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Collective Personalized Change Classification
With Multiobjective Search

Xin Xia, Member, IEEE, David Lo, Member, IEEE, Xinyu Wang, Member, IEEE, and Xiaohu Yang

Abstract—Many change classification techniques have been pro-
posed to identify defect-prone changes. These techniques consider
all developers’ historical change data to build a global predic-
tion model. In practice, since developers have their own coding
preferences and behavioral patterns, which causes different defect
patterns, a separate change classification model for each developer
can help to improve performance. Jiang, Tan, and Kim refer to
this problem as personalized change classification, and they pro-
pose PCC+ to solve this problem. A software project has a number
of developers; for a developer, building a prediction model not only
based on his/her change data, but also on other relevant develop-
ers’ change data can further improve the performance of change
classification. In this paper, we propose a more accurate technique
named collective personalized change classification (CPCC), which
leverages a multiobjective genetic algorithm. For a project, CPCC
first builds a personalized prediction model for each developer
based on his/her historical data. Next, for each developer, CPCC
combines these models by assigning different weights to these mod-
els with the purpose of maximizing two objective functions (i.e.,
F1-scores and cost effectiveness). To further improve the predic-
tion accuracy, we propose CPCC+ by combining CPCC with PCC
proposed by Jiang, Tan, and Kim To evaluate the benefits of CPCC+
and CPCC, we perform experiments on six large software projects
from different communities: Eclipse JDT, Jackrabbit, Linux
kernel, Lucene, PostgreSQL, and Xorg. The experiment results
show that CPCC+ can discover up to 245 more bugs than PCC+
(468 versus 223 for PostgreSQL) if developers inspect the top 20%
lines of code that are predicted buggy. In addition, CPCC+ can
achieve F1-scores of 0.60–0.75, which are statistically significantly
higher than those of PCC+ on all of the six projects.

Index Terms—Cost effectiveness, developer, machine learning,
multiobjective genetic algorithm, personalized change classifica-
tion (PCC).

ACRONYMS AND ABBREVIATIONS

CC Change classification.
PCC Personalized change classification.
CPCC Collective personalized change classification.
GA Genetic algorithm.
LOC Lines of code.
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NOTATION

Devi ith source developer.
Si Prediction model built on the historical change

data of Devi .
T Prediction model built on target developers his-

torical data.
CPCC(j) The composite confidence score of CPCC for

instance j to be buggy.
CPCC + (j) The composite confidence score of CPCC+ for

instance j to be buggy.
threshold Boundary used to decide whether an instance is

buggy or not.

I. INTRODUCTION

CHANGE classification (CC) aims to precisely identify
the existence of bugs in an individual file-level software

change to help in allocating limited test resources. Kim, White-
head, and Zhang define a change as a set of line ranges that are
added/deleted/modified in one file in a software version control
system commit [1]. A change could be clean if it contains no
bug, and buggy if it contains one or more bugs. A number of
CC methods based on machine learning techniques have been
proposed to build a prediction model from historical change
data stored in software repositories [1]–[6]. These methods have
achieved significant advances in CC by proposing various fea-
tures that can be used to better detect if a change is buggy or
not. These traditional CC techniques combine all developers’
change data to build a global model.

Different developers have their own coding preferences and
behavioral patterns, which cause different defect patterns [5],
[7]. For example, in our Eclipse JDT dataset, 39% of one devel-
oper’s changes related to Boolean assignment are buggy, while
the percentage is only 7% for another developer. If we consider
all developers’ change data and combine them to build a global
prediction model, due to the different defect patterns among dif-
ferent developers, the performance of CC would be hurt. Thus,
it is necessary to build PCC models.

To address the above need, Jiang, Tan, and Kim propose
personalized change classification (PCC), which builds sepa-
rate prediction models for different developers to predict de-
fects [7]. To solve this problem, Jiang, Tan, and Kim propose
PCC, weighted PCC, and PCC+. For each developer, PCC builds
a separate prediction model based on the developer’s historical
data. Weighted PCC also builds a separate prediction model for
each developer; however, the model is built from a training data
that consist of the developer’s own historical data (50%) and
other developer historical data (50%). PCC+ is a metaclassifier
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that selects either PCC, weighted PCC, or CC to predict if a
change is buggy or not. PCC+ has been shown to outperform
PCC, weighted PCC, and CC.

Considering that a typical software project has a number of
developers, for a developer, building a prediction model not
only based on his/her change data, but also on other relevant
developers’ change data can improve performance. One diffi-
culty is how other developers’ change data can be used. Tradi-
tional CC methods build a single model using all developers’
change data, which result in poorer performance since develop-
ers have different defect patterns. On the other hand, PCC only
uses each developer’s own change data without incorporating
other developers’ data. Weighted PCC merges each developer’s
own change data with other developers’ change data to train a
model. However, the other developers’ change data are chosen
randomly, and thus, irrelevant data can be included, which can
degrade the quality of the learned model.

In this paper, we propose a new technique named collective
personalized change classification (CPCC). CPCC builds col-
lective models that combine personalized models built from dif-
ferent developers’ change data using multiobjective GA. More
specifically, CPCC first builds a personalized prediction model
for each developer based on his/her own change data. Next, for
each developer, CPCC combines the personalized models into
a collective model by assigning different weights to the models
with the purpose of maximizing two objective functions (i.e.,
F1-scores and cost effectiveness1). Each of these weights mea-
sures the relevancy of a developer data to the target developer.
CPCC uses multiobjective GA to learn a good set of personal-
ized weights for each developer. Finally, weighted predictions
from these models are aggregated together to identify potentially
buggy changes. To further improve classification performance,
we propose CPCC+, which combines CPCC and PCC.

To evaluate CPCC+ and CPCC, we use two widely used
metrics that were also used to evaluate PCC [7]: cost effective-
ness [8]–[15] and F1-score [1], [8], [13]–[17]. Cost effectiveness
evaluates prediction performance given a certain cost threshold,
e.g., a certain percentage of code to inspect. In our case, we
inspect a certain percentage of the number of LOCs in changes.
For example, when a team has limited resource to inspect po-
tentially buggy LOC, it is crucial that manually inspecting the
top percentages of lines that are likely to be buggy can help
developers discover as many bugs as possible. We use the same
cost effectiveness setting as Jiang, Tan, and Kim [7], which mea-
sures the number of bugs that can be discovered by inspecting
the top 20% LOCs based on the confidence levels that a CC
technique outputs (NofB20). In addition, we also evaluate our
method using the F1-score [1], [8], [16], [17], which is a sum-
mary measure that combines both precision and recall. F1-score
is a good evaluation metrics when there is enough test resource
to inspect all predicted buggy changes. A higher F1-score means
that a method can detect more buggy changes (true positives)
and reduce the time wasted on inspecting clean changes.

We perform experiments on six large software projects from
different communities: Eclipse JDT, Jackrabbit, Linux kernel,

1For more details of cost effectiveness, see Section IV.

Lucene, PostgreSQL, and Xorg. The experiment results show
that CPCC+ can discover up to 245 more bugs than PCC+
(468 versus 223 for PostgreSQL) if developers inspect the top
20% LOC that are predicted buggy. On average across the six
datasets, CPCC+ can discover 122 more bugs than PCC+ (371
versus 249 on average), which improves PCC+ by 49.0%. In
addition, our approach improves the F1-scores by 0.02–0.04
compared to PCC+, which are statistically significantly higher
than those of PCC+ on all of the six projects. We address the
following research questions:

RQ1: How effective is CPCC+ and CPCC? How much improve-
ment can they achieve over the state-of-the-art method?
On average across the six projects, CPCC+ improves PCC+
by 0.02 and 122 in terms of F1 and NofB20 scores, respec-
tively. In most cases, the improvements are statistically sig-
nificant.

RQ2: How effective are CPCC+, CPCC, and PCC+ when dif-
ferent percentages and number of LOC are inspected?
We find that CPCC+ detects more defects than PCC+ for a
wide range of percentages of LOC to inspect.

RQ3: How effective are CPCC+, CPCC, and PCC+ when dif-
ferent underlying classifiers are used?

We find that CPCC+ outperforms PCC+ in ADTree, Naive
Bayes, and Logistic Regression. Also, CPCC+ with ADTree as
the underly classifier achieves the best performance.

RQ4: How much time does it take for CPCC+ and CPCC to
run?

We find that the model building and prediction time for
CPCC+ and CPCC are reasonable. On average, CPCC+ and
CPCC need about 4.449 and 4.200 s to train a model, and 0.011
and 0.010 s to predict the label of an instance using the model.

The main contributions of this paper are as follows:
1) We propose CPCC, which utilizes the advantages of multi-

objective GAs to combine different developers’ change
data. Based on CPCC, we propose CPCC+ to further im-
prove the performance.

2) We compare our method with PCC+ on 6 large software
projects. The experiment results show that our method can
achieve significant improvement over PCC+.

The remainder of this paper is organized as follows. We de-
scribe some preliminary materials on CC and a motivating ex-
ample in Section II. We describe the high-level architecture
of CPCC in Section III. We elaborate the CPCC approach de-
tails in Section IV. We elaborate CPCC+ approach details in
Section V. We present our experiment setup and results in Sec-
tions VI and VII. We discuss additional points on the benefits and
limitations of our approach in Section VIII. We present related
work in Section IX. We conclude and mention future work in
Section X.

II. PRELIMINARIES

In this section, we first introduce the basic concepts of CC in
Section II-A. Next, we describe the feature used in this paper
in Section II-B. Then, we present the usage scenario of our
proposed tool in Section II-C. Finally, we present the motivation
of building a compositional model in Section II-D.
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A. Change Classification

CC aims to predict if a particular file involved in a com-
mit (i.e., a change) is buggy or not. Traditional CC techniques
typically follow the following steps.

1) Training Data Extraction: For each developer’s change,
label it as buggy or clean by mining a project’s revision
history and bug tracking system [7], [18]. Buggy change
means the change contains bugs (one or more), while
clean change means the change has no bug. To identify
which change is buggy, we follow the methods proposed
by previous works [7], [18]. We first identify bug-fixing
changes from the commit logs by searching the commit
logs with the keyword “fix.” We assume the lines which
are modified in the bug-fixing changes are the locations
of a bug. Next, we use the command git blame, which
annotates each line in a source code file with the most
recent change that modified that line. We then intersect
the locations of the bug with the git blame annotations to
find the bug-introducing changes (aka., buggy changes).

2) Feature Extraction: Extract the values of various features
from each change. Many different features have been used
in past CC studies.

3) Model Learning: Build a model by using a classifica-
tion algorithm based on the labeled changes and their
corresponding features. In this paper, by default, we use
ADTree [19] to construct the prediction model.

4) Model Application: For a new change, extract the values
of various metrics. Input these values to the learned model
to predict whether the change is buggy or clean.

PCC modifies the above process by constructing not only one
model during the model learning step, but rather a number of
personalized models each trained using a developer historical
data. In this work, similar to PCC, we still create multiple mod-
els each for a particular developer. However, each model is now
a collective one and takes into consideration not only the devel-
oper historical data, but also the historical data of other relevant
developers.

