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Effective k-Vertex Connected Component
Detection in Large-Scale Networks

Yuan Li1, Yuhai Zhao1(B), Guoren Wang1, Feida Zhu2,
Yubao Wu3, and Shengle Shi1

1 Northeastern University, Shenyang, China
zhaoyuhai@ise.neu.edu.cn

2 Singapore Management University, Singapore, Singapore
3 Georgia State University, Atlanta, USA

Abstract. Finding components with high connectivity is an important
problem in component detection with a wide range of applications, e.g.,
social network analysis, web-page research and bioinformatics. In par-
ticular, k-edge connected component (k-ECC) has recently been exten-
sively studied to discover disjoint components. Yet many real applications
present needs and challenges for overlapping components. In this paper,
we propose a k-vertex connected component (k-VCC) model, which is
much more cohesive and therefore allows overlapping between compo-
nents. To find k-VCCs, a top-down framework is first developed to find
the exact k-VCCs. To further reduce the high computational cost for
input networks of large sizes, a bottom-up framework is then proposed.
Instead of using the structure of the entire network, it locally identifies
the seed subgraphs, and obtains the heuristic k-VCCs by expanding and
merging these seed subgraphs. Comprehensive experimental results on
large real and synthetic networks demonstrate the efficiency and effec-
tiveness of our approaches.

1 Introduction

Component detection is a fundamental problem [11,19] in the analysis of large-
scale networks. Many real applications can benefit from finding highly connected
components. For example, groups of intimate entities discovered in social net-
works can be exploited to analyze their social behaviors [11]; a set of servers with
common contents in web server networks can be used to construct the network
index [4]; clusters of interactive genetic markers discovered in genetic interaction
networks can be utilized to infer the corresponding cause of diseases [25].

The existing methods of component detection can be roughly divided into two
main categories, i.e. clique-based methods and clique-relaxed methods. Accord-
ing to differently relaxed constraints, clique-relaxed methods can be further
divided into degree-relaxed [3,6,27], distance-relaxed [14,16] and triangulation-
relaxed [22,23] methods. Although succeeding to some extent, these methods
still have respective drawbacks.
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Fig. 1. A toy co-friendship network.

A toy co-friendship network is considered in Fig. 1(a) as an example. Degree-
relaxed and distance-relaxed methods often consider the network as an indi-
visible whole, saying a k-core with k = 3 and a n-club with n = 3, since the
degree of every vertex is no less than 3 and the maximum length of shortest
pathes of all pairs of vertices is no larger than 3, respectively. This contradicts
with the intuition that Fig. 1(a) should be disconnected into two components by
deleting edge e. The reason is that these two methods only concern about the
degree and distance but ignore the connectivity of any pair of vertices. Although
triangulation-relaxed methods can detect these two components, they do not
work when there are no triangles in graph, e.g. bipartite graphs.

Connectivity is measured by the number of disjoint paths between vertices.
Intuitively, high connectivity would contribute to the steadiness and robustness
of the component. A component with high connectivity could still be connected,
even if losing a few relations or entities. Therefore, recently, connectivity-based
methods such as k-edge connected components (k-ECC) have drawn great atten-
tion [1,5,28]. A k-ECC refers to a maximal subgraph, the remaining subgraph of
which is still connected after any k − 1 edges are removed from it. The network
in Fig. 1(a) is a 1-ECC. Since the low edge connectivity, it is naturally divided
into two separate 3-ECCs, {Bob, David, Tony, Erik, Alice} and {Jack, Anna,
Bell, Evan, Albert}.

However, k-ECC still has its own limitation. For example, if Bob is an alias
of Jack, Fig. 1(a) is equivalent to Fig. 1(b). In this case, Fig. 1(b) is identified
as a whole 3-ECC, although there are practically two separate components,
since once we remove the vertex Bob/Jack, the network becomes disconnected.
Thus, high edge connectivity does not necessarily indicate a component of strong
connectivity.

In this paper, we study the k-vertex connected component ( k-VCC) detection
problem, which focuses on vertex connectivity instead of edge connectivity, of
networks. Given a graph G, the goal is to find all such induced subgraphs, g′,
of G that g′ is still connected after removing any k − 1 vertices from it and no
supergraph of g′ has the same property. According to this informal definition,
the network in Fig. 1(b) can be identified as two 3-VCCs, {Bob/Jack, David,
Tony, Erik, Alice} and {Bob/Jack, Anna, Bell, Evan, Albert}. Unlike k-ECC,
k-VCCs has three unique advantages: (1) k-VCC captures more connectivity of
networks than k-ECC. According to [8], a component of high vertex connectivity
must be of high edge connectivity, but not vice versa; (2) k-VCC allows overlap
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among different components, say Bob/Jack in Figure 1(b), which is more natural
and reasonable for real-world networks [18]; (3) k-VCC can prevent the detected
communities from including irrelevant subgraphs, i.e. free rider effect [24].

