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Fusing WiFi and Video Sensing for Accurate Group
Detection in Indoor Spaces

Kasthuri Jayarajah, Zaman Lantra†∗, Archan Misra
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†University of Moratuwa
{kasthurij.2014, archanm}@smu.edu.sg, †zaman.lantra@gmail.com

ABSTRACT
Understanding one’s group context in indoor spaces is useful for
many reasons – e.g., at a shopping mall, knowing a customer’s
group context can help in offering context-specific incentives, or es-
timating taxi demand for customers exiting the mall. Group detec-
tion and monitoring using WiFi-based indoor location traces fails
when users are invisible (either because they don’t carry smart-
phones, or because their WiFi is turned OFF) or when location
tracking is inaccurate. In this paper, we propose a multi-modal
group detection system that fuses two independent modes: video
and WiFi, for detecting groups with low latency and high accuracy.
We present preliminary results from a micro-study with 20 group
episodes and report an overall precision of 0.81 and recall of 0.9,
an improvement of over ≈20% over WiFi-based group detection.

Keywords
Group Monitoring; Multi-Modal Sensing; Sensor Fusion

1. INTRODUCTION
Detecting the group-context (i.e., whether a person is alone or

moving with additional individuals) of visitors to indoor venues
(e.g., shopping malls, convention centers and airports) is useful for
a variety of applications, including targeted recommendations &
advertising, inference of ties between people [6] and visitor ana-
lytics [5]. Such group detection typically utilizes one of two ap-
proaches: video analytics [10] or WiFi based movement analyt-
ics [15]. Each approach is known to have its own limitations:

• Video-based group detection is not pervasive–typically, cam-
eras monitor only parts of the indoor venue. Video-based
approaches can also exhibit false positives (when unrelated
individuals incidentally happen to traverse the observation
region together). Most importantly, video analytics cannot
identify specific individuals in a group (facial recognition is
not applicable to random individuals visiting a public space),
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and is thus not amenable to applications such as targeted rec-
ommendation.

• While usually pervasive throughout the building, group de-
tection based on WiFi based location data suffers from false
negatives (individuals without a WiFi enabled device are ef-
fectively invisible to the group detector). Moreover, practical
server-side WiFi localization is known to have errors around
± 6− 8m and update latencies of several minutes, and can
thus generate false conclusions in densely-crowded indoor
spaces.

To tackle these limitations in a practical way, we ask the ques-
tion: Can we improve the accuracy of group detection by smartly
fusing the sensing modalities of video (with only intermittent cov-
erage) and WiFi (that provides pervasive location tracking)? The
fundamental idea is as follows: video-based analytics is used to
identify the number of individuals that transit a given area “to-
gether” at a specific time instant. WiFi based group detection also
uses such detected transitions, as well as periods of collocation at
‘stay points’ before/after the transition, to separately identify po-
tential groups. By matching the video-based transition pattern with
the WiFi based location-cum-residency pattern of potential groups,
we hope to reduce both false positives and negatives, as well as
tackle the problem of hidden nodes (individuals with no WiFi en-
abled devices). Note: this group detection problem is distinct from
WiFi+video based localization: our goal is not to explicitly track
the location, but instead to identify individuals who move together.
Challenges: A practical fusion approach must address three failure
modes associated with isolated use of WiFi or video data: (a) Hid-
den nodes: As many users, such as the elderly and children may
not carry a mobile device, they have no WiFi footprint. However,
for improved accuracy, it is important to uncover the presence of
such users, and associate them with partially-identified groups. (b)
Sub-group Identification: Commercial server-based WiFi location
systems (which provide the universal observability of all devices in
the public venue without requiring any specific cooperation from
users) often have high update latency (the gap between successive
WiFi readings are often 3-4 mins). Consequently, such WiFi based
systems are unable to separate out two groups of users who transit
the same region in rapid succession (e.g., separated by a few sec-
onds), and instead aggregate them into a common, large group. (c)
Location Errors: As server-side WiFi readings are often delayed,
two individuals entering a location concurrently may find location
estimates be separated out by several minutes. Such temporal dis-
crepancy may cause the group detector to fail.

