
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

11-2016

Ownership-hidden group-oriented proofs of
storage from pre-homomorphic signatures
Yujue WANG
Singapore Management University, yjwang@smu.edu.sg

Qianhong WU

Bo QIN

Xiaofeng CHEN

Xinyi HUANG

See next page for additional authors

DOI: https://doi.org/10.1007/s12083-016-0530-8

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Information Security Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
WANG, Yujue; WU, Qianhong; QIN, Bo; CHEN, Xiaofeng; HUANG, Xinyi; and LOU, Jungang. Ownership-hidden group-oriented
proofs of storage from pre-homomorphic signatures. (2016). Peer-to-Peer Networking and Applications. 1-17. Research Collection
School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3627

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/111756973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/s12083-016-0530-8
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3627&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Author
Yujue WANG, Qianhong WU, Bo QIN, Xiaofeng CHEN, Xinyi HUANG, and Jungang LOU

This journal article is available at Institutional Knowledge at Singapore Management University: https://ink.library.smu.edu.sg/
sis_research/3627

https://ink.library.smu.edu.sg/sis_research/3627?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research/3627?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3627&utm_medium=PDF&utm_campaign=PDFCoverPages

Peer-to-Peer Netw. Appl.
DOI 10.1007/s12083-016-0530-8

Ownership-hidden group-oriented proofs of storage
from pre-homomorphic signatures

Yujue Wang1,2 ·Qianhong Wu3,4,5 ·Bo Qin6,7 ·Xiaofeng Chen7 ·Xinyi Huang8 ·
Jungang Lou9

Received: 29 April 2016 / Accepted: 17 October 2016
© Springer Science+Business Media New York 2016

Abstract In this paper, we study the problem of secure
cloud storage in a multi-user setting such that the owner-
ship of outsourced files can be hidden against the cloud
server. There is a group manager for initiating the sys-
tem, who is also responsible for issuing private keys for
the involved group members. All authorized members are

� Qianhong Wu
qianhong.wu@buaa.edu.cn

1 School of Information Systems, Singapore Management
University, 178902, Singapore, Singapore

2 Network and Data Security Key Laboratory of Sichuan
Province, University of Electronic Science and Technology
of China, Chengdu, 610054, China

3 School of Electronic and Information Engineering,
Beihang University, Beijing, China

4 State Key Laboratory of Cryptology, P. O. Box 5159,
Beijing, 100878, China

5 State Key Laboratory of Information Security, Institute
of Information Engineering, Chinese Academy of Sciences,
Beijing, 100093, China

6 School of Information, Renmin University of China,
Beijing, China

7 State Key Laboratory of Integrated Services Networks,
Xidian University, Xi’an, China

8 School of Mathematics and Computer Science,
Fujian Normal University, Fuzhou, China

9 School of Information Engineering, Huzhou University,
Huzhou, 313000, China

able to outsource files to the group’s storage account at
some cloud server. Although the ownership of outsourced
file is preserved against the cloud server, the group man-
ager could trace the true identity of any suspicious file for
liability investigation. To address this issue, we introduce
and formalize a notion of ownership-hidden group-oriented
proofs of storage (OPoS). We present a generic OPoS con-
struction from pre-homomorphic signatures, and propose an
OPoS instantiation by employing the Boneh–Boyen short
signature. We show that the OPoS instantiation can be opti-
mized using a polynomial commitment technique, so that
the integrity auditing protocol would only take constant-size
communication overheads by the cloud server. Theoretical
and experimental analyses show that our OPoS instantia-
tions are efficient and practical for enterprise-oriented cloud
storage applications. Also, we show that the OPoS instanti-
ations can be enhanced to safeguard against a dynamic set
of corrupted members, as well as support batch integrity
auditing mechanism.

Keywords Cloud storage · Data outsourcing ·
Proofs of storage · Provable data possession ·
Proofs of retrievability · Public auditability

1 Introduction

Many advanced information technology (e.g., handheld
devices) and novel applications (e.g., social networks [1])
will create huge amounts of data. Common users who
hold weak devices may not be affordable to maintain these
data. A possible approach is to outsource user data to a
remote server. In fact, cloud computing can provide such
data outsourcing services to users, which is so attractive
that the maintenance burden for users’ local storage can be

Published in Peer-to-Peer Networking and Applications, 7 November 2016, Advance Online
http://doi.org/10.1007/s12083-016-0530-8

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s12083-016-0530-8-x&domain=pdf
mailto:qianhong.wu@buaa.edu.cn

Peer-to-Peer Netw. Appl.

greatly reduced [2]. However, after data being outsourced,
the remote cloud server has total control for the outsourced
files, which will raise security concerns for the file owners
and users in this data outsourcing scenario, including data
integrity [3, 4], data privacy [5, 6], access control [2, 5], data
update [7, 8], data deduplication [9–11], user authentication
[12, 13], and key management [14, 15], etc.

To safeguard data integrity in clouds, many cryptographic
primitives have been introduced such as Proofs of Stor-
age [4], Provable Data Possession (PDP) [3] and Proofs
of Retrievability (PoR) [16]. Also, in the literature, many
PoS/PDP/PoR schemes have been proposed [16–20]. How-
ever, there exists no publicly auditable scheme that is appli-
cable to an enterprise-oriented application scenario, where
the ownership of outsourced files can be hidden against the
cloud server. To exemplify the problem, consider the fol-
lowing application: A company purchases remote storage
service from some cloud service provider to store company
files. The IT department of the company is responsible for
authorizing company employees so that they can outsource
files to the company’s account. From the view of an outsider
(e.g., the cloud server), these outsourced files are the proper-
ties of the company, which requires that their true ownership
cannot be leaked to the cloud server. On the other hand,
to enable the company to trace dishonest or even malicious
outsourcing behavior if necessary, there also needs a mech-
anism to include some specific information (e.g., identity)
of the file owner to the outsourced file.

1.1 Contribution

In this paper, we introduce the notion of ownership-hidden
group-oriented proofs of storage (OPoS) and formalize its
framework. An OPoS system has the following functionali-
ties:

– Each authorized member would get a private key that
associated with his/her unique identity from a trusted
group manager, and would not share any private param-
eter with other members. The private key can be locally
validated using the public key of the group manager.

– With the private key, each group member can locally
process file to produce aggregatable meta-data which
will be used in auditing integrity.

– The OPoS system should be publicly auditable, that
is, anyone who knows the ownership of some file can
audit that file by interacting with the cloud server.
The integrity auditing can be performed for unbounded
times and can get overwhelming auditing probability
without touching the whole file.

– The ownership of outsourced file is hidden from the
cloud storage server, so that the server can only know
that the files are outsourced to the company’s account.

While the ownership can be revealed by the group man-
ager, as required for executing liability investigation
when needed.

We formalize the security model for publicly auditable
OPoS system and present a generic OPoS construction from
pre-homomorphic signatures. The system should safeguard
against conspiracy attacks for forging private keys and meta-
data launched by a static set of colluding group members,
and against the cloud storage server for forging an integrity
proof in auditing outsourced files and for extracting the
files’ ownership. We then present a generic OPoS con-
struction by employing pre-homomorphic signatures with
homomorphic composability and homomorphic verifiability
as building block, and prove its security in the formalized
security model.

We present two efficient (basic and optimized)
OPoS instantiations, where the building block of pre-
homomorphic signature scheme is replaced by the
Boneh–Boyen short signature scheme [21]. In detail,
Boneh–Boyen scheme is run by the group manager for
issuing private keys for group members, that is, the pri-
vate key is exactly a signature of the member’s identity
in the group. The basic OPoS instantiation takes linearly
computation and communication complexities. By using a
polynomial commitment technique [22], the basic instan-
tiation built on symmetric bilinear groups is optimized for
reducing communication overheads and computation costs
in auditing outsourced files. In the optimized instantiation,
a commitment to the aggregated file block is sent to the
auditor, whereas the aggregated file block is directly sent
back in the basic instantiation.

We also analyze the performance of our OPoS instan-
tiations. The theoretical analysis shows that the optimized
instantiation greatly saves the communication costs in
integrity auditing compared to the basic one, at the same
time it would also bring some additional but affordable
computation burden to the cloud server. In fact, in the opti-
mized instantiation, the proof to a integrity challenge has
constant size, which is independent of the sector number
and the number of the challenged file blocks. The exper-
imental results show that the file splitting manner (i.e.,
the sector number in a file block) determines file process-
ing performance, for example, for processing a 10M file,
the more sectors in a block, the higher efficiency can be
achieved. These analyses confirm that our OPoS instan-
tiations are practical to support company-oriented cloud
storage applications.

We provide further discussions on our OPoS instan-
tiations. First, we show that the security of the above
mentioned OPoS instantiations can be strengthened. Those
two OPoS instantiations are secure against a static set of
colluding group members, which is due to the underlying

Peer-to-Peer Netw. Appl.

pre-homomorphic signature is weakly secure. By employ-
ing a full short signature of Boneh and Boyen as pre-
homomorphic signature, the security can be strengthened as
resistant against a dynamic set of corrupted group members,
without sacrificing file processing efficiency. Second, we
show that our OPoS instantiations support batch integrity
auditing mechanism, which is much more efficient than
auditing multiple files separately in terms of both computa-
tion costs and communication overheads for the auditor.