B. Features

In this paper, we consider three types of features, i.e., charac-
teristic vector, word vector, and metadata. These features were
used by Jiang, Tan, and Kim in their PCC work [7].

1) Characteristic Vector: A characteristic vector stores the
number of times each node type appears in the abstract syntax
tree (AST) of a code. Given a change, we build two characteristic
vectors: one for the source code file before the change and one
for the source code file after the change. We take the difference
in the characteristic vector of the code prior to the change and
the code after the change. Each element in the characteristic
vector is a feature. Notice that the number of features in the
characteristic vector are large because there are a large number
of nodes in the AST.

Figs. 1 and 2 present an example of source code before and
after the change. Suppose we only use if, for, and while node
types for characteristic vectors. The characteristic vector of the
code shown in Fig. 1 is 〈0, 2, 0〉. And the characteristic vector

Fig. 1. Example of source code before the change.

Fig. 2. Example of source code after the change.

of the code shown in Fig. 2 is 〈1, 2, 0〉. We then subtract the two
characteristic vectors to obtain the difference, i.e., the difference
for the code before and after the change is 〈1, 0, 0〉.

2) Word Vector: Multiset of word tokens that appear in the
commit message and source code of a change. Each word token
in the multiset is a feature. We use the Snowball2 stemmer in
Weka to convert the strings into word vectors and represent them
as the form of bags of words. Notice that the number of word
features are large due to the large number of terms in the commit
message.

3) Metadata: In addition to characteristic vector and word
vector, we also use a number of metadata features: commit
hour (0, 1, 2, . . ., 23), commit day, cumulative change count,
cumulative buggy change count, source code file/path names,
and file age (in days).

C. Usage Scenario

In this paper, we aim to build a prediction tool which identifies
the buggy changes early on. The goal is to highlight defect-prone
changes to improve the quality of source code. In practice, due
to limited time budget and tight project schedule, developers are
likely to inspect only a limited number of potentially buggy LOC
to identify defect-prone changes. In such a case, it is crucial that
manually inspecting the top percentages of lines that are likely to
be buggy can help developers discover as many bugs as possible.

The following scenarios illustrate the benefits of our tool.
Scenario 1—Without Tool: Xin joins a new software project team
as a developer. The release date for the project is approaching,
so the project manager asks Xin to inspect the code to identify
as many buggy code as possible. One problem for Xin is that
he does not know where to begin to inspect the code, and he
decides to inspect the code from the first file to the last file in the
project. When Xin has inspected just about 20% of the source
code, the project needs to be released. Xin only finds 20 bugs,
and 180 bugs remain in the released product. Most customers
encounter many bugs when using various features of the product
and are extremely unhappy.

Scenario 2—With Tool: Xin joins a new software project team
as a developer. The release date for the project is approaching,
so the project manager asks Xin to inspect the code to identify
as many buggy code as possible. Xin first mines historical data
from git, uses our tool to identify likely buggy changes, ranks

2http://snowball.tartarus.org/



XIA et al.: COLLECTIVE PERSONALIZED CHANGE CLASSIFICATION WITH MULTIOBJECTIVE SEARCH 1813

TABLE I
F1-SCORE AND COST EFFECTIVENESS (NOFB20) SCORES OF VARIOUS MODELS

FOR THE TWO TARGET DEVELOPERS (DEV 1 AND DEV 2) FROM ECLIPSE JDT

Models Target Dev 1 Target Dev 2

F1-score NofB20 F1-score NofB20

P 0.55 44 0.63 39
O1 0.48 23 0.60 33
O2 0.43 61 0.46 33
O3 0.29 25 0.49 46
O4 0.19 35 0.28 26
O5 0.49 38 0.26 32
O6 0.13 40 0.26 29
O7 0.26 56 0.14 24
O8 0.26 51 0 14
All 0.54 35 0.43 26

The first row corresponds to the performance of the model built using the target developer’s
own change data. The remaining nine rows corresponds to the performance of the model
built using the remaining eight developers’ change data.

the changes from high to low confidence scores, and inspects the
code in the changes one by one. When Xin inspects about 20% of
the source code, the project needs to be released. Xin finds 180
bugs, and 20 remains in the released product. Only a minority
of the customers encounter one or a few bug when using several
features of the product, and only a few are mildly unhappy.

D. Motivating Example

The effectiveness of our collective personalized CC technique
relies on one primary hypothesis:

A model built from a relevant developer’s historical data can poten-
tially be used to predict buggy changes of a target developer.

Here, we try to validate this hypothesis. To do so, we select
ten developers from Eclipse JDT. We pick two developers as tar-
get developers (Dev 1 and Dev 2), and we investigate whether
a personalized model learned from each of the remaining eight
developers (we refer them as source developers) can be used to
predict buggy changes made by the target developers. We use
ADTree to learn models from each of the eight developers—we
denote these models as O1 , O2 , . . . , O8 . We also combine all
of the eight developers’ data to train a global model All. Next,
we use the same algorithm to learn a model from the target
developer own data—we denote this model as P . We then test
the models on the changes made by Dev 1 and Dev 2, and we
measure the quality of these models by computing F1-score and
cost effectiveness using tenfold cross-validation setup. More
specifically, for each target developer, we divide the change
data of the target developer into ten equal-sized folds, and
we choose nine folds of the data to train a classifier and eval-
uate the performance of a model in the remaining fold; the
above process iterates ten times and the aggregate scores across
the ten iterations are reported.

Table I presents the F1-score and cost effectiveness (NofB20)
of various models for the two target developers. We notice that
the global model All does not perform well; its NofB20 scores
are lower than the other models. For Dev 1, the F1-score and
NofB20 are 0.55 and 44, respectively, when the model built

using his/her own change data (i.e., P ) is used. Interestingly,
we notice that other models can achieve similar or even better
performance than P . In particular, using model O2 , the F1-score
and cost effectiveness are 0.43 and 61, respectively. Notice that
O2’s cost effectiveness score is even higher than that of the
target classifier. For Dev 2, we also observe a similar result. For
example, when O3 is used the cost effectiveness score is 46,
which is higher than that of the target classifier P . Thus, if we
find a way to better use other developer data, the performance
of CC can potentially be further improved.

From Table I, we also notice that the same model (i.e., O1–O8)
has different performance when evaluated on different target
developers’ change data. For example, the F1-score and cost
effectiveness for O3 are 0.29 and 25 when evaluated on target
developer 1’s change data, which are lower than many other
models. We note that the F1-score and cost effectiveness for
O8 are 0 and 14, respectively, when it is evaluated on target
developer 2’s change data, which are much lower than the other
models. We manually check the results, and we find that when
we build a prediction model by using developer 8’s change data,
it will predict all the changes in the target developer 2’s change
data as clean C since it could not identify any true positive,
its precision, recall, and F1-score are all zeroes. However, the
same classifier could achieve F1-score and cost effectiveness of
up to 0.49 and 46 when evaluates on target developer 2’s change
data, which are higher than many other models. We refer to this
phenomenon as target difference.

Moreover, in Table I, we notice that even for the same target
developer, different models exhibit different performance. For
example, for target developer 1, O2 , O7 , and O8 achieve much
better cost effectiveness scores than the remaining models. For
target developer 2, O1 , O2 , O3 , and O5 achieve much better cost
effectiveness scores than the remaining models. We refer to this
phenomenon as source difference.

We also check the F1-score and cost effectiveness for the
other eight developers by using the same setting as we do for
the target developers 1 and 2. And we find the phenomenon of
target difference and source difference still exist. For example,
when we predict the buggy changes for developer 4, we find the
prediction model built on developer 2’s change data (i.e., O2)
shows good performance, i.e., it achieves an F1-score and cost
effectiveness of 0.54 and 57, respectively. But the prediction
model built on developer 5’s change data (i.e., O5) shows bad
performance, i.e., it achieves an F1-score and cost effectiveness
of 0.21 and 27, respectively. Also, when we predict the buggy
changes for developer 4, prediction models built on developer
1, 2, or 6’s change data (i.e., O1 , O2 , or O6) achieve much
better performance than the other models. And when we predict
the buggy changes for developer 7, prediction models built on
developer 3 or 8’s change data (i.e., O3 or O8) achieve much
better performance than the other models.

Due to the phenomenon of target difference and source differ-
ence, typically no single model always perform best on different
target developers’ change data. Thus, a collective model which
utilizes the advantages of different models can help to reduce
the effect of target difference and source difference and fur-
ther improve the performance of personalized defect prediction.
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Fig. 3. Overall architecture of CPCC.

To achieve this goal, in this paper, we build a collective model
using our proposed technique CPCC.

III. CPCC ARCHITECTURE

Fig. 3 presents the architecture of our CPCC framework.
CPCC contains two phases: model building phase and prediction
phase. In the model building phase, CPCC builds a collective
model for each target developer, which is learned from historical
change data of source developers and the target developer. In
the prediction phase, we apply this model to predict if each of
the target developer’s new changes is defective or not.

Our framework takes as input historical changes from various
source developers and the target developer with known labels
(i.e., buggy or clean). Next, it extracts the values of various
features from these changes (Step 1). In this paper, we use the
features as shown in Section II-B. These features were also
previously used by Jiang, Tan, and Kim for PCC+ [7]. Then,
our framework builds multiple personalized prediction models
based on the extracted feature values (Step 2). In total, we have
(n + 1) prediction models, where the first n models are built
from the source developers’ changes, and the final model is
built from the target developer’s changes. Next, CPCC searches
for the near-optimal composition of these models by leveraging
a multiobjective GA (Step 3). The algorithm picks a composite
(or collective) model that maximizes F1-score and cost effec-
tiveness (NofB20) when it is used to predict the labels of the
target developer’s historical changes (Step 4). The near-optimal
composition model is a machine learning classifier which as-
signs labels (in our case: buggy or clean) to a change based on
its feature values.

After the model is constructed, in the prediction step, it is
then used to predict whether each of the target developer’s new
changes is defective or not. For each new change, we first extract
the values of the same set of features as those considered in
the model building step (Step 5). We then input the values of
these features into the learned model (Step 6). It will output a
prediction result which is one of the following labels: buggy or
clean (Step 7).

IV. CPCC APPROACH

In this section, we elaborate how CPCC builds a collective
model for a target developer in a software project which corre-
sponds to Steps 2–4 in Fig. 3. We also elaborate how the model
can be used to predict if an unknown change is buggy or clean
(Step 5 in Fig. 3).

Assuming n source developers (i.e., other developers in the
project), CPCC first builds a total of (n + 1) prediction models
(or classifiers3): for a source developer Devi, {1 ≤ i ≤ n}, it
builds a model Si from his/her historical change data; for the
target developer Target, it builds the (n + 1)th model T from
Target’s historical change data. CPCC then searches for a near-
optimal collective model containing these (n + 1) models along
with a set of weights and a threshold to decide if a change is
buggy or not. We refer to this collective model as the CPCC
classifier. A multiobjective GA is used to learn the best values
for these weights and the threshold. It will search for a solution
(i.e., a collective model) in a search space based on a set of
objective functions. The best solution is then outputted.