In this paper, we provide early evidence that these challenges can
be tackled by intelligently fusing the video and WiFi based group
membership inferences. Using 20 curated episodes of group and
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individual movement behavior, we identify the distinct spatiotem-
poral variations that occur naturally in groups vs. individuals, and
make the following Key Contributions:

• Benchmark Video-based Group Detection: We first develop and
evaluate a state-of-the-art technique for video-based group de-
tection, consisting of 3 steps: (a) localizing people within video
frames, (b) tracking detected persons across frames and finally,
(c) detecting groups at low-latency. We show that, for our move-
ment episodes, the video-based detection reaches up to 80% pre-
cision and recall, at a latency of 0.5 seconds.

• Sensor Fusion and Probabilistic Group Membership: We pro-
pose and implement a candidate group detection algorithm that
fuses such video and WiFi observations. The algorithm first
computes the probability of group membership in each mode in-
dependently, using the duration of overlapping collocation pe-
riods for WiFi (i.e., using the GruMon technique [15]) and the
“duration elapsed since last collocation” for video. It then com-
bines these probabilities to provide more robust group detection,
even in the presence of hidden nodes and sub-groups. With 33%
of the nodes hidden, and 40% of the groups being subgroups, our
candidate algorithm achieves a recall of 0.9 – this is a≈ 20% im-
provement over a WiFi-only approach, and a 10% improvement
over the recall of a video-only approach. Likewise, the algorithm
achieves a 30% improvement in precision over the WiFi-only ap-
proach. In particular, our algorithm detects 67% of hidden nodes
and all subgroups, compared to 0% for WiFi.

2. MOTIVATING SCENARIOS
In Sen et. al. [15], we provide motivating application scenar-

ios for group detection in multi-functional indoor spaces such as
shopping complexes. Here, we provide additional scenarios where
accurate detection is warranted.

Visitor Analytics for Surveillance: Public spaces such as train
stations, airports, amusement parks, etc. experience high levels of
flux of visitors. Longitudinal profiling of visitors, both individu-
als and groups, allows for detecting anomalies (e.g., an unusual
congregation of people at a secure area). In recent works [5], it was
shown that groups indeed behave differently than individuals– typi-
cally spending longer stay times with fewer transitions between dif-
ferent sections, stores, etc. Hence, profiling and identifying group
and individual behaviors, can aid in more accurate surveillance.

Social Event Detection: As shown in Jayarajah et. al. [6], the
social ties amongst a group or crowd of people gathering at a place
are useful features in detecting transient social events, both indoors
(at campus scale) and outdoors (at city scale). Group detection is
a key ingredient in deriving such trajectory-based ties from lon-
gitudinal observations, constructing physical social networks, and
extracting network properties. It is sufficient to consider deviations
in the volume of people present (or absent) to detect high intensity
events. But, by detecting that groups of strongly connected individ-
uals (friends) are gathering at certain locations, it is also possible
to detect low intensity (e.g., friends/families attending a theatrical
performance) events that affect only a small fraction of people.

3. SYSTEM OVERVIEW
We first describe our multi-modal group detection system in de-

tail. The key intuition here is that people in the same group would
exhibit correlated or similar mobility patterns. The system consists
of three main blocks: WiFi-based group detection, video-based
group detection and probabilistic group membership classification,

Figure 1: System Architecture.

and relies solely on server-side WiFi-based localization and video
feeds (See Figure 1).

[a] WiFi-based Group Detection: From the server-side WiFi
traces, RADAR [1] (or any similar technique) is used to infer coarse-
grained indoor location (see Figure 2), at a section level (typi-
cally spanning 6-8 meters) of devices carried by persons. Then, a
traveling companion-like detection mechanism (presented in Gru-
Mon [15]) is used on location traces to detect groups. We consider
two or more persons to be a group if they transition between two
stay regions (a ‘stay region’ is a section where a mobile device is
seen to be stationary for a period ≥ X) together within a detection
window T . Additionally, to accommodate the phenomenon of up-
dates with variable delay, we allow for a period of lag (TI) after T ,
within which a set of people can still be considered a group, but
with reduced confidence (based on the duration of the time spent
co-located).

[b] Video-based Group Detection: From a continuous video
stream surveying the connecting corridor between two stay regions
(see Figure 2), for every detection window T , we use frame-wise
distance and feature similarity based heuristics (computed over the
video frames) to detect groups. We describe in detail in Section 3.1.