Compared to the preliminary version [23], this paper
has the following changes: First, some details of the secu-
rity model, construction and security proof are modified.
Second, the experiments are conducted and analyzed for
evaluating the performance of the proposed OPoS instan-
tiations. Third, we show that the security of the presented
OPoS instantiations can be strengthened. Also, we dis-
cuss that the proposed OPoS instantiations support batch
integrity auditing mechanism.

1.2 Related work

Many studies have been conducted on the problem of inte-
grity auditing for outsourced files. In the literature, many
schemes are proposed in a single-user setting. Ateniese
et al. [3] and Juels and Kaliski [16] independently intro-
duced PDP and PoR, respectively, in cloud storage setting.
PoR is stronger than PDP that PoR supports data retrie-
veability, which can take integrity auditing in PDP as a
special case. Shacham and Waters [19] investigated both
privately and publicly auditable PoR schemes with strong
security proofs. In Xu and Chang’s privately auditable PoR
[24], the polynomial commitment technique [22] is used so
that the communication overheads in integrity auditing are
greatly saved compared to the schemes of [19]. Also, Yuan
and Yu [20] presented a publicly auditable PoR using the
same commitment technique. Wang et al. [25] offloaded
PDP schemes by outsourcing expensive computations (i.e.,
exponentiations) to a computation server.

There are also some proposals that support data outsourc-
ing and integrity auditing in clouds in multi-user setting.
Wang, Li, and Li [26] researched data sharing problem in
clouds for a group of members. Their scheme can hidden the
group member’s identity when auditing the integrity, yet it
cannot support public auditability or identity-based deploy-
ment. The same problem was revisited using ring signatures
in [27], where each group member should locally prepare
his/her private key rather than generate by a group man-
ager. In Wang et al.’s scheme [28], each group member does
not hold private key and should interact with a security-
mediator for processing a file. The scheme presented by
Wang et al. [29] requires the auditor to hold a secret param-
eter of the file owner for conducting integrity auditing.
Their scheme [29] has larger secret key size for each group

member than our OPoS instantiations, that is, each key
consists of two elements in G and Zp in their scheme,
while there is only one element in G in our instantiations.
Yu et al.’s proposal [30] can hidden the ownership against
the third party auditor in integrity auditing, but the group
members should locally prepare private keys and jointly
negotiate a pair of group public/private keys.

2 Preliminaries

2.1 Mathematical background

Suppose G1 = 〈g1〉 and G2 = 〈g2〉 are (multiplica-
tive) cyclic groups with prime order p and efficient group
actions. The groups (G1,G2) are bilinear if there exists a
cyclic group GT with the same order and an efficient bilin-
ear map ê : G1×G2 → GT such that: (1) bilinearity: ∀h1 ∈
G1, ∀h2 ∈ G2, and ∀α, β ∈ Z

∗
p, ê(hα

1 , h
β

2) = ê(h1, h2)
αβ ;

(2) non-degeneracy: ê(g1, g2) �= 1.
Our OPoS scheme and instantiations rely on the follow-

ing computational assumptions.

Discrete logarithm (DL) assumption Let G = 〈g〉 be a
cyclic group with prime order p. Given a random element
h ∈R G, any probabilistic polynomial time (PPT) algorithm
A would have negligible probability to compute x ∈ Z

∗
p

such that h = gx .

s-Strong Diffie–Hellman (s-SDH) assumption [21] Let
G = 〈g〉 be a cyclic groups with prime order p. Given
a (s + 1)-tuple (g, gα, · · · , gαs

) ∈ G
s+1 for α ∈R Z

∗
p,

any PPT algorithm A would have negligible probability to

compute a pair (z, g
1

α+z), where z ∈ Z
∗
p \ {−α}.

2.2 Pre-homomorphic signature

In [23], we identified two useful properties such as homo-
morphic composability and homomorphic verifiability for
some signatures, and presented a generic OPoS construction
using the signature scheme with these properties as building
block. We notice that these properties have been used in [31]
to design generic homomorphic signature scheme, where a
scheme with these properties is termed as pre-homomorphic
signature scheme.

Let S = (KGen, Sign, Vrfy) be a pre-homomorphic sig-
nature scheme defined on some cyclic group G = 〈g〉,
and M and R be the message space and randomness space
sampled by algorithm Sign of S, respectively. Using S, a
signature for some message m ∈ M must have a compo-
nent of the form gϕ(m,r), where ϕ(·) is a function that may
rely on the private key and r ∈R R.

Peer-to-Peer Netw. Appl.

Definition 1 (Homomorphic composability) A signature
scheme S is ϕ-homomorphic composable if

(1) there exists an efficient function ϕsk : M × R → Z;
and

(2) the signing algorithm is defined as S.Signsk : M ×
R → G × {0, 1}∗. That is, for each message m ∈R

M and every key pair (pk, sk) ← S.KGen(1λ), the
signature has the form σ = (σ1, σ2) such that σ1 =
gϕ(m,r) and σ2 may be empty.

Definition 2 (Homomorphic verifiability) A signature
scheme S is ϕ-homomorphic verifiable if

(1) there is an efficient test algorithm �(pk; m, σ ; ẍ, ÿ)

which takes a public key pk, a message/signature pair
(m, σ = (σ1, σ2)), and a pair of elements (ẍ, ÿ) ∈
G

′2, where G
′ is also a cyclic group with the same

order of G; and
(2) the algorithm � outputs “1” if the given pair (m, σ)

is valid under pk, that is, S.Vrfy(pk, m, σ) = 1, and
logg σ1 = logẍ ÿ. Otherwise, outputs “0”.

As noted in [31], there exist many pre-homomorphic sig-
nature schemes that enjoy the properties of homomorphic
composability and homomorphic verifiability. We then pro-
vide an exemplary signature scheme that will be used to
instantiate our OPoS scheme.

Boneh–Boyen scheme [21]. Let ê : G1×G2→GT be an
asymmetric bilinear map, where G1 = 〈g1〉, G2 = 〈g2〉 and
GT are (multiplicative) cyclic groups with prime order p.

– KGen(1λ): Pick a random value γ ∈R Z
∗
p as the secret

key sk, and compute 	 = g
γ

2 . The public key is pk =
(ê,G1,G2,GT , g1, g2, p,).

– Sign(pk, sk, m): Given a message m ∈R Zp, compute

the signature σ = g
1/(γ+m)

1 . If m + γ = 0, then set the
signature as the identity element in G1.

– Vrfy(pk, m, σ): If ê(σ, 	 · gm
2)

?= ê(g1, g2) holds, then
σ is valid for m and thus output “1”; otherwise, output
“0”.

If let ϕsk(m, ·) = 1
γ+m

mod p and the second signature
component σ2 = ∅, then the signature scheme clearly sat-
isfies homomorphic composability property. By defining
the testing algorithm � to output “1” if and only if both
ê(σ,	 · gm

2) = ê(g1, g2) and ê(ÿ, 	 · gm
2) = ê(ẍ, g2) hold,

it also satisfies homomorphic verifiability.

3 System model and definitions

In this section, we define OPoS system model and the
corresponding security requirements.

3.1 System model

As shown in Fig. 1, an OPoS system consists of four types
of entities such as a cloud storage server, a group manager,
many group members and an auditor. The cloud storage
server is an untrusted party that offers remote storage ser-
vices to users. It also has powerful computation capability in
responding (integrity) requests from cloud users. The group
manager initiates the system and is trusted by its members
for issuing secret keys for them. Each group member may
hold some files and would like to outsource them to the
cloud storage server on behalf of the group. The auditor
is also a cloud user, but may not be a group member. The
auditor has access to all the public information of the group
and the outsourced files, so that the auditor is able to audit
these outsourced files on behalf of group manager and file
owners. The auditor will not collude with the cloud stor-
age server. We note this assumption is necessary since if
the auditor colludes with the server, then any scheme can-
not be secure as the auditor can cheat the users with wrong
verification results.

3.2 System definition

A publicly verifiable OPoS scheme comprises six poly-
nomial time efficient procedures, such as Setup, KeyExt,
PrFile, Chall, PrfGen and Verify.

Fig. 1 OPoS system model

Peer-to-Peer Netw. Appl.

– (gpk, gsk) ← Setup(1λ): On input a security parameter
λ, the group manager runs the system setup procedure
to generate a pair of group public key and group private
key (gpk, gsk).

– sk
 ← KeyExt(gpk, gsk, id
): On input a group public
key gpk, a group private key gsk and a member identity
id
, the group manager runs the key extraction proce-
dure to produce a private key sk
 for id
. This private
key is verifiable by id
 using the group public key gpk.

– (τ, F ∗) ← PrFile(gpk, sk
, F): On input a group public
key gpk, a member’s private key sk
 and a file F ∈
{0, 1}∗, the file owner id
 (a group member) runs the
file processing procedure to produce a file tag τ and
a processed file F ∗ that comprises F and a number of
meta-data �σ .

– C ← Chall(gpk, τ): On input a group public key
gpk and a file tag τ , the auditor runs the challenge
generation procedure to generate a challenge C.

– R ← PrfGen(gpk , F ∗, C): On input a group public key
gpk, a processed file F ∗ and a challenge C, the cloud
storage server runs the proof generation procedure to
produce a proof R.

