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Testing Intergroup Concordance in Ranking Experiments With Two
Groups of Judges

Dawn J. Dekle and Denis H. Y. Leung
Singapore Management University

Min Zhu
Commonwealth Scientific and Industrial Research Organisation

Across many areas of psychology, concordance is commonly used to measure the (intra-
group) agreement in ranking a number of items by a group of judges. Sometimes, however,
the judges come from multiple groups, and in those situations, the interest is to measure the
concordance between groups, under the assumption that there is some within-group concor-
dance. In this investigation, existing methods are compared under a variety of scenarios.
Permutation theory is used to calculate the error rates and the power of the methods. Missing
data situations are also studied. The results indicate that the performance of the methods
depend on (a) the number of items to be ranked, (b) the level of within-group agreement, and
(c) the level of between-group agreement. Overall, using the actual ranks of the items gives
better results than using the pairwise comparison of rankings. Missing data lead to loss in
statistical power, and in some cases, the loss is substantial. The degree of power loss depends
on the missing mechanism and the method of imputing the missing data, among other factors.

Keywords: concordance, intergroup, Kendall’s W, missing data, ranking experiment

Ranking is commonly used in empirical psychological
research to measure the preference of an individual who is
presented with a set of alternatives (e.g., Bonner, 2004;
Castel, Miró, & Rull, 2005; Elstein, Chapman, & Knight,
2005; Fisher, Macrosson, & Yusuff, 1996; Marlowe,
Schneider, & Nelson, 1996; Miró, Huguet, & Nieto, 2005;
Stewart & Stewart, 1996; Swanson, Wigal, & Udrea, 1998;
Wanschura & Dawson, 1974). In a ranking experiment, a
number of participants (often called judges in the literature)
are presented with a set of K alternatives, and each partic-
ipant is asked to rank the alternatives (sometimes called
items) from the most preferred to the least preferred.

Sometimes, the judges come from G different groups (Loh-
mann, Delius, Hollard, & Friesel, 1988; McKnight & Hills,
1999; Pope & Scott, 2003; Rule, Bisanz, & Kohn, 1985;
Vidmar & Cernigoj, 2004). Then the interest may be to deter-
mine the degree of agreement or concordance between groups
in ranking the K alternatives. A number of studies have ap-

peared in the literature that addresses this problem. For G � 2,
Linhart (1960) suggested calculating a Kendall’s W (Kendall
& Smith, 1939; Kendall & Gibbons, 1990) in each of the two
groups of judges and then comparing the difference. However,
this method is a test for within-group rather than between-
groups concordance. In an alternative solution, Hays (1960)
used Kendall’s � (Kendall & Smith, 1939) for the rankings
between pairs of judges as an overall measure of agreement in
the rankings between judges. Following that line of reasoning,
in a series of articles, Schucany and colleagues (Beckett &
Schucany, 1979; Li & Schucany, 1975; Schucany & Beckett,
1976; Schucany & Frawley, 1973) calculated the average of
Spearman’s rs (Spearman, 1904) between pairs of judges, one
drawn from either group. Works related to Schucany and
colleagues can also be found in Legendre (2005), Lyerly
(1952), and Page (1963), whose interests are primarily in
measuring concordance between a single judge and a group of
other judges. Hollander and Sethuraman (1978) used a statistic
based on the Mahalanobis distance (Mardia, Kent, & Bibby,
1979, p. 16) of the average rankings between groups. Finally,
Kraemer (1981) defined intergroup concordance as the ratio of
the intergroup Kendall’s W on the basis of the mean ranks of
each group to the average of the within-group Kendall’s Ws.
Feigin and Alvo (1986) proposed a statistic similar to Krae-
mer’s statistic by using the ratio of the average diversity within
groups to the diversity between groups. The diversity measure
can be based on Kendall’s �, Spearman’s rs, or Spearman’s
footrule (Diaconis & Graham, 1977).

Despite the large amount of existing research on measur-
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ing intergroup concordance, no formal comparison of the dif-
ferent methods has been made. Evaluation of existing work is
complicated by the absence of a commonly agreed on set of
hypotheses (see discussions in Beckett & Schucany, 1979;
Hays, 1960; Hollander & Sethuraman, 1978; Kraemer, 1981;
Li & Schucany, 1975; Schucany & Frawley, 1973). Li and
Schucany (1975, p. 419) and Kraemer (1981, p. 645) discussed
the relationships between their methods and earlier methods
but did not carry out formal comparisons. Furthermore, in most
existing works, the large sample properties of their methods
were studied. In most applications, however, the sample size
(number of judges � number of items) is unlikely to be large,
leaving the question of whether large sample results could be
extrapolated to those situations. Finally, missing data are a
common problem in empirical research (Little & Rubin, 2002).
However, only a few articles deal with the treatment of missing
data in calculating rank concordance (Alvo & Cabilio, 1995;
Schucany & Beckett, 1976; Stephens, Claypool, & Buchalter,
1977, 1978; Yu, Lam, & Alvo, 2002). The methods of both
Schucany and Beckett (1976) and Stephens et al. (1977, 1978)
assumed the special case that every judge in each group leaves
the same number of items unranked. Alvo and Cabilio (1995)
suggested an imputation method for data that are missing
completely at random (Rubin, 1987). Yu et al. (2002) extended
the method of Alvo and Cabilio (1995) to situations where
there may be ties in the data.

Our primary aim in this article is to carry out a comparison
of the existing methods using a simulation study. Instead of
using large sample theory, we use nonparametric evaluations,
via permutation theory, to determine the sampling distributions
of the test statistics. The reason for using permutation theory is
twofold. First, permutation theory is more robust than large
sample theory in small and moderate sample situations. Sec-
ond, large sample theory is affected by missing data in the
sense that adjustments in the test statistic are required for the
theory to remain valid for drawing inferences. These adjust-
ments are often difficult to derive analytically. However, no
adjustments are needed to derive the permutation distributions.
An additional hurdle to be overcome in this study is in gener-
ating data for the simulations. True rank data under specific
levels of concordance are practically impossible to generate.
However, this difficulty can be overcome by assuming that the
ranking data follow a latent rating model (Thurstone, 1927,
1931). In a latent rating model, ranks are induced by latent
ratings given to different items. In this study, a latent multi-
variate normal rating model is used to generate the ratings, and
specific levels of concordance can be induced using different
parameters in the multivariate normal model.