In Section IV-A, we formally define the CPCC classifier
and how it can be used to predict if a change is clean or buggy.
We formally present the search space of all possible combina-
tions of n + 1 classifiers to construct the CPCC classifier in
Section IV-B. Section IV-B also introduces the objective func-
tions. We elaborate the detailed procedure of how multiobjective
GA is used to learn the CPCC classifier in Section IV-C.

A. CPCC Classifier

A CPCC classifier integrates the n + 1 prediction models
(classifiers): S1 , . . . , Sn and T . Given a change j, a model Si

outputs a confidence score that indicates the likelihood of j to be
buggy, which is denoted as Scorei(j). Similarly, we denote the
confidence score of the target classifier T to j as Scoret(j). The
range of a confidence score is from 0 to 1. A CPCC classifier
computes a weighted sum of all confidence scores assigned by

3We use the term model and classifier interchangably in this paper.
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the (n + 1) classifiers and predicts whether j is buggy or not
based on a threshold score. Definition 1 provides a mathematical
definition of the CPCC classifier.

Definition 1 (CPCC Classifier): Consider n source classi-
fiers {S1 , S2 , . . . , Sn} and a target classifier T . A CPCC clas-
sifier composes these (n + 1) classifiers and assigns a label to
an instance j, denoted as Label(j), as follows:

Label(j) =

{
1 (i.e., buggy),

0 (i.e., clean),

if CPCC(j) ≥ threshold

Otherwise

where

CPCC(j) =
∑n

i=1 αi × Scorei(j) + αt × Scoret(j)
LOC(j)

. (1)

In the above equation, Scorei(j) is the confidence score out-
putted by the ith source classifier for instance j to be buggy,
α1–αn are the weights of the n source classifiers, Scoret(j)
is the confidence score outputted by the target classifier T for
instance j to be buggy, αt is the weight of the target classifier,
threshold is the boundary used to decide whether an instance
is buggy or not, and LOC(j) is the number of LOCs for in-
stance j. CPCC(j) is the composite confidence score for in-
stance j to be buggy, and we set it as a linear combination of
the confidence scores outputted by the n source classifiers and
the target classifier T . Instance j is classified as buggy if its
composite confidence score CPCC(j) is larger than or equal to
threshold; otherwise, it is classified as clean. Note that α1–αn ,
αt , and threshold are the parameters of a CPCC classifier. Thus,
we denote a CPCC classifier as (

⋃
i = 1n{(αi, Si)}, (αt, T ),

threshold), where each Si is a source classifier, αi is the weight
of Si , T is a target classifier, αt is the weight of T , and threshold
is the defect boundary.

We include LOC in (1) to maximize the number of buggy
changes found given a budget (e.g., inspecting only 20% of the
number of LOC). If two changes have equal likelihood to be
buggy and one of them has a higher LOC, to find as many bugs
as possible within the budget, we need to pick the change with
the lower LOC.

Note that the CPCC score may be larger than 1—since the
numerator of formula (1) may be larger than 1, and the denom-
inator of formula (1) may be equal to 1. This may make the
output of CPCC noninterpretable since the range of values that
it can take is very large. Still, since the CPCC score is only
an intermediary score, we believe it is okay for the score to
be noninterpretable. If an interpretable score is needed, we can
normalize the output of the CPCC formula by dividing it with
the sum of the weights (i.e., α1 + · · · + αn + αt). If we also
normalize the threshold in the same way, this modification will
not affect the inferred labels.

Example: Consider a change j which has 100 LOCs. Suppose
we have three source classifiers and one target classifier. Let the
confidence scores of the three source classifiers and the target
classifier for j be 0.4, 0.5, 0.8, and 0.9, respectively. Also, let the
weights of the source classifiers and the target classifiers be 0.3,
0.7, 0.7, and 0.8, respectively. From the above, the composite

confidence score for j is

0.3 × 0.4 + 0.7 × 0.5 + 0.7 × 0.8 + 0.8 × 0.9
100

= 0.0175.

If the bug boundary is less than or equal to 0.0175, then CPCC
predicts j as buggy, else it predicts it as clean.

B. Search Space and Objective Functions

1) Search Space: The search space of all possible compo-
sitions corresponds to the various assignments of values to the
weights α1 , α2 , . . . , αn of the source classifiers, the weight αt

of the target classifier, and the bug boundary threshold. Each
weight is a real number from zero to one and threshold is a
positive real number. We refer to each composition as a solu-
tion in the search space, and it comprises of a set of parameters
Par = {α1 , α2 , . . . , αn , αt , threshold}.

2) Objective Functions: An objective function measures the
quality of a solution in a search space. We have two objective
functions that we try to maximize:

F1(Par)

cost(Par). (2)

In the above equation, F1(Par) and cost(Par) are the F1-
score and the cost effectiveness (NofB20) achieved by a CPCC
classifier with parameters Par on a training data. The details on
how F1-score and cost effectiveness are computed are given in
Section VI-C. Notice that we choose the objective functions as
F1 and cost effectiveness, since these two evaluation metrics are
widely used in defect prediction literature [1], [8]–[12], [16],
[17], and we would like our constructed model to not only
achieve good F1-score but also have good cost effectiveness
score.

Since we have two different objective functions to be maxi-
mized, we find a set of Pareto optimal solutions (cf., [17], [20])
defined in Definition 2.

Definition 2 (Dominance and Pareto optimal solutions): A
set of parameters Pari dominates another set of parameters Parj
if and only if the values of the two objective functions (i.e.,
F1-score and cost effectiveness) satisfy

F1(Pari) > F1(Parj ) and cost(Pari) ≥ cost(Parj )

or

F1(Pari) ≥ F1(Parj ) and cost(Pari) > cost(Parj ).

A set of parameters Pari is Pareto optimal if and only if no
other set of parameters dominates it in the feasible region, i.e.,
no other set of parameters Parj exists that would improve the
F1-score, without worsening cost effectiveness scores, and vice
versa.

There would be a number of solutions which are Pareto opti-
mal. We further reduce these solutions by selecting the following
subset

ParSetselected = argmax
Pari ∈Pareto

F1(Pari) × cost(Pari). (3)

In other words, we select solutions from the Pareto optimal set
which has the highest product of F1-score and cost effectiveness
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scores. We randomly pick a solution from this set as the near-
optimal solution.

C. Detailed Procedure

We employ a multiobjective GA [20] to learn the weights
(α1–αn and αt) and the threshold (threshold). In the multiob-
jective GA, solutions in a search space are modeled as chro-
mosomes. A chromosome contains a set of genes where a gene
corresponds to a part of a solution (i.e., a value of a weight, or
a value of the threshold, in our setting). The multiobjective GA
begins with an initial set of random chromosomes, referred to
as the initial population. Next, the population evolves in a num-
ber of iterations, and in each iteration, it generates subsequent
generations, where each generation is a population of chromo-
somes. To create the next generation, multiobjective GA will do
three operations: selection, crossover, and mutation. Selection
operation refers to the process that selects parent chromosomes
according to their objective function scores (F1-score and cost
effectiveness); thus, the parent chromosomes that have high ob-
jective function scores have high probability to survive in the
next generation. Crossover operation refers to the process that
merges the genes of two parent chromosomes to form offspring
chromosomes according to a given probability. Mutation refers
to the process that the genes of offspring chromosomes would
be modified according to a given probability. More details about
multiobjective GA can be found in [20].

There are many variants of the multiobjective GA; in this pa-
per, we use an algorithm named vNSGA-II, which is proposed
by Deb, Pratap, Agarwal, and Meyarivan [21]. In our setting,
each chromosome is represented as an array of (n + 2) double;
(n + 1) double represent the weights (α1–αn and αt), and the
last double represents the threshold. We use the Roulette wheel
selection procedure [22], [23] as the selection operator. It as-
signs a high probability to a chromosome with higher objective
function scores. For the crossover operator, we use the simu-
lated binary crossover (SBX) operator [24]. For the mutation
operator, we use the polynomial mutation (PM) operator [25].
SBX and PM attempt to simulate the offspring distribution of
binary-encoded bit-flip crossover and mutation on real-valued
variables, respectively.

Algorithm 1 presents the detailed steps to train a CPCC clas-
sifier. For the ith source developer’s historical data Di , we first
build a classifier Si based on instances in Di (lines 9–11). Sim-
ilarly, we build a classifier T using the target developer’s data
Dt alone (line 12). Then, we create an initial population (i.e.,
P ) containing PopSize chromosomes (i.e., solutions) that are
chosen randomly, and we record the set of nondominated solu-
tions (i.e., the solutions with nondominated F1-score and cost
effectiveness scores on Dt) among the solutions in P (lines 13
and 14). Remember that each solution in P is a set of weights
{α1 , α2 , . . . , αn}, αt , and a threshold. Next, we evolve the pop-
ulation in MaxGen iterations; for each iteration, we perform
the selection, crossover, and mutation operations on the current
population and record the set of nondominated solutions so far
(lines 16–22). After the iterations complete, we find the set of
Pareto optimal solutions from the set of nondominated solutions

Algorithm 1: The Model Building Phase of CPCC.

1: CPCC({D1 ,D2 , . . . , Dn}, Dt , PopSize, MaxGen)
2: Input:
3: {D1 ,D2 , . . . , Dn}: Historical data of source

developers
4: Dt : Historical data of the target developer
5: PopSize: Number of chromosomes in a population
6: MaxGen: Maximum number of generations
7: Output: Composite CPCC Classifier (

∑n
i=1 αiSi , αtT ,

threshold).
8: Method:
9: for all Di ⊆ {D1 ,D2 , . . . , Dn} do

10: Build a classifier Si by using ith source developer’s
historical data;

11: end for
12: Build a classifier T by using the target developer’s

historical data Dt ;
13: Let P = Initial population with PopSize members;
14: Evaluate P and record the set of nondominated

solutions (i.e., the solutions with nondominated
F1-score and cost effectiveness scores on Dt) so far;

15: Let curGen = 0
16: while curGen < MaxGen do
17: Let P

′
= select(P );

18: P
′
= crossover(P

′
);

19: P
′
= mutation(P

′
);

20: Evaluate P
′
and record the set of non dominated

solutions so far;
21: curGen = curGen + 1;
22: end while
23: Find the set of Pareto optimal solutions;
24: Output (

∑n
i=1 αiSi , αtT , threshold) which achieves

the highest product of F1-score and cost effectiveness
scores in the set of Pareto optimal solutions.

(line 23). The algorithm returns a set of α1 , α2 , . . . , αn , αt , and
threshold values, which achieves the highest product of F1-score
and cost effectiveness in the set of Pareto optimal solutions. If
there are more than one of such near-optimal set, we randomly
pick one of them.

D. Complexity Analysis

In our CPCC, we use a multiobjective GA (i.e., vNSGA-
II [20], [26]–[28]) to find good values of some parameters (i.e.,
the weights and the threshold), and we use ADTree [19] as
the default underlying classifier. Suppose we have M objective
functions and a population size of N ; then, the time complex-
ity of vNSGA-II is O(M × N 2). Suppose our dataset have P
features, and Q number of instances, the time complexity of
ADTree [19] is O(P × Q2). Thus, the total time complexity of
CPCC is O(M × N 2 + P × Q2).