– 0/1 ← Verify(gpk, τ, C, R): On input a group public
key gpk, a file tag τ and a pair of challenge and proof
(C, R), the auditor runs the verification procedure to
output “1” if R is a valid proof for C, or “0” otherwise.

An OPoS scheme must be able to successfully audit the
integrity of all files that outsourced by any group member.

Definition 3 (Correctness) An OPoS scheme (Setup,
KeyExt, PrFile, Chall, PrfGen, Verify) is correct if for any
group key pair (gpk, gsk) ← Setup(1λ), any group mem-
ber id
 with private key sk
 ← KeyExt(gpk, gsk, id
), and
any file F ∈ {0, 1}∗, let (τ, F ∗) ← PrFile(gpk, sk
, F),
the verification equation Verify(gpk, τ, C,PrfGen(gpk, F ∗,
C)) = 1 holds for any challenge C ← Chall(gpk, τ).

3.3 Security definitions

An OPoS system would confront three types of conspiracy
attacks launched by group members and the cloud storage
server.

– Private key forgery: Several group members may col-
lude to forge a private key for another group member.

– Meta-data forgery: The group members or the cloud
storage server may forge meta-data for some file of
another group member.

– Proof forgery: The cloud storage server and group
members may collude to forge a proof when auditing
the integrity of some file outsourced by another group
member.

Note that a forged meta-data implies a forged proof in
integrity auditing for the same file. Thus, the second type
of attacks about meta-data forgery can be captured by the
third case. Hence, we only need to consider the private key
forgery and proof forgery in defining the security model.
They are captured by the following security game that is car-
ried out by a PPT adversary A and a challenger C. Initially,
the adversary controls a static set Sc of corrupted group
members.

Setup: The adversary gives the corrupted member set Sc

to C. Challenger runs Setup(1λ) to generate a pair of group
public/private keys (gpk, gsk), and generates private keys
{ski : idi ∈ Sc} for all corrupted members. Challenger C
gives gpk and {ski : idi ∈ Sc} to A.

Queries: The following queries can be requested adap-
tively. The challenger records all the intermediate informa-
tion.

– File processing: For each query with a file F and a
member identity id
 �∈ Sc, the challenger runs pro-
cedure KeyExt(gpk, gsk, id
) to get sk
 and computes
(τ, F ∗) ← PrFile(gpk, sk
, F). Then, the challenger
sends (τ, F ∗) to A. For each query (F, id
), there is a
unique file identifer in the file tag τ , which is randomly
chosen by C for guaranteeing its uniqueness.

– Integrity auditing: For any processed file in above pro-
cessing file queries, the challenger (acting as the audi-
tor) can audit its integrity by challenging the adversary
(acting as the prover). That is, they jointly carry out the
integrity auditing protocol. In detail, for any file F in
the query list, the challenger can challengeAwithC ←
Chall(gpk, τ), and A sends back a proof R. Then, the
challenger verifies R by invoking Verify(gpk, τ, C, R)

and gives the results to A.

End-Game: Finally, the adversary outputs a private key
sk′

 for some member id′

, or a pair of challenge/proof

(C′, R′) for some file F ′ with file tag τ ′.

Definition 4 (Soundness) An OPoS scheme is sound if for
any PPT adversary A who plays the above mentioned secu-
rity game by interacting with C, the outputs are neither of
the following cases:

– Case 1. The private key sk′

 is valid under the group

public key gpk for an uncorrupted member id′

 �∈ Sc.

– Case 2. The pair of challenge/proof (C′, R′) is valid but
R′ does not equal to that generated from the maintained
information by C, where the associated identity id′ �∈
Sc.

An OPoS scheme also requires that, in the entire life
span of an outsourced file, its owner identity should be
hidden from the cloud storage server. Essentially, this

Peer-to-Peer Netw. Appl.

ownership-hidden property requires the files should be
uploaded in the name of the group. As in the real applica-
tion scenario, the files are uploaded by the employee under
the company’s account. Also, in auditing an outsourced
file, the cloud storage server should be able to respond the
integrity challenge without using its owner’s identity. More
technically,

Definition 5 (Ownership privacy)An OPoS scheme is
ownership-hidden against the cloud storage server if for any
file F ∈ {0, 1}∗ and any two distinct members id
,1 and
id
,2 in the same group, the following two distributions are
identical from the view of the cloud storage server:
⎧
⎨

⎩
σ 1 :

(gpk, gsk) ← Setup(1λ),

sk
,1 ← KeyExt(gpk, gsk, id
,1),

(τ1, F
∗
1) ← PrFile(gpk, sk
,1, F)

⎫
⎬

⎭

and
⎧
⎨

⎩
σ 2 :

(gpk, gsk) ← Setup(1λ),

sk
,2 ← KeyExt(gpk, gsk, id
,2),

(τ2, F
∗
2) ← PrFile(gpk, sk
,2, F)

⎫
⎬

⎭

4 OPoS construction

4.1 Overview

In our OPoS construction, the private keys for all members
are generated and distributed by a (trusted) group manager.
These private keys are associated with their identities, that
is, the group manager signs the identity of each member and
outputs the signature as the private key for that member. An
advantage of this approach is that it is naturally collusion-
resistant in the sense that even colluding users cannot forge
a valid private key if the underlying signature is existentially
unforgeable. However, this approach also brings a challenge
in constructing OPoS schemes, not only because the files
are processed by group members with their private keys and
each meta-data should incorporate at least a file identifier
and a file block with many sectors, but also the produced
meta-data should be aggregatable and publicly auditable. In
fact, things would be even worse in designing generic OPoS
construction equipped with user privacy.

Our OPoS construction takes pre-homomorphic signa-
tures as building block, so that a group member id
 only
holds his/her private key in the form of sk
 = (sk
,1, sk
,2)

such that sk
,1 = gϕgsk(id
,r). Thus, the member cannot
directly use gsk or ϕgsk(id
, r) for producing meta-data (a
signature for each file block). We circumvent this issue by
employing trapdoor technique. That is, the group member
id
 randomly picks (secret) values αi ∈R Z and computes
the corresponding powers ui = gαi ∈ G as public parame-
ters. When signing on a list of messages {mi}, the member

id
 first evaluates a linear function fe = f ({mi, αi}) =
∑

αimi over Z, and then computes

σ ′ = sk
fe

,1 = (gϕgsk(id
,r))fe = (gfe)ϕgsk(id
,r)

In this way, the component gfe can be recovered using pub-
lic parameters {ui} and messages {mi}. Hence, under the
group public key gpk, the test algorithm � can go through
as �(gpk; id
, sk
,1; gfe , σ ′) = 1.

4.2 Construction

Let Sph = (KGen,Sign,Vrfy) be a secure pre-homomorphic
signature scheme which has the properties described in
Section 2.2. Also let St = (KGen,Sign,Vrfy) be a secure
standard signature scheme. Suppose the group comprises n

members and H0 : {0, 1}∗ → Z is a collision-resistant hash
function.

Setup(1λ): The group manager invokes Sph.KGen(1λ) to
obtain a pair of public/private keys, and sets them as
the group public key gpk and group private key gsk,
respectively.

KeyExt(gpk, gsk, id
): For each member id
 (1 ≤
 ≤ n)

in the group, the group manager computes a signature of
his/her identity as follows:

sk
 = (sk
,1, sk
,2) ← Sph.Sign(gsk, id
) ∈ G

Such a signature serves as his/her private key. When
receiving sk
, the member id
 is able to validate it by
invoking Sph.Vrfy with the group public key gpk.

PrFile(gpk, sk
, F): Given a file F , the member id
 splits
it into r blocks such that each block has s sectors (as
elements in Z) as follows

F = {fi = (fi,1, · · · , fi,s) : 1 ≤ i ≤ r} (1)

Chooses a unique file identifier f id ∈R Z. The mem-
ber also picks (s + 1) random values α0, α1, · · · , αs ∈R

Z and computes uj = gαj ∈ G for each 0 ≤
j ≤ s. Let τ0 be the concatenation string of
(gpk, id
, u0, u1, · · · , us, f id, r). Generates the file tag
by the following steps:

– Computes (tpk, tsk) ← St .KGen(1λ) to obtain a pair
of public/private keys.

– Computes ϑ ← St .Sign(tsk, τ0) to obtain a signature
of string τ0.

– Sends the file tag τ = (τ0, tpk, ϑ) to the group
manager.

Then, for each file block �fi (1 ≤ i ≤ r), computes

θi = α0H0(f id‖i) +
s∑

j=1

αjfi,j ∈ Z

Peer-to-Peer Netw. Appl.

and generates meta-data as σi ← skθi

,1 ∈ G. Sends the
processed file F ∗ = {(fi , σi) : 1 ≤ i ≤ r} to the cloud
storage server. Deletes the random values α0, α1, · · · , αs ,
private key tsk and the file locally.

Chall(gpk, τ): The auditor invokes St .Vrfy(tpk, τ0, ϑ) to
validate the file tag τ . If it is invalid, outputs “0” and ter-
minates. Otherwise, picks a random subset Q ⊆ [1, r]
and chooses a random value βi ∈R Z for each i ∈ Q.
Sends the challenge C = (f id, Q, {βi : i ∈ Q}) to the
cloud storage server.