Unfortunately, the methods for k-ECC [1,5] cannot be directly utilized to
find k-VCCs. Because each vertex only belongs to at most one k-ECC [5], these
methods could obtain k-ECCs by vertex contraction [21]. In our case, however,
each vertex can be in more than one k-VCCs, which makes the former trick not
work. In this paper, we devise two novel frameworks to tackle the k-VCC detec-
tion problem, namely top-down and bottom-up frameworks for k-VCC detection,
respectively. The top-down iteratively divides the networks by finding minimum
vertex cut set, which could find all exact k-VCCs. The bottom-up framework,
instead of using the entire network structure, locally identifies the seed sub-
graphs, and obtains the heuristic k-VCCs by expanding and merging these seed
subgraphs.

Our contributions are summarized as below: (1) a novel k-VCC detec-
tion problem is proposed from the perspective of vertex connectivity; (2) the
top-down and bottom-up frameworks are developed to solve the problem.
Specifically, in the bottom-up framework, a concept of local k-vertex connected
subgraph is proposed to accelerate k-VCC detection, which enables identifying
seed subgraphs locally instead of globally. In addition, several optimization tech-
niques are proposed to further reduce the search space; (3) extensive experiments
on both real and synthetic datasets demonstrate the efficiency and effectiveness
of our frameworks.

The rest of our paper is organized as follows. We give the notions and problem
statement in Sect. 2. In Sects. 3 and 4, we present the top-down and bottom-up
k-VCC detection frameworks, respectively. Extensive experiments are reported
in Sect. 5. The related work is discussed in Sect. 6. Section 7 concludes this work.

2 Notions and Problem Statement

In this paper, we focus on an undirected and unweighted graph G(V,E), where V
is the set of vertices and E is the set of edges. We denote the number of vertices
and the number of edges by n = |V | and m = |E|, respectively. A graph G[S] is
called an induced subgraph of G when S ⊆ V , and E(S) = {(u, v) ∈ E|u, v ∈ S}.
We use nbG(v) to denote the set of neighbors of a vertex v in G, that is,
nbG(v) = {u|(u, v) ∈ E}. We define the degree of v in G as degG(v) = |nb(v)|.
If there is no ambiguity, we denote them as nb(v) and deg(v). In addition, dmax

denotes the maximum vertex degree of G.

Notions. We first give some formal definitions used in this work.

Definition 1 (Vertex connectivity of two vertices). Let u and v be two ver-
tices in graph G. If (u, v) /∈ E, we define the vertex connectivity between u and
v, κ(u, v) as the least number of vertices chosen from V − {u, v}, whose deletion
from G will disconnect u and v (destroy every vertex disjoint path between u and
v), and if (u, v) ∈ E, then set κ(u, v) = n − 1.
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Definition 2 (Vertex connectivity of a graph). The vertex connectivity of a
graph G denoted as κ(G) is the least cardinality |S| of a vertex set S ⊆ V
such that G[V \S] is either disconnected or trivial (graph with only one vertex).
Such a vertex set S is called a minimum vertex cut set.

Obviously, κ(G) can be expressed in terms of κ(v, w) as follows: κ(G) =
min{κ(v, w)|unordered pair v, w in G}.

Definition 3 (k-vertex connected graph). A graph G(V,E) is k-vertex connected
if the remaining graph is still connected after the removal of any (k − 1) vertices
from G, in other words, κ(G) ≥ k.

Specially, we define the graph with only one vertex is trivial and the vertex
connectivity of a complete graph Kn is (n − 1). In other words, if a graph G is
k-vertex connected, there are at least (k + 1) vertices in it.

Definition 4 (k-vertex connected component). Given a graph G(V,E), a sub-
graph G[S] (S ⊆ V ) of G is a k-vertex connected component (k-VCC) if (1)
G[S] is k-vertex connected, and (2) any supergraph G[S′] (S ⊂ S′ ⊆ V ) is not
k-vertex connected.

For example, in Fig. 2, graph G1, G2, G3 and G4 are all 3-vertex connected
subgraphs, while only G3 and G4 are 3-VCCs, because G1 and G2 are contained
in G4.

Problem statement . Here, we give the formal problem statement.

Problem 1 (k-VCC detection problem). Given a graph G(V,E) and an integer k,
we study the problem of efficiently computing all k-VCCs of G.

In theory, the value of k in k-VCC ranges from 1 to n − 1, however, it is
unlikely to reach n−1 in practice, because if k is large enough, the final result of
k-VCCs is probably an empty set. Here, we give the upper bound of parameter k.
It is highly related with k-core, which is the maximal subgraph G[Ck] of G such
that ∀v ∈ Ck, degG[Ck](v) ≥ k. The core number of a vertex v ∈ V , denoted as
ψ(v), is the largest k such that v is in G[Ck]. In other words, ψ(v) = k means
that v ∈ Ck and v /∈ Ck+1.

Lemma 1. All the k-VCCs in graph G are included in the k-core subgraph of G.

Proof. Based on Definition 3, in each k-VCC G[S],∀u ∈ S, degG[S](u) ≥ k. And,
k-core is the maximal subgraph G[Vk] of G such that ∀v ∈ Vk, degG[Vk](v) ≥ k.
Thus, for any vertex in the k-VCC, it must be contained in the corresponding
k-core subgraph. Also, k-VCC and k-core are induced subgraphs, hence all the
edges in k-VCC are contained in the k-core.