Existing Methods

Preliminaries

In this study, we consider the case where there are two
groups of J judges each. The generalization to situations

with more than two groups of judges and unequal numbers
of judges per group will be deferred to the Discussion
section. It is assumed that each judge is asked to rank K
items. For each item, the judge is supposed to return a rank
from 1 to K, indicating the judge’s preference for the item
(1 � most preferred and K � least preferred). Items could
receive the same rank (in which case the mean rank could be
used to assign ranks; see, e.g., Li & Schucany, 1975), and it
is possible that a judge may leave some items unranked, an
issue that we explore later. For ease of illustration, it is
assumed that there are no missing data or tied rankings. Let
Rgjk be the ranking of the kth item by the jth judge from the
gth group, k � 1, . . . , K; j � 1, . . . , J; g � 1, 2.
Furthermore, let Rg � k, R� g � k , and R� ��k be, respectively, the
sum and the average ranking of item k by the J judges in
group g and the overall average ranking of item k by the 2J
judges in both groups. Then Spearman’s correlation, rs, of
the rankings between two typical judges j and j�, when both
are from the first group, both are from the second group, and
one is from each of the two groups are defined, respectively,
as

r̂s,g� jj�� � 1 �
6

K3 � K �
k�1

K

�Rgjk � Rgj�k�
2, g � 1, 2,

r̂s,1� j�2� j�� � 1 �
6

K3 � K �
k�1

K

�R1jk � R2j�k�
2.

Similarly, the corresponding Kendall’s � (see, e.g., Alvo &
Cabilio, 1995; Hays, 1960; Yu et al., 2002)1 can be defined
as

�̂g� jj�� �
2

K2 � K �
1�k�k��K

sgn�Rgjk � Rgjk��sgn�Rgj�k � Rgj�k��,

g � 1, 2,

�̂1� j�2� j�� �
2

K2 � K �
1�k�k��K

sgn�R1jk � R1jk��

� sgn�R2j�k � R2j�k��,

where sgn(a) � 1 if a � 0 and 0 if a � 0. Finally, define
Kendall’s coefficient of concordance, W, among judges in
Group 1, among judges in Group 2, and between judges in
Groups 1 and 2, respectively, as

Ŵg �
12

K�K2 � 1� �
k�1

K �R� g�k �
K � 1

2 � 2

1 Consistent with Hays (1960), in this article, we use Kendall’s
� from Kendall and Smith (1939). Two other versions of Kendall’s
�, �b and �c, which differ from � in the handling of ties, are also
commonly used.
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�
J � 1

J � 1

� J
2 � �

1�j�j��J

r̂s,g� jj��� �
1

J
, g � 1, 2, (1)

Ŵ12 �
12

K�K2 � 1� �
k�1

K �R� 1�k �
K � 1

2 ��R� 2�k �
K � 1

2 �
�

1

J2 �
j�1

J �
j��1

J

r̂s,1� j�2� j��. (2)

Expression 1 is well-known; see, for example, Ehrenberg
(1952). Expression 2 is derived in Appendix A. Therefore,
Kendall’s W is linearly related to the average of the pairwise
Spearman’s rs.

Finally, define the population values of r̂s,1(jj�), r̂s,2(jj�),
r̂s,1(j)2(j�) as rs,1 rs,2 rs,12; the population values of �̂1(jj�),
�̂2(jj�), �̂1(j)2(j�) as �1, �2, �12; and the population values of Ŵ1,
Ŵ2, Ŵ12 as W1, W2, W12.

Hays’s (1960) method. For two groups with J judges in
each group, Hays (1960) partitioned the average Kendall’s
� between the rankings of all (2

2J) pairs of judges into a
within-group component and a between-groups component.
The partition can be written as

� J
2 � �̂� 1 � � J

2 � �̂� 2 � J2�̂� 12 (3)

where ��̂1, ��̂2, ��̂12 represent, respectively, the average �̂
between all pairs of judges in Group 1, between all pairs of
judges in Group 2, and between all pairs of judges for which
one was selected from Group 1 and another was selected
from Group 2. Hays suggested analyzing the data using an
analysis of variance (ANOVA), but no formal test was
developed. It is conceivable that a statistic

THays �
� J

2 � �̂�1 � � J
2 � �̂�2 � J2�̂�12

� J
2 � �̂�1 � � J

2 � �̂�2

(4)

can be used. Using THays is thus analogous to carrying out
an ANOVA. The statistic THays is sensitive to testing the
hypotheses H0: �1 	 �2 � �12 vs. H1: �12 
 �1 	 �2. Under
the null hypothesis, THays � 1, whereas small values of
THays indicate a departure from concordance between
groups.

Schucany and Frawley’s (1973) and Li and Schucany’s
(1975) method. In a number of related works (Li & Schu-
cany, 1975; Lyerly, 1952; Page, 1963; Schucany & Fraw-
ley, 1973), methods were considered that essentially used
the average of the Spearman’s rs of the rankings between
pairs of judges from the two groups. Both Lyerly (1952) and
Page (1963) considered the situation where one of the two

groups has J � 1 judges and the other group has J � 1
judge. In practice, this situation may arise in a study where
the interest is to validate the rankings by the judges against
some standard rankings. Lyerly (1952) suggested using the
average Spearman’s rs of the rankings between the group
with J judges and the group with a single judge. Page (1963)
proposed summing the rankings across the J judges for each
item and then calculating the correlation between the sums
and the rankings by the sole judge in the other group.

Schucany and Frawley’s (1973) statistic for measuring
intergroup concordance for two groups, g and g�, is

TLSF1 �

�
k�1

K

Rg�kRg��k �
J2K�K � 1�2

4

�J2�K � 1�K2�K � 1�2

144 �1/ 2 . (5)

For large values of J and K, TLSF1 is approximately standard
normal. Schucany and Frawley suggested using TLSF1 in the
following way for testing intergroup concordance. Large
positive values of TLSF1 would suggest concordance both
within and between groups, values of TLSF1 near zero would
indicate lack of concordance in either group, and large
negative values of TLSF1 would suggest concordance within
groups but disagreement between groups. Because TLSF1 is
not restricted to the range of �1 to 1, Li and Schucany
(1975) suggested transforming TLSF1 by T�LSF1 � [J2(K �
1)]�1/2TLSF1, which always lies within [�1, 1]. When the
number of judges in one of the two groups is 1, T�LSF1 is
identical to the statistic of Lyerly (1952) and TLSF1 is
identical to the statistic of Page (1963; Li & Schucany,
1975, p. 419). Because these statistics are all linearly re-
lated, henceforth in this article, only TLSF1 will be studied
further. It has been shown (Li & Schucany, 1975) that for
two groups with J judges in each,

T�LSF1 � r̂�s,12 � �J2�K � 1��1/ 2TLSF1, (6)

where

r̂� s,12 �

�
j�1

J �
j��1

J

r̂s,1� j�2� j��

J2

is the average Spearman’s rs between two judges: j from
Group 1 and j� from Group 2. The hypotheses of Schucany
and Frawley were H0: rs,1 	 rs,2 � rs,12 � 0 vs. H1: rs,12 �
0. However, Schucany (1978, p. 411) also suggested the
possibility of using the statistic for testing the null hypoth-
esis of complete concordance to an alternative of departure
from concordance.