PrfGen(gpk, F ∗, C): The cloud storage server computes
the aggregated file block μ = (μ1, · · · , μs) and meta-
data σ as follows:

μj =
∑

i∈Q

βifi,j ∈ Z for each j ∈ [1, s]

and

σ =
∏

i∈Q

σ
βi

i ∈ G (2)

Sends the proof R = (�μ, σ) to the auditor.
Verify(gpk, τ, C, R): If R cannot be parsed, outputs “0”

and terminates. Otherwise, checks

�(gpk; id
, sk
,1; u

∑
i∈Q βiH0(f id‖i)

0 ·
s∏

j=1

u
μj

j , σ)
?= 1 (3)

If so, outputs “1”; otherwise, outputs “0”.

4.3 Security analysis

Theorem 1 The proposed OPoS scheme is correct.

Proof We only show (3) holds as the other parts are straight-
forward. As sk
,1 = gϕgsk(id
,r), we have

σ =
∏

i∈Q

σ
βi

i =
∏

i∈Q

(gϕgsk(id
,r))θiβi

= (g
∑

i∈Q βi(α0H0(f id‖i)+∑s
j=1 αj fi,j)

)ϕgsk(id
,r)

= (
∏

i∈Q

gβiα0H0(f id‖i) ·
s∏

j=1

u

∑
i∈Q βifi,j

j)ϕgsk(id
,r)

= (u

∑
i∈Q βiH0(f id‖i)

0 ·
s∏

j=1

u
μj

j)ϕ gsk(id
,r)

Therefore, σ has the same component ϕgsk(id
, r) as the
private key sk
,1. According to the definition of algorithm
�, the correctness follows.

Theorem 2 Suppose that the signature scheme St for file
tags and the pre-homomorphic signature scheme Sph are
existentially unforgeable. The proposed OPoS construction
is sound under the DL assumption.

Proof In our construction, the private key of group member
is generated by using a secure pre-homomorphic signa-
ture scheme Sph. Thus, the unforgeability of these keys are
guaranteed by the security of Sph. Hence, the following
discussion focuses only on the soundness for the integrity
auditing of outsourced files.

Suppose a PPT adversary A, who controls a set Sc of
group members, can break the soundness of the proposed
generic OPoS construction. Let the adversary play the secu-
rity game described in Definition 4 by interacting with a
challenger C. We show that when the adversary outputs a
(forged) valid pair of challenge/proof (C′, R′) for some file
F ′ and a tag τ ′, A must have broken the DL assumption.

Setup: With a security parameter λ, the challenger gen-
erates a pair of group public key and private key (gpk, gsk)
and the private keys for all member in Sc. Then, challenger
C sends gpk and {ski : idi ∈ Sc} to A.

Queries: The adversary adaptively interacts with the
challenger C on the following queries, where C maintains all
the intermediate information.

– File processing: For each query (F, id
) such that id
 �∈
Sc, if id
 has not been involved in previous queries, then
the challenger first invokes KeyExt to extract a private
key sk
 for id
. The challenger runs algorithm PrFile to
process F with sk
, and then gives the produced file tag
τ and a list of meta-data {σi}1≤i≤r to A, where the file
identifier f id (an element in τ) is randomly chosen by
C.

– Integrity auditing: For this type of queries, the chal-
lenger and the adversary play the roles as a verifier and a
prover, respectively. For any file F that has been queried
for processing, the challenger C can run Chall(gpk , τ)

to generate C = (f id, Q, {βi : i ∈ Q}) and chal-
lenge A using C. The adversary responds with a proof
R = (μ, σ). The challenger verifies P by running
Verify(gpk, τ, C, R) and gives the verification result to
A.

End-Game: Finally, the adversary outputs a forged pair
of challenge/proof (C′, P ′) for some file F ′ and a tag
τ ′ = (τ ′

0, tpk, ϑ
′), such that C′ = (f id, Q, {βi : i ∈ Q})

and R′ = (μ′, σ ′) satisfy the testing algorithm �. File F ′
should have been queried for processing. Assume it belongs
to some member id
 �∈ Sc and has identifier f id , both
of which are specified in τ ′. As we discussed, the forged
proof σ ′ and real proof σ have the following representations,
respectively

σ ′ = (u

∑
i∈Q βiH0(f id‖i)

0 ·
s∏

j=1

u
μ′

j

j)ϕgsk(id
,r)

= (gϕgsk(id
,r))
α0

∑
i∈Q βiH0(f id‖i)+∑s

j=1 αj μ′
j

Peer-to-Peer Netw. Appl.

and

σ = (u

∑
i∈Q βiH0(f id‖i)

0 · ∏s
j=1 u

μj

j)ϕgsk(id
,r)

= (gϕgsk(id
,r))
α0

∑
i∈Q βiH0(f id‖i)+∑s

j=1 αj μj

Notice that, at least one pair of {(μ′
j , μj)}1≤j≤s should be

different, since otherwise, σ ′ = σ would also hold. Let
�J ⊆ [1, s] be the set of all j such that δj = μ′

j − μj �= 0.
To make σ ′ satisfy Equality (3) such that σ ′ �= σ , the adver-
sary must have known {αj : j ∈ �J }, which contradicts the
DL assumption.

Theorem 3 The proposed OPoS construction satisfies the
ownership-hidden property against the cloud server.

Proof On one hand, it is easy to see that, when auditing an
outsourced file of some group member id
, the cloud storage
server does not know its specific membership. On the other
hand, the produced meta-data in the processed file looks
random to the cloud server if the elements in Z and groupG
are both uniformly distributed. Since all αi-es are randomly
chosen from Z, the meta-data σi are random elements in G

and independent of the file owner’s identity from the view
of the cloud storage server.

5 Instantiations

In this section, we first present an instantiation based on
the Boneh–Boyen short signature [21]. We next show that
a special type of OPoS instantiations can be optimized by
employing a polynomial commitment technique [22]. The
signature scheme St is the same as in Section 4. Let H0 :
{0, 1}∗ → Z

∗
p be a collision-resistant hash function.

5.1 A basic instantiation

Setup(1λ): The group manager picks a bilinear pairing
ê : G × G → GT , where G = 〈g〉 and GT are cyclic
groups with prime order p. Chooses a random value
γ ∈R Z

∗
p and computes 	 = gγ . Let H : {0, 1}ρ → Z

∗
p

be a collision-resistant hash function, where ρ denotes
the length of group members’ identities. The group pub-
lic key is gpk = (ê,G,GT , g, 	, H, H0) and the group
private key is gsk = γ .

KeyExt(gpk, gsk, id
): For each member id
 (1 ≤
 ≤ n)

in the group, the manager computes a private key sk
 =
g

1
γ+H(id
) . After gets sk
, the member id
 can validate it

by checking ê(sk
, 	 · gH(id
))
?= ê(g, g).

PrFile(gpk, sk
, F): The member id
 splits the file F into
blocks as shown in Formula (1) on Zp. Chooses a random
file identifier f id ∈R Z

∗
p and (s + 1) random values

α0, α1, · · · , αs ∈R Z
∗
p, and computes uj = gαj ∈ G for

each 0 ≤ j ≤ s. Then, id
 generates the file tag τ in
the same way as in Section 4 and sends it to the group
manager.

For each file block �fi (1 ≤ i ≤ r), id
 runs the follows
steps:

– Computes θi = α0H0(f id‖i) + ∑s
j=1 αjfi,j ∈ Zp;

– Generates meta-data as σi ← skθi

 ∈ G.

Then, id
 sends the processed file F ∗ = {(�fi, σi) : 1 ≤
i ≤ r} to the cloud storage server, and deletes the random
values α0, α1, · · · , αs , private key tsk and the file locally.

Chall(gpk, τ): The auditor runs the following steps.

1. The same to Section 4 for validating the file tag. If τ

is invalid, outputs “0” and terminates.
2. Picks a random subset Q ⊆ [1, r] and chooses a ran-

dom value βi ∈R Z
∗
p for each i ∈ Q. Sends the

challenge C = (f id, Q, {βi : i ∈ Q}) to the cloud
storage server.

PrfGen(gpk, F ∗, C): Computes the aggregated file block
�μ = (μ1, · · · , μs) where

μj =
∑

i∈Q

βifi,j mod p for each j ∈ [1, s],

and calculates the aggregated meta-data σ as shown in
Eq. 2. Sends the proof R = (μ, σ) to the auditor.

Verify(gpk, τ, C, R): If R cannot be parsed, outputs “0”
and terminates. Otherwise, the auditor checks

ê(σ, 	 · gH(id
))
?= ê(u

∑
i∈Q βiH0(f id‖i)

0 ·
s∏

j=1

u
μj

j , g) (4)

If it holds, outputs “1”; otherwise, outputs “0”.

Theorem 4 The OPoS instantiation presented above is
correct.

Proof Observe the following equalities

ê(σ, 	 · gH(id
))

= ê(
∏

i∈Q

(g
1

γ+H(id
))θiβi , gγ · gH(id
))

= ê(
∏

i∈Q

g
βi(α0H0(f id‖i)+∑s

j=1 αj fi,j)
, g)

= ê(
∏

i∈Q

gβiα0H0(f id‖i) ·
∏

i∈Q

s∏

j=1

gβiαj fi,j , g)

= ê(u

∑
i∈Q βiH0(f id‖i)

0 ·
s∏

j=1

u
μj

j , g)

Hence, the correctness follows.