V. CPCC+: A COMPOSITE APPROACH

To further improve classification performance, we propose
CPCC+ which combines CPCC and PCC. Similar to CPCC,



XIA et al.: COLLECTIVE PERSONALIZED CHANGE CLASSIFICATION WITH MULTIOBJECTIVE SEARCH 1817

CPCC+ also has two phases: model building phase and pre-
diction phase. In the model building phase, for each target de-
veloper, CPCC+ builds a prediction model using CPCC and
another one using PCC. In the prediction phase, for a new un-
labeled change, CPCC+ predicts the change as clean or buggy
using the two prediction models built in the model building
phase. It first obtains the confidence scores of an instance to
be buggy that are outputted by the two prediction models. It
then normalizes the scores produced by CPCC and PCC so that
their scores are comparable. It does this by adjusting the CPCC
confidence score for instance j to be buggy as follows:

CPCCAdj(j) =
CPCC(j)

CPCC(j) + threshold
. (4)

Note that we only normalize the CPCC scores [using (4)].
We do not normalize the PCC scores since they are already
normalized. They are probabilities outputted by a classification
algorithm and their scores are already between zero and one.
For CPCC scores, they can be larger than one, and thus, we
normalize them.

Next, based on the adjusted CPCC confidence score and the
PCC confidence score, it chooses the prediction with the highest
confidence as the final prediction.

More formally, for a new change, new, let us denote the
larger of CPCCAdj’s and PCC’s confidence of new to be buggy
as Scoremax

buggy(new), and the larger of CPCCAdj’s and PCC’s
confidence of new to be clean4 as Scoremax

clean(new). Based on
these notations, CPCC+ assigns a label to new as follows:

Label(new) =

{
1 (i.e., buggy),

0 (i.e., clean),

if CPCC+(new) ≥ 0
Otherwise

where

CPCC+(new) =
Scoremax

buggy(new) − Scoremax
clean(new)

LOC(new)
. (5)

In the above equation, CPCC + (new) is CPCC+’s confi-
dence that new is buggy, and LOC(new) is the number of LOCs
in change new. The LOC does not determine if a change is
predicted as buggy or not. We use LOC to help rank the pre-
dicted buggy changes. For two changes with similar likelihood
to be buggy, we will rank the one with less LOC first so as to
maximize the number of bugs found given an inspection budget.

A. Complexity Analysis

As shown in Section IV-D, the total time complexity of CPCC
is O(M × N 2 + P × Q2). In CPCC+, we combine CPCC and
PCC. Suppose our dataset have P features and Q number of
instances, the time complexity of PCC using ADTree is O(P ×
Q2). Thus, the total time complexity of CPCC+ is O(M ×
N 2 + P × Q2).

4The confidence of new to be clean is one minus the confidence of new to be
buggy.

TABLE II
STATISTICS OF COLLECTED DATA

Project Language LOC Time % Buggy

Eclipse Java 1.5 M 2006-06-07 – 2006-01-24 23.0%
Jackrabbit Java 589 K 2007-09-13 – 2009-09-15 46.4%
Linux C 7.3 M 2008-01-23 – 2008-07-15 21.0%
Lucene Java 828 K 2010-09-17 – 2011-06-30 31.0%
PostgreSQL C 289 K 1998-07-08 – 2010-02-14 40.9%
Xorg C 1.1 M 2003-07-02 – 2009-07-24 23.1%

VI. EXPERIMENT SETUP

In this section, we describe the settings that we follow to
evaluate the effectiveness of our proposed CPCC and CPCC+.
We first present our dataset, cross-validation settings, and ex-
perimental environment. We then present our parameter setting
and evaluation metrics.

A. Datasets, Cross-Validation Settings, and Environment

We use the same datasets as Jiang, Tan, and Kim [7], which
contain changes from six open-source software projects: Eclipse
JDT, Jackrabbit, Linux, Lucene, PostgreSQL, and Xorg. Table II
presents the statistics of Jiang, Tan, and Kim’s data. The columns
correspond to the programming language (Language), LOCs
(LOC), the time period of collected changes (Time), and the
percentage of buggy changes (% Buggy Changes). Jiang, Tan,
and Kim selected top ten developers from each project. For each
of them, they collected 100 consecutive changes from the time
period listed in Table II. Thus, in total, there are 1000 changes
for each project.

Jiang, Tan, and Kim have shown that PCC+ outperforms CC,
PCC, and weighted PCC; thus, in this work, since we use the
same dataset, we only need to compare our technique CPCC+
and CPCC with PCC+. We perform tenfold cross validation 100
times and take the average performance to reduce the training set
selection bias. For each tenfold cross validation, we randomly
split the data into ten subsets. The random splitting is performed
differently for each of the tenfold cross validations. Cross vali-
dation is a standard evaluation setting, which is widely used in
software engineering studies; cf., [1], [4], [7], [9], [29]–[32].

Note that our CPCC+ and CPCC use a multiobjective GA
(i.e., vNSGA-II) to optimize the values of some parameters
(e.g., the weights and the threshold). To do this step, we cre-
ate a validation set from a training data. For each training fold
and each target developer j, we separate j’s change data in the
training data of that fold to create a validation set. Next, we
use the multiobjective GA to optimize the parameters for this
validation set. Furthermore, since multiobjective GA exhibits
some randomness [20], [21], for each of the 100 tenfold cross
validations, we run the multiobjective GA ten times and use
the average performance score. This follows the recommenda-
tion made by Liu, Khoshgoftaar, and Seliya [33] and Canfora
et al. [17] to evaluate random algorithms in software engineer-
ing context. PCC+ is a deterministic algorithm and thus there is
no need to perform these repetitions.
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The experimental environment is a Windows 8, 64-bit,
Intel(R) Core(TM) 1.60-GHz laptop with 4-GB RAM.

B. Parameter Setting

Our multiobjective GA vNSGA-II [34] accepts some param-
eters. The parameters of vNSGA-II that we use in this study are
as follows.

1) Population size: We set a moderate population size with
PopSize = 200.

2) Number of generations: We set the maximum number of
generations MaxGen = 1000.

3) Crossover operator: We use an SBX operator with prob-
ability pc = 0.6.

4) Mutation operator: We use a PM operator with probability
pm = 0.05.

CPCC+, CPCC, and PCC+ use an underlying classifier. By
default, we use the same classifier that was used by Jiang, Tan,
and Kim to evaluate PCC+ [7], namely ADTree [19]. We use
the implementation of ADTree that comes with Weka [35].

C. Evaluation Metrics

We use two evaluation metrics: cost effectiveness and F1-
score. These two measures are useful in different situations.
Cost effectiveness is useful when there are limited resources
to inspect a limited amount of code due to a hectic schedule of
development. F1-score is useful when there is sufficient resource
to inspect all of the predicted buggy changes.

1) Cost Effectiveness: Cost effectiveness is a widely used
evaluation metric for defect prediction [7]–[12], which evaluates
prediction performance given a cost limit. In our setting, the cost
is the LOC to inspect. We use the same cost effectiveness setup
as the one used by Jiang, Tan, and Kim [7]. They measure
the number of buggy changes that a developer can identify by
inspecting the top 20% LOC with the highest confidence to be
buggy. They refer to this number as NofB20. Consider different
projects have different numbers of bugs; we also compute a
percentage of the total number of bugs (PofB20) by normalizing
the NofB20 scores .

To compute NofB20 and PofB20, we sort changes in the test
data based on the confidence levels that a CC technique outputs
for each of them. A change with a higher confidence level is
deemed to be more likely to be buggy by the CC technique. We
then simulate a developer that inspects these potentially buggy
changes one at a time. As the changes are inspected one at a
time, we accumulate the number of LOC that are inspected and
the number of buggy changes identified. We stop the process
when 20% of the LOC have been inspected and output the
number of buggy changes that are identified. This number is
the NofB20 score. A higher cost effectiveness score represents
that a developer can detect more bugs when inspecting a limited
number of LOC.

2) F1-Score: There are four possible outcomes for a change
in the test data: A change can be classified as buggy when it
truly is buggy (true positive, TP); it can be classified as buggy
when it is actually clean (false positive, FP); it can be classified
as clean when it is actually buggy (false negative, FN); or it

can be classified as clean and it truly is clean (true negative,
TN). Based on these possible outcomes, precision, recall and
F1-score are defined as follows.

Precision: The proportion of changes that are correctly la-
beled as buggy among those labeled as buggy:

P = TP/(TP + FP). (6)

Recall: The proportion of buggy changes that are correctly
labeled:

R = TP/(TP + FN). (7)

F1-score: A summary measure that combines both precision and
recall—it evaluates if an increase in precision (recall) outweighs
a reduction in recall (precision):

F = (2 × P × R)/(P + R). (8)

There is a tradeoff between precision and recall. One can
increase precision by sacrificing recall (and vice versa). In our
framework, we can sacrifice precision (recall) to increase recall
(precision), by manually lowering (increasing) the value of the
threshold parameter in Definition 1. The tradeoff causes difficul-
ties to compare the performance of several prediction models
by using only precision or recall alone [36]. For this reason,
we compare the prediction results using F1-score, which is a
harmonic mean of precision and recall. This follows the setting
used in many CC and defect prediction studies [1], [7], [16] and
various software analytics studies [37], [38].

VII. EXPERIMENT RESULTS

In this section, we present our experiment results which an-
swer a number of research questions. We present these questions
and their answers in the following subsections.

A. RQ1: How Effective is CPCC+ and CPCC? How Much
Improvement Can They Achieve Over the State-of-the-Art
Method?

Motivation: We need to compare CPCC+ and CPCC with the
state-of-the-art CC method. Answer to this research question
would shed light to the extent CPCC+ and CPCC advances the
state of the art.