As pointed out by Li and Schucany (1975, p. 419), if the
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two groups of judges are combined, then the average pair-
wise Spearman’s rs for the (2

2J) pairs of judges in the
combined group can be partitioned similarly to Partition 3,
as

� J
2 � r̂� s,1 � � J

2 � r̂�s,2 � J2T �LSF1. (7)

Therefore, �r̂s,1, �r̂s,2 and T�LSF1 (or TLSF1) can be interpreted
as the within-group and between-group components, re-
spectively, in an ANOVA of the Spearman’s rs in the
combined sample. Based on Partition 7, an alternative sta-
tistic can be defined as follows:

TLSF2 �
� J

2 � r̂�s,1 � � J
2 � r̂�s,2 � J2T �LSF1

� J
2 � r̂�s,1 � � J

2 � r̂�s,2

�
� J

2 � r̂�s,1 � � J
2 � r̂�s,2 � J2r̂�s,12

� J
2 � r̂�s,1 � � J

2 � r̂�s,2

, (8)

where the last equality is due to Expression 6. The statistic
TLSF2 is therefore defined in the spirit of a test statistic of the
interaction term in an ANOVA.

Hollander and Sethuraman’s (1978) method. Hollander
and Sethuraman (1978) advocated testing the null hypoth-
esis of complete intergroup agreement versus the alternative
of lack of complete intergroup agreement. Their method of
analysis is based on the Mahalanobis distance between the
average rankings of the first K � 1 items in the two groups
of judges.2 For group g, g � 1, 2; the average rankings of
the judges in the group is R� g � �R� g�1, . . . , R� g�K�; and let

dkk� �

�
g�1

2 �
j�1

J

�Rgjk � R� ��k��Rgjk� � R� ��k��

2J � 1
,

k, k� � 1, . . . , K � 1.

Then Hollander and Sethuraman’s statistic is

THS �
J

2
�R� 1 � R� 2�D�1�R� 1 � R� 2��, (9)

where D is the (K � 1) � (K � 1) matrix of dkk�. The null
hypothesis of agreement between groups can be rejected if
THS is large. Hollander and Sethuraman suggested using the
permutation distribution of THS for the purpose of calculat-
ing the significance level of the test. The statistic THS is
designed for testing the hypotheses H0: rs,1 � rs,2 �r s,12 vs.
H1: rs,12 � rs,1, rs,2.

Kraemer’s (1981) method. Kraemer (1981) suggested a
conditional intergroup coefficient of concordance that, un-
der the assumption of an equal number of judges between
groups, is defined by

TKra1 �

12

K�K2 � 1� �
k�1

K �R� ��k �
K � 1

2 �2

1

2 �
g�1

2 12

K�K2 � 1� �
k�1

K �R� g�k �
K � 1

2 �2

�

1

4
�Ŵ1 � Ŵ2 � 2Ŵ12�

1

2
�Ŵ1 � Ŵ2�

. (10)

Using Expressions 1 and 2, TKra1 can be written as

TKra1 �

� J
2 � r̂�s,1 � � J

2 � r̂�s,2 � J2r̂�s,12 �
J

2

� J
2 � r̂�s,1 � � J

2 � r̂�s,2 �
J

2

(11)

(see Appendix B for derivation). The expression on the
right-hand side of Equation 11 is very similar to that in
Equation 8 except for the quantity J/2 that appears in the
numerator and denominator of the right-hand side of Equa-
tion 11. This quantity appears in Equation 11 because Krae-
mer’s statistic includes all the pairwise correlations between
different judges as well as the correlations in the same
judge, which are all one. The right-hand side of Equation 11
is not a monotone transformation of the right-hand side of
Equation 8 and, therefore, TLSF2 and TKra1 behave quite
differently, as will be seen in the simulation study that
follows.

Kraemer’s hypotheses are H0: [(W1 � W2 � 2W12)/4]/
[(W1 � W2)/2] � 1 vs. H1: [(W1 � W2 � 2W12)/4]/[(W1 �
W2)/2] � 1. If rs,1 � rs,2, then Kraemer’s hypotheses are
equivalent to H0: W12 � W1 � W2 vs. H1: W12 � W1 � W2,
which, because of Equation 2, are essentially the same as
H0: rs,1 	 rs,2 � rs,12 vs. H1: rs,12 � rs,1 	 rs,2. Kraemer
used a large sample theory approach and suggested a sta-
tistic based on the jackknife procedure (Arvesen, 1969;
Quenouille, 1956):

2 The method only uses the rankings of the first K � 1 items
because the K rankings are related in the sense that the ranking of
the Kth item is determined once the rankings of the first K � 1
items are known. Therefore, using the rankings in the first K � 1
items avoids singularity in the variance–covariance of the Mahal-
anobis distance statistic.
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TKra2 �
1 � ��2J�TKra1 � �2J � 1�T� Kra1

2J � 1

2J
sTKra1

(12)

where

T� Kra1 � �
g�1

2 �
j�1

J TKra1
g��j�

2J
and

sTKra1 �
��

g�1

2 �
j�1

J

�TKra1
g��j� � T� Kra1�

2

2J � 1
.

TKra1
g(�j) is the value of TKra1 calculated with the jth judge

omitted from group g. Expression 12 can be compared with
the t distribution with J � 1 degrees of freedom. In this
article, alternative nonparametric tests based on TKra1 and
TKra2 are constructed using permutation theory.

A method related to Kraemer’s method is given by Le-
gendre (2005), who considered the situation where one of
the two groups has more than one judge and the other group
has one judge. Legendre was primarily interested in post
hoc tests to identify judges who are in disagreement with the
others in a group. He considered calculating the average
Spearman’s rs or the average Kendall’s W between the
group with one judge and all other judges in the other group
and used permutation theory for hypothesis testing. Unlike
the difference between TLSF2 and TKra1, the average Spear-
man’s rs and the average Kendall’s W are equivalent (see
Appendix A) and, therefore, the two statistics also give the
same test results (see Legendre, 2005, p. 234).