According to Theorem 2 and Theorem 3, we have the
corollaries:

Corollary 1 Suppose the signature scheme St for file tags
and the Boneh–Boyen short signature scheme [21] are

Peer-to-Peer Netw. Appl.

existentially unforgeable. The OPoS instantiation presented
above is sound under the DL assumption.

Corollary 2 The OPoS instantiation presented above sat-
isfies the ownership-hidden property against the cloud
storage server.

Remark 1 For ease to compare with the improved instanti-
ation (see Section 5.2), the above OPoS instantiation is pre-
sented on symmetric bilinear groups. In fact, it can also be
implemented on asymmetric bilinear groups by letting the
group private key sk
, public parameters ui (0 ≤ i ≤ s) and
meta-data {σi :1≤ i ≤r} live inG1, while defining 	 inG2.

5.2 Optimized instantiation

We proceed to show that when employing polynomial com-
mitment technique [22], the above proposed OPoS instan-
tiation over symmetric bilinear groups can be optimized, in
this way the communication overheads for integrity auditing
could be saved. Similar to [20, 24], the public parameters
uj -es are generated using a single random element α, that is,
they are associated with different powers of α. When audit-
ing an outsourced file, a polynomial commitment for the
challenged blocks should be produced by the cloud storage
server and then validated by the auditor.

Setup(1λ): The same to Section 5.1.
KeyExt(gpk, gsk, id
): The same to Section 5.1.
PrFile(gpk, sk
, F): The member id
 splits the file F into

blocks as shown in Formula (1) on Zp. Chooses a ran-
dom file identifier f id ∈R Z

∗
p and two random values

α0, α ∈R Z
∗
p, and computes υ = gα0 ∈ G and uj =

gαj ∈ G for each 0 ≤ j ≤ s − 1. Generates the file
tag τ and sends it to the group manager in the same way
as Section 4 while τ0 denotes a concatenation string of
(gpk, id
, υ, u0, u1, · · · , us−1, f id, r).

For each file block fi (1 ≤ i ≤ r), does the follows:

– Computes θi = α0H0(f id‖i) + φπ i
(α) mod p,

where φπ i
(α) = ∑s−1

j=0 fi,jα
j mod p;

– Generates meta-data as σi ← skθi

 ∈ G.

Then, sends the processed file F ∗ = {(fi , σi) : 1 ≤
i ≤ r} to the cloud storage server and locally discards
the random values α0, α, private key tsk and the file
information.

Chall(gpk, τ): The auditor performs as follows.

1. The same to Section 4 for validating the file tag. If τ

is invalid, outputs “0” and terminates.
2. Picks a random subset Q ⊆ [1, r] and chooses two

random values z, δ ∈R Z
∗
p. Sends the challenge C =

(f id, Q, z, δ) to the cloud server.

PrfGen(gpk, F ∗, C): For each i ∈ Q, the cloud stor-
age server calculates βi = δi mod p. Computes the
aggregated file block �μ = (μ0, μ1, · · · , μs−1) where

μj =
∑

i∈Q

βifi,j mod p for each j ∈ [0, s − 1],

and calculates the aggregated meta-data σ as shown in
Eq. 2. Then, the server defines

φμ(x) =
s−1∑

j=0

μjx
j mod p

and calculates κ = φμ(z) mod p. Computes the follow-
ing polynomial

ψω(x) = φμ(x) − φμ(z)

x − z

using polynomial long division. Let ω =
(ω0, ω1, · · · , ωs−2) be the coefficient vector of ψω(x).
Computes

ζ = gψω(α) =
s−2∏

j=0

(gαj

)ωj

Sends the proof R = (ζ, κ, σ) to the auditor.
Verify(gpk, τ, C, R): If R cannot be parsed, outputs “0”

and terminates. Otherwise, checks the equality:

ê(σ, 	 · gH(id
))
?= ê(υ

∑
i∈Q δiH0(f id‖i) · gκ · ζ−z, g)

·ê(ζ, u1) (5)

If it holds, outputs “1”; otherwise, outputs “0”.

Theorem 5 The above optimized OPoS instantiation is
correct.

Proof Since

ê(σ, 	 · gH(id
))

= ê(
∏

i∈Q

(g
1

γ+H(id
))θiβi , gγ · gH(id
))

= ê(
∏

i∈Q

gβi(α0H0(f id‖i)+φπ i
(α)), g)

= ê(
∏

i∈Q

υβiH0(f id‖i) ·
∏

i∈Q

gβiφπ i
(α), g)

= ê(υ
∑

i∈Q δiH0(f id‖i), g) · ê(gφμ(α), g)

and

ê(gκ · ζ−z, g) · ê(ζ, u1) = ê(g(α−z)ψω(α)+φμ(z), g)

= ê(gφμ(α), g)

the verification (5) is satisfied.

Peer-to-Peer Netw. Appl.

Theorem 6 Suppose the signature scheme St for file tags
and the Boneh–Boyen short signature scheme [21] are exis-
tentially unforgeable. The optimized OPoS instantiation is
sound under the s-SDH assumption.

Proof Suppose there is a PPT adversary A who can break
the soundness of the optimized OPoS instantiation. Simi-
larly to Theorem 2, at the end of the security game, the
adversary outputs a forged pair of challenge/proof (C′, R′)
for a file F ′ with tag τ ′ and member id
, where file F ′
has been queried for processing. If let C′ = (f id, Q, z, δ)

and R′ = (ζ ′, κ ′, σ ′), then the pair (C′, R′) should sat-
isfy (5). However, since it is a forged pair, R′ must be
unequal to that generated from the maintained information
by the challenger. It further means that (ζ ′, κ ′) �= (ζ, κ),
since otherwise, σ ′ would equal to σ due to Eq. 5. At this
point, the simulator obtains two commitments (z, ζ ′, κ ′)
and (z, ζ, κ) for the same polynomial for the evaluation
at z. According to the security results [22] of polynomial
commitment scheme due to Kate, Zaverucha and Goldberg,

the challenger can find a solution (−z, g
1

α−z) for the s-
SDH instance (G, u0, u1, · · · , us−1), which contradicts the
security assumption.

According to Theorem 3, we have the corollary:

Corollary 3 The above optimized OPoS instantiation sat-
isfies the ownership-hidden property against the cloud
storage server.

5.3 Theoretical analysis

We evaluate and compare the performance of two OPoS
instantiations (see Sections 5.1 – 5.2). For comparing the
efficiency, we analyze their computation costs in each pro-
cedure. We only consider the most time-consuming compu-
tations, for example, exponentiation and pairing in G, GT

and Zp, while all the other light-weight operations such
as additions and multiplications are omitted. In Table 1,
H denotes one hash evaluation for both H and H0, and E
represents one exponentiation in G or Zp. That is, these
evaluations in different groups or ring are not discrimi-
nated. The computation time for polynomial long division

and a pairing evaluation are denoted by D and P, respec-
tively. The time to randomly sample an element from a
group or a ring is also omitted in the analysis, since it is in
fact much less than that taken by an exponentiation. We also
treat the digital signature scheme St for file tag as a black-
box. Specifically, we let O(Skgen), O(Ssign) and O(Svrfy)

denote the computation complexity of each algorithm in St ,
that is, St .KGen, St .Sign and St .Vrfy.

Table 1 summarizes the computational costs of every
procedure for both OPoS instantiations. Both instantiations
have the same key extracting procedure to create private
keys for group members. Each key extraction takes one hash
evaluation and one exponentiation in G. Regarding the file
processing procedure, the secret values αi (2 ≤ i ≤ s − 1)
can be pre-computed by the group member in the optimized
OPoS instantiation, which means that both instantiations
take roughly the same computational complexity for pro-
cessing a file. There are two ways for producing ui in the
optimized OPoS instantiation, that is, either by computing
ui = uα

i−1 or by raising g to the power of a pre-computed
value αi . Both approaches have the same complexity for
preparing ui . It can be seen from Table 1 that the procedure
PrFile in basic OPoS instantiation requires (r + s +1) expo-
nentiations inG, which determines the overall efficiency for
processing a file. In fact, r exponentiations are carried out
for producing meta-data for r file blocks, while the other
(s + 1) exponentiations are due to preparing public param-
eters u0, · · · , us . Consider a file F of L bytes. If it is split
such that each sector has l bytes (as an element in Zp), then
processing this file would take in total T exponentiations,
where

T =
⌈ L

s · l

⌉
+ s + 1 (6)

Similarly, processing this file by the optimized OPoS
instantiation would take T ′ = T − 1 exponentiations in G.
Thus, for processing file F with either OPoS instantiation,
a preferable way is to set s = √

L/l since it would cost the
minimum exponentiations.