Definition 5. (Degeneracy of G). The degeneracy D of G(V,E) is the largest
k for which G has a non-empty k-core, i.e., D = max

v∈V
ψ(v).
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Theorem 1. The value of k in k-VCC is upper bounded by the degeneracy D
of G.

Theorem 1 could be directly induced from Lemma 1. The degeneracy D of
graph G could be calculated efficiently by the algorithm proposed by Batagelj
and Zaversnik [2], which repeatedly remove vertices from G whose degree is less
than k until no more vertices can be removed and use bin-sort to order the
vertices to achieve O(m + n) time complexity. Therefore, once finding out the
given k value is larger than D, we will make sure that the result for k-VCCs in
G is ∅.

3 Top-Down Framework for k-VCCs Detection

In this section, we detail the top-down framework for k-VCCs detection. The
main idea of this framework is to iteratively compute the minimum vertex cut set
Vcut of the current graph G[C], if |Vcut| ≥ k, then G[C] is a k-VCC; otherwise Vcut

and their incident edges are copied to each remaining connected subgraph after
deleting Vcut and their induced edges from G[C] and these newly constructed
subgraphs are saved in a queue structure Q for further consideration. Algorithm1
summarizes this process. First, Lemma 1 enable us to exploit k-core to shrink
the scale of G, which is possible to divide the original big graph G into several
subgraphs of much smaller scale (line 1). In this way, the computation cost of
the minimum vertex cut set Vcut of G is largely reduced.

Another important problem is how to find the minimum vertex cut set (line
9). Unlike the min-cut [21] and GomoryHu tree [12] methods, which can effi-
ciently find the minimum edge cut set in an undirected graph, we have to reduce
the problem of computing κ(G) into a maximum flow problem in directed graph.

For each input G(V,E) and vertices s, t, we construct the directed flow net-
work G′(V ′, E′) as follows.

1. For each v ∈ V (v �= s and v �= t), add two vertices v′, v′′ into V ′, and the
directed edge (v′, v′′) and (v′′, v′) into E′. The edge (v′, v′′) has weight 1 and
(v′′, v′) has weight ∞.
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Algorithm 1. Top-down Framework

Input: G(V,E), k
Output: The set of k-VCCs G[R]

1 Find the k-core G[Vk] of G;
2 Initialize queue Q ← ∅;
3 Q.enqueue(all the connected subgraph of G[Vk]);
4 while Q �= ∅ do
5 G[C] ← Q.dequeue();
6 if |G[C]| > k then
7 Find the minimum vertex cut set Vcut of G[C];
8 if |Vcut| < k then
9 Find all the connected subgraphs of G[C�Vcut], denoted as G[Ci];

10 Add Vcut and the induced edges into each G[Ci];
11 Q.enqueue(all G[Ci]);

12 else
13 Put G[C] into G[R];

14 Return G[R];

2. For each edge (s, v) ∈ E, add edge (s, v′) to E′; for each edge (v, t) ∈ E, add
edge (v′′, t) to E′; for each other edge (u, v) ∈ E, add two edges (u′′, v′) and
(v′′, u′) to E′. Each edge has capacity ∞.

3. Assign s as the source vertex and t as the sink vertex.

Even and Tarjan [10] prove that κ(s, t) in an undirected graph G is equivalent
to the maximal value of flow from s to t in the corresponding constructed directed
graph G′. Figure 3 shows an example of the above process. Also, κ(G) can be
calculated in O(n − δ − 1 + δ(δ − 1)/2) calls to maximum flow algorithm where
δ = dmax [9]. Actually, we do not need to find the minimum vertex cut set
every time. For the current subgraph G[C], once we discover a κ(u, v) < k where
u, v ∈ G[C]K, G[C] can not be a k-VCC, we can safely terminate this process
and use the vertex cut set corresponding to u, v to separate G[C]. Theorem 2
guarantees the top-down framework is correct.

Complexity analysis. Computing κ(v, w) on graph G[C] needs O(m′n′2/3)
time where n′ is the average size of C and m′ is the average size of E(G[C]).
In the worst case, it needs to be invoked O(n′ − δ − 1 + δ(δ − 1)/2) times.
Let L represent the total number of G[C] detected in the algorithm. The overall
running time of the top-down framework is O((n′−δ−1+δ(δ−1)/2)· m′n′2/3 · L).

Theorem 2. Given a graph G and a value k, the top-down framework for k-
VCC detection can correctly find all the k-VCCs.