Approach: In a recent work, Jiang, Tan, and Kim have demon-
strated that PCC+ outperforms a number of other CC meth-
ods [7]. Thus, to answer this research question, we compare
CPCC+ and CPCC with PCC+ and CC. We compute NofB20,
PofB20, and F1-score to evaluate the performance of these two
approaches on the six projects. Also, in this paper, we use 100
times tenfold cross validation to evaluate each of the methods,
and for each approach (i.e., CPCC+, CPCC, PCC+, and CC),
at the end of each of the tenfold cross validation, it will out-
put an F1 and PofB20 score. We apply Wilcoxon signed-rank
test [40] on the 100 paired data to test whether the improve-
ment of CPCC+ and CPCC over PCC+ and CC is significant.
We also use Bonferroni correction [41] to counteract the results
of multiple comparisons. We consider that the improvement is
statistically significant if the p-value is less than 0.05 (i.e., at the
confidence level of 95%) after Bonferroni correction.
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TABLE III
CLIFF’S DELTA AND THE EFFECTIVENESS LEVEL [9]

Cliff’s Delta (|δ |) Effectiveness Level

|δ | < 0.147 Negligible
0.147 ≤ |δ | < 0.33 Small
0.33 ≤ |δ | < 0.474 Medium
|δ | ≥ 0.474 Large

We also use Cliff’s delta (δ) [39], which is a nonparametric
effect size measure that quantifies the amount of difference be-
tween two groups. In our context, we use Cliff’s delta to compare
CPCC+ and CPCC to the baseline approaches. For example,
when compared the F1-score of CPCC+ with PCC+, the two
groups are the F1-scores of CPCC+ and PCC+. The delta values
range from −1 to 1, where δ = −1 or 1 indicates the absence
of overlap between two approaches (i.e., all values of one group
are higher than the values of the other group, and vice versa),
while δ = 0 indicates that the two approaches are completely
overlapping. Table III describes the meaning of different Cliff’s
delta values and their corresponding effectiveness level [39].
Notice that different from Wilcoxon signed-rank test which is
used to test whether the improvements of CPCC+ and CPCC
over the baseline approaches are statistically significant, Cliff’s
delta is used to test whether the improvements of CPCC+ and
CPCC over the baseline approaches are of substantially large
amount. If the effect size is medium or large, we consider the
improvement to be substantial.

Results: Table IV presents the experiment results comparing
CPCC+ and CPCC with PCC+ and CC. The experiment results
are a little different than what were reported in [7]. This is the
case as the tenfold cross validation used in our experiments
randomly partitions the dataset into ten sets. Due to the random-
ness in the process, the resultant sets are different than those
produced by the random partitioning performed in Jiang, Tan,
and Kim’s experiments. Also, differently from Jiang, Tan, and
Kim’s experiment setup, we run tenfold cross validation 100
times and record the average experiment results.

From Table IV, we can note that the F1, NofB20, and PofB20
scores of CPCC vary from 0.58 to 0.74, 197 to 651, and 48%
to 63%, respectively. On average, across the six projects, CPCC
can achieve F1, NofB20, and PofB20 scores of 0.64, 353, and
56%, respectively. In terms of NofB20, CPCC improves PCC+
and CC by 20–229 and 34–284, respectively. In terms of PofB20,
CPCC improves PCC+ and CC by 6–32% and 11–40%, respec-
tively. In terms of F1 score, CPCC improves PCC+ and CC by
0.01–0.02 and 0.00–0.13, respectively. On average, CPCC im-
proves PCC+ in terms of NofB20, PofB20, and F1 score by 104,
15%, and 0.01 and improves CC in terms of NofB20, PofB20,
and F1 score by 139, 21%, and 0.08, respectively.

We also notice that the F1, NofB20, and PofB20 scores of
CPCC+ vary from 0.60 to 0.75, 205 to 678, 52% to 66%, respec-
tively. On average, across the six projects, CPCC can achieve F1,
NofB20, and PofB20 scores of 0.65, 371, and 59%, respectively.
In terms of NofB20, CPCC+ improves CPCC, PCC+, and CC
by 5–37, 20–229, and 44–300, respectively. In terms of PofB20,

CPCC+ improves CPCC, PCC+, and CC by 1–4%, 9–34%, and
14–42%, respectively. In terms of F1 score, CPCC+ improves
CPCC, PCC+, and CC by 0.01–0.02, 0.02–0.04, and 0.01–0.15,
respectively. On average, CPCC+ improves PCC+ in terms of
NofB20, PofB20, and F1 score by 122, 24%, and 0.02, respec-
tively, and improves CC in terms of NofB20, PofB20, and F1
score by 157, 24%, and 0.09, respectively. Moreover, we notice
that for NofB20 and PofB20, the performance gap between CC
and PCC+ is smaller than the performance gap between CPCC+
and PCC+. On the other hand, for F1 score, the performance
gap between CC and PCC+ is larger than the performance gap
between CPCC+ and PCC+.

Moreover, we notice CPCC+ and CPCC are more stable than
PCC+ and CC. From Table IV, we notice that the standard
deviations for CPCC+ and CPCC are from 0.00 to 0.01 and 0%
to 1% in terms of F1 and PofB20 scores, while these values for
PCC+ and CC are from 0.01 to 0.03 and 3% to 4% in terms of
F1 and PofB20 scores, respectively.

To investigate whether the improvements of CPCC+ over
CPCC, PCC+, and CC are statistically significant and the effec-
tive sizes are large, we also compute the p-value in Wilcoxon
signed-rank test and Cliff’s Delta. Table V presents the p-values
and Cliff’s delta of comparing CPCC+ results with those of
PCC+. Notice that in our study, we use Bonferroni correction
to counteract the results of multiple comparisons; thus, the
p-values are adjusted. We notice that the improvements of
CPCC+ over PCC+ are statistically significant on all of the six
projects in terms of F1-score and PofB20 at the 95% confidence
level. Moreover, the effect sizes are mostly large.

Table VI presents the p-values and Cliff’s delta of comparing
CPCC+ results with those of CC. The p-values are adjusted by
using Bonferroni correction. We notice that the improvements
of CPCC+ over CC are statistically significant on all of the six
projects in terms of F1-score and PofB20 at the 95% confidence
level. Moreover, the effect sizes are mostly large.

Table VII presents the p-values and Cliff’s delta of compar-
ing CPCC+ results with those of CPCC. The p-values are ad-
justed by using Bonferroni correction. We notice that in terms
of PofB20, the improvements of CPCC+ over CPCC are statis-
tically significant at 95% confidence level. In terms of F1-score,
except for project Eclipse, CPCC+ statistically significantly out-
performs CPCC. Moreover, the effect sizes are mostly large.

Table VIII presents the p-values and Cliff’s delta of com-
paring CPCC results with those of PCC+. The p-values are
adjusted by using Bonferroni correction. We notice that the im-
provements of CPCC over PCC+ are statistically significant
on all of the six projects in term of F1-score and PofB20
at the 95% confidence level. Moreover, the effect sizes are
mostly large.

Table IX presents the p-values and Cliff’s delta of comparing
CPCC results with those of CC. The p-values are adjusted by
using Bonferroni correction. We notice that the improvements
of CPCC over CC are statistically significant on all of the six
projects in term of F1-score and PofB20 at the 95% confidence
level. Moreover, the effect sizes are mostly large.

On average across the six projects, CPCC+ improves PCC+
by 0.02 and 122 in terms of F1 and NofB20 scores, respectively.
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TABLE IV
EXPERIMENT RESULTS OF CPCC+ AND CPCC COMPARED WITH PCC+ AND CC

Project Method Precision Recall F1-score NofB20 PofB20

Eclipse CPCC+ 0.52±0.01 0.76±0.00 0.62±0.01 299±6 52%±0%
CPCC 0.57±0.00 0.66±0.01 0.61±0.01 294±7 51%±0%
PCC+ 0.52±0.01 0.74±0.01 0.60±0.01 222±26 39%±4%

CC 0.43±0.02 0.74±0.02 0.51±0.02 185±26 32%±4%
Jackrabbit CPCC+ 0.64±0.00 0.91±0.00 0.75±0.00 678±5 60%±0%

CPCC 0.68±0.00 0.83±0.00 0.74±0.00 651±5 58%±0%
PCC+ 0.64±0.01 0.91±0.01 0.75±0.01 452±33 40%±3%

CC 0.71±0.00 0.77±0.01 0.74±0.01 434±30 39%±3%
Linux CPCC+ 0.52±0.01 0.71±0.01 0.60±0.01 205±3 66%±1%

CPCC 0.53±0.01 0.64±0.01 0.58±0.01 197±3 63%±1%
PCC+ 0.48±0.02 0.70±0.02 0.56±0.02 177±13 57%±4%

CC 0.57±0.04 0.37±0.03 0.45±0.03 161±12 52%±4%
Lucene CPCC+ 0.48±0.01 0.79±0.01 0.60±0.01 341±5 54%±1%

CPCC 0.52±0.00 0.68±0.01 0.59±0.00 304±5 48%±1%
PCC+ 0.51±0.01 0.71±0.01 0.58±0.01 255±21 40%±3%

CC 0.67±0.02 0.37±0.03 0.48±0.02 199±20 31%±3%
PostgreSQL CPCC+ 0.54±0.01 0.82±0.01 0.66±0.01 468±8 65%±1%

CPCC 0.56±0.00 0.77±0.01 0.64±0.00 452±8 63%±1%
PCC+ 0.54±0.01 0.78±0.01 0.63±0.01 223±30 31%±4%

CC 0.68±0.02 0.51±0.02 0.58±0.02 168±26 23%±3%
Xorg CPCC+ 0.52±0.00 0.79±0.00 0.66±0.00 235±3 57%±1%

CPCC 0.57±0.00 0.75±0.00 0.65±0.00 220±3 53%±1%
PCC+ 0.64±0.01 0.57±0.01 0.64±0.01 157±14 38%±3%

CC 0.72±0.02 0.53±0.02 0.61±0.02 136±14 33%±3%
Average. CPCC+ 0.65 371 59%

CPCC 0.64 353 56%
PCC+ 0.63 249 41%

CC 0.56 214 35%

The results are in the form of mean±standard deviation (std). The highest and lowest results for
each dataset are in bold and italic, respectively.

TABLE V
P-VALUE AND CLIFF’S DELTA OF COMPARING CPCC+ RESULTS WITH THOSE OF PCC+

Projects F1-score PofB20

p-value Cliff’s Delta Effectiveness Level p-value Cliff’s Delta Effectiveness Level

Eclipse 1.01e−5 0.37 Medium 1.32e−1 5 1 Large
Jackrabbit 1.32e−1 5 0.98 Large 1.32e−1 5 1 Large
Linux 5.10e−1 5 0.75 Large 5.10e−1 5 0.75 Large
Lucene 2.35e−1 3 0.76 Large 1.32e−1 5 1 Large
PostgreSQL 1.32e−1 5 1 Large 1.32e−1 5 1 Large
Xorg 5.84e−1 1 0.6014 Large 1.32e−1 5 1 Large

In most cases, the improvements are statistically significant and
the effective sizes are large.

B. RQ2: How Effective Are CPCC+, CPCC, and PCC+ When
Different Percentages and Number of LOC Are Inspected?

Motivation: By default, we set the percentage of LOC to
inspect as 20%. In this RQ, we also investigate the performance
of CPCC+, CPCC, and PCC+ when different percentages
of LOC are inspected. Additionally, we also investigate the
effectiveness of CPCC+, CPCC, and PCC+ when a fixed budget
is specified, i.e., an absolute number of LOC to inspect. Answer
to this research question can verify whether CPCC+ and CPCC
still improve PCC+ for other cost settings.