Comparison of Methods

The following statistics—Hays (THays), Li–Schucany–
Frawley (TLSF1 and TLSF2), Hollander–Sethuraman (THS),
and Kraemer (TKra1 and TKra2)—were compared using a
simulation study. The simulation was designed to mimic the
situation where two groups of judges are each asked to rank
a number of items in terms of their utility or preference. In
the simulation study, the sampling distributions of the test
statistics were determined using permutation theory. Per-
mutation theory is desirable in the sense that no large
sample approximation is required. Furthermore, when data
are missing, most test statistics evaluated under large sam-
ple theory need to be modified accordingly, depending on
how the missing entries are handled; permutation theory
does not have this problem. Using simulations, Legendre
and Lapointe (2004) and Legendre (2005) also demon-
strated that permutation tests based on Kendall’s W give
greater statistical power than their counterparts based on
large sample theory.

The rankings provided by the judges used in the simula-

tions were induced using latent continuous random vari-
ables. This method of deriving rankings is consistent with
Thurstone’s (1927, 1931) theory of ranking choice alterna-
tives, which states, among other things, that each alternative
is based on a latent continuous utility value3 that follows a
normal distribution in the population of judges. Specifically,
let the true utility value of item k among judges in group g
be agk. In this formulation, the underlying utility of item k is
identical for judges within the same group but it may be
different from that for judges in a different group. When
agk � ak, then the underlying utility of each item is identical
across groups. When agk � a, then all K items have the
same underlying utility values, irrespective of groups. In
this article, the latent utility value for item k in the jth judge
in group g is written as

Xgjk � agk � egjk, (13)

where egjk � N(0, �e) represents a measurement error in
each judge that is independent of other judges, even for
judges in the same group. With the latent utility values for
the K items for the jth judge from group g defined as Xgj1,
. . . , XgjK, the rankings for the K items, Rgj � (Rgj1, . . .,
RgjK) are the ranks associated with (Xgj1, . . . , XgjK) when
they are ordered. In Model 13, (a1k, a2k) is modeled using a
bivariate normal distribution with M � (0, 0), SD(a1k) �
SD(a2k) � �a, and corr(a1k, a2k) � �. In this case, the
correlation (of the utility values) between two judges in the
same group is

�g �
�a

2

�a
2 � �e

2 , g � 1, 2, (14)

and the correlation between two judges from different
groups is

�gg� �
��a

2

�a
2 � �e

2 . (15)

Clearly, the relationship 0 � �gg� � �g � 1 holds in this
case. Therefore, the induced concordance between judges
from the same group is at least as high as that between
judges from different groups. When � � 1, agk � ak;
therefore, the two groups are concordant.

A special situation is represented by agk � a � N(0, �a).
In this situation, the underlying utilities between the items
are the same, irrespective of groups. In other words, on

3 Kahneman (2000) identified two different definitions of utility:
(a) experienced utility, which can be defined as a measure of the
experience of pleasure or pain, and (b) decision utility, which is
defined as the weight an individual places on an item among a list
of alternatives. In this article, utility is simply defined as a measure
of the relative value an individual places on an item among K
items.
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average, the judges have no opinions as to whether any one
of the K items is better or worse than the others. This
situation has been subjected to much debate in previous
work (see discussions in Hollander & Sethuraman, 1978;
Kraemer, 1981). However, it is unlikely that there would be
interest in measuring concordance when judges have no
opinions in the first place. Hence, we do not pursue this
situation further.

In the simulation study, the different methods were com-
pared under the hypotheses H0: c1 	 c2 � c12 vs. H1: c12 �
c1 	 c2, where c stands for a measure of concordance,
which may be Kendall’s � or Spearman’s rs. The actual
values of c1, c2, and c12 are induced by the structure of the
data used in the simulations, and the simulations allow
comparisons of methods using different measures of agree-
ment (Kendall’s � or Spearman’s rs). The comparison of the
methods then captures the sensitivities of the different meth-
ods to concordance between groups. This situation is similar
to the familiar comparison of a Wilcoxon test and a t test of
population location. The chosen set of hypotheses is a
reasonable compromise between the suggestions of Hol-
lander and Sethuraman (1978), Kraemer (1981), and Schu-
cany (1978, p. 411) under the condition that the agreements
within the two groups are identical (c1 	 c2). It is also
similar to the formulation in Hays (1960), which assumed
H1: c12 
 c1 	 c2. The use of H1: c12 � c1 	 c2 here is
reasonable because in practice it is difficult to find situations
where the intergroup agreement is greater than the within-
group agreement.

For each method studied, the critical value of the meth-
od’s test statistic was calculated using permutation theory,
as follows. Let R � (R11, . . . , R1J; R21, . . . , R2J) be the
rankings of the two groups of judges. Then under the null
hypothesis that the two groups are concordant, all permu-
tations of R are equally likely. Let T be one of the six
statistics studied in this article: Then the 100 � �% critical
value for the permutation test is defined as T�, where T� is
the lower 100 � � percentile4 of the permutation distribu-
tion of T based on R. In the simulation study, T� was
approximated as follows. Vectors of R were simulated. For
each R simulated, the values were randomly permuted and
the statistic T was applied to the permuted vector. This
process was repeated 10,000 times to simulate the permu-
tation distribution of T, under each situation studied.

In the simulation study, two groups of judges were used.
Each group had the same number of judges, J. Two different
values of J were considered: 10 and 20. Two values of K
were used: 5 and 10. Ranks were induced by the latent
utility model (Equation 13) as described earlier. The values
of the parameters were as follows: (a1k, a2k) follows a
bivariate normal distribution with M � (0, 0), SD(a1k) �
SD(a2k) � �a, with �a � 0.5, 0.75, 1; corr(a1k, a2k) � �,
with � � 0, 1/3, 2/3, 1; eijk � N (0, 0.5). The choices of the
values for �a and � were motivated by the following. The

within-group correlation is given by Equation 14. There-
fore, the value of �a represents the range of underlying
utilities for the different items so that a larger value of �a

results in larger differences in underlying utility values
between items, leading to easier discrimination between
items and, therefore, higher concordance within a group.
The choices of �a � 0.5, 0.75, and 1 correspond to within-
group correlations of .5, .7, and .8, respectively, which
mimic moderate to strong within-group correlations. The
degree of concordance between groups is governed by the
parameter �. When � � 0, the rankings between groups are
independent because �12 � 0. When � � 1, there is com-
plete concordance between groups because in that case,
�1 � �2 � �12 � �a

2/(�a
2 � �e

2). The other cases (� � 1/3,
2/3) represent different degrees of departure from concor-
dance.

For each combination of (J, K, �a, �), 10,000 simulation
runs were used to compare the power of the different
methods. A nominal Type I error rate of 5% was used for all
methods.