Proof. Suppose a graph G[V0] ∈ G[R] is k-vertex connected subgraph, but not a
k-VCC, which indicates it is not maximal, then there must be a k-VCC G[Vmax]
such that V0 ⊂ Vmax, and there must also exist a vertex cut set in some loop
which separates a vertex or some vertices in Vmax away from V0. However, this
cannot happen because G[Vmax] is supposed to be k-vertex connected. Therefore,
G[V0] is a k-VCC. In addition, Algorithm1 operates until Q is empty, which
means all the subgraphs have been processed. Thus, the theorem is correct.
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Algorithm 2. Bottom-up Framework for k-VCC Detection

Input: G(V,E), k
Output: The set of k-VCCs, G[R]

1 G[R]←∅; G[S]←∅; G[S′]←∅;
2 Find the k-core G[Vk] of G;
3 G[S]←Seeding(G[Vk], k); //detailed in Subsection 4.1;

4 while G[S′]�=G[S] do
5 G[S′]←G[S];
6 G[S]←Expanding(G[Vk], k, G[S]); //detailed in Subsection 4.2;
7 G[S]←Merging(G[Vk], k, G[S]); //detailed in Subsection 4.2;

8 G[R]←G[R] ∪ G[S];
9 return G[R];

4 Bottom-Up Framework for k-VCCs Detection

The top-down framework highly depends on global structure of graph, which may
not be efficient and practical when graph scale becomes huge. In this section, we
develop a bottom-up framework for k-VCCs detection.

The Bottom-up framework focuses on the microscopic structure when dealing
with large networks and thus is able to find target components with computa-
tional cost proportional to their size. The idea is to locally find seed subgraphs
around the neighborhood of vertices and obtain the k-VCCs heuristically by
expanding and merging these subgraphs. The overall framework is summarized
in Algorithm 2. First, we utilize Seeding() to find local k-vertex connected sub-
graphs around the neighborhood of vertices as seed subgraphs (line 3). Then,
we exploit Expanding() and Merging() to expand and merge these seed subgraphs
(lines 4–7). Although this framework is heuristic, the experiment in Sect. 5.3
shows that the result is comparable to the real.

4.1 Identifying Seed Subgraphs

We propose the local k-vertex connected subgraph as seed subgraph, which
only considers the neighborhood structure of a vertex. Moreover, unlike max-
imal clique, which is adopted as seed subgraph in [15], the local k-vertex con-
nected subgraph is more generalized as seed than clique, whose structure is too
strict [19].

In this section, seeding() is developed to identify such graphs. And there exists
two important problems: (1) how to find the seed subgraph for a given vertex;
(2) how to efficiently identify seed subgraphs for the whole network. Corre-
spondingly, we first give the formal definition of seed subgraph and propose the
LkVCS method for its discovery, and then we devise two optimization strategies
to accelerate the process of identifying seed subgraphs, in which we do not have
to identify seed subgraphs for all the vertices.

Identifying seed subgraph for a given vertex . Here, we study how to
define and find local k-vertex connected subgraph for a given vertex u. We first
give the definition of 2-ego neighborhood. We then exploit 2-ego neighborhood to
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add additional constraint on the path length between vertices in the defined local
k-vertex connected subgraph, which makes it possible to find the seed subgraph
within the neighborhood of a vertex.

Definition 6 (2-ego neighborhood). Given a graph G(V,E) and a vertex u in
G, the 2-ego neighborhood of u,N2(u), denotes the set of vertices in G whose
distance to u is no more than 2, i.e., {v|dist(u, v)leq 2}. Specially, u also belongs
to N2(u).

Definition 7 (Local k-vertex connected subgraph). Given a graph G(V,E) and
a vertex u ∈ V , an induced subgraph G[S] is a local k-vertex connected subgraph
if and only if (1) ∀v, w ∈ S, if (v, w) /∈ E(S), |nbG[S](v) ∩ nbG[S](w)| ≥ k; (2)
|S| > k; (3) u ∈ S.

Based on [7], in real networks, community is usually existed in the neigh-
borhood of vertices, hence it is rational to define the local k-vertex connected
subgraph as seed subgraph. Furthermore, a k-VCC is usually composed of many
adjacent local k-vertex connected subgraphs. Thus, if we can obtain these local
subgraphs in advance, we probably retrieve the original k-VCC from them.

Further, we propose the LkVCS method, which can find one of the local k-
vertex connected subgraphs from the induced subgraph G[N2(u)] as the seed
subgraph for u. The main idea of LkVCS is to start with every different subset of
vertices of size k from the neighborhood of u, denoted as R and then continue
bring vertices from P ′\R into R until G[R] is a local k-vertex connected subgraph
or there exists x, y ∈ R and (x, y) /∈ E such that |nbG[P ′](x) ∩ nbG[P ′](y)| < k
where P ′ is the vertex set of k-core of G[N2(u)]. When the combination num-
ber

(|nbG[P ′](u)|
k

)
is larger than a threshold α, γ subsets are randomly tested.

Example 1 illustrates how the LkVCS method works.

Example 1. We apply LkVCS on the graph G in Fig. 2 for u = v1. We set k = 3.
First, we obtain the 3-core of G[N2(v1)] is G4. We arbitrarily select 3 vertices
from nbG4(v1), that is {v2, v3, v4} and R = {v2, v3, v4} ∪ {v1}. Because G[R] is
not a 3-vertex connected subgraph, we continue to add the common neighbor
v5 of v1, v3 and v2, v4 into R. Now, G[R] is a 3-vertex connected subgraph. We
output G[R] as the local 3-vertex connected subgraph of v1.