Approach: To answer this research question, we plot cost ef-
fectiveness graphs that show the percentages of bugs that can be

detected by inspecting different percentages of LOC. Moreover,
we also compute the area under the curve (AUC) in these graphs.
In our graphs, we denote the percentage of LOC to inspect as p,
and the PofB score as PofB; then, the AUC value is computed by

AUC =
∫

PofB × p dp. (9)

Results: Fig. 4 presents the cost effectiveness graphs for Eclipse
JDT, Jackrabbit, Linux, Lucene, PostgreSQL, and Xorg. We
can note that inspecting 20% of the LOC, CPCC+ could
identify more than 50% of the defects in all of the six projects.
We also notice that CPCC+ is better than PCC+ for a wide
range of percentages of LOC to inspect. For Eclipse JDT and
Xorg, the percentage range for which CPCC+ achieves the
best performance are wide, i.e., from around 1% to 95%. For
PostgreSQL, the percentage range for which CPCC+ achieves
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TABLE VI
P-VALUE AND CLIFF’S DELTA OF COMPARING CPCC+ RESULTS WITH THOSE OF CC

Projects F1-score PofB20

p-value Cliff’s Delta Effectiveness Level p-value Cliff’s Delta Effectiveness Level

Eclipse 1.32e−1 5 1 Large 1.32e−1 5 1 Large
Jackrabbit 1.22e−1 2 0.66 Large 1.32e−1 5 1 Large
Linux 1.32e−1 5 1 Large 1.32e−1 5 1 Large
Lucene 1.32e−1 5 1 Large 1.32e−1 5 1 Large
PostgreSQL 1.32e−1 5 1 Large 1.32e−1 5 1 Large
Xorg 1.32e−1 5 0.96 Large 1.32e−1 5 1 Large

TABLE VII
P-VALUE AND CLIFF’S DELTA OF COMPARING CPCC+ RESULTS WITH THOSE OF CPCC

Projects F1-score PofB20

p-value Cliff’s Delta Effectiveness Level p-value Cliff’s Delta Effectiveness Level

Eclipse 1 0.11 Negligible 1.32e−1 5 1 Large
Jackrabbit 1.32e−1 5 0.85 Large 1.32e−1 5 1 Large
Linux 1.50e−6 0.31 Small 1.32e−1 5 1 Large
Lucene 1.32e−1 5 0.75 Large 1.32e−1 5 1 Large
PostgreSQL 1.32e−1 5 1 Large 1.32e−1 5 1 Large
Xorg 0.2852 0.15 Negligible 1.32e−1 5 1 Large

TABLE VIII
P-VALUE AND CLIFF’S DELTA OF COMPARING CPCC RESULTS WITH THOSE OF PCC+

Projects F1-score PofB20

p-value Cliff’s Delta Effectiveness Level p-value Cliff’s Delta Effectiveness Level

Eclipse 2.15e−6 0.39 Medium 1.32e−1 5 1 Large
Jackrabbit 1.2e−1 4 0.78 Large 1.32e−1 5 1 Large
Linux 4.73e−13 0.67 Large 1.32e−1 5 1 Large
Lucene 6.30e−6 0.40 Medium 1.32e−1 5 1 Large
PostgreSQL 1.32e−1 5 0.77 Large 1.32e−1 5 1 Large
Xorg 1.06e−9 0.55 Large 1.32e−1 5 1 Large

TABLE IX
P-VALUE AND CLIFF’S DELTA OF COMPARING CPCC RESULTS WITH THOSE OF CC

Projects F1-score PofB20

p-value Cliff’s Delta Effectiveness Level p-value Cliff’s Delta Effectiveness Level

Eclipse 1.32e−1 5 1 Large 1.32e−1 5 1 Large
Jackrabbit 5.69e−4 0.30 Small 1.32e−1 5 1 Large
Linux 1.32e−1 5 1 Large 1.32e−1 5 1 Large
Lucene 1.32e−1 5 1 Large 1.32e−1 5 1 Large
PostgreSQL 1.32e−1 5 1 Large 1.32e−1 5 1 Large
Xorg 1.32e−1 5 0.96 Large 1.32e−1 5 1 Large

the best performance are wide, i.e., from around 1% to 80%. For
Jackrabbit and Lucene, the percentage range for which CPCC+
achieves the best performance are from around 1% to 70%. For
Linux, the percentage range for which CPCC+ achieves the
best performance is narrower, i.e., from around 1% to 34%.

Our proposed approaches (i.e., CPCC and CPCC+) and PCC+
show similar performance in the lower percentages of LOC to
inspect (i.e., less than 5%), and PCC+ performs better than

both CPCC+ and CPCC when inspecting more than 95% of
the number of LOC. The reasons of these observations are: 1)
Buggy changes that can be identified when inspecting very low
percentages of LOCs (e.g., less than 5%) are likely to be easy
cases that can be detected equally well by CPCC, CPCC+, and
PCC+. 2) Also, we note that as we increase the amount of LOC
inspected, the rate of performance improvement that CPCC and
CPCC+ gain decreases. This is the case since both CPCC and
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Fig. 4. Cost effectiveness graphs for (a) Eclipse JDT, (b) Jackrabbit, (c) Linux, (d) Lucene, (e) PostgreSQL, and (f) Xorg.

CPCC+ penalize large changes that cover many LOCs [see the
denominators of (1) and (7)]. These large changes are likely to
be listed last (if they have the same confidence scores as other
small changes). To include these large changes into the list of
successfully detected buggy changes, we need to spend much
inspection budget. This causes the performance improvement
of CPCC at the latter end of the curves to taper off. In practice,
developers would not inspect more than 95% of the number of
LOC due to limited project budget and tight project schedule,
and both CPCC and CPCC+ perform better than PCC+ in a wide
range of percentages of LOC to inspect.

Table X presents the area under PofB curve (AUC) values for
CPCC+ and CPCC compared with PCC+. On average across
the six projects, CPCC+ achieves AUC value to 0.74, which im-
proves CPCC and PCC+ by 0.04 and 0.10, respectively. More-
over, CPCC+ shows better AUC values than PCC+ on five out
of six projects. And in Linux, we notice that the AUC value for
PCC+ (0.78) is better than CPCC+ (0.72). As shown in Fig. 4,
in Linux, PCC+ achieves better performance than CPCC+ when
developers inspect more than 35% of LOCs.

CPCC+ detect more defects than PCC+ for a wide range of
percentages of LOC to inspect.
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TABLE X
AUC SCORES FOR CPCC+ AND CPCC COMPARED TO THOSE OF PCC+

Projects CPCC+ CPCC PCC+

Eclipse 0.72 0.69 0.59
Jackrabbit 0.78 0.75 0.70
Linux 0.72 0.69 0.78
Lucene 0.71 0.66 0.63
PostgreSQL 0.75 0.72 0.48
Xorg 0.73 0.70 0.65
Average. 0.74 0.70 0.64

The highest and lowest AUC scores for each
dataset are in bold and italic, respectively.

TABLE XI
F1 AND POFB20 SCORES FOR DIFFERENT UNDERLYING CLASSIFIERS

Project Methods F1-score PofB20

AD. NB LR AD. NB LR

Eclipse CPCC+ 0.62 0.52 0.56 52% 49% 49%
CPCC 0.61 0.52 0.55 51% 45% 45%
PCC+ 0.60 0.47 0.54 39% 37% 35%

Jackrabbit CPCC+ 0.75 0.71 0.70 60% 57% 53%
CPCC 0.74 0.70 0.72 58% 55% 53%
PCC+ 0.75 0.69 0.71 40% 31% 23%

Linux CPCC+ 0.60 0.44 0.48 66% 65% 56%
CPCC 0.58 0.42 0.46 63% 59% 52%
PCC+ 0.56 0.43 0.48 57% 55% 54%

Lucene CPCC+ 0.60 0.47 0.52 54% 49% 48%
CPCC 0.59 0.45 0.56 48% 43% 42%
PCC+ 0.58 0.44 0.53 40% 19% 22%

PostgreSQL CPCC+ 0.66 0.57 0.60 65% 69% 73%
CPCC 0.64 0.57 0.58 63% 65% 69%
PCC+ 0.63 0.57 0.59 31% 40% 43%

Xorg CPCC+ 0.66 0.59 0.63 57% 56% 57%
CPCC 0.65 0.59 0.60 53% 51% 50%
PCC+ 0.64 0.54 0.59 38% 34% 31%

AD = ADTree, NB = Naive Bayes, LR = Logistic Regression. The best results
for each underlying classifier are highlighted in bold.

C. RQ3: How Effective Are CPCC+, CPCC, and PCC+ When
Different Underlying Classifiers Are Used?

Motivation: By default, we set the underlying classifier of
CPCC+, CPCC, and PCC+ as ADTree. In this RQ, we investi-
gate the performance of CPCC+, CPCC, and PCC+ with other
underlying classifiers. Answer to this research question can ver-
ify whether CPCC+ and CPCC still improve PCC+ for different
underlying classifiers.

Approach: To answer this research question, we compare
the performance of CPCC and PCC+ with two other underlying
classifiers, i.e., Naive Bayes and Logistic Regression [36]. These
two underlying classifiers are also widely used in the software
engineering literature [1], [7], [8], [16], [17], [42], [43]. We also
apply Wilcoxon signed-rank test [40] on the paired data to test
whether the improvements of CPCC+ over CPCC and PCC+
with different underlying classifiers are significant. We also use
Bonferroni correction [41] to counteract the effect of multiple
comparisons.

Results: Table XI presents the experiment results of CPCC+,
CPCC, and PCC+ with ADTree, Naive Bayes, and Logistic

TABLE XII
MODEL BUILDING TIME AND PREDICTION TIME FOR CPCC+,

CPCC, AND PCC+ (IN SECONDS)

Projects Model Building Prediction

CPCC+ CPCC PCC+ CPCC+ CPCC PCC+

Eclipse 4.552 4.107 9.390 0.013 0.011 0.012
Jackrabbit 3.541 3.143 6.448 0.013 0.011 0.010
Linux 5.296 5.130 13.287 0.011 0.010 0.021
Lucene 3.241 3.097 5.817 0.009 0.009 0.008
PostgreSQL 6.038 5.908 12.598 0.009 0.010 0.008
Xorg 4.026 3.817 9.457 0.009 0.010 0.008
Average. 4.449 4.200 9.500 0.011 0.010 0.011

Regression. The results demonstrate that CPCC+ outperforms
CPCC and PCC+ for each of the three underlying classifiers. In
other words, the benefits of CPCC+ are not limited to a specific
underlying classifier. Bonferroni correction test over the mul-
tiple p-values shows the improvements of CPCC+ over CPCC
and PCC+ using Naive Bayes and Logistic Regression, as under-
lying classifiers are statistically significant at 95% confidence
level in terms of F1-score and PofB20.

Also, comparing across the three underlying classifiers, we
find that CPCC+ using ADTree as the underlying classifier
achieves the best performance. We also investigate whether the
improvements of CPCC+ using ADTree as the underlying clas-
sifier are significant over the other variants of CPCC+, CPCC,
and PCC+ (e.g., CPCC+ using Naive Bayes as the underlying
classifier, CPCC using Logistic Regression as underlying clas-
sifier), and Bonferroni correction test over the multiple p-values
shows that the improvements of CPCC+ using ADTree as the
underlying classifier over other variants of CPCC+, CPCC, and
PCC+ are statistically significant at 95% confidence level in
terms of F1-score and PofB20.