Results

The results for J � 10 and J � 20 are similar and,
therefore, for conservation of space, only results for J � 10
are presented. When � � 1, the null hypothesis is true and,
therefore, the tests are expected to reject the null hypothesis
at around the nominal Type I error rate (i.e., 5% here). The
observed Type I errors of the six statistics—THays, TLSF1,
TLSF2, THS, TKra1 and TKra2 over 10,000 simulations—can
be seen to be approximately the same as the nominal rate of
5% (see Table 1 and Figure 1, cases with � � 1). The top
half of Figure 1 gives the results for J � 10 and K � 5, and
the three plots give the power of tests using the six statistics
for different values of �a and �. For each value of �a, the
power of each test is plotted against decreasing values of �.
If the underlying utility value of each item is a signal and
the random variations in the judges’ opinions are noises,
then a larger value of �a represents a larger signal-to-noise
ratio and, consequently, leads to greater statistical power to
detect departure from concordance. This scenario is indeed
the case, as can be seen: For each test, the power curve rises
more rapidly toward 1 as �a increases from 0.5 to 1. For a
fixed value of �a, the power curves of the tests using TLSF1,
TLSF2, THS, TKra1 and TKra2 increase when the data move
away from the null hypothesis of complete concordance (as
represented by a decreasing value of �).

Unlike the tests using the other five statistics, the power
curve of the test using THays is not increasing monotonically
as � decreases. The power is especially weak for situations

4 For THS, T � � THS because large values of THS indicate
departure from H0. The same convention was used for TKra1.

63INTERGROUP CONCORDANCE IN RANKING EXPERIMENTS

Th
is

 d
oc

um
en

t i
s c

op
yr

ig
ht

ed
 b

y 
th

e 
A

m
er

ic
an

 P
sy

ch
ol

og
ic

al
 A

ss
oc

ia
tio

n 
or

 o
ne

 o
f i

ts
 a

lli
ed

 p
ub

lis
he

rs
.  

Th
is

 a
rti

cl
e 

is
 in

te
nd

ed
 so

le
ly

 fo
r t

he
 p

er
so

na
l u

se
 o

f t
he

 in
di

vi
du

al
 u

se
r a

nd
 is

 n
ot

 to
 b

e 
di

ss
em

in
at

ed
 b

ro
ad

ly
.



with � � 0. This result is unexpected because, in theory, a
smaller � should correspond to greater statistical power.
However, the explanation may be found by studying the
quantities ��̂1 and ��̂2 that appear in the denominator of THays.
These quantities are averages of Kendall’s � between pairs
of judges, and Kendall’s � takes the value zero if the judges’
rankings are independent. When � � 0, half of the judges
have independent rankings from the other judges, and when
the judges are permuted to find the permutation distribution
of THays, the independent rankings sometimes give zero (or
near zero) values of ��̂1 and ��̂2 , which in turn lead to very
large values of THays that affect the permutation distribution.
This problem with Hays’s method disappears with larger
numbers of items because, in such cases, the chance of
seeing the extreme situations described here becomes very
small (see the bottom half of Figure 1). Finally, the loss of
power has no effect on the Type I error of THays, as dem-
onstrated in Table 1, which shows the Type I error is
approximately the same as the desired 5%.

Apart from the unusual phenomenon observed above, the
best-performing tests are those using TLSF2, THS, and TKra2,
across all the scenarios studied. Overall, the best test statis-
tic among the three is TLSF2. For value of K � 5, THS is
slightly better than TKra2, but for K � 10, the reverse is true.
The test using TKra1 performs much worse than that using
TLSF2, despite the similarities in the test statistics (see Ex-
pressions 8 and 11). The difference can be attributed to the
fact that TKra1 includes the nuisance correlations between
rankings of the same judge, which add no value in drawing
inferences because those correlations are always one. Using
TKra2 results in much better power than TKra1 because the
former can be seen as removing the nuisance effects of
correlations within the same judge by pivoting (Beran,
1988). For K � 5, the performance of THays is the poorest
(see the top half of Figure 1). The test using TLSF1 also has
low power across the range of values of � and �a. The
reason for the unsatisfactory performance of TLSF1 can be
explained by Expression 5, which shows that TLSF1 only

uses the average between-groups Spearman’s rs and ignores
the average within-group Spearman’s rs. As �a increases,
the other three methods make use of the increased concor-
dance within groups as benchmarks for detecting departure
from concordance between groups, which leads to the in-
creases in power of those three methods. However, TLSF1

does not use the within-groups information and hence the
power curves are almost insensitive to the value of �a.
(Compare the power curves of TLSF1 across the three plots
in the top half of Figure 1.)

The results for J � 10, K � 10 (see the bottom half of Figure
1), are similar to those for J � 10, K � 5, except for the
increase in power for all five methods across all scenarios. The
increase in power for THays is significant. This outcome is not
surprising because the correlation between Kendall’s � and
Spearman’s rs tends to unity when the number of items is large
(Daniels, 1944; Kruskal, 1958).5 The performance of the test
using TKra1 is also much improved compared with that for K �
5. The performance of TKra1 is now almost as good as those of
TKra2, THS, and TLSF2. The improvement can be attributed to
the fact that the relative influence of J/2 is less for a larger K,
as �r̂s ,1, �r̂s s,2, and �r̂s ,12 are all increasing in K, whereas J is fixed
for the same number of judges. Therefore, for fixed J, as K
becomes large, TKra1 becomes more similar to TLSF2 (see
Expressions 8 and 11). Finally, the performance of the test
using TLSF1 remains poor when compared with all other tests.

The results for J � 20 generally improve for all tests
(with the exception of the test using TLSF1), across the
situations studied. For THays, the problem with the loss of
power almost completely disappeared. The results are avail-
able on request.

Missing Data

Missing data are a common problem in all empirical
research (Little & Rubin, 2002). In a ranking experiment,
missing data can result from a variety of reasons.6 For
example, when asked to rank a list of items from the most
preferred to the least preferred, a judge may choose to rank
only those items that he or she thinks are worth ranking,
leaving all other items unranked. A judge may also leave out
the rank of an item because he or she thinks the item is
irrelevant, inapplicable, or unfamiliar. Finally, judges may

5 The correlation between � and rs on two sets of K items is
2(K�1)/�2K�2K � 5�, which goes to 1 as K increases.

6 One method to avoid missing data is to use a forced-choice
paradigm, where judges are required to rank every single item.
However, the ranks arising from a forced-choice paradigm may not
always be meaningful. For example, if the judge is forced to give
ranks to all K items, of which he or she is only familiar with a
subset of items, then the rankings for those items that he or she is
not familiar with may not be meaningful. Therefore, forced choice
scales are not always desirable.