For auditing an outsourced file in the optimized instan-
tiation, the cloud storage sever will carry out a bit more
operations than the basic one. This is because that not only
the coefficients βi (i ∈ Q) should be online calculated

Table 1 Computation costs of
each procedure in both OPoS
instantiations

Procedure Basic instantiation Optimized instantiation

Setup 1E 1E

KeyExt 1H + 1E 1H + 1E

PrFile rH + (r + s + 1)E + O(Skgen) + O(Ssign) rH + (r + s)E + O(Skgen) + O(Ssign)

Chall O(Svrfy) O(Svrfy)

PrfGen |Q|E (2|Q| + 2s − 3)E + 1D

Verify (|Q| + 1)H + (s + 2)E + 2P (|Q| + 1)H + (|Q| + 4)E + 3P

Peer-to-Peer Netw. Appl.

through exponentiations, but also a polynomial evaluation
for κ , polynomial long division and multi-exponentiation
for ζ need to be computed. This would not degrade practi-
cality of the instantiations as the cloud servers are usually
powerful enough. The verification by the auditor depends
on the parameters |Q| and s. If the auditor challenges less
than s file blocks, then the optimized OPoS instantiation is
superior to the basic one. Note that most exponentiations
taken by the auditor in the optimized instantiation are due
to computing the coefficients βi (i ∈ Q). These computa-
tions can be carried out during the period between sending
out the challenge C and receiving the response R from the
cloud storage server. In this way, the auditor will take only
((|Q| + 1)H+ 4E+ 3P) operations, which is much superior
to the basic instantiation.

We proceed to compare the communication overheads for
both instantiations in auditing outsourced files. The details
are summarized in Table 2 where SG denotes the element
size of G. In the optimized instantiation, the coefficients βi

(i ∈ Q) are not transmitted directly across the network as in
the basic instantiation, but generated by both the cloud stor-
age server and auditor. Thus, these additional computations
help to reduce the communications from the auditor to the
cloud server. The similar communication reduction occurs
for avoiding directly transmitting the aggregated file block
from the cloud server to auditor. As shown in Section 5.2,
this is realized by employing the polynomial commitment
technique to commit at a random point z. It can be seen from
the table that, the polynomial commitment technique brings
great savings for the overall communication overheads.

5.4 Experimental analysis

We evaluate the performance of our OPoS instantiations by
conducting experiments with Pairing Based Cryptography
library (PBC, http://crypto.stanford.edu/pbc/). The experi-
ments are compiled in C programming language and carried
out on a system with Inter(R) Core(TM)2 Duo CPU E8500
@ 3.16GHz and 3.17GHz processor, and 4.00GB RAM.
The elliptic curve is of type y2 = x3 + x with |p| = 160
bits and SG = 512 bits. Thus, the sector size is l = 20
bytes.

With algorithm KeyExt, the group manager takes roughly
4.6ms to generate a private key for a member. Thus, it can be
expected that even for a company with 1000 employee, the

Table 2 Communication overheads of integrity auditing for both
OPoS instantiations

Instantiation Communication overheads

Section 5.1 (2|Q| + s)l + 1SG

Section 5.2 (|Q| + 3)l + 2SG

Fig. 2 Key extraction

IT department can create all the required private keys in less
than 5 seconds. The simulation results are shown in Fig. 2.

Since producing/verifying a file tag are totally deter-
mined by the specific digital signature scheme St , we omit
them when evaluating the efficiency of procedure PrFile. In
our experiment, for processing a given file of L = 10MB,
we compare several cases of splitting the file, that is, s =
100, · · · , 600. As discussed for Eq. 6, the minimum expo-
nentiations happens when s = √

10 × 1024 × 1024/20 ≈
3238. In our simulation, the value of s in all cases are
less than 3238. Thus, the larger of s, the more efficient
for processing file F . The simulation results for two OPoS
instantiations are shown in Fig. 3, which demonstrates that
both instantiations take roughly the same processing time.

We proceed to simulate the integrity auditing procedures.
In [3], Ateniese et al. discussed the relationship between the
probability P of detecting corruption and the number |Q|
of challenged file blocks in C. We can deduce the same
results for our OPoS scheme, that is, for an outsourced file
where t percent has been (randomly) destroyed, the proba-
bility of detecting the existence of such corruption depends
only on |Q|. Specifically, P ≈ 1 − (1 − t)|Q|. In our

Fig. 3 Processing a 10MB file

http://crypto.stanford.edu/pbc/

Peer-to-Peer Netw. Appl.

experiment, suppose there is a file with 1 % corruption
and it has been split such that each block has s sectors
(s = 100, · · · , 600). For each splitting manner, we consider
several cases of achieving different detecting probabilities.
The simulation results for two OPoS instantiations at both
sides of the cloud storage server and auditor are shown in
Fig. 4, where each sub-figure is associated with a different
case regarding s. Since the procedure Chall is mainly deter-
mined by a black-box component St .Vrfy, it is not counted
up in the experiment. It can be seen that for each splitting
manner, the auditing time under both instantiations keep
nearly constant in all cases with different detecting prob-
ability, although different number of file blocks should be

challenged, for example, P = 0.99 requires |Q| ≈ 460
and P = 0.9 requires |Q| ≈ 230, etc. It also indicates that
for achieving larger detecting probability about corruptions,
the more computations should be carried out by the cloud
storage server. Furthermore, it shows that the auditing pro-
cedure in the optimized instantiation is much more efficient
than that in the basic one. This is due to that the major-
ity exponentiations for the former case are carried out over
Zp, which are much more efficient than those in G in the
PBC library. However, the cloud storage server takes more
computations in the optimized instantiation compared to the
basic one. This is reasonable since the server is usually
powerful enough.

Fig. 4 Auditing a file with 1 %
corruption

Peer-to-Peer Netw. Appl.

5.5 Discussions

In this section, we show that our OPoS instantiations can
be modified to support dynamic corrupted set Sc and batch
integrity auditing.

5.5.1 Dynamic corrupted set

Our OPoS instantiations presented in Sections 5.1 and 5.2
rely on a weakly secure signature scheme of Boneh and
Boyen [21] to issue private keys for group members, in this
way these instantiations are only secure against a static cor-
rupted set of group members. In fact, if employing Boneh
and Boyen’s full signature scheme [21] to issue these pri-
vate keys, the OPoS instantiations would be secure against
a dynamic corrupted set.

Setup(1λ): The group manager picks a bilinear pairing
ê : G × G → GT , where G = 〈g〉 and GT are
cyclic groups with prime order p. Chooses two random
values γ1, γ2 ∈R Z

∗
p, and computes 	1 = gγ1 and

	2 = gγ2 . Let H : {0, 1}ρ → Z
∗
p be a collision-resistant

hash function, where ρ denotes the length of group
members’ identities. The group public key is gpk =
(ê,G,GT , g, 	1, 	2, H, H0) and the group private key
is gsk = (γ1, γ2).

KeyExt(gpk, gsk, id
): For each member id
 (1 ≤
 ≤ n)

in the group, the manager picks a random value η ∈R

Z
∗
p \{−γ −1

2 (γ1+H(id
)) mod p} and computes a private

key sk
 = (sk
,1, sk
,2) where sk
,1 = g
1

γ1+H(id
)+γ2η and
sk
,2 = η. After gets sk
, the member id
 can validate it

by checking ê(sk
,1, 	1 · gH(id
) · 	
sk
,2
2)

?= ê(g, g).
PrFile(gpk, sk
, F): The same to Section 5.1.
Chall(gpk, τ): The same to Section 5.1.
PrfGen(gpk, F ∗, C): The same to Section 5.1.
Verify(gpk, τ, C, R): If R cannot be parsed, outputs “0”

and terminates. Otherwise, the auditor checks:

ê(σ, 	1 ·gH(id
) ·	 sk
,2
2)

?= ê(u

∑
i∈Q βiH0(f id‖i)

0 ·
s∏

j=1

u
μj

j , g)

If so, outputs “1”; otherwise, outputs “0”.

Correctness. Observe the following equalities

ê (σ, 	1 · gH(id
) · 	
sk
,2
2)

= ê(
∏

i∈Q

(g
1

γ1+H(id
)+γ2η)θiβi , gγ1 · gH(id
) · gγ2η)

= ê(
∏

i∈Q

g
βi(α0H0(f id‖i)+∑s

j=1 αj fi,j)
, g)

= ê(u

∑
i∈Q βiH0(f id‖i)

0 ·
s∏

j=1

u
μj

j , g)

Hence, the correctness follows.
Similarly, we continue to show that the optimized OPoS

instantiation presented in Section 5.2 can also be enhanced.

Setup(1λ): The same to the above enhanced OPoS instan-
tiation.

KeyExt(gpk, gsk, id
): The same to the above enhanced
OPoS instantiation.

PrFile(gpk, sk
, F): The same to Section 5.2.
Chall(gpk, τ): The same to Section 5.2.
PrfGen(gpk, F ∗, C): The same to Section 5.2.
Verify(gpk, τ, C, R): If R cannot be parsed, outputs “0”

and terminates. Otherwise, checks the equality:

ê(σ, 	1 · gH(id
) · 	
sk
,2
2)

?=
ê(υ

∑
i∈Q δiH0(f id‖i) · gκ · ζ−z, g) · ê(ζ, u1)

If it holds, outputs “1”; otherwise, outputs “0”.