CPCC+ outperforms PCC+ in ADTree, Naive Bayes, and
Logistic Regression. Also, CPCC+ with ADTree as the underly
classifier achieves the best performance.

D. RQ4: How Much Time Does It Take for CPCC+ and CPCC
to Run?

Motivation: The efficiency of CPCC+ and CPCC would affect
its practical usage. Thus, in this research question, we investigate
the time efficiency of CPCC+ and CPCC.

Motivation: To address this research question, we report the
model building and prediction time. Model building time refers
to the time it takes to convert a training data into a CPCC+ or
CPCC classifier. Prediction time refers to the time it takes for a
CPCC+ or CPCC classifier to predict the label of a change. We
compare the model building and prediction time of CPCC+ and
CPCC with those of PCC+.

Results: Table XII presents the model building and prediction
time for each of the six projects. We notice that the model build-
ing and prediction time of CPCC+ and CPCC are reasonable,
e.g., on average, we need about 4.449 and 4.200 s to train a model
and 0.011 and 0.010 s to predict the label of an instance using
the model. Notice that the model does not need to be updated all
the time. A trained model can be used to label many changes.
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The training time of CPCC+ is shorter than that of PCC+. The
prediction time of CPCC+ is almost the same as PCC+.

From Table VII, we notice that the model building time for
CPCC+ is less than PCC+. CPCC+ combines CPCC and PCC,
while PCC+ combines PCC and CC (i.e., a global model built
on all of the changes in the training set). The difference of the
model building time of CPCC+ and PCC+ must then be caused
by the difference in the model building time of CPCC and CC.

The average model building time for CC across the six
projects is 9.186 s, which is twice the model building time for
CPCC (i.e., 4.200 s). In CC, a global ADTree classifier is built
by analyzing all of the changes in the training set. In CPCC,
for each developer, we build an ADTree classifier by analyzing
only the developer’s own changes in the training set. The model
building time for constructing multiple ADTree classifiers built
on subsets of the training set (which are of small sizes) is less
than the time needed to build an ADTree classifier from all
changes in the training set.

The model building and prediction time for CPCC+ and
CPCC are reasonable. Also, the model building time for CPCC+
and CPCC are less than that of PCC+.

VIII. DISCUSSION

A. Precision Versus Recall

Our approach is meant to be a recommendation tool. The
goal is to highlight defect-prone changes to improve the quality
of source code. For such setting, recall (its ability to find
defect-prone changes) is more important than precision. In
terms of precision, for three out of the six datasets, our CPCC+
does not perform as well as PCC+ proposed by Jiang, Tan, and
Kim; however, in terms of recall, CPCC+ perform either better
than (for five datasets) or as good as (for one dataset) PCC+.
Neither our approach nor PCC+ is ready for full automation yet
(i.e., automatic defect-prone change prediction without human
intervention) since the precisions of these approaches are still
relatively low.

CPCC+ takes the maximum adjusted confidence scores out-
putted by CPCC and PCC and use it as a final score. With this
optimistic heuristic, more changes will be labeled as buggy. This
strategy sacrifices a little precision to gain more recall. The sac-
rifice in precision is substantially less than the gain in recall, i.e.,
CPCC+ average precision is 3.24% lower than that of PCC+,
and CPCC+ average recall is 8.44% higher than that of PCC+.

Since in our study, recall is more important than precision. In
this section, we also consider other evaluation metrics such as
F2 and F4 scores. We define the Fβ score as

Fβ = (1 + β2) × precision × recall
β2 × precision + recall

. (10)

We set β = 2 and 4 to assign more weights to recall.
Table XIII presents the F2 and F4 scores for CPCC+ and CPCC
compared with PCC+. We notice on average across the six
projects, CPCC+ achieves the F2 and F4 scores of 0.73 and
0.78, respectively, which outperforms CPCC by 0.04 and 0.07,
and PCC+ by 0.04 and 0.06 in terms of F2 and F4 scores,
respectively.

TABLE XIII
F2 AND F4 SCORES FOR CPCC+ AND CPCC COMPARED WITH PCC+

Projects Methods F2 F4

Eclipse CPCC+ 0.70 0.74
CPCC 0.64 0.65
PCC+ 0.68 0.72

Jackrabbit CPCC+ 0.84 0.89
CPCC 0.79 0.82
PCC+ 0.84 0.89

Linux CPCC+ 0.66 0.70
CPCC 0.61 0.63
PCC+ 0.64 0.68

Lucene CPCC+ 0.70 0.76
CPCC 0.64 0.67
PCC+ 0.66 0.69

PostgreSQL CPCC+ 0.74 0.80
CPCC 0.72 0.75
PCC+ 0.72 0.76

Xorg CPCC+ 0.72 0.77
CPCC 0.71 0.74
PCC+ 0.58 0.57

Average. CPCC+ 0.73 0.78
CPCC 0.69 0.71
PCC+ 0.69 0.72

The highest and lowest results for each
dataset are in bold and italic, respectively.

TABLE XIV
F1 AND POFB20 SCORES OF CPCC+ COMPARED WITH THOSE

OF PCC+ FOR THE 50-FOLD CROSS-VALIDATION SETTING

Projects Methods F1-score PofB20

Eclipse CPCC+ 0.62±0.01 52%±1%
PCC+ 0.60±0.02 39%±3%

Jackrabbit CPCC+ 0.74±0.01 59%±1%
PCC+ 0.73±0.01 41%±0%

Linux CPCC+ 0.59±0.01 67%±1%
PCC+ 0.55±0.02 57%±3%

Lucene CPCC+ 0.60±0.01 55%±1%
PCC+ 0.58±0.01 41%±2%

PostgreSQL CPCC+ 0.66±0.02 66%±1%
PCC+ 0.63±0.01 31%±1%

Xorg CPCC+ 0.66±0.00 56%±1%
PCC+ 0.57±0.02 37%±2%

Average. CPCC+ 0.65 59%
PCC+ 0.61 41%

B. Fifty-Fold Cross Validation

In the previous section, we use tenfold cross validation to
evaluate the performance of CPCC+. Here, we also investigate
the performance of CPCC+ with 50-fold cross validation. Ta-
ble XIV presents the F1 and PofB20 scores of CPCC+ compared
with those of PCC+ following the 50-fold cross-validation
setting. We notice that the F1 and PofB20 scores of CPCC+
and PCC+ in the 50-fold cross-validation setting are almost the
same as the corresponding scores in the tenfold cross-validation
setting. Table XV presents the p-values and Cliff’s delta of
comparing CPCC+ results and those of PCC+ for the 50-fold
cross-validation setting. Notice that in our study, we use Bonfer-
roni correction to counteract the results of multiple comparisons,
and thus, the p-values are adjusted. From the results, we notice
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TABLE XV
P-VALUES AND CLIFF’S DELTA OF COMPARING CPCC+ RESULTS WITH THOSE OF PCC+ FOR THE 50-FOLD CROSS-VALIDATION SETTING

Projects F1-score PofB20

p-value Cliff’s Delta Effectiveness Level p-value Cliff’s Delta Effectiveness Level

Eclipse 3.01e−5 0.39 Medium 1.32e−1 5 1 Large
Jackrabbit 1.32e−1 5 0.99 Large 1.32e−1 5 1 Large
Linux 5.68e−1 4 0.71 Large 1.32e−1 5 0.82 Large
Lucene 2.38e−1 4 0.72 Large 1.32e−1 5 1 Large
PostgreSQL 1.32e−1 5 1 Large 1.32e−1 5 1 Large
Xorg 4.12e−1 0 0.64 Large 1.32e−1 5 1 Large

TABLE XVI
F1 AND POFB20 SCORES OF CPCC+ COMPARED WITH THOSE OF CPCC+single

Projects Methods F1-score PofB20

Eclipse CPCC+ 0.62±0.01 52%±0%
CPCC+single 0.61±0.01 50%±2%

Jackrabbit CPCC+ 0.75±0.00 60%±0%
CPCC+single 0.72±0.02 56%±2%

Linux CPCC+ 0.60±0.01 66%±1%
CPCC+single 0.58±0.02 64%±2%

Lucene CPCC+ 0.60±0.01 54%±1%
CPCC+single 0.60±0.01 53%±1%

PostgreSQL CPCC+ 0.66±0.01 65%±1%
CPCC+single 0.65±0.01 61%±1%

Xorg CPCC+ 0.66±0.00 57%±1%
CPCC+single 0.64±0.01 55%±1%

Average. CPCC+ 0.65 59%
CPCC+single 0.63 57%

that the improvement of CPCC+ over PCC+ is statistically
significant, and in most of the cases, the effect size is large.

C. Multiobjective Versus Single Objective

Notice that in our CPCC+, we use a multiobjective GA (e.g.,
NSGA II) to tune the parameters, and we select the parame-
ters from the set of Pareto optimal solutions. In this section, we
also investigate the performance of CPCC+ by using a single-
objective GA (i.e., a simple GA [22], [23]) to tune the pa-
rameters. The objective function for the single-objective GA is
max F1(par) × cost(Par), and we use the same settings (i.e.,
population size, number of generations, crossover operator, and
mutation operator) as the settings of the multiobjective GA. We
denote CPCC+ with single-objective GA as CPCC+single.

Table XVI presents the F1 and PofB20 scores of CPCC+
compared with those of CPCC+single. On average across the six
projects, CPCC+single achieves an F1 and PofB20 score of 0.63
and 57%, which are lower than those of CPCC+. Table XVII
presents the p-value and Cliff’s delta of comparing CPCC+ and
CPCC+single. Notice the p-values are adjusted by using Bonfer-
roni correction. In terms of F1-score, we notice that CPCC+
statistically significantly outperforms CPCC+single on five out
of the six projects, and the effect sizes are medium or large
on five out of the six projects too. And in terms of PofB20
score, we notice that CPCC+ statistically significantly outper-
forms CPCC+single on all the six projects, and the effect sizes
are medium or large on all the six projects too.

D. Longitudinal Data Setup

To investigate whether our tool can be used to solve the prob-
lem in the same setting as the one in practice, we performed
an experiment using a longitudinal data setup [44], [45]. We
first sorted the changes in the order they are submitted and
split them into 11 nonoverlapping windows of equal sizes. The
process then proceeds as follows: First, in fold 1, we train us-
ing changes in window 0 and test the trained model using the
changes in window 1. Then, in fold 2, we train using changes in
windows 0 and 1 and test the trained model using the changes
in window 2, and so on. We proceed in a similar manner for the
next folds. In the final fold (i.e., fold 10), we train using changes
in windows 0–9 and test using the changes in window 10. We
record the average performance across the ten folds.

Table XVIII presents the F1 and PofB20 scores for CPCC+,
CPCC, and PCC+ for the longitudinal data setup. On average,
across the six projects, CPCC+ achieves an F1 and PofB20 score
of 0.65 and 59% respectively, which improves CPCC and PCC+
by 0.02 and 0.05 in terms of F1-score, respectively, and 3% and
19% in terms of PofB20, respectively. Moreover, we find that
the F1 and PofB20 scores of CPCC+ for the longitudinal data
setup are similar to the corresponding scores for the tenfold
cross-validation setup.