[c] Group Membership Classification: Based on the two inde-
pendent group detection system outputs, a combined result is com-
puted based on the cardinality of detected groups and their con-
fidence levels. We describe the details of the fusion algorithm in
Section 4.

Figure 2: Our Approach: Video (VA,B, VB,C) captures transi-
tions between WiFi-based stay regions (A & B and B & C, re-
spectively).



3.1 Video-based Group Detection
Video-based detection of groups involves three main steps: (1)

detecting and localizing a person in a frame, (2) second, from con-
secutive frames, classifying and tracking persons, and (3) lastly,
based on trajectories of persons across frames, detecting groups.

3.1.1 In-Frame Localization
Person Detection: We analyze each video frame to detect the

presence of “persons". We investigate different person-detectors –
HAAR-cascades [18], HOG+SVM [2], DPM [16] and YoLo [14]
– , and chose YoLo as it provided the best performance (i) under
medium-to-bright indoor lighting conditions, (ii) with occlusion
(detects even when certain parts of the body are not visible in the
frame), and (iii) irrespective of the direction of the person walking
(e.g., HAAR-based classifiers depend on the facial features, which
cannot be obtained if the person is walking away from the camera).

From the bounding boxes of persons detected, we infer the coor-
dinate of the foot as < (xmin +xmax)/2,ymin > where the bounding
box is defined by < xmin,ymin,xmax,ymax >.

Distance-Corrected Localization: We note that the perceived
distance between two persons, or the perceived distance a person
has moved between frames, is a function of both the actual dis-
tance and the distance of the person from the camera – for e.g.,
the perceived distance between two people is larger when they are
closer to the camera as opposed to when they are far, although the
real distance between the two may remain the same. To correct for
this, during calibration, we compute a perspective transform matrix
by (1) first choosing four bounding coordinates along the edges of
the vanishing corridor visible in the frame, and (2) then identifying
the coordinates of the corrected corridor. We apply this transfor-
mation on the raw foot coordinate to compute a distance-corrected
“real world” coordinate.

3.1.2 Person Classification and Tracking
To match two person objects detected in two consecutive frames

as the same person (or not), we use both distance-based and fea-
ture similarity based measures. Empirically, we found that at an
average walking speed, and a frame rate of 30 f ps, a person moves
less than 50 pixels between frames. However, it is possible for two
persons walking together to be each mistaken for the other when
viewed over quick consecutive frames. To avoid this, we addition-
ally obtain the SIFT-features[8] and compute the pairwise feature
similarity score as numbero f goodkeypointsmatched

numbero f keypointsmatched between the bound-
ing boxes. We consider goodkeypoints as those keypoints that have
a distance ratio better than 0.7 as described in Lowe et al. [8].
We compare consecutive frames and declare that a detected per-
son matches a previously detected person using a distance thresh-
old of 50 pixels and a feature similarity score threshold of 0.3. We
decided on these threshold values through trial and error.

3.1.3 Group Detection
We track persons over a block of frames of size FB, and consider

both (1) the number of frames any two persons were seen together,
and (2) the average distance between the trajectories of the two
persons across the co-located frames. If they are seen together for
more than FG frames, and the average distance is less than Td , then
they are declared as a group. If A and B are a group, and B and C
are a group, then by transitivity, we consider A, B and C as a group.
We evaluate the choices of FB, FG and Td in Section 5.

4. FUSION OF WIFI-BASED AND VIDEO-
BASED GROUP DETECTION

We present our probabilistic group membership algorithm in Al-
gorithm 1. Besides the video-based detector, the WiFi-based detec-
tor outputs groups every T secs. We allow a lag of TIsecs, which is
a multiple of T , such that devices that same exhibit the same tran-
sition, but offset by less than TI secs, are considered as potential
groups. We define the confidence of a detected candidate group
as the proportion of time the members of the group have spent to-
gether (prior to the common transition within T +TI) of the maxi-
mum time any subset of the group had spent together. For example,
if A and B transition together T , and C transitions within the next
TI , then the confidence in (A,B,C) being a group is less than that
of (A,B) being in a group. We formulate this confidence, PW

S , as in
Equation 1 where S is the member set, S′ is every proper subset of
S and tS is the overlapping time duration of S.