Correctness. Observe the following equalities

ê (σ, 	1 · gH(id
) · 	
sk
,2
2)

= ê(
∏

i∈Q

(g
1

γ1+H(id
)+γ2η)θiβi , gγ1+H(id
)+γ2η)

= ê(
∏

i∈Q

g
βi(α0H0(f id‖i)+φ�πi

(α))
, g)

= ê(υ
∑

i∈Q δiH0(f id‖i), g) · ê(gφ �μ(α), g)

Combining with the proof of Theorem 5, the correctness
follows.

5.5.2 Batch integrity auditing

Batch integrity auditing is considered as an efficient mech-
anism for simultaneously auditing multiple outsourced files
[32, 33]. We then show that our OPoS instantiations also
support such an auditing mechanism. For ease of explana-
tion, we assume the auditing files have the same number of
blocks and sectors.

For the basic OPoS instantiation (Section 5.1), suppose
there are m group members {id
 : 1 ≤
 ≤ m}. Each
member holds a private key sk
 that issued by the group
manager, and has processed a file F
 by running (τ
, F

∗

) ←

PrFile(gpk, sk
, F
). Then, the auditor can perform the fol-
lowing protocol for batch auditing these m outsourced files
by interacting with the cloud server.

Chall: The auditor runs the procedure in two steps.

1. The same to Section 4 for validating each file tag τ

for 1 ≤
 ≤ m. If any tag is invalid, outputs “0” and
terminates.

2. Picks a random subset Q ⊆ [1, r] and chooses a ran-
dom value βi ∈R Z

∗
p for each i ∈ Q. Sends the

Peer-to-Peer Netw. Appl.

challenge C = ({f id
 : 1 ≤
 ≤ m}, Q, {βi : i ∈
Q}) to the cloud storage server.

PrfGen: Parses each processed file F ∗

 (1 ≤
 ≤ m) as

F ∗

 = { �f
,i , σ
,i : 1 ≤ i ≤ r} where �f
,i = (f
,i,1, · · · ,

f
,i,s). For each file F ∗

 (1 ≤
 ≤ m), computes the

aggregated file block �μ
 = (μ
,1, · · · , μ
,s) where

μ
,j =
∑

i∈Q

βif
,i,j mod p for each j ∈ [1, s].

Then computes

σ
 =
∏

i∈Q

σ
βi

,i ∈ G

Sends the proof R = {�μ
, σ
 : 1 ≤
 ≤ m} to the auditor.
Vrfy: If R cannot be parsed, outputs “0” and terminates.
Otherwise, the auditor checks

m∏

=1

ê(σ
, 	 · gH(id
))
?=

ê(

m∏

=1

(u

∑
i∈Q βiH0(f id
‖i)

,0 ·
s∏

j=1

u
μ
,j

,j), g)

If so, outputs “1”; otherwise, outputs “0”.

It can be seen that with batch auditing mechanism, (m −
1) pairings are saved at the auditor side compared with the
separate integrity auditing case.

Correctness. According to Eq. 4, if all outsourced files
F ∗

 (1 ≤
 ≤ m) are keeping intact by the cloud server, then
we have

m∏

=1

ê(σ
, 	 · gH(id
))

=
m∏

=1

ê(u

∑
i∈Q βiH0(f id
‖i)

,0 ·
s∏

j=1

u
μ
,j

,j , g)

= ê(

m∏

=1

(u

∑
i∈Q βiH0(f id
‖i)

,0 ·
s∏

j=1

u
μ
,j

,j), g)

That means the correctness for batch integrity verification is
satisfied.

The optimized OPoS instantiation (Section 5.2) also sup-
ports batch integrity auditing for multiple outsourced files.
Similarly, suppose each group member id
 (1 ≤
 ≤ m)

holds a private key sk
 that issued by the group man-
ager, and has processed a file F
 by running (τ
, F

∗

) ←

PrFile(gpk, sk
, F
). Then, the auditor can audit these files
in a batch by performing the follows steps by interacting
with the cloud storage server.

Chall: The auditor runs the procedure as follows.

1. The same to Section 4 for validating each file tag τ

for 1 ≤
 ≤ m. If any tag is invalid, outputs “0” and
terminates.

2. Picks a random subset Q ⊆ [1, r] and chooses two
random values z, δ ∈R Z

∗
p. Sends the challenge C =

({f id
 : 1 ≤
 ≤ m}, Q, z, δ) to the cloud server.

PrfGen: For each i ∈ Q, the cloud storage server cal-
culates βi = δi mod p. Then, for each processed file
F ∗

 = { �f
,i , σ
,i : 1 ≤ i ≤ r} (1 ≤
 ≤ m), the cloud
server generates R
 = (ζ
, κ
, σ
) in the same way as
the procedure PrfGen in Section 5.2. Moreover, computes
κ = ∑m

=1 κ
 mod p. Sends the proof R = ({ζ
, σ
 : 1 ≤

 ≤ m}, κ) to the auditor.
Vrfy: If R cannot be parsed, outputs “0” and terminates.
Otherwise, checks the equality:

m∏

=1

ê(σ
 , 	 · gH(id
))
?=

m∏

=1

ê(ζ
, u
,1) ·

ê((

m∏

=1

υ

∑
i∈Q δiH0(f id
‖i)

) · gκ · (

m∏

=1

ζ
)
−z, g)

If it holds, outputs “1”; otherwise, outputs “0”.

Notice that with batch auditing mechanism, (m− 1) pair-
ings and (2m − 2) exponentiations are saved at the auditor
side compared to the separate auditing case.

Correctness. According to Eq. 5, if all outsourced files
F ∗

 (1 ≤
 ≤ m) are keeping intact by the cloud server, then
we have

m∏

=1

ê(σ
, 	 · gH(id
))

=
m∏

=1

(ê(υ

∑
i∈Q δiH0(f id
‖i)

 · gκ
 · ζ−z

 , g) · ê(ζ
, u
,1))

= ê((

m∏

=1

υ

∑
i∈Q δiH0(f id
‖i)

) · g
∑m

=1 κ
 · (

m∏

=1

ζ−z

), g)

·
m∏

=1

ê(ζ
, u
,1)

= ê((

m∏

=1

υ

∑
i∈Q δiH0(f id
‖i)

) · gκ · (

m∏

=1

ζ
)
−z, g)

·
m∏

=1

ê(ζ
, u
,1)

Thus, the correctness holds for batch integrity verification
for the optimized OPoS instantiation.

Peer-to-Peer Netw. Appl.

6 Conclusion

In this paper, we introduced OPoS which guarantees the
integrity of outsourced files in clouds for group-oriented
applications. We first formalized the system framework and
security model for OPoS schemes, and then proposed a
generic OPoS construction from pre-homomorphic signa-
tures using the trapdoor technique. Following the generic
construction, we presented two instantiations on bilinear
groups using Boneh–Boyen short signature, of them the
second one is optimized from the first one using a poly-
nomial commitment technique for saving communication
overheads in auditing outsourced files. We provided security
proof and comprehensive performance evaluations, which
show that our instantiations are secure and practical for real-
world applications. Moreover, we discussed that our instan-
tiations can be strengthened for withstanding a dynamic col-
luding set of members, and support batch integrity auditing
for improving auditing efficiency.

Acknowledgments This work was partially supported by the Natural
Science Foundation of China (Nos. 61672083, 61672083, 61370190,
61272501, 61202465, 61402029, 61472429, 61202465, 61532021),
by the Beijing Natural Science Foundation (No. 4132056) and by the
Guangxi natural science foundation (2013 GXNSFBB053005).

References

1. Su Z, Xu Q, Qi Q (2016) Big data in mobile social networks: a
QoE-oriented framework. IEEE Netw 30(1):52–57

2. Deng H, Wu Q, Qin B, Chow SSM, Domingo-Ferrer J, Shi W
(2014) Tracing and revoking leaked credentials: Accountability
in leaking sensitive outsourced data. In: Proceedings of the 9th
ACM Symposium on Information, Computer and Communica-
tions Security. ACM, pp 425–434

3. Ateniese G, Burns R, Curtmola R, Herring J, Kissner L, Peterson
Z, Song D (2007) Provable data possession at untrusted stores
Proceedings of the 14th ACM conference on computer and com-
munications security. ACM, pp 598–609

4. Ateniese G, Kamara S, Katz J (2009) Proofs of storage
from homomorphic identification protocols. In: Matsui M (ed)
Advances in cryptology–ASIACRYPT 2009, vol 5912. Springer,
Heidelberg, pp 319-333

5. Deng H, Wu Q, Qin B, Mao J, Liu X, Zhang L, Shi W (2014) Who
is touching my cloud. In: Kutylowski M, Vaidya J (eds) Com-
puter Security–ESORICS 2014, vol 8712. Springer International
Publishing, pp 362–379

6. Xiong J, Li F, Ma J, Liu X, Yao Z, Chen PS (2015) A full
lifecycle privacy protection scheme for sensitive data in cloud
computing. Peer-to-Peer Networking and Applications 8(6):1025–
1037

7. Chen X, Li J, Huang X, Ma J, Lou W (2015) New publicly ver-
ifiable databases with efficient updates. IEEE Transactions on
Dependable and Secure Computing 12(5):546–556

8. Chen X, Li J, Weng J, Ma J, Lou W (2016) Verifiable computation
over large database with incremental updates. IEEE Trans Comput