E. Threats to Validity

Threats to internal validity relates to errors in our code and
experiment bias. We have double checked our code, still there
could be errors that we did not notice. To reduce training
set selection bias for the multiobjective GA vNSGA-II, we
run tenfold cross validation 100 times and record the average
performance. Also, we have only tried one set of parameter
settings for the GA; it is unclear whether different parameter
settings would impact the performance of our approach.

Another threats to internal validity relates to the data quality.
In this paper, we rely on developers commit logs to identify bug-
introducing changes. However, in practice, developers may not
always write the bug identifier into the commit message [46],
[47]. Thus, some buggy changes may get lost due to the missed
links (false negatives). This threat is faced by many other studies
that rely on commit logs to identify bug fixing commits [38],
[48], [49].

Threats to external validity relates to the generalizability of
our results. We have analyzed 5000 changes from six projects.
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TABLE XVII
P-VALUE AND CLIFF’S DELTA OF COMPARING CPCC+ RESULTS WITH THOSE OF CPCC+single

Projects F1-score PofB20

p-value Cliff’s Delta Effectiveness Level p-value Cliff’s Delta Effectiveness Level

Eclipse 0.0001 0.38 Medium 1.33e−1 0 0.61 Large
Jackrabbit 1.32e−1 5 0.90 Large 1.32e−1 5 1 Large
Linux 5.12e−8 0.68 Large 1.21e−6 0.71 Large
Lucene 0.1531 0.08 Negligible 0.0021 0.33 Medium
PostgreSQL 0.0005 0.36 Medium 1.32e−1 5 1 Large
Xorg 3.52e−5 0.51 Large 1.26e−7 0.42 Medium

TABLE XVIII
F1 AND POFB20 SCORES FOR CPCC+, CPCC, AND PCC+

IN LONGITUDINAL DATA SETUP

Projects Methods F1 PofB20

Eclipse CPCC+ 0.61 51%
CPCC 0.59 49%
PCC+ 0.55 37%

Jackrabbit CPCC+ 0.76 61%
CPCC 0.74 57%
PCC+ 0.70 38%

Linux CPCC+ 0.59 64%
CPCC 0.57 62%
PCC+ 0.57 58%

Lucene CPCC+ 0.62 56%
CPCC 0.61 52%
PCC+ 0.55 38%

PostgreSQL CPCC+ 0.64 63%
CPCC 0.62 62%
PCC+ 0.60 34%

Xorg CPCC+ 0.67 60%
CPCC 0.64 53%
PCC+ 0.61 36%

Average. CPCC+ 0.65 59%
CPCC 0.63 56%
PCC+ 0.60 40%

The highest and lowest results for each dataset
are in bold and italic, respectively.

These six projects include a wide variety of systems. For ex-
ample, Eclipse is a famous Java IDE, Linux is a famous open-
source operating system, and PostgreSQL is a popularly used
database. Moreover, these six projects follow different develop-
ment processes. For example, Linux and Eclipse use Bugzilla
to manage their bug reports, while Lucene and Jackrabbit use
JIRA to manage their bug reports. Moreover, Linux, Eclipse,
Lucene, Jackrabbit, and PostgreSQL use Git as their version
control systems, while Xorg use CVS as its version control sys-
tem. In the future, we plan to reduce the threat to generalizability
of our findings further by analyzing even more changes from
additional software projects. Similar to other defect prediction
studies, it is not possible to completely remove threats to ex-
ternal validity (which include threats to the generalizability of
reported findings).

Threats to construct validity refers to the suitability of our
evaluation measures. We use cost effectiveness and F1-score
which are also used by past studies to evaluate the effective-
ness of various CC and defect prediction techniques [1], [8]–
[12], [16], [17], [42]. Moreover, in our study, we measure cost

effectiveness by inspecting a certain percentage of the number
of LOCs in changes, and we assume the effort that developers
spend in inspecting one LOC is uniform. In practice, developers
may check whether a change is buggy by not only inspecting the
code in the change, but also the surrounding code. Furthermore,
a one-line change in a complex function demands much more
effort to inspect than a new ten-line initialization code. Unfor-
tunately, quantifying the effort developers put in inspecting one
particular line is very hard especially considering the size of the
dataset that we consider.

IX. RELATED WORK

In this section, we present related studies on CC, defect
prediction, spectrum-based fault localization, and search-based
software engineering.

A. Change Classification

There have been a number of studies on CC which analyze
various metrics to build a global prediction model to identify
buggy changes [1]–[6]. Kim, Whitehead, and Zhang propose
the CC problem and use support vector machines to classify
a change to be buggy or clean [1]. In a later work, Shivaji,
Whitehead, Akella, and Kim apply feature selection algorithms
to further improve the performance of Kim, Whitehead, and
Zhang’s work [2]. Ostrand, Weyuker, and Bell use negative
binomial regression to build a prediction model using metadata
and developer-specific features to predict buggy changes [5].
Lumpe, Vasa, Menzies, Rush, and Turhan investigate the effec-
tiveness of activity-centric static code metrics [6]. Kamei et al.
perform a large-scale empirical study on CC [50]. They choose
14 change measures and build logistic regression models to pre-
dict the buggy changes. In this paper, we collectively refer to
these techniques as traditional CC techniques.

Jiang, Tan, and Kim propose PCC which constructs a pre-
diction model for each developer [7]. They introduce three
algorithms: PCC, weighted PCC, and PCC+. For each devel-
oper, PCC builds a separate prediction model based on the
developer’s historical data. Weighted PCC is similar as PCC
except that the model is built from a training data that consist
of the developer’s historical data (50%) and other developers’
historical data (50%). PCC+ is a metaalgorithm that selects
either PCC, weighted PCC, or a traditional CC technique. Mod-
els built using PCC, weighted PCC, and CC each computes a
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confidence score for a change that represents the likelihood of
the change to be buggy. PCC+ picks the model that outputs the
highest confidence score. In this work, we propose a new PCC
algorithm which outperforms PCC+.

B. Defect Prediction

There have been a number of studies on defect prediction
which analyze different metrics such as code complexity, pro-
cess metrics, and code locations to build prediction models to
identify defective code elements (e.g., defective source code
files) [9], [16], [17], [31], [42], [43], [51], [52], [52]–[55]. CC
is closely related to and can be viewed as a special instance
of defect prediction; defect prediction predicts defective code
elements (e.g., files), while CC predicts defective changes.

Bettenburg, Nagappan, and Hassan [31] use an algorithm
called MARS which is a global model that has local consider-
ation to improve the performance of defect prediction. Jiang,
Tan, and Kim have applied MARS to CC problem and show
that PCC+ achieves a much better performance than MARS [7].
Rahman and Devanbu compare the effect of code metric and
process metrics for defect prediction [9].

There are a number of defect prediction studies that employ
ensemble learning [56], [57]. Seiffert, Khoshgoftaar, and Van
Hulse apply five different data sampling approaches and en-
semble learning technology to predict fault-prone modules in
15 projects [56]. Tosun, Turhan, and Bener use an ensemble of
classifiers for defect prediction [57].

Recently, several studies investigate cross-project defect pre-
diction, where defect data from other projects is used to improve
defect prediction for a target project. Turhan, Menzies, Bener,
and Di Stefano employ a k-nearest neighbor approach to select
instances from various projects to be used as training data for a
target project [52]. Nam, Pan, and Kim extend TCA which trans-
forms data from two projects to a latent space where the two
datasets are close to each other [16]. Liu, Khoshgoftaar, and
Seliya propose a genetic programming-based approach (GP)
which constructs a classification model in the form of a tree
considering defect data from multiple software repositories [33].
Canfora et al. construct a classification model by using multiob-
jective GA for cross-project defect prediction [17]. Panichella,
Oliveto, and De Lucia propose an approach named CODEP that
uses a classification model to combine results of six classifica-
tion algorithms (i.e., logistic regression, RBF network, multi-
layer perceptron, etc.) for cross-project defect prediction [55].
Turhan, Mısırlı, and Bener perform an empirical study on the
effectiveness of the combination of within and cross (i.e., mixed)
project data for binary defect prediction [58].

Our work is orthogonal to the above studies. In this paper,
we mainly focus on the CC problem, which is a similar but
a different problem from defect prediction. Moreover, Canfora
et al. build the cross-project model based on multi-objective
logistic regression model, and they merge all data from differ-
ent projects to train the regression model. Our CPCC is technical
different from their approach, we consider the target difference
and source difference phenomenon and combine different pre-
diction models by leveraging multiobjective GA. Also, the ob-

jective functions between CPCC and Canfora et al.’s model are
different.

C. Search-Based Software Engineering

There have been a number of studies on search-based software
engineering [59]–[62]. Harman and Jones propose the concept
of search-based software engineering, and they demonstrate how
to reformulate a SE problem as a search-based problem [59].
Later, Harman, Mansouri, and Zhang provide a review and
classification of search-based software engineering tech-
niques [60]. Recently, Bueno, Jino, and Wong use metaheuristic
search algorithms (i.e., simulated annealing, GA, and simulated
repulsion) to generate test cases that are diverse [63]. Panichella
et al. propose a search-based GA which tunes latent Dirich-
let allocation parameters and use the proposed algorithm for
traceability link recovery, feature location, and software ar-
tifact labeling [61]. Le Goues, Nguyen, Forrest, and Weimer
propose GenProg, which uses GA to automatically repair de-
fects in software projects [62]. Wang, Harman, Jia, and Krinke
propose a search-based approach for clone detection [64].
Lohar, Amornborvornwong, Zisman, and Cleland-Huang pro-
pose a search-based approach which identifies the best config-
uration for a trace retrieval technique that recovers traceability
links between software artifacts (e.g., requirement to code, re-
quirement to design, etc.) [65]. In this work, we also use a
search-based technique to learn a semioptimal composition of
classifiers. Different from the above-mentioned studies, we ad-
dress a different problem namely PCC.

X. CONCLUSION AND FUTURE WORK

In this paper, we propose a new PCC technique named CPCC.
CPCC combine different personalized models trained from var-
ious developers’ change data using multiobjective GA. CPCC
first builds a separate prediction model for each developer based
on his/her change data. Next, for each developer, CPCC com-
bines these models by assigning different weights to the models
with the purpose of maximizing two objective functions (i.e., F1-
scores and cost effectiveness). To further improve classification
performance, we propose CPCC+ which utilizes the advantage
of CPCC and PCC. We perform experiments on 5000 changes
from six software projects: Eclipse JDT, Jackrabbit, the Linux
kernel, Lucene, PostgreSQL, and Xorg. The experiment results
show that on average CPCC+ can discover 122 more bugs than
PCC+ (371 versus 249) per project if developers inspect the top
20% LOC that are predicted buggy. In addition, CPCC+ can
achieve F1-scores of 0.60–0.75, which are statistically signifi-
cantly higher than those of PCC+ on all of the six projects.

In the future, we plan to evaluate CPCC+ and CPCC with
datasets from more software projects and develop a better tech-
nique which could improve the prediction performance further.
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