Table 1
Observed Type I Errors for Six Tests in Situations Represented
in the Top Row of Figure 1

Method

�a

0.5 0.75 1

THays 0.0462 0.0452 0.0485
TLSF1 0.0512 0.0448 0.0473
TLSF2 0.0478 0.0518 0.0454
THS 0.0523 0.0473 0.0474
TKra1 0.0504 0.0444 0.0473
TKra2 0.0498 0.0512 0.0485

Note. THays � Hays statistic; TLSF1 and TLSF2 � Li–Schucany–Frawley
statistics; THS � Hollander–Sethuraman statistic; TKra1 and TKra2 � Krae-
mer statistics.
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be asked to choose from a list of K items the top K� � K
items of their choice. In the first two cases, K� is random,
but in the last case, K� is fixed. In any of these cases, it is
reasonable to assume that the unranked items should receive
a rank no higher than the last ranked item by that judge.
Unranked items can also be a result of haphazardly missing
data, in which case the missing ranks can be considered
missing completely at random (Rubin, 1987). In ranking
experiments, however, having items missing completely at
random is less likely to be a possibility if the ranked items
were given ranks without gaps.

In dealing with missing ranks in a ranking experiment,
Schucany and Beckett (1976) and Stephens et al. (1977,
1978) proposed assigning all of the unranked items equal to
one rank below the rank of the least preferred item. For
example, if a judge only ranked a subset of the K items,
giving rankings of 1 to K�, K� � K, then the unranked items
will all receive ranks of K� � 1. For a judge with missing
rankings (that are missing completely at random), Alvo and
Cabilio (1995) and Yu et al. (2002) considered all possible

rankings that are compatible with the observed data. For
example, if a judge gave rankings of (1, 2, 3, —) for four
items, then the possible rankings that are compatible with
the observed data are (1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 4, 2), and
(2, 3, 4, 1). (The last two configurations are possible be-
cause they do not change the relative rankings of the first
three items as given by the judge.) Alvo and colleagues
suggested calculating concordance measures with missing
data by averaging the results using all possible observable
(but not necessarily observed) rankings. However, even
with moderate proportions of missing rankings, this method
will involve an unmanageable number of possible rankings
to consider. For example, with 10 items to be ranked by
each judge, if 2 items are unranked by two judges, then the
number of possible pairs of rankings in the two judges that
are compatible with the observed data is (10!/8!)(2). If this
process is repeated for all possible pairs of judges with
missing rankings, the procedure will become infeasible to
implement; for the same reason, it is next to impossible to
study its properties.

Figure 1. Power of five methods under various values of � and �a. For the three top grids, J � 10, K �
5. For the three bottom grids, J � 10, K � 10. THays � Hays statistic; TLSF1 and TLSF2 � Li–Schucany–
Frawley statistics; THS � Hollander–Sethuraman statistic; TKra1 and TKra2 � Kraemer statistics.
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A simulation study was conducted to study the behavior of
the methods when unranked items are included in the data.
Two missingness situations were considered. The first situation
assumes that each judge only ranks those items that he or she
considers important and that the unranked items simply take
the tied rank one step below the last ranked item. This situation
was created by assigning missing rankings to items with a
latent utility value in the bottom 20% of the distribution of
latent utility values. The second situation assumes that data are
missing completely at random. For this situation, 20% of the
latent utility values were randomly deleted and missing ranks
are assigned to those items.

Two methods of imputing missing ranks were used in the
simulation study. The first method assigns a rank equal to
the tied rank one step below the last ranked item to all
unranked items. The second method (Alvo & Cabilio, 1995;
Yu et al., 2002) assumes that the unranked items are missing
at random. As mentioned above, applying this method di-
rectly to a data set would require calculating the test statistic
a large number of times, even when the percentage of
unranked items is moderate. That is because under this
method, the statistic is recalculated and then averaged over
all possible rankings that are consistent with each incom-
plete set of rankings for each judge in each group.

Therefore, the following method for approximating the
method of Alvo and Cabilio (1995) and Yu et al. (2002) was
used. Suppose a judge gave a set of incomplete rankings of
(1, 2, 3, —) for K � 4 items, then a random number U, from
the continuous uniform (0, K � 1 � 5) distribution is
generated. U is compared with each of the items that have
been ranked and a rank for the unranked item is imputed on
the basis of the position of U among the other ranked items.
Therefore, suppose U is 2.3: Then the imputed rank of the
unranked item is 3 and the new rankings become (1, 2, 4, 3).
Using this method, the imputed rankings will always be
compatible with the original (incomplete) rankings, as sug-

gested in Alvo and Cabilio (1995) and Yu et al. (2002). For
each imputation method, the critical values for all the per-
mutation tests were calculated using data imputed under that
method. Therefore, all permutation tests automatically have
the correct Type I error.

The missing data simulation study uses the same combi-
nations of parameters (J, K, �a, and �) as in the complete
data simulations. Once again, to conserve space, we focus
the discussion on a selection of the results. Because THays,
TLSF1, and TKra1 are not competitive under the complete data
simulations, they have been dropped from consideration in
this part of the article.

Table 2 summarizes the power comparison between the
complete data and missing data situations for J � 10, K �
10, when 20% of the data with the lowest underlying utility
values are missing. The missing data were imputed using
tied ranks one step below the last ranked item. The three
columns under the heading Complete data in Table 2 give
the powers of TLSF2, THS, and TKra2 in detecting H1 when
there are no missing data. The next three columns under the
heading Missing data give their powers under the missing
data situations. The last three columns give the ratio of the
power with missing data to that with complete data. The
results in Table 2 show that missing data lead to a substan-
tial drop in performance in the methods across all scenarios
tested. The drop in performance can be explained by the fact
that when the missing data are imputed using tied ranks, the
rankings between groups are more similar than they would
be if the data were complete, leading to lower power. The
power drop is greater for small values of �a and large values
of �. In these situations, the utilities between items are
similar and the concordance between groups is high. There-
fore, the power is low even without missing data. When
missing data are imputed by tied ranks, the power becomes
even lower because the groups are even more difficult to
discriminate. Among the three methods considered, TLSF2 is

Table 2
Comparison of Power Between Complete and Missing Data Situations

�a �

Complete dataa Missing datab

d/a e/b f/cTLSF2 (a) THS (b) TKra2 (c) TLSF2 (d) THS (e) TKra2 (f)