9. Wen M, Lu K, Lei J, Li F, Li J (2015) BDO-SD: An efficient
scheme for big data outsourcing with secure deduplication. In:

2015 IEEE Conference on computer communications workshops
(INFOCOMWKSHPS). IEEE, pp 214–219

10. Wen M, Ota K, Li H, Lei J, Gu C, Su Z (2015) Secure data
deduplication with reliable key management for dynamic updates
in cpss. IEEE Transactions on Computational Social Systems
2(4):137–147

11. Yu CM, Chen CY, Chao HC (2015) Proof of ownership in dedu-
plicated cloud storage with mobile device efficiency. IEEE Netw
29(2):51–55

12. Huang X, Liu JK, Tang S, Xiang Y, Liang K, Xu L, Zhou J (2015)
Cost-effective authentic and anonymous data sharing with forward
security. IEEE Trans Comput 64(4):971–983

13. Huang X, Xiang Y, Bertino E, Zhou J, Xu L (2014) Robust
multi-factor authentication for fragile communications. IEEE
Transactions on Dependable and Secure Computing 11(6):
568–581

14. Wu Q, Qin B, Zhang L, Domingo-Ferrer J, Farràs O, Manjón JA
(2016) Contributory broadcast encryption with efficient encryp-
tion and short ciphertexts. IEEE Trans Comput 65(2):466–
479

15. Wu Q, Qin B, Zhang L, Domingo-Ferrer J, Manjón JA (2013) Fast
transmission to remote cooperative groups: a new key manage-
ment paradigm. IEEE/ACM Trans Networking 21(2):621–633

16. Juels A, Kaliski BS Jr (2007) PORs: Proofs of retrievabil-
ity for large files. In: Proceedings of the 14th ACM Con-
ference on Computer and Communications Security. ACM,
pp 584–597

17. Ateniese G, Di Pietro R, Mancini LV, Tsudik G (2008) Scalable
and efficient provable data possession. In: Proceedings of the 4th
International Conference on Security and Privacy in Communica-
tion Networks. ACM

18. Erway C, Küpçü A, Papamanthou C, Tamassia R (2009) Dynamic
provable data possession. In: Proceedings of the 16th ACM
Conference on Computer and Communications Security. ACM,
pp 213–222

19. Shacham H, Waters B (2013) Compact proofs of retrievability. J
Cryptol 26(3):442–483

20. Yuan J, Yu S (2015) PCPOR: Public and constant-cost proofs of
retrievability in cloud. J Comput Secur 23(3):403–425

21. Boneh D, Boyen X (2008) Short signatures without random
oracles and the sdh assumption in bilinear groups. J Cryptol
21(2):149–177

22. Kate A, Zaverucha GM, Goldberg I (2010) Constant-size com-
mitments to polynomials and their applications. In: Abe M (ed)
Advances in cryptology–ASIACRYPT 2010, vol 6477. Springer,
Heidelberg, pp 177-194

23. Wang Y, Wu Q, Qin B, Chen X, Huang X, Zhou Y (2015) Group-
oriented proofs of storage. In: Proceedings of the 10th ACM Sym-
posium on Information, Computer and Communications Security.
ACM, pp 73–84

24. Xu J, Chang EC (2012) Towards efficient proofs of retrievabil-
ity. In: Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security. ACM, pp 79–80

25. Wang Y, Wu Q, Wong DS, Qin B, Chow SSM, Liu Z, Tan X
(2014) Securely outsourcing exponentiations with single untrusted
program for cloud storage. In: Kutylowski M, Vaidya J (eds) Com-
puter Security–ESORICS 2014, vol 8712. Springer International
Publishing, pp 326–343

26. Wang B, Li B, Li H (2012) Knox: Privacy-preserving auditing for
shared data with large groups in the cloud. In: Bao F, Samarati
P, Zhou J (eds) Applied cryptography and network security,
vol 7341. Springer, Heidelberg, pp 507-525

27. Wang B, Li B, Li H (2012) Oruta: Privacy-preserving public
auditing for shared data in the cloud. In: 2012 IEEE 5th inter-
national conference on Cloud computing (CLOUD), pp 295–
302

Peer-to-Peer Netw. Appl.

28. Wang B, Chow SSM, Li M, Li H (2013) Storing shared data on
the cloud via security-mediator. In: 2013 IEEE 33rd international
conference on Distributed computing systems (ICDCS), pp 124–
133

29. Wang H, Wu Q, Qin B, Domingo-Ferrer J (2014) Identity-based
remote data possession checking in public clouds. IET Inf Secur
8(2):114–121

30. Yu Y, Mu Y, Ni J, Deng J, Huang K (2014) Identity privacy-
preserving public auditing with dynamic group for secure mobile
cloud storage. In: Au MH, Carminati B, Kuo CCJ (eds) Network
and System Security, vol 8792. Springer International Publishing,
pp 28–40

31. Freeman DM (2012) Improved security for linearly homomor-
phic signatures: a generic framework. In: Fischlin M, Buchmann
J, Manulis M (eds) Public key cryptography–PKC 2012, vol 7293.
Springer, Heidelberg, pp 697-714

32. Wang C, Chow SSM, Wang Q, Ren K, Lou W (2013) Privacy-
preserving public auditing for secure cloud storage. IEEE Trans
Comput 62(2):362–375

33. Ren Y, Shen J, Zheng Y, Wang J, Chao HC (2015) Efficient data
integrity auditing for storage security in mobile health cloud. Peer-
to-Peer Networking and Applications:1–10

Yujue Wang received the
Ph.D. degrees from Wuhan
University, Wuhan, China,
and City University of Hong
Kong, Hong Kong, under the
joint Ph.D. program, in 2015.
He is currently a Research
Fellow with the School of
Information Systems, Singa-
pore Management University.
His research interests include
applied cryptography, database
security and cloud computing
security.

Qianhong Wu received his
Ph.D. in Cryptography from
Xidian University in 2004.
Since then, he has been with
Wollongong University (Aus-
tralia) as an associate research
fellow, with Wuhan Univer-
sity (China) as an associate
professor, and with Univer-
sitat Rovira i Virgili (Spain)
as a research director. He
is currently a professor with
Beihang University in China.
His research interests include
cryptography, information se-
curity and privacy, VANET

security and cloud computing security. He has been a holder/co-holder
of 8 China/Australia/Spain funded projects. He has authored 10 patents
and over 130 publications. He has served in the program committee of
several international conferences in information security and privacy.
He is a member of IACR IEEE and ACM.

Bo Qin received her Ph.D.
degree in Cryptography from
Xidian University in 2008 in
China. Since then, she has
been with Xi’an University
of Technology (China) as a
lecturer and with Universitat
Rovira i Virgili (Catalonia)
as a postdoctoral researcher.
She is currently a lecturer
in the Renmin University in
China. Her research interests
include pairing-based cryptog-
raphy, data security and pri-
vacy, and VANET security.
She has been a holder/co-

holder of 5 China/Spain funded projects. She has authored over 60
publications and served in the program committee of several interna-
tional conferences in information security.

Xiaofeng Chen received his
B.S. and M.S. on Mathe-
matics from Northwest Uni-
versity, China in 1998 and
2000, respectively. He got his
Ph.D. degree in Cryptogra-
phy from Xidian University in
2003. Currently, he works at
Xidian University as a pro-
fessor. His research interests
include applied cryptography
and cloud computing security.
He has published over 100
research papers in refereed
international conferences and
journals. His work has been

cited more than 3000 times at Google Scholar. He is in the Editorial
Board of Security and Communication Networks (SCN), Computing
and Informatics (CAI), and International Journal of Embedded Sys-
tems (IJES) etc. He has served as the program/general chair or program
committee member in over 30 international conferences.

Xinyi Huang received the
Ph.D. degree from the School
of Computer Science and Soft-
ware Engineering, University
of Wollongong, Australia. He
is currently a Professor with
the School of Mathematics
and Computer Science, Fujian
Normal University, China,
and the Co-Director of Fujian
Provincial Key Laboratory of
Network Security and Cryp-
tology. His research interests
include applied cryptography
and network security. He has
authored over 100 research

papers in refereed international conferences and journals. His work
has been cited more than 2900 times at Google Scholar (H-Index: 27).
He is an associate editor of IEEE Transactions on Dependable and
Secure Computing.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	11-2016

	Ownership-hidden group-oriented proofs of storage from pre-homomorphic signatures
	Yujue WANG
	Qianhong WU
	Bo QIN
	Xiaofeng CHEN
	Xinyi HUANG
	See next page for additional authors
	Citation
	Author

	Ownership-hidden group-oriented proofs of storage from pre-homomorphic signatures
	Abstract
	Introduction
	Contribution
	Related work

	Preliminaries
	Mathematical background
	Discrete logarithm (DL) assumption
	s-Strong Diffie–Hellman (s-SDH) assumption Boneh-JoC08

	Pre-homomorphic signature

	System model and definitions
	System model
	System definition
	Security definitions

	OPoS construction
	Overview
	Construction
	Security analysis

	Instantiations
	A basic instantiation
	Optimized instantiation
	Theoretical analysis
	Experimental analysis
	Discussions
	Dynamic corrupted set
	Batch integrity auditing

	Conclusion
	Acknowledgments
	References