Similarly, we define the confidence in a group detected by video,
PV

S , as in Equation 2. Here, dS is the average distance (in pixels)
between pairs in S and Td is the Distance Threshold within which
any two detected persons are considered to be in a group. Addi-
tionally, for video-based groups, we consider the temporal distance
between any two groups for declaring sub-groups. We define the
time at which a group was last detected by video as tV

S . Then the
confidence that two groups S1 and S2 are separate groups, PT

S1,S2
, is

defined as in Equation 3 where TS is a Temporal Distance Thresh-
old.

Subgroup Detection: If PT
S1,S2
≥ α, then the likelihood that S1

and S2 are separate groups is high – although a single WiFi group
is detected for the same T with some PW

S .

PW
S =

tS
max(tS′)

(1)

PV
S = 1− dS

Td
(2)

PT
S1,S2

= 1−
abs(tV

S1
− tV

S2
)

TS
(3)

Hidden Nodes: For the same decision window, if NW < NV , we
declare that there were NV −NW hidden (an unseen WiFi device)
nodes. NW and NV are the cardinality of the groups detected using
WiFi and video, respectively, over the (t, t+T +TI) period. For this
initial work, we do not consider the rare case NV > NW , i.e., when
the video analytics exhibits false negatives, over an entire block of
FB frames.

Location Lags: For the same decision window, if NW = NV ,
and PV

S > β although PW
S < θ, then we declare that S was indeed

a group and the decrease in PW
S is likely due to delays in localiza-

tion. Here, α, β and θ are appropriately chosen thresholds on the
probabilities for group declaration.
Assumptions: This methodology assumes that (i) the location sys-
tem does not generate erroneous location estimates, and that a lo-
cation report for a ‘stay point’ is always generated within TI secs
of the true transition time, and (ii) multiple groups do not move
identically during the same T .

We evaluate the cases of hidden nodes and subgroups in Sec-
tion 5.

5. EVALUATION
We first evaluate the two group detection modalities in isolation

in order to understand the impact of the parameter choices on ac-
curacy. We then summarize early results from the combined group



Algorithm 1 Probabilistic Group Membership
Input: region level location, in-frame location
Output: groups detected, confidence

while t ≥ (2T +TI) and t mod T ≡ 0 do
SW ,PW

S ,NW = detectWiFiGroups(t, t +T +TI)

SV ,PV
S ,NV = detectVideoGroups(t, t +T +TI)

if NW ≡ NV then
initializeSubGroupDetection(SV );

else if NW < NV then
declareHidden(NV −NW );
initializeSubGroupDetection(SV );

else
% Deferred as future work

end if
end while

detection system in overcoming the challenges of hidden nodes and
subgroups.

5.1 Study Details
We conducted an instrumented micro-study with 10 participants

from our lab. The participants were split into 5 groups (or individ-
uals, see Table 1) and were instructed to spend time at two stay re-
gions and alternate (or transition) between them at scheduled times.
The corridor (roughly 3m×1m area) was monitored by a standard
web-cam at a resolution of 480 × 640, and a frame rate of 30 f ps.
The participants carried instrumented Android phones that scanned
for WiFi devices and recorded their RSSI values every 100 ms. The
10 participants were asked to transition back and forth four times,
spending at least 5 minutes at each stay region, resulting in a total
of 20 group (& individual) episodes.

To emulate hidden nodes, WiFi traces of 3 participants chosen at
random were ignored during WiFi-based group detection. Further,
to emulate sub-groups, 3 of the 5 sets were asked to move around
with only a few seconds apart. The details of the group configura-
tions are given in Table 1.

Group Members Scenario

Group A 2 ideal case with all nodes known and clear
separation from other groups

Group B 2 followed A after 5 mins
Subgroup C 2 followed B after 1 min
Subgroup D 3 followed group C after 2 secs.
Subgroup E 1 followed group D after 2 secs

Table 1: Group configurations of the study.

5.1.1 Accuracy Metrics
We report precision and recall values in the following way: (1)

recall = Ndetected
Nepisodes

and (2) precision = Ncorrect
Ndetected

. Here, Ndetected is the
number of episodes that were detected whereas Nepisodes = 20, is
the total number of episodes. In computing precision, we allow for
partial matches – i.e., the contribution of a partially detected group
towards precision as (sizedetected is the size of the detected group
and sizeactual is the size of the actual group):

1− sizedetected − sizeactual

max(sizedetected ,sizeactual)
(4)
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Figure 3: Accuracy vs. Observation Window Size Trade-Off in
Server-Side WiFi-based Detection.