0.50 0 0.982 0.960 0.975 0.483 0.392 0.351 0.492 0.408 0.360
1/3 0.953 0.883 0.944 0.443 0.344 0.319 0.465 0.390 0.338
2/3 0.817 0.646 0.800 0.300 0.230 0.197 0.368 0.357 0.246

0.75 0 0.994 0.995 0.997 0.836 0.764 0.749 0.841 0.768 0.752
1/3 0.985 0.979 0.992 0.781 0.712 0.700 0.793 0.728 0.705
2/3 0.937 0.886 0.959 0.627 0.555 0.535 0.669 0.626 0.558

1.00 0 0.997 0.999 0.999 0.944 0.926 0.921 0.947 0.927 0.922
1/3 0.991 0.995 0.999 0.925 0.909 0.891 0.933 0.914 0.893
2/3 0.964 0.956 0.987 0.837 0.806 0.791 0.867 0.843 0.802

Note. Missing data are created by deleting items with utility in the bottom 20% of the distribution. Missing data are imputed using tied ranks one step
below the last ranked item. J � 10, K � 10.
TLSF2 � Li–Schucany–Frawley statistic; THS � Hollander–Sethuraman statistic; TKra2 � Kraemer statistic.
aPower under complete data situation. bPower under missing data situation.
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the most robust against missing data, followed by THS; the
least robust is TKra2.

Table 3 gives results for J � 10, K � 10, when 20% of
the data are randomly missing. The three columns under the
heading Complete data are reproduced from Table 2 be-
cause the complete data and the two missing data situations
were based on the same data. For the results in Table 3, the
missing data were imputed by emulating the method of
Alvo and Cabilio (1995) and Yu et al. (2002), as described
earlier. Table 3 also shows a drop in performance in the
methods, even though the drop in power is less severe than
it is for comparable cases in Table 2. The more moderate
power drop in this case can be attributed to the following. In
the case of Table 2, the least important items are always
given tied ranks. Because the least important items tend to
be on one end of the distribution, the missing data are
similar to censored observations, so items ranked low are
almost always not observable. Because of that, the groups
are concordant in those (unranked) items, leading to a
greater chance of a nonsignificant test result. However,
because the data in Table 3 are missing completely at
random, all items are equally likely to be observed (or
missing), and as long as the number of judges is not too
small, the entire distribution of items is observable. The
better results in Table 3 can also be attributed to the impu-
tation method used. In this table, TLSF2 remains the best
method, but the relative merits between TKra2 and THS are
reversed from those in Table 2.

Discussion

In this article, six statistics were considered for testing
concordance in rankings between groups. Five of the statis-
tics—Hays (THays), the modified Li–Schucany–Frawley
(TLSF2), Hollander–Sethuraman (THS), and Kraemer (TKra1,
TKra2)—are analogous to carrying out an ANOVA on a

particular measure of the overall agreement between rank-
ings by the judges. THays is a ratio of the between-group to
within-group Kendall’s �, whereas TLSF2 is the parallel of
THays using Spearman’s rs. Kraemer’s statistic, TKra1, is the
ratio of the intergroup Kendall’s W to the average intra-
group Kendall’s W, and TKra2 is an adjusted version of
TKra1. Finally, THS can be seen as a ratio of the between-
group distance in the rankings of the K items to the within-
group distance in the rankings of the same items. Because
TLSF2, THS, and TKra2 all use ranks, it is not surprising that
they perform similarly. Hays’s statistic and TKra1 are some-
what less satisfactory when the number of items is small.
But in situations with a larger number of items, their per-
formances approach those of TLSF2, THS, and TKra2. Overall,
the best-performing method is TLSF2. However, TLSF1 per-
forms poorly compared with the other statistics because it
does not take the within-group concordance into consider-
ation when making inferences.

We considered two different situations of missing data in
this article. The performances of the methods are affected
significantly when data are missing. The performance drop
is more severe when the missing data arise from judges not
ranking those items that they consider unimportant and the
missing ranks are imputed using the average rank a step
lower than the last ranked item. Among the three statistics
considered, TLSF2, THS, and TKra1, TLSF2 is the most robust.
Other ways of imputing the missing ranks are possible.
When a judge returned K� � K ranks of K items, Critchlow
(1985) suggested replacing the missing ranks with (K � K�
� 1)/2. The idea is to make the mean imputed ranks the
same as for a set of complete ranking of K items. Sen,
Salama, and Quade (2003) advocated that the missing ranks
should be imputed on the basis of some optimality criteria.
Building on the suggestion of Sen et al. (2003), Salama and
Quade (2004) considered weighting the items by their ranks,
giving more emphasis to the top-ranked items. Their argu-

Table 3
Comparison of Power Between Complete and Missing Data Situations

�a �

Complete dataa Missing datab

d/a e/b f/cTLSF2 (a) THS (b) TKra2 (c) TLSF2 (d) THS (e) TKra2 (f)

0.50 0 0.982 0.96 0.975 0.878 0.722 0.793 0.894 0.752 0.814
1/3 0.953 0.883 0.944 0.749 0.571 0.665 0.786 0.646 0.705
2/3 0.817 0.646 0.800 0.479 0.323 0.422 0.587 0.5 0.527

0.75 0 0.994 0.995 0.997 0.957 0.88 0.93 0.963 0.884 0.933
1/3 0.985 0.979 0.992 0.886 0.769 0.868 0.9 0.785 0.875
2/3 0.937 0.886 0.959 0.663 0.502 0.644 0.707 0.566 0.671

1.00 0 0.997 0.999 0.999 0.974 0.934 0.964 0.977 0.935 0.965
1/3 0.991 0.995 0.999 0.927 0.844 0.923 0.935 0.848 0.924
2/3 0.964 0.956 0.987 0.75 0.617 0.757 0.778 0.646 0.767

Note. Missing data are missing completely at random in 20% of the data. Missing data imputed using the method of Alvo & Cabilio (1995) and Yu et.
al. (2002). J � 10, K � 10.
TLSF2 � Li–Schucany–Frawley statistic; THS � Hollander–Sethuraman statistic; TKra2 � Kraemer statistic.
aPower under complete data situation. bPower under missing data situation.
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ment is that the top-ranked items are the most important
and, therefore, agreement in the top-ranked items should be
given more weight. Similar work on weighting the Ken-
dall’s � and Spearman’s rs appeared in Shieh (1998) and
Shieh, Bai, and Tsai (2000), among others. In light of the
substantial loss in power observed in the simulation study
when items deemed unimportant are not ranked, it is worth-
while to consider these alternative methods of imputing the
missing ranks. In certain cases, auxiliary information about
the unranked items may be obtained and a method that
effectively incorporates the auxiliary information may help
to recover some of the lost information.