Identifying seed subgraphs for the whole network . A naive way is to com-
pute the local k-vertex connected subgraph for every vertex in the network by
LkVCS method. However, it is not efficient enough. Here, we devise two optimiza-
tion strategies to further reduce the computational cost.

Optimization 1: Vertex order priority based strategy. In vertex order priority
strategy, we assign the vertices with smaller degree have higher priority than
that with larger degree. We observe that the value of (deg(u)k ) is not large for a
vertex u with small degree. Hence, if a vertex u having smaller degree, we can
take less time to detect whether there exists a local k-vertex connected subgraph
for u.
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Theorem 3. Given a vertex u in graph G(V,E), it can be contained in at most
0 for deg(u) < k and 1 + �deg(u)−k

k−1  for deg(u) ≥ k k-VCCs, simultaneously.

Theorem 3 gives the upper bound of number of k-VCCs, that a vertex could
be contained in at the same time. We can see that the vertices with larger degree
can be contained in more different k-VCCs and even larger amount of k-vertex
connected subgraphs. In particular, for a specific vertex u with deg(u) = k,
it can only be contained in at most 1 k-VCC. Recall that the LkVCS method
will take more computational time for the input vertex u with larger vertex
degree, because it will enumerate much more combinations of vertices than that
of small degree to find the local k-vertex connected subgraphs. To avoid visiting
the vertices with larger degree first, we set the vertices with larger degree having
lower priority.

Optimization 2: Non-redundancy based strategy. We observe that if we find the
seed subgraph for every vertex in the network, we will acquire many duplicate
subgraphs or highly overlapping subgraphs. In order to reduce redundance, we
design the non-redundancy based strategy such that for a given vertex, if it has
already been contained in the discovered seed subgraphs of other vertices, there
is no need to find its own seed subgraph. Note that a vertex can be included in
different seed subgraphs, even if it is not processed.

Together with the vertex order priority strategy, we can find seed subgraphs
for the uncovered vertices with smaller degree as soon as possible. Besides,
based on the long-tail theory, the vertices with larger vertex degree are probably
included in the discovered seed subgraphs, which means we do not need to detect
seed subgraphs for these vertices. Thus, making use of these two strategies, we
can find constraint number of seed subgraphs with higher efficiency.

Example 2. We apply the above two strategies in seeding() procedure on the
graph shown in Fig. 2 to identify the seed subgraphs. We rank all the vertices
in G according to their non-decreasing order of their vertex degree denoted as,
v12(3) � v14(3) � . . . � v9(5) � v13(6) � v4(7). The numbers in the brackets
are their vertex degree. We first find the seed subgraph for v12, which is ∅. Then,
we successively visit the vertex according to the vertex priority. For example,
we find the seed subgraph G3 for v14. As G3 contains {v13, v15, v16}, we do not
need to detect the seed subgraphs for these vertices. At last, we identify three
seed subgraphs including G3 for v14, G1 for v1 and G2 for v6.

4.2 Expanding and Merging Seed Subgraphs

In this section, we focus on solving the problem of detecting k-VCCs from the
discovered seed subgraphs. We observe that the k-VCCs do not satisfy the prop-
erty of downward closeness. That is for a k-VCC denoted as G[S],∃S′ ⊆ S, the
induced subgraph G[S′] is not a k-vertex connected subgraph. Thus, we can-
not simply expand the discovered seed subgraphs by adding a series of vertices
adjacent to their neighborhood to obtain the target k-VCCs.
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Menger’s Theorem [8] indicates that a graph is k-vertex connected if and
only if it contains k vertex independent paths between any two vertices. Based
on this relationship between independent path and vertex connectivity, we devise
two algorithmic approaches, Expanding() and Merging(), in which, we could safely
add vertices into the current subgraph and combine different subgraphs to form
a bigger k-vertex connected subgraph, respectively. Next, we detail these two
approaches.

Expanding . We first give some explanations of the notions used here. Given
a graph G(V,E) and a vertex set S ⊆ V, S represents the complement of S in
G, i.e., S = V \S, and δ S denotes the boundary of the induced subgraph G[S],
which means for any vertex v ∈ δ S, there exists a vertex u ∈ nb(v) and u /∈ S.

In Expanding(), we add vertices that are connected to at least k vertices in G[S]
into the current subgraph as shown in Fig. 4. The specific process is as follows.
For each k-vertex connected subgraph G[S] now we have, if there exists vertex
u in δS that is adjacent to at least k vertices in δS, we add every vertex like
this into the current S and update S ∪ u as the new S. We iteratively conduct
this procedure until there is no such vertex in δS that can be added into S.
Expanding() ensures that for each generated subgraph G[S] in the result set G[S],
∀u ∈ V \S,G[S ∪u] is not a k-vertex connected subgraph. Theorem4 guarantees
the correctness of the Expanding() approach.

Theorem 4. Suppose G[S] is a k-vertex connected subgraph. If vertex u is adja-
cent to at least k vertices in δS,G[S ∪ u] is also a k-vertex connected subgraph.

Proof. Theorem 4 can be induced from Menger’s Theorem [8].