5.2 Choosing Window Size T for WiFi-based
Detection

To identify an appropriate choice for T , we used server-side
(with an update rate of roughly 5 secs) localization traces of three
participants who spent an hour together transitioning between four
stay regions. In Figure 3, we plot the precision and recall (y-axis)
for different window sizes (x-axis). We observe that as the window
size increases, the detection precision improves gradually. We have
shown previously in Sen et. al. [15], that with client-side localiza-
tion and higher latencies (≈ 10 mins), the recall can increase up to
92%. For the purpose of our study, we choose T = 60 secs as a
good trade-off between accuracy and the detection latency.

5.3 Choosing Parameters for Video-based De-
tection

We varied the three parameters, (1) Block Size (FB) which is the
number of frames processed before a group is detected, (2) the
Group Candidate Threshold (FG) which is the number of frames
within the block any two persons have to be seen to be considered
a candidate for group, and (3) the Distance Threshold (Td) which
is the maximum distance (in pixels) between any two persons to be
considered a candidate for group, averaged over frames they were
co-located within a block.

In Figure 4 and Figure 5, we plot the precision/recall (y-axis),
for FB ∈ [15,30,60,75] and FG ∈ [5,10,15] with Td = 200 in all
cases. We observe that the precision is robust with varying block
sizes. However, we note that the recall drops significantly with
both increase in block size and frames to compare. In the case of
FB ≥ 60, i.e., a block duration greater than 2seconds, the ability
to differentiate between the subgroups C, D, E drops causing the
recall to drop. We also varied the Distance Threshold (Td) which
is the upper limit on the average distance (in pixels) within which
two persons are considered to be in a group. Further, for the same
block size, requiring more than 5 frames to compare causes 20%
less groups to be detected (0.2 drop in recall). For values 150,
200 and 250, we did not observe any significance difference in the
precision or recall. Overall, we found that FB = 15, FG = 5 and
Td = 250 as the combination with the best performance.

SG Only
(WiFi)

SG + HN
(WiFi)

Video
Only Fusion

Precision 0.58 0.5 0.81 0.81
Recall 0.6 0.6 0.8 0.9

Table 2: Overall Accuracy under Perfect Localization. HN-
Hidden Nodes, SG-Subgroup.



Figure 4: Precision vs. Block Sizes (FB) and Group Candidate
Thresholds (FG).

5.4 Group Detection Under Perfect Localiza-
tion

For the purpose of this study, we evaluate the system under per-
fect location conditions – i.e., we assume the location provided by
WiFi is both accurate and does not incur any delays. Hence, we
simulate the indoor location traces based on ground truth locations
and times. We use FB = 15, FG = 5, Td = 250, T = 60 secs, TI = 60
secs, TS = 600, and α = 0.01. As the block size is much smaller
than the time for which a group is seen by the camera, the group
will be detected multiple times over consecutive frames – for e.g.,
members of the same group enter and exit one by one into the cam-
era’s field of view. To avoid counting them as separate group in-
stances, we look at the time separation between the detection times,
if it is less than a threshold of 0.5 secs, we consider them as the
same group. This improved the precision of video-based detection
by ≈ 0.1.

We report our results in Table 2. Overall, we observe a precision
of 0.81 and recall of 0.9 for the study with the 20 group episodes.
In the case of Subgroups only, we use location traces of all partici-
pants with C, D, E transitioning as different groups, but very close
temporally (i.e., 40% of the groups were subgroups). In the Sub-
groups and Hidden Nodes case, the traces of one participant each
from groups B, C, and D were removed (i.e., 33% of the partici-
pants were hidden). We observe that video detects all subgroups
and 67% of the hidden nodes resulting in a 30% improvement in
precision, and a 10% improvement in recall over the WiFi-only
approach. WiFi detected at least two group instances which the
video missed due to false negatives in person detection. Hence,
considering the combined output of the fusion algorithm, the recall
increases by another 10% to 0.9.

6. DISCUSSION AND FUTURE WORK
Current Limitations: As we noted earlier, video-based person

detection suffers from both false-positives and false-negatives (See
Figure 6 and Figure 7).

