosure behavior.

6.2 Future Work

User selective self-disclosure behavior in social media can be further studied

considering user network effects. In terms of posting activity level, some users

choose to disclose nothing, some disclose only a little over a long period of time,

while others disclose a lot in a short period of time. In terms of topic choices,

some users may like to share controversial topics such as politics and religion,

while other users may share only non-controversial topics such as music and

sports. In terms of emotions, some users may like to post positive content,

while others may post mostly negative content.
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What are the factors that affect users’ choices in selecting what content to

disclose? Personal values and personalities are possible intrinsic factors. Chen

et al. [21] found that user personal values are significantly correlated with the

use of some words in Reddit social network. For example, users with high

hedonism (i.e., pursuit of pleasure and sensuous gratification) use more swear

words and make more strong absolute statements. Our work in Chapter 4

shows that user personality traits are associated with user posting topics. For

example, users who like to post politics are more open to experience.

Besides the above intrinsic factors, a user’s posting content can also be

affected by external factors such as the user’s network, i.e., connections. Many

studies have shown that users’ networks exert different degrees of influence

over their choices, opinions, feelings and behavior [79, 23, 130, 131, 60]. In

particular, Hampton et al. [49] found that users are more likely to discuss

controversial issues with close friends. Sleeper et al. [112] suggest that users

self-censor their posts by considering the audience, i.e., their connections.

Despite the above results, we still have incomplete knowledge about how

network affects user posting content in social media. How do the relationship

types [106] between a user and her connections affect how she posts and what

she posts? For example, if the user mostly connects with her family members,

would she post frequently? What kind of content does she like to post? Is the

content controversial or non-controversial? Positive or negative? What if the

user mostly connects with classmates, colleagues, or strangers? Similarly, how

does the closeness [42] between the user and her connections affect her posting

content? And how does the embeddedness of the user in the network affect her

posting content? Answering these questions will help us gain insights of user

selective self-disclosure behavior from network aspect, which are important

for social media services as their survival and growth highly depend on user

self-disclosure.

Therefore, we plan analyze the associations between users’ network factors
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(relationship types, closeness and embeddedness) and their posting behavior

(posting frequency, posting topics and emotions). We plan to recruit users

from Twitter and gather their relationship types with connections and closeness

with connections through a survey. We would crawl their posts and links using

Twitter API. We then can obtain the correlation between user network and

posting behavior.

To strengthen our silent user study in Chapter 3, we plan to study silent

users in other social network platforms such as Instagram which is for photo-

sharing and video-sharing. We can explore if silent users behave similarly in

Twitter and Instagram. We also want to improve our methods in user profiling

tasks. One way is to obtain more ground truth data by manually labeling on

larger number of users. Another possible way is to utilize unlabeled users’ data

for training with semi-supervised learning techniques.

We also plan to relate selective self-disclosure with social relationship de-

velopment in social media. Previous research suggests that self-disclosure is

critical for the development and maintenance of social relationships [34]. In

offline face to face communication, usually a person discloses information par-

ticularly to another person (one to one disclosure). On the other hand, in

social media, one’s information can be disclosed to many others (one to many

disclosure). Is there any difference between how one to one disclosure and one

to many disclosure in affecting relationship development and maintenance?

This could be another possible future work.

92



Bibliography

[1] Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Rambow, and Rebecca

Passonneau. Sentiment Analysis of Twitter Data. In Workshop on Lan-

guages in Social Media (LSM), 2011.

[2] Amr Ahmed, Yucheng Low, Mohamed Aly, Vanja Josifovski, and Alexan-

der J. Smola. Scalable Distributed Inference of Dynamic User Interests

for Behavioral Targeting. In KDD, 2011.

[3] Arifah Che Alhadi, Steffen Staab, and Thomas Gottron. Exploring User

Purpose Writing Single Tweets. In WebSci, 2011.

[4] Yair Amichai-Hamburger and Gideon Vinitzky. Social Network Use and

Personality. Computers in Human Behavior, 26(6):1289–1295, 2010.

[5] Judd Antin and Coye Cheshire. Readers Are Not Free-riders: Reading

As a Form of Participation on Wikipedia. In CSCW, 2010.

[6] Sitaram Asur and Bernardo A. Huberman. Predicting the Future with

Social Media. In WI-IAT, 2010.

[7] Yoram Bachrach, Michal Kosinski, Thore Graepel, Pushmeet Kohli, and

David Stillwell. Personality and Patterns of Facebook Usage. In WebSci,

2012.

[8] Sridhar Balasubramanian and Vijay Mahajan. The Economic Leverage of

the Virtual Community. International Journal of Electronic Commerce,

5(3):103–138, 2001.

93



[9] Luciano Barbosa and Junlan Feng. Robust Sentiment Detection on Twit-

ter from Biased and Noisy Data. In COLING, 2010.

[10] John A Bargh, Katelyn YA McKenna, and Grainne M Fitzsimons. Can

You See the Real Me? Activation and Expression of the True Self on the

Internet. Journal of Social Issues, 58(1):33–48, 2002.
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