Example 3. We use the graph in Fig. 2 as an example to illustrate Expanding().
Assume that we have already obtained the 3-vertex connected subgraph G[S]
where G[S] = G2. We find one of the boundary vertices v11 is adjacent to v4, v6
and v7 in G[S]. Thus, we add v11 into G[S] and G[S ∪ v11] is also a 3-vertex
connected subgraph.

Merging . When the obtained k-vertex connected subgraphs cannot be further
expanded by Expanding(), we expect to combine some of the adjacent subgraphs
together to acquire larger subgraphs with k-vertex connectivity shown in Fig. 5.
Here, we develop Merging() to integrate different k-vertex connected subgraphs
with at least k direct independent paths into a new one.

The process of Merging() is described as bellow. We first detect whether the
input subgraphs in G[S] are k-VCCs. If so, we put these subgraphs into the result
set G[R]. Then, we iteratively merge the subgraphs satisfying the condition in
Theorem 5 that will be detailed later until no subgraphs can be merged. If the
subgraph G[S∪S′] after combined meets the conditions in Corollary 1, we directly
put it into result set G[R], otherwise we put it back the candidate set G[S] for
further processing. In the implementation, we use the disjoint sets structure to
accelerate the merging operation.
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Fig. 5. The process of Merging

Formally, Theorem 5 provides the sufficient condition to guarantee Merging()

is correct. If the sum of the number of overlapping vertices and length-1 inde-
pendent paths between two k-vertex connected subgraphs is more than or equal
to k, they can be combined together.

Theorem 5. Let G(V,E) be a graph, S ⊆ V, S′ ⊆ V and G[S], G[S′] be two k-
vertex connected subgraphs. If the following condition is satisfied, we say G[S∪S′]
is a k-vertex connected subgraph: |S ∩ S′| + min{|δS ∩ δS′|, |δS ∩ δS′|} ≥ k.

Proof. The idea of this proof is similar to that of Theorem4.

Furthermore, based on Theorems 4 and 5, we obtain Corollary 1. In Merging(),
Corollary 1 can be exploited as an early termination condition. That is once
finding some subgraphs which satisfy the conditions in Corollary 1, we can put
these subgraphs into the result set, because it is impossible to be combined
with any other subgraphs. This can significantly reduce the number of subgraph
combining operations.

Corollary 1. Let G[S] be a k-vertex connected subgraph. If the following two
conditions are satisfied, we say G[S] is a k-VCC:
(1) � ∃v ∈ δ(S), |nb(v) ∩ δS| > k;
(2) min{|δS|, |δS|} < k.

Example 4. A running example of Merging() is given using G in Fig. 2. Suppose
we already have three 3-vertex connected subgraphs G1, G2 and G3. We observe
that G3 satisfies the conditions in Corollary 1. That is, v8, v9 and v10 are only
adjacent to one boundary vertex v13 of G3, and min{|δV (G3)|, |δV (G3)|} =
min{1, 3} = 1 < 3. Thus, G3 is a 3-VCC. For G1 and G2, we have that |V (G1)∩
V (G2)| + min{|δV (G1) ∩ δV (G2)|, |δV (G1) ∩ δV (G2)|} = 1 + min{2, 2} = 3 ≥ 3.
Thus, we can merge G1 and G2 together based on Theorem 5.

5 Experiments

We conduct extensive experiments to evaluate the effectiveness and efficiency
of the proposed methods by using a variety of real and synthetic datasets. All
algorithms are implemented in C++. All the experiments are conducted on a
Linux Server with Intel Xeon 3.2 GHz CPU and 64 GB main memory.
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5.1 Datasets and Compared Methods

The statistics of real networks used in the experiments are shown in Table 1.
dmax denotes the maximum vertex degree of G. D is the degeneracy of G in
Definition 5. #C is the number of ground-truth communities. The first Yeast
dataset is a protein-protein interaction network downloaded from BioGRID1.
The other four datasets are networks with ground-truth communities2. We
abbreviate these datasets as YA, AZ, DP, YT and LJ.

Table 1. Statistics of real networks (K = 103 and M = 106)

Network Abbr. |V (G)| |E(G)| dmax D #C

Yeast YA 6.5K 229K 2587 86 –

Amazon AZ 335K 926K 549 6 151K

DBLP DP 317K 1M 343 113 13K

Youtube YT 1.1M 3M 28754 51 8K

LiveJournal LJ 4M 35M 14815 360 287K

We compare our k-VCC with k-CC [2] and k-ECC [5] for effectiveness eval-
uation. Further, we evaluate the following algorithms for efficiency comparison:

– TkVCC: the top-down framework for k-VCC detection shown in Algorithm 1,
discussed in Sect. 3. This is also used as the baseline method.

– BkVCC-Ran: the bottom-up framework for k-VCC detection shown in
Algorithm 2 with random vertex order priority strategy in Sect. 4.1.

– BkVCC-NI: the bottom-up framework for k-VCC detection shown in
Algorithm 2 with non-increasing vertex order priority strategy in Sect. 4.1.