Handling False Positives: We consistently observe that the falsely
detected bounding boxes overlap significantly with adjacent bound-
ing boxes of correctly detected persons. To handle this, we propose
to consider the area of overlap and if it is above a certain threshold,
to consider them as a single, merged detected person.

Handling False Negatives: In the second case, we noticed that a
person is often detected in a few consecutive frames, missed in the
next few (due to various reasons including lighting & occlusion)
and then is detected as a new person because the distance and fea-
ture similarity thresholds exceed since the last detection. To deal

Figure 5: Recall vs. Block Sizes (FB) and Group Candidate
Thresholds (FG).

with this, we plan to interpolate the trajectory of the person in the
missed frames, using feature matching, until the same person is
detected again.

Ongoing Work: In this paper, we presented preliminary results
under ideal localization. In practical scenarios, we expect the loca-
tion traces to be noisy. Currently, we are extending Algorithm 1 to
account for location errors (accuracy and latency issues). Further,
in our limited trials, none of the groups occurred together within
the same frame, or involved participants who changed their move-
ment direction mid-way through the observation period – in future,
we intend to expand our study with more real-world group scenar-
ios. Moreover, we must extend on our approach to a larger, in-
door space where we have multiple cameras (surveying transition
regions) connecting multiple stay points.

7. RELATED WORK
WiFi-based Group Detection: Both Liu. et. al. [7] and Sen et.

al. [15] describe group detection using server-side WiFi- based in-
door location traces. However, the accuracy of the system drops
due to the presence of hidden nodes and groups that transition
within short inter-group intervals. We use a location-only version
of GruMon [15] for the pure-WiFi based group detection in this
work.

WiFi/Location+Video Sensor Fusion: Several works [4, 17,
12] in the past have described the opportunities and challenges in
fusing WiFi with video data for tracking people. In Nandakumar et.
al. [12], the authors share their initial thoughts on how the combina-
tion of vision tracking (that suffers from fragmentation, occlusion
and spurious objects) and sporadic WiFi signals can be fused for
accurate tracking of users in-store. The E-V system described in
Zhu et. al. [17] locates a person based on his/her E and V signals,
i.e., his/her electronic footprint and and his visual appearance in
the video, respectively. Similarly, Jamtgaard et. al. [4] describe a
technique for tracking targets based on spatio-temporal correlation
in WiFi and video. In contrast, Miyaki et. al. [11] propose a parti-
cle filtering approach for continuous target tracking using the two
modes. Recently, in Ganti et. al. [3] the authors describe an orthog-
onal problem of entity reconciliation – i.e., to detect an entity (e.g.,
person) across several sources of mobility data such as smartphone-
generated GPS traces and videos from multi-camera networks, to
provide a combined, global view of the entity. Our work is differ-
ent (albeit complementary) in that we do not attempt to track an
individual or match persons/targets across the multiple modes.

Accurate Indoor Localization: Although previous literature
have described techniques [9, 13] that can offer much finer accura-



Figure 6: False-Positives and False-Negatives in Video-based
Person Detection. The bounding boxes indicate detected person
bounding boxes. Left: an extra person is detected falsely shar-
ing high overlap with two correctly detected persons, Right: a
person close to the camera is not detected due to blur.

Figure 7: Correcting for a False Negative using Feature Match-
ing. Left: the bounding box of a person detected in the previous
frame, Right: detecting the same (missed) person by searching
the following frame for matching SIFT-features.

cies (e.g., sub-meter scale), they are not as pervasive as server-side,
Wi-Fi based techniques because they either require large-scale de-
ployment of specialized hardware (e.g., [13]), or client-side support
(e.g., dead reckoning on the smartphones [9]). Our work describes
a fusion framework that leverages practical indoor localization that
inherently suffers from accuracy and latency issues.

8. CONCLUSION
In this paper, we described a group detection pipeline for video

and proposed a novel system which fuses both outputs from WiFi-
based and video-based group detection. By taking into account
both levels of confidence in detection of the independent sources of
mobility and carefully chosen spatial and temporal thresholds, we
show that the group detection accuracy can be improved by at least
20% over the traditional WiFi-only based solutions. Although our
study is preliminary, and further investigation over a larger scale is
warranted, we believe that this works opens up discussion on fusing
multi-modal mobility information for high accuracy, low latency,
mobility-aware futuristic systems.
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