Another possible extension of the current study is to con-
sider other missingness situations. One such situation is where
the probability of a rank being missing is dependent on some
observable covariates. Another situation that may be of interest
is where the probability of a missing rank may depend on the
value of the rank itself. These situations correspond to the
missing at random and nonignorable missing data situations,
respectively, as described by Rubin (1987). In both of these
situations, correct specification of the missingness probability
is crucial for valid inferences to be drawn.

Of further note, Thurstone’s (1927, 1931) latent utility
model is used to induce rankings in the simulations. Be-
cause the utility model is continuous by design, it will lead
to rankings with no ties. In practice, there are invariably ties
in some of the rankings. In the context of a latent utility
model, ties in ranks result from items with small differences
in underlying utilities, a situation that is reflected by a small
value of �a in Model 13. As demonstrated in the simula-
tions, a small value of �a leads to attenuation of power.
Hays’s method can also be expected to suffer under ties as
ties are discarded from the calculation of Kendall’s �, on
which Hays’s method is based.

In the simulations, the three methods that use the actual
rankings of the items (TLSF2, THS, and TKra2) performed
better than the method using pairwise comparison of ranks
(THays). When making inferences about the intergroup con-
cordance, one must use both between- and within-group
concordance. Failing to do so may lead to substantial loss in
efficiency, as seen in the TLSF1.

In the current study, we focused on situations with two
groups of judges. The methods considered here can be
generalized to situations with more than two groups of
judges, if group membership is defined by a single factor.
For the method of Kraemer, the numerator of Equation 10 is
the (total) Kendall’s W calculated on the basis of all possible
pairs of judges from all groups, and the denominator is the
average of the within-group Kendall’s W (Kraemer, 1981,
pp. 642–643). Similarly, for the methods of Hays (1960)
and Schucany and Frawley (1973), the total Kendall’s � and
total Spearman’s rs can be decomposed into within-group
and between-group components, similar to an ANOVA
(Beckett & Schucany, 1979), with no restriction on the

number of groups. For the method of Hollander and
Sethuraman (1978), a generalized version of the Mahalano-
bis distance can be defined, similar to a multivariate analysis
of variance. It would be interesting to study the behavior of
the methods for three or more groups of judges.
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Appendix A

Derivation of Expression 2

Write

R̃1jk � R1jk �
1
2

�K � 1�

and

R̃2j�k � R2j�k �
1
2

�K � 1�.

�
k�1

K �
j�1

J �
j��1

J

�R1jk � R2j�k�
2 � �

k�1

K �
j�1

J �
j��1

J

�R̃1jk
2 � R̃2j�k

2

� 2R̃1jkR̃2j�k� � J �
k�1

K �
j�1

J

R̃1jk
2 � J �

k�1

K �
j��1

J

R̃2j�k
2

� �
k�1

K �
j�1

J �
j��1

J

2R̃1jkR̃2j�k

� J �
j�1

J �
k�1

K �R1jk
2 � �K � 1�R1jk �

�K � 1�2

4 �
� J �

j��1

J �
k�1

K �R2j�k
2 � �K � 1�R2j�k �

�K � 1�2

4 �
� 2 �

k�1

K �
j�1

J �
j��1

J

R̃1jkR̃2j�k

� 2J2 � �2K � 1��K � 1�K

6
�

K�K � 1�2

4 �

� 2 �
k�1

K �
j�1

J �
j��1

J

R̃1jkR̃2j�k � J2
�K � 1��K � 1� K

6

� 2 �
k�1

K �
j�1

J �
j��1

J

R̃1jkR̃2j�k. (A1)

Using Equation A1 and the fact that r̂�s,12 is the average
Spearman’s rs over all pairs of judges with one judge from
each of Group 1 and Group 2,

r̂� s,12 �
1

J2 �
j�1

J �
j��1

J �1 �
6

K3 � K �
k�1

K

�R1jk � R2j�k�
2�

� 1 �
6

K3 � K

1

J2 �J2
�K � 1��K � 1� K

6

� 2 �
k�1

K �
j�1

J �
j��1

J

R̃1jkR̃2j�k� �
1

J2

12

K3 � K �
k�1

K �
j�1

J �
j��1

J

R̃1jkR̃2j�k

�
1

J2

12

K3 � K �
k�1

K � �
j�1

J

R̃1jk �
j��1

J

R̃2j�k�
�

12

K3 � K �
k�1

K �1

J �
j�1

J

R1jk �
K � 1

2 ��1

J �
j��1

J

R2j�k �
K � 1

2 �
�

12

K3 � K �
k�1

K �R� 1�k �
K � 1

2 ��R� 2�k �
K � 1

2 � � Ŵ12.
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Appendix B

Derivation of Expressions 10 and 11

The numerator of Expression 10 can be written as

�
k�1

K �R� ��k �
K � 1

2 � 2

� �
k�1

K ��j�1

J R1jk � �
j��1

J R2j�k

2J

�
K � 1

2
� 2

� �
k�1

K � 1

2J �
j�1

J

R1jk �
K � 1

4
�

1

2J �
j��1

J

R2j�k

�
K � 1

4 � 2

� �
k�1

K �� 1

2J �
j�1

J

R1jk �
K � 1

4 � 2

� � 1

2J �
j��1

J

R2j�k �
K � 1

4 � 2

� � 1

2J �
j�1

J

R1jk �
K � 1

4 �
� � 1

2J �
j��1

J

R2j�k �
K � 1

4 �� �
1

4 �
k�1

K �R� 1�k �
K � 1

4 � 2

�
1

4 �
k�1

K �R� 2�k �
K � 1

4 � 2

�
1

2 �
k�1

K �R� 1�k �
K � 1

4 ��R� 2�k

�
K � 1

4 � �
1

4
�Ŵ1 � Ŵ2 � 2Ŵ12�. (B1)

The denominator of Expression 10 can be derived similarly.
Using Results 1 and 2, the last expression in Equation B1

can be written as

1

4 �J � 1

J
r̂� s,1 �

1

J� �
1

4 �J � 1

J
r̂�s,2 �

1

J� �
1

2
r̂�s,12

1

4 �J � 1

J
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1

J� �
1

4 �J � 1

J
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1

J�

�

J�J � 1�

2
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J

2
�

J�J � 1�

2
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J

2
� J2r̂�s,12

J�J � 1�

2
r̂�s,1 �

J

2
�

J�J � 1�

2
r̂�s,2 �

J

2

�
� J
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2 � r̂�s,2 � J2r̂�s,12 � J

� J
2 � r̂�s,1 � � J

2 � r̂�s,2 � J
.
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