– BkVCC-ND: the bottom-up framework for k-VCC detection shown in
Algorithm 2 with non-decreasing vertex order priority strategy in Sect. 4.1.

5.2 Evaluation on Real Networks

Effectiveness Evaluation. To evaluate the effectiveness of different commu-
nity models, we compare the proposed k-VCC with k-CC [2] and k-ECC [5] on 4
real datasets including AZ, DP, YT and LJ with ground-truth communities [26]
under different types of criteria.

First, we use F -score to measure the accuracy of the detected commu-
nities with regard to the ground-truth communities. Given the discovered
community G[S] and the ground-truth community G[T ], F -score is defined as
F (S, T )=2∗ prec(S,T )∗rec(S,T )

prec(S,T )+rec(S,T ) where prec(S, T ) = |S∩T |
|S| represents the precision

1 thebiogrid.org.
2 http://snap.standford.edu.

https://thebiogrid.org/
http://snap.standford.edu
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Fig. 6. F -score on different real networks
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Fig. 7. Density on different real networks
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Fig. 8. Diameter on different real networks

and rec(S, T ) = |S∩T |
|T | represents the recall. We can see that higher F -score value

means the detected community is more similar with the ground-truth.
In the experiments, for different input k, we detect the k-VCCs by BkVCC-

ND, the k-CC by the method in [2] and the k-ECCs by the method in [5] as
communities, respectively. For each discovered community Si, we compute the
F -score with every ground-truth community Tj of the dataset and choose the
largest F (Si, Tj) as the final F -score, Fi of Si. Further, we use the average value
of all Fi, denote as F to represent the F -score corresponding to a given dataset.
Figure 6 shows the F -scores of the compared methods for different value of k.
We find that the k-VCCs have the highest F -score on AZ, YT and LJ datasets.
This is because in these datasets, they defined the ground-truth communities
based on common interest or function, which is very cohesive. However, the
ground-truth community in DP is defined based on publication venues. The
authors publishing papers in the same conference or journal may be not densely
connected [26]. Thus, we see k-VCCs have the lowest F -score on DP.
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Fig. 9. Runtime on different real networks

Then, we use density and diameter to measure the goodness of the detected
communities. Density is defined as the fraction of the edges that appear between
the vertices to that of all possible edges and diameter is defined as the longest
distance among all shortest paths between vertices in G. Given a community
G[S], the density and diameter of G[S] is denoted dens(G[S]) = 2|E(S)|

|S||S−1| and
diam(G[S]), respectively. The communities are more cohesive when they have
larger density and smaller diameter. Figures 7 and 8 show the density and diam-
eter of the detected communities on different networks. It can be seen that with
the increasing of k, the density becomes larger and the diameter become smaller
for all the methods. Moreover, for the same k value, k-VCC has the best per-
formance. It has the highest density and lowest diameter, that is, the results of
k-VCC are more cohesive than that of k-ECC and k-CC.

Efficiency Evaluation. In this section, we conduct experiments to study the
efficiency of different methods to detect k-VCCs on different real networks.
Figure 9 shows the comparison on overall running time of TkVCC, BkVCC-Ran,
BkVCC-NI and BkVCC-ND for varying parameter k. We can see that the TkVCC

method always runs slowest on all the datasets. This is because that it exploits
the structure of the entire graph to find the minimum vertex cut set. When the
scale of the graph getting larger, it will be very time-consuming. Thus, for large
real network such as LJ in Fig. 9(c), it even cannot finish within the required
time.

On the contrary, BkVCC-ND method runs much faster than BkVCC-Ran and
BkVCC-NI over all the datasets. Recall that in BkVCC-ND, we assign vertices
with smaller vertex degree have higher priority, which reduce the combination
number of the neighbors for a given vertex. When we visit vertices with large
vertex degree, they are very probably having been included in the vertices with
small degree, which reduces the running time a lot. On the other hand, along
with the increasing of parameter k, the running time of these methods first
increase. This is because it needs more time to compute minimum vertex cut for
TkVCC and seed subgraphs for the bottom-up based methods. Then, when the k
value reaches a turning point, the running time begin to decrease. The reason is
that with k becoming larger, more and more vertices are pruned by the k-core
component.
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5.3 Evaluation on Synthetic Networks

We generate a set of synthetic bipartite networks to evaluate the performance of
the selected methods. The number of vertices are balanced in each part of these
bipartite networks. The degree of both parts follow the power-law distribution
with exponent γ and dmax = n/2. We set γ = 2. The vertices in the networks
are linked according to [17].

We evaluate the efficiency and effectiveness of the TkVCC and BkVCC-ND

methods. We set k = 4 for all the situations. Figure 10(a) shows the running
time when varying the number of vertex in the network. We can see that BkVCC-

ND method is much more efficient than TkVCC method, which is consistent with
the results on real datasets. Figure 10(b) shows the F -score of the result of
BkVCC-ND corresponding to that of TkVCC. Since the result of TkVCC are exact
solution, the relative high values of F -score indicates that although the BkVCC-

ND method is heuristic, it could generate results with high quality and hence
proves its effectiveness.
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Fig. 10. Results on synthetic network

5.4 Case Study

We construct an author collaboration network on KDD conference extracted
from the raw DBLP dataset3 for case study. A vertex represents an author, and
an edge between two authors indicates they have co-authored. Figure 11 presents
three 4-VCCs containing professor Jiawei Han. Based on the background knowl-
edge, Fig. 11(a) shows the research group when he worked at SFU. Figure 11(b)
shows his cooperation with the group of his colleague Chengxiang Zhai, when
he began to work at UIUC. And, Fig. 11(c) shows his research group at UIUC

and some very famous professors. In particular, we can find that professor Jian

Pei often cooperates with Jiawei Han. However, if we use 4-ECC, we can only
acquire one community containing Jiawei Han. Thus, we say that the communi-
ties detected by k-VCCs are more reasonable and interpretable, which effectively
reduces the free rider effect.

3 http://dblp.uni-trier.de/xml/.

http://dblp.uni-trier.de/xml/
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Fig. 11. Real examples of 4-VCCs containing Jiawei Han

6 Related Works

Our work relates to two main streams of research, concerning graph connectivity
and component detection, respectively.

Graph connectivity. Graph connectivity has an extricably bound with mini-
mum cut, since the minimum cut contributes to the graph connectivity. A large
number of algorithms have been designed for computing the global minimum con-
nectivity of the whole graphs [9,10,12,21]. Recently, there exists several research
on finding k-edge connected subgraphs, which concern about the local edge con-
nectivity in the subgraphs [1,5,28]. Whereas, in this paper, we focus on the
k-vertex connectivity of subgraphs.

Component detection. The existing component detection methods can be
roughly devided into clique-based [19] and clique-relaxed-based methods. Since
the definition of clique is too strict, the clique-relaxed based methods have
recently drawn a great deal of attentions. It can be classified into the follow-
ing several categories: (1) Distance-based relaxed methods. n-clique is a
maximal subgraph such that the distance of each pair of its vertices is not larger
than n in the whole network [14]. n-clan is an n-clique whose diameter is no
larger than n [16]. n-club is a maximal subgraph whose diameter is no larger
than n [16]. (2) Degree-based relaxed methods. k-plex is defined as a max-
imal subgraph in which each vertex is adjacent to all other vertices except at
most k of them [3]. Similarly, k-core is a maximal subgraph in which each vertex
is adjacent to at least k other vertices of the subgraph. Efficient global search
methods [6,20] and local search method [7] have been developed to discover the
k-core communities or the community k-core containing given entities. Quasi-
clique with a parameter γ is a subgraph with n vertices and γ∗(n2

)
edges [27].

(3) Triangulation-based relaxed methods. DN -graph [23] is a connected
subgraph in which the lower bound of shared neighborhood between any con-
nected vertices is locally maximized. k-truss [13,22] is the largest subgraph in
which every edge is contained in at least (k − 2) triangles within the subgraph.
Based on the limitation of the above methods detailed in Sect. 1, we propose the
k-VCC model, which has high vertex connectivity.
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7 Conclusion

Component detection is a fundamental problem in network analysis and has
attracted intensive interests. Most existing component detection methods suffer
from the low connectivity issue. In this paper, we propose the k-vertex connected
component model, which focuses on the vertex connectivity of networks. We
study the k-VCC detection problem and develop the top-down and bottom-
up frameworks for k-VCC detection. Extensive experimental results on large
real and synthetic networks demonstrate the effectiveness and efficiency of our
proposed approaches.
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6. Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core decomposition in massive
networks. In: ICDE, pp. 51–62 (2011)

7. Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communities in large
graphs. In: SIGMOD, pp. 991–1002 (2014)

8. Diestel, R.: Graph Theory. Graduate Texts in Mathematics. Springer, Heidelberg
(2005)

9. Esfahanian, A.H., Louis Hakimi, S.: On computing the connectivities of graphs
and digraphs. Networks 14(2), 355–366 (1984)

10. Even, S., Tarjan, R.E.: Network flow and testing graph connectivity. SIAM J.
Comput. 4(4), 507–518 (1975)

11. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)
12. Hariharan, R., Kavitha, T., Panigrahi, D., Bhalgat, A.: An o(mn) gomory-hu tree

construction algorithm for unweighted graphs. In: ACM Symposium on Theory of
Computing, pp. 605–614 (2007)

13. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community
in large and dynamic graphs. In: SIGMOD, pp. 1311–1322 (2014)



Effective k-Vertex Connected Component Detection in Large-Scale Networks 421

14. Kargar, M., An, A.: Keyword search in graphs: finding r-cliques. PVLDB 4(10),
681–692 (2011)

15. Lee, C., Reid, F., McDaid, A., Hurley, N.: Detecting highly overlapping community
structure by greedy clique expansion. arXiv preprint arXiv:1002.1827 (2010)

16. Mokken, R.J.: Cliques, clubs and clans. Qual. Quant. 13(2), 161–173 (1979)
17. Molloy, M., Reed, B.: The size of the giant component of a random graph with a

given degree sequence. Comb. Probab. Comput. 7(3), 295–305 (1